
CSE 105, Fall 2019 - Homework 2 
Solutions 

Due: Monday 10/21 midnight 

 

Instructions 

Upload a single file to Gradescope for each group. All group members’ names and PIDs should 
be on each page of the submission. Your assignments in this class will be evaluated not only on 
the correctness of your answers, but on your ability to present your ideas clearly and logically. 
You should always explain how you arrived at your conclusions, using mathematically sound 
reasoning. Whether you use formal proof techniques or write a more informal argument for why 
something is true, your answers should always be well-supported. Your goal should be to 
convince the reader that your results and methods are sound.  
 
For questions that only ask for diagrams, justifications are not required but highly 
recommended. It helps to show your logic in achieving the answers and partial credit can be 
given if there are minor mistakes in the diagrams. 
 
Reading​ Sipser Sections 1.1 - 1.3 
 
Key Concepts​ Deterministic finite automata (DFA), state diagram, computation trace, accept / 
reject, language of an automaton, regular language, union of languages, concatenation of 
languages, star of a language, closure of the class of regular languages under certain 
operations, nondeterministic finite automata (NFA), nondeterministic computation, ε arrows, 
equivalence of NFAs and DFAs. 
 
 
 
 
 
 
 



Problem 1 (10 points) 

For each of the below parts, draw the minimal state diagram of the DFA that recognizes the 
given language. 

a.  with he empty language ØL = t a, }Σ = { b  
Common Mistake: Using extra states/epsilon transition/accept empty string 

 

b.  with he language that accepts only the empty string εL = t a, }Σ = { b   
Common Mistake: transition to different states with a,b from start state, not optimal 

 
 

c. w ∊ Σ  | w does not contain an equal number of  occurrences of  the substrings 01 and 10}L = { *

with  ​Common Mistake: Using extra states; transitions from accept states to0, }Σ = { 1  
start state; epsilon transition 

 

 



Problem 2 (10 points) 

(a) Draw the state diagram of the DFA that recognizes the language
w ∊ {0, }  | w contains exactly one occurrence of  the substring 01}L = { 1 *  

For full credit your DFA must have no more than five states. 
Common Mistake: DFA not accepting strings in the form of 1*0*1*0*;  

 
 

b. Draw the state diagram of the NFA that recognizes the language
w | w is a palindrome of  length 4}L = { ∈ Σ  *  

For full credit your NFA should have no more than fifteen states and the minimal number 
of transitions in the diagram. 
Common Mistake: extra epsilon transitions; extra 0,1 transitions to trap state; 
intersection of the 4 palindrome paths causing NFA accepting non-palindrome strings 

 



 
 
 
This is an alternative answer to b with only 10 states. 
 



Problem 3 (10 points) 

Recall, for a language its complement is the set of strings over  not in , denoted as ⊆ ΣL * Σ L  

.  Also, recall that the set difference is defined asw∈ } ⊆ ΣL = { / L *  

w | w , w∈ }L1 − L2 = { ∈ L1  / L2  

 
w 0, }  | w contains 101 as a substring}A = { ∈ { 1 *  

w 0, }  | w has an even number of  zeros}B = { ∈ { 1 *  

 
A  

 
 
 
 
 
 
 
 
 
B  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



(a) Draw the state diagram of the DFA of the following language:  ∪ BA  

For full credit, each DFA should have no more than 8 states. 
 
 

 
 
Common Mistake: The language can accept input strings which have 101, as long as the 
overall string has an even number of 0s. 

 
 
 
 
 
 
 
 
 



(b) Draw the state diagram of the NFA of the following languages: (A)* ◦ B 
For full credit your NFA should have no more than six states and the minimal number of 
transitions in the diagram. 
 
The first thing to note is that in this case .  For a language to be in  it ∪ {ε}A* = A A*  

must contain at least one occurrence of the string .  If we concatenate several of011  

these strings together (i.e. apply the Kleene star), we are still guaranteed to have at least 
one occurrence of  in the resulting string, and thus this string must have been in 011 A  

to begin with. 
 
Because both languages now recognise the empty string, we can rewrite  as ◦ BA*  

. ∪ B A  

 
 
 
 

 
Common Mistakes: a) The Kleene star operation allows you to have the input as an empty 
string for A. This means that the start state has to be shifted. 
b) You can’t have your start state at the start state of the NFA for A, and then make an ε
transition to the start state of the NFA for B. This is because the first state of A will have the 0,1 
transition onto itself, and the start state of B is an accept state. This would then cause any input 
string to be accepted.  

