

Combinational Logic

Rab Naway Khan Gadoon

Department of Computer Science

DCS

Lecturer
COMSATS Lahore
Pakistan
COMSATS Institute of Information Technology

Combinational logic

- A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination of inputs without regard to previous outputs.
- A combinational circuit performs a specific information processing operation fully specified logically by a set of Boolean functions.
- A Combinational circuit consists of input variables, logic gates, and output variables.

Combinational logic

- The logics gate accept signals from the inputs and generate signals to the outputs.
- This process transforms binary information from the given input data to the required output data.

Combinational logic

- Design Procedures

- Starts from the verbal outline of the problem and ends in a logic circuit diagram.
- The procedure involves the following step,
- The problem is stated.
- Input and required output variables are determined.
- Assigned the variables letter symbols.
- Make the truth table.
- The simplified Boolean functions for each output is obtained.
- The logic diagram is drawn.

Combinational logic

- Adders
- Adders are important in computers and also in other types of digital systems in which numerical data are processed.
- An understanding of the basic adder operation is fundamental to the study of digital systems.
- The most basic operation is no doubt is the addition of two binary digits.

The Half Adder

- Half Adder
- The combinational circuit that performs the additions of two bit is called Half adder.
- One that performs the addition of three bits including two digits and one previous carry is a full adder.
- Two half adders can be employed to form a full adder.

Combinational logic

- Half Adder
- It has two inputs and two outputs.
- The input variables designates the augends and addend bits; the output variables produces the sum and carry.
- It is necessary to specify two output variables because the result may consist of two binary digits.
- A and B are two inputs binary variables while C and S used for carry and Sum to the outputs.

Combinational logic

- Half Adder
- The half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs, a sum bit and a carry bit.
- The truth table look like this,

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10
\end{aligned}
$$

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {out }}$	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Combinational logic

- Half Adder
- A half-adder is represented by the logic symbol in Figure below,

Half Adder

- Half-Adder Logic
- Notice that the output Carry ($\mathrm{C}_{\mathrm{out}}$) is a 1 only when both A and B are 1s; therefore $C_{\text {out }}$ can be expressed as the AND of the input variables.
$-C_{\text {out }}=A B$
- Now observe that the sum output (Σ) is a 1 only if the input variables. A and B, are not equal.
- The sum can therefore be expressed as the exclusive-OR of the input variables.

$$
\boldsymbol{\Sigma}=A \oplus B
$$

Related Example

- Half-Adder Logic
- The logic implementation required for the half adder function can be developed.
- The output carry is produced with an AND gate with A and B on the inputs.
- The sum output is generated with an exclusive-OR gate.

Half Adder

- Half-Adder Logic diagram

Solutions

Department of Computer Science

Full Adder

- Full Adder
- The second category of adder is the full-adder.
- The full-adder accepts two input bits and an input carry and generates a sum output and an output carry.
- The basic difference between a full-adder and a halfadder is that the full-adder accepts an input carry.

Full Adder

- Logical symbol for full adder is,

Full Adder

Truth Table

A	B	$C_{\text {in }}$	$C_{\text {out }}$	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$\mathrm{C}_{\text {in }}$ = input carry, sometime designated as Cl
$\mathrm{C}_{\text {out }}=$ output carry sometimes designated as CO
$\Sigma=$ sum
A and $B=$ input variables (operands)

Full Adder

- Full Adder Logic
- The full-adder must add the two input bits and the input carry.
- From the half-adder you know that the sum of the input bits A and B is the exclusive-OR of those two variables, A xor B.
- For the input carry ($\mathrm{C}_{\text {in }}$) to be added to the input bits. it must be exclusive-ORed with A xor B, yielding the equation for the sum output of the full-adder.

$$
\Sigma=(A \oplus B) \oplus C_{\mathrm{in}}
$$

Full Adder

- Map for Full Adder (For Sum Function)

$$
S=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z
$$

Full Adder

For Carry Simplified Expression

$$
C=x y+x z+y z
$$

Implementation of Full Adder in SOP

Logic Diagram

Implementation of Full Adder

Implementation of a full adder with two half adders and an OR Gate

Adders

$$
\begin{aligned}
S & =z \oplus(x \oplus y) \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y+x^{\prime} y^{\prime}\right) \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z z^{\prime}+x y z+x^{\prime} y^{\prime} z \\
C & =z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y
\end{aligned}
$$

Problem

- For each of the three full-adders in Figure below, determine the outputs for the inputs shown.

(a)

(b)

(c)

Solution

(a) The input bits are $A=1, B=0$, and $C_{\text {in }}=0$.

$$
1+0+0=1 \text { with no carry }
$$

Therefore, $\Sigma=1$ and $C_{\text {out }}=\mathbf{0}$.
(b) The input bits are $A=1 . B=1$, and $C_{\text {in }}=0$.

$$
1+1+0=0 \text { with a carry of } 1
$$

Therefore, $\Sigma=0$ and $C_{\text {out }}=1$.
(c) The input bits are $A=1, B=0$, and $C_{\text {in }}=1$.

$$
1+0+1=0 \text { with a carry of } 1
$$

Therefore, $\Sigma=0$ and $C_{\text {out }}=1$.

