Crystal Structure Analysis

X-ray Diffraction

Electron Diffraction

Neutron Diffraction

Essence of diffraction: Bragg Diffraction

Reading: West 5
A/M 5-6
G/S 3
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SCATTERING

Scattering is the process in which waves or particles are forced to deviate from a
straight trajectory because of scattering centers in the propagation medium.

X-rays scatter by interaction with the electron density of a material.
Neutrons are scattered by nuclei and by any magnetic moments in a sample.
Electrons are scattered by electric/magnetic fields.

Momentum transfer: pI —P= hq Energy change: E' — E = hy
Elastic (E' = E) For X-rays: E = PC

* Rayleigh (A >> dpec) Elastic scattering geometry
* Mie ()\ = dobject)

« Geometric ()\ << dobject)
* Thompson (X-rays)

p
Inelastic (E' 2 E) __
« Compton (photons + electrons) oy
* Brillouin (photons + quasiparticles) e T g=2=sint
 Raman (photons + molecular vib./rot.) no 2




Compton

COMPTON SCATTERING

Compton (1923) measured intensity of scattered X-rays
from solid target, as function of wavelength for different
angles. He won the 1927 Nobel prize.

s
X-ray source Collimator
(selects angle) Crystal -
(selects L N
I I W%avelength) |
AN V‘ ¢ | 1 I
Graphlte B I I R
Target ‘ | k
Detector A
Result: peak in scattered radiation \/’i | \
shifts to longer wavelength than e R
source. Amount depends on 6 (but Fis. 3

not on the target material). A. H. Compton. Phys. Rev. 22, 409 (1923).




COMPTON SCATTERING

Classical picture: oscillating electromagnetic field causes oscillations in positions
of charged particles, which re-radiate in all directions at same frequency and
wavelength as incident radiation (Thompson scattering).

Change in wavelength of scattered light is completely unexpected classically

N A I BAVAVAVA

Incident light wave Oscillating Emitted light wave
electron

Compton’s explanation: “billiard ball” collisions between particles of light
(X-ray photons) and electrons in the material

Before After P,

scattered photon

. & NS

Electron

Incoming photon

P,

® scattered electron




COMPTON SCATTERING

Before After P,

_ scattered photon
Incoming photon

@ 0
o ® Ve
Electron
® scattered electron
Conservation of energy Conservation of momentum
2 / 2.2 2 4\M2 h -
hv +m,.c® =hv +(pec +m;c ) P, =—1=p, +Pp,

A
From this Compton derived the change in wavelength:

A —A= L(1—c039)
m.c

=, (1-cos6)=0

A. = Compton wavelength = N 2.4x107“m
M C 223
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COMPTON SCATTERING

Note that there Is also an
unshifted peak at each angle.

Most of this Is elastic scatter.
Some comes from a collision
between the X-ray photon and
the nucleus of the atom.

A A= (1-cos0)=0
m,C

i
since My >> M, J“ , \F\

1 i
£720" BLiRETHE  TC anois chow
Fig. 3




COMPTON SCATTERING

Contributes to general background noise

Diffuse
background from
Compton
emission by
gamma rays in

a positron
emission
tomography
(PET) scan.

Fluorodeoxyglucose (18F)
OH

HO
HO

Annihilation

"IE-F

OH
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X-RAY SCATTERING

X-rays: A (in A) = 12400/E (in eV)

« 100 eV ("soft") - 100 keV (“hard") photons
12,400 eV X-rays have wavelengths of 1 A
somewhat smaller than interatomic distances in solids

=) Diffraction from crystals!

Roentgen
. 1901 Nobel
elastic (Thompson, AE = 0)

« wide-angle diffraction (6 > 5°)
« small-angle diffraction (6 close to 0°)
« X-ray reflectivity (films)

inelastic (AE z 0)

« Compton X-ray scattering
* resonant inelastic X-ray scattering (RIXS)
« X-ray Raman scattering

First X-ray: 1895
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DIFFRACTION

Refraction is the change in the direction of a wave due to a change in its speed.

