CSE 473
Chapter 3
Problem Solving using Search

“First, they do an on-line search”

© CSE Al Faculty

Example: The 8-puzzle

Start Goal

1123 11213
4|—>|4]5|6
7165 7|8

Example: Route Planning

Example: N Queens

™
™
|
™

4 Queens problem

(Place queens such that no queen attacks any other)

Example: N Queens

4 Queens

State-Space Search Problems

General problem:
Find a path from a start state to a goal state given:
A goal test: Tests if a given state is a goal state

« A successor function (transition model): Given a state,
generates its successor states

Variants:
 Find any path vs. a least-cost path
» Goal is completely specified, task is just to find the path
— Route planning
* Path doesn’t matter, only finding the goal state
— 8 puzzle, N queens, Rubik’s cube

Example: Simplified Pac-Man

Input:
e LI L]
. “N”, 1.0
« Successor function _—
\

“E”, 1.0
» Start state H
» Goal test - .

Search Trees

“N”, :IO/ \“E:,, 1.0

A search tree: AN I

* Root = Start state

 Children = successor states

 Edges = actions and costs

* Path from Start to a node is a “plan” to get to that state

 For most problems, we can never actually build the
whole tree (why?)

State Space Graph versus Search Trees

State Space Graph

(graph of states with arrows pointing to successors)

State Space Graph versus Search Trees

Search Tree for 8-Puzzle

1123
8 4
7/6|5
1 3 1123 1123 1]2
8|24 84 8(6|4 8
7|65 7/6|5 7 5 7|6
13 13 1]2 1123 1123 112|3 2|3 3
8|24 8|24 814|3 8/4|5 8|6|4 8|64 184 4
7|65 7|6|5 7|6|5 76 7|5 7|5 7|6|5 5
813 1134 1 2 1123 1123 1123 2 3 3
24 8|2 814|3 8 4|5 6|4 8|6 184 4
7|65 7|6|5 7|6|5 7 6 8|7|5 7|54 7|6|5 5

1

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action

State E El Node depth =6
g=6
s | 1]
2] 2]

state

12

Searching with Search Trees

Search:
* Expand out possible nodes
* Maintain a fringe of as yet unexpanded nodes
+ Try to expand as few tree nodes as possible

I Implementation: general tree search [

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe +— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

14

I Implementation: general tree search [

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors +— the empty set

for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
s<—a new NODE
PARENT-NODE[s] - node; ACTION[s] ¢ action; STATE[s] ¢ result
PATH-COST[s] <~ PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[node] + 1
add s to successors

return successors

15

Handling Repeated States

Failure to detect repeated states (e.g., in 8 puzzle) can cause

infinite loops in search

expand

expand a

Graph Search algorithm: Augment Tree-Search to store
expanded nodes in a set called explored set (or closed set)
and only add new nodes not in the explored set to the fringe

16

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be c0)

17

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

Iterative deepening search

Breadth-first search

|

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

19

Breadth-first search

Expand shallowest unexpanded node
fringe is a FIFO queue, i.e., new successors go at end

Implementation:
/ \ T

20

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

21

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
(B) ©
>bO ® ® ©

22

l Properties of breadth-first search |

Complete??

23

I Properties of breadth-first search [

Complete?? Yes (if b is finite)

Time??

24

I Properties of breadth-first search I

Complete?? Yes (if b is finite)

Time?? b+b? +b®>+---+b? =0O(b") i.e. expind

Space??

25

I Properties of breadth-first search |

Complete?? Yes (if b is finite)
Time?” b+b* +b* +---+b? =O(b?) i.e. exp ind
Space?? O(bd)

Optimal??

26

I Properties of breadth-first search |

Complete?? Yes (if b is finite)

Time?? b+b%+b*+---+b? =O(b?) i.e. exp ind
Space?? O(b?)

Optimal?? Yes if all step costsare equal. Not optimal in general.
Space and time are big problems for BFS.

Example: b = 10, 1000,000 nodes/sec, 1000 Bytes/node

d =2 = 110 nodes, 0.11 millisecs, 107KB

d =4 < 11,110 nodes, 11 millisecs, 10.6 MB

d =8 =» 108 nodes, 2 minutes, 103 GB

d =16 =» 10% nodes, 350 years, 10 EB (1 billion GB)

27

What if the step costs are not
equal?

Can we modify BFS to handle any step
cost function?

28

I Uniform-cost search |

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost g(n) (Use priority queue)

Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost > ¢

Time?? # of nodes with g < cost of optimal solution, C)(b\‘C /8}1)
where C'* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(bLC /5}1)

Optimal?? Yes—nodes expanded in increasing order of g(n)

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

LON

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

31

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

32

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

33

| Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

34

I Depth-first search I

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

35

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

36

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

37

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

38

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

39

I Depth-first search [

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

40

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

41

I Properties of depth-first search |

Complete??

42

I Properties of depth-first search |

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (using “explored” set)
= complete in finite spaces

Time??

43

I Properties of depth-first search I

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (using “explored” set)
= complete in finite spaces

44

I Properties of depth-first search I

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (using “explored” set)
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

45

I Properties of depth-first search I

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (using “explored” set)
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Optimal?? No

Space cost is a big advantage of DFS over BFS.
Example: b = 10, 1000 Bytes/node
d =16 = 156 KB instead of 10 EB (1 billion GB)

46

| Depth-limited search I

= depth-first search with depth limit [,
i.e., nodes at depth [have no successors (can handle infinite state spaces)

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE—DLS(MAKE-NODE(INITlAL—STATE[pToblem]),problem limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem](STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

47

I Iterative deepening search [

function ITERATIVE-DEEPENING-SEARCH(Problem) returns a solution
inputs: problem, a problem

I for depth+ 0 to oo do I
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result
end

« DFS with increasing depth limit
* Finds the best depth limit
* Combines the benefits of DFS and BFS

48

| Iterative deepening search [=0 I

it=0 @ ®

49

I Iterative deepening search | =1 |

it=1 »@ @ @ ./0\.
10, © 20)

50

I Iterative deepening search [=2 [

51

I Iterative deepening search [=3 |

it=3 o)

@

52

I Properties of iterative deepening search I

Complete??

53

I Properties of iterative deepening search [

Complete?? Yes

Time??

54

I Properties of iterative deepening search |

Complete?? Yes
Time?? db' + (d— 1) + ...+ b = O(b?)

Space??

55

l Properties of iterative deepening search |

Complete?? Yes
Time?? db' + (d —)b + ... + b = O(b%)
Space?? O(bd)

Optimal??

56

I Properties of iterative deepening search [

Complete?? Yes
Time?? db' + (d— 1)b* + ... + b = O(b)
Space?? O(bd)

Optimal?? Yes if all stepcostsare equal. Not optimal in general.
Can be modified to explore uniform-cost tree

Increasing path-cost limits instead of depth limits
This is called lterative lengthening search (exercise 3.17)

57

Forwards vs. Backwards

[] Oradea

Vaslui

Pitesti

[] Hirsova

n
] Mehadia Urziceni

86
& Bucharest

Dobreta []

L craiova Eforie

Problem: Find the shortest route
58

Bidirectional Search

Qs
oS

Motivation: b2 + pd2 << pd (E.g., 108+108 =2-108<< 1016)
Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess
59

Can we do better?

All these methods are slow (because they are “blind”)

Solution = use problem-specific knowledge to
guide search (“heuristic function™)
= “informed search” (next lecture)

To Do

« Start Project #1
« Read Chapter 3

60