 

 



Problem 4 (10 points) 

Prove that any finite language (i.e. a language with a finite number of strings) is regular 
 

Proof by Induction:  

First we prove that any language L = {w} consisting of a single string is regular, by 
induction on |w|. (This will become the base case of our second proof by induction) 
Base case: |w| = 0; that is, w = ε  
In problem 1(b), we constructed a DFA that recognizes the language that contains only the 
empty string, and thus this language is regular. 
 
Induction: 
Let  be a language that recognizes a single string  over .  We can rewrite L w Σ w ...ww = w1 2 n  
such that  for all .wi ∈ Σ i  
 
Suppose that a DFA  exists that recognizes  ={ }.  ByQ, , , , }M = { Σ δ q0 F L w ...ww = w1 2 n  
definition  is regular.  We must now prove that the language  isL w Σ w ...w w }L′ = { ′ = w = w1 2 n n+1  
regular. 
 
Define  to be an NFA such that:Q , , , , }M ′ = { ′ Σ δ′ q0′ F ′  

 ∪ {q }Q′ = Q n+1  
(q, )δ′ c =  

if δ(q, )} { c ∈q / F  
 if  and   }{qn+1 q ∈ F c = wn+1  

q0′ = q0  
q }F ′ = { n+1  

 
We propose that  recognizes .  Since the first part of  follows the same path that M ′ L′ δ′ w  
would take through , we know that reading  will terminate at some state .   addedL w q ∈ F Q′  
a single state that is only reachable from the states in  on character .  If there are anyF wn+1  
additional characters to read, we will reject the string since  has no outgoing transitions.  Ifqn+1  
we try to read a prefix of the string that does not equal  exactly, we will never end up in a statew  
in  and thus never reach .  Thus,  is an NFA that recognizes  and by definition  isF qn+1 M ′ L′ L′  
regular. 
 



Next, we prove that any finite language L is regular by induction on |L|. We prove the 
statement P(n) = “all languages of size n are regular” 
 
Base Case: ​The previous proof handled the base case where |L| = 1. We also note that the 
empty language L = {} is regular by referring to the DFA in Problem 1(a). 
 
Inductive Step: ​Suppose that we have proven that any language of size ​n​ is regular (we assume 
P(n) as our inductive hypothesis). Let  be a finite language containing ​n+1​ strings.  ChooseL  
any string and let  be simply all of the strings in L except ​s​. We can express ,s ∈ L   s}L′ = L − {  
L as the union . Furthermore, |L’| = n and |{s}| = 1 so by the inductive hypothesis L’ is s}L′ ⋃ {  
regular and by the base case {s} is regular. We know from lecture that the class of regular 
languages are closed under union, and thus  is regular. This proves P(n+1) and thusL  
completes our proof by induction. 
 
Common Mistakes: In proving all finite languages are regular, using induction on the size of the 
language |L|, some groups gave the wrong base case. The language of size zero, namely {}, 
cannot be used as a base case because the inductive step explicitly uses the fact that a 
language of size one is regular when break up L into two or more smaller languages. 
 
Also, many groups that did include the correct base case neglected to give a justification as to 
why a language of size 1 is regular or proved it only for the language A valid justificationε}.{  
could be an inductive proof like the first proof above, a direct construction of a DFA/NFA, or an 
appeal to regular expressions and their properties. 
 

Problem 5 (10 points) 
Prove that regular languages are closed under intersection. That is, given two regular 
languages  and , prove that  is regular.L1 L2  ∩ LL1 2  
 

Proof via closure under complement and union 

Note that  ∩ LL1 2 = L ∪ L1 2  
We previously proved (in lecture and in the textbook) that languages are closed under 
complement and union.  Thus 
 

 is regular since regular languages are closed under complementL1  
 is regular since regular languages are closed under complementL2  

 is regular since regular languages are closed under union∪ LL1 2  



 is regular since regular languages are closed under complement.L ∪ L1 2  
 
∴​ is regular ∩ LL1 2  
 

Proof via finite automata construction 
Let , , and  be the formal definition of the finite automata that recognizes , , andM ′ M ′′ M L1 L2  

 respectively. ∩ LL1 2  
 

Q , Σ, δ , q , F )M ′ = ( ′   ′  0′  ′  
Q , , , q , F )M ′′ = ( ′′ Σ′′ δ′′  0′′  ′′  

 
Then 

Q  �Q , Σ, δ, (q , q ), F �F )M = ( ′ ′′    0′  0′′  ′ ′′  
 where  is the current character in the string((q , q ), c) δ (q , c), δ (q , c))δ ′  ′′  = ( ′ ′   ′′ ′′  c  

 
To prove that  recognizes , let  be a string over  such that  and .M  ∩ LL1 2 w Σ  w ∈ L1  w ∈ L2  
Therefore: 

(q , w)δ*′ 0′  ∈ F ′  
(q , w)δ*′′ 0′′  ∈ F ′′  

((q , q ), w) �Fδ*
0′  0′′  ∈ F ′ ′′  

which is equivalent to the set of accept states in .M  
 
∴ ​Since we can construct a finite automata for  it is regular. ∩ LL1 2  
Common Mistake: L1 and L2 are regular, but that does not mean that L1 and L2 are finite (all 
finite languages are regular but not all regular languages are finite!) 
 