Quiz

(a)

Parallel Binary Adders

- Two or more full-adders are connected to form parallel binary adders.
- a single full-adder is capable of adding two 1-bit numbers and an input carry.
- To add binary numbers with more than one bit, you must use additional full-adders.
- When one binary number is added to another, each column generates a sum bit and a 1 or 0 carry bit to the next column to the left.

\downarrow Carry bit from right column
 1
 11
 $+01$
 100

In this case, the carry bit from second column becomes a sum bit.

Parallel Binary Adder

- To add two binary numbers, a full-adder is required for each bit in the numbers.
- So for 2-bit numbers, two adders are needed.
- For 4-bit numbers, four adders are used; and so on.
- The carry output of each adder is connected to the carry input of the next higher-order adder.
- Notice that either a half-adder can be used
- for the least significant position or the carry input of a full-adder can be made 0 (grounded) because there is no carry input to the least significant bit position.

Parallel Binary Adder

General format. addition of two 2-bit numbers:

$A_{2} A_{1}$
$+B_{2} B_{1}$
$\Sigma_{3} \Sigma_{2} \Sigma_{1}$

Parallel Binary Adder

- In Figure the least significant bits (LSB) of the two numbers are represented by A_{1} and B_{1}.
- The next higher-order bits are represented by A_{2} and B_{2}.
- The three sum bits are Σ_{1}, Σ_{2} and Σ_{3}.
- Notice that the output carry from the left-most full-adder becomes the most significant bit (MSB) in the sum, Σ_{3}.

Example

- Determine the sum generated by the 3-bit parallel adder and show the intermediate carries when the binary numbers 101 and 011 are being added.

Four Bit Parallel Adder

- A group of four bits is called a nibble.
- A basic 4-bit parallel adder is implemented with four full-adder stages as shown in Figure .

Logical Symbol for 4 bit Parallel Adder

(b) Logic symbol

4 bit parallel adder

- The input labeled Co is the input carry to the least significant bit adder.
- C_{4} in the case of four bits, is the output carry of the most significant bit adder; and Σ_{1} (LSB) through Σ_{4} (MSB) are the sum outputs.
- The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by using two 4-bit adders.

8 Bit Adder

Cascading of two 4-bit adders to form an 8-bit adder

Subtractors

- Subtraction of two binary number is accomplished by taking the complement of the subtrahend and adding it to the minuend.
- Logically it can be done through direct method.
- In this method each bit of the subtrahend is subtracted from its corresponding significant minuend bit to form a difference bit.
- If the minuend bit is smaller then a 1 borrow is taken from the next higher pair of the bits.

Subtractors

- Half Subtractor
- It subtract two bits and produces their difference.
- It also has an output to specify if a 1 has been borrowed.
- x and y are minuend and subtrahend veriable.
- For subtraction we check the relative magnitude of the x and y.
\square If $x>=y$ then no issue.
- If $x<y$ then it is necessary to take a borrow from the next higher stage.

Half subtractor

- Truth table of half subtractor is,

\mathbf{X}	\mathbf{Y}	\mathbf{B}	\mathbf{D}
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

$$
\begin{aligned}
& D=x^{\prime} y+x y^{\prime} \\
& B=x^{\prime} y
\end{aligned}
$$

Problem

- Draw a circuit diagram against Difference D and Borrow B.

Full Subtractor

- It performs a subtraction between two bits, taking in to account that a 1 may have been borrowed by a lower significant stage.
- It has three inputs and two outputs.
- Three inputs x, y and z shows the minuend, subtrahend and previous borrow respectively.
- B and D represents the output borrow and Difference.

Full Subtractor

- Truth table is as under,

Full Subtractor

- The function against B and D are,

$$
D=x^{\prime} y^{\prime} z+x x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z
$$

$$
B=x^{\prime} y+x^{\prime} z+y z
$$

$D=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} z^{\prime}+x y z$

$B=x^{\prime} y+x^{\prime} z+y z$

Code conversion

- Some times the output of the one system as the input to another.
- If both the system uses different coding system, then code convertor is needed between them.
- Thus a code convertor is a circuit that makes the two system compatible.
- To convert from binary code A to B,
- Input lines supply the bit combination of elements by Code A and the output lines must generate the corresponding bit combination for code B .
- Code conversion from BCD to Excess 3 is illustrated below,

1) BCD code: ABCD
2) Axcess-3 code: WXYZ
3) Truth table:

Decimal	A B C D	WXY Z
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100
10	1011	$\mathbf{x} \times \mathrm{x} x$ x
\vdots	$\vdots \vdots$	$\vdots \vdots$
15	1111	$\mathrm{x} \times \mathrm{x} \times \mathrm{x}$

Outputs Simplification

Circuit Diagram

Binary to Gray code

Gray to Binary

Related Problem

How many exclusive-OR gates are required to convert 8-bit binary to Gray?