 

 

 

 



Problem 6 (10 points) 

Given the following state diagram of an NFA over the alphabet Σ = {a, b}, convert it into the state 
diagram of its equivalent DFA.  Give an informal description in English of what language these 
finite automata recognize.  For full credit, your DFA should have no more than 8 states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer: 
The language recognized by these finite automata is all strings that don’t begin with ​b​ and don’t 
contain the substring ​bab​. 
 
We first create a table that shows the set of states we can reach after reading a single character 
from the specified beginning state.  The  column represents the set of all states we can reachε*  
by reading zero or more  characters from the specified beginning state.ε  
 
 

 a b ε*  

q1  q }{ 3  Ø  q , q }{ 1  2  

q2  q }{ 1  Ø  q }{ 2  

q3  q }{ 2  q , q }{ 2  3  q }{ 3  

 



The new states are the powerset of the set of states in the original NFA:Q′  
.Ø, {q }, {q }, {q }, {q , q }, {q , q }, {q , q }, {q , q , q }}Q′ = {  1  2  3  1  2  1  3  2  3  1  2  3  

 
The new start state  is the set of all states that can be reached from the original start state byq0′  
reading zero or more  characters.  In this case .ε  q , q }q0′ = { 1  2  
 
The new accept states are a subset of  such that at least one element  of each set in F ′ Q′ q′ F ′  
matches one of the following criteria: 

●  is an accept state in the original NFA (i.e. )q′ q }{ 2  
●  has an  transition to an accept state in the original NFA (i.e. q′ ε q }){ 1  

So the new set of accept states are: .{q }, {q }, {q , q }, {q , q }, {q , q }, {q , q , q }){ 1  2  1  2  1  3  2  3  1  2  3  
 
The new transitions are based on the information in the table above.  For a current state , weq  
first create the set of states that can be reached by reading a single character in  (let’s call thisΣ  
set ).  Then we need to consider all transitions on  characters for each state in .  NoteqΣ ε qΣ  
that this method follows the book’s pattern of only handling transitions on  characters afterε  
reading a character from .Σ  
 
As an example, let us consider reading an  from state .  From the table above,a q , }{ 1  q2  
reading an  from  or  gives us .  We now need to consider alla q1 q2 q } ∪ {q } q , q }qΣ = { 3 1 = { 1  3  

 transitions from all states in .  From the table above, reading zero or more  charactersε qΣ ε  
from  will lead us to state .  We then need to recurse on each of these transitions.q1 q , q }{ 1  2  

 we have already handled, and reading zero or more  characters from  can only lead usq1 ε q2  
to , so there is nothing left to handle in this set of states.  If we instead read zero or more q2 ε  
characters from  we can only end up at .  Finally, we need to take the union of allq3 q }{ 3  
possible states that we have found.  Thus, .({q , q }, a) q , q , q }δ′ 1  2  = { 1  2  3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Based on the above information, the new 8-state DFA is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Now, note that several states in the 8-state DFA are unreachable.  For example, both q q }{ 1 3  
and  have no incoming states, and so they can be removed without affecting theq }{ 1  
functionality of the DFA.  By similar logic, once you have removed the above two states you can 
also remove  and .  Thus, the final 4-state DFA isq }{ 2 q }{ 3   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Common mistakes: 

1. Excluding  from their English description of the languageε  
2. Excluding the fact that the substring “bab” cannot appear in an accepted string 
3. Not marking the start state in the diagram of the DFA 
4. Not marking the accept states in the diagram of the DFA 
5. Many people did not consider the idea that if you read the entire string and end at state 

 that you can take the  transition to , an accept state.  Thus,  is implicitlyq1 ε q }{ 2 q }{ 1  
an accept state and  and  should be accept states as well in the DFA.q }{ 1 q , q }{ 1  3  

6. Not considering  characters when coming up with the transition function for the DFAε  
(the book follows a methodology where it only reads  characters are reading a singleε  
character from the input string, and this solution follows that method as well.  However, 
as the book mentions there is an equivalent solution where you you follow  transitionsε  
before reading a character from the input string.  I have included this DFA in the 
following image.  In this case attempting to reduce the DFA results in a 5-state DFA). 

 
 
 
 
 



 