Crystal diffraction

| I. Real space description (Bragg)
mm“’“”mmm))))))))))) IT. Momelrol‘rum (k) Spclloce descriggion

(von Laue)

diffraction of plane waves




OPTICAL INTERFERENCE

Amplitude

Amplitude
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BRAGG'S LAW OF DIFFRACTION

When a collimated beam of X-rays strikes pair of parallel lattice planes in a crystal,
each atom acts as a scattering center and emits a secondary wave.
—> All of the secondary waves interfere with each other to produce the diffracted beam

Bragg provided a simple, intuitive approach to diffraction:

* Regard crystal as parallel planes of atoms separated by distance d

 Assume specular reflection of X-rays from any given plane

— Peaks in the intensity of scattered radiation will occur when rays
from successive planes interfere constructively

ACB = 2d sin®

229




BRAGG'S LAW OF DIFFRACTION

No peak is observed unless the condition for constructive interference
(0 = nA, with n an integer) is precisely met:

st 1
ACB = 2d sin®

AC=dsing
2 2
N L
T - ACB =2dsin®
01 & nA=ACB
C

Bragg's Law: NA =20 SIN &

When Bragg's Law is satisfied, "reflected” beams are in phase
and interfere constructively. Specular "reflections” can
occur only at these angles. 230



DIFFRACTION ORDERS

1st order: N

A=2dsIng M ,\/\/\/\f/\j,

N ed
2 order: L:\w:\‘:\z\;\\::j‘::fi'
21 =2dsing, o Al 77

By convention, we set the diffraction order = 1 for XRD.

For instance, when n=2 (as above), we just halve the d-spacing to make n=1.
22 =2dsing, mpy A=2(d/2)siné,

e.g. the 2n order reflection of d;5n occurs at same 6 as 157 order reflection of d,q,



XRD TECHNIQUES AND APPLICATIONS

diffracted

o » powder diffraction
incident /"/- detector ) Single—cr'YSTCl| diffr'ClCTion
SoUrCee Ty rays T~ * thin film techniques

sample

» small-angle diffraction

Fig. 3.6 The X-ray diffraction experiment

Uses:

* phase identification « crystal size

- crystal structure determination * residual stress/strain

« radial distribution functions * defect studies

* thin film quality « in situ analysis (phase transitions,

« crystallographic texture thermal expansion coefficients, etc)

* percent crystalline/amorphous » superlattice structure



POWDER X-RAY DIFFRACTION

« uses monochromatic radiation, scans angle

* sample is powder — all orientations simultaneously presented to beam
- some crystals will always be oriented at the various Bragg angles

* this results in cones of diffracted radiation

« cones will be spotty in coarse samples (those w/ few crystallites)

no restriction
on rotational orientation
relative to beam ’

crystallite

Fig. 5.29 The formation of a cone of diffracted _ 2
radiation in the powder method 2« — 2d hkl SI n Hhkl
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Transmission
geometry

234



DEBYE-SCHERRER METHOD

Can record sections on these
cones on film or some other
X-ray detector
— Simplest way of doing this is
to surround a capillary sample
with a strip of film

— Can covert line positions on E;":::%
film to angles and intensities ' s
by electronically scanning film CITEr ) [ [ 3
Or measuring pgsitions usin.g a ] (( y )) m “ I ( (( ( N ) )) ) |
ruler and guessing the relative '
intensities using a “by eye” T s i B
comparison

A=2d,,sInb,,

..or we can use a diffractometer to intercept sections of the cones
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BASIC DIFFRACTOMETER SETUP

MODIFIED FROM
CULLITY (1956)

DIFFRACTOMETER
CIRCLE

POWDER
SPECIMEN

TARGET

AN

AXIS

RECEIVING

SCHEMATIC OF X-RAY
DIFFRACTOMETER
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DIFFRACTOMETERS

General Area Detector Diffraction System (GADDS)



THIN FILM SCANS

4-axis goniometer

238



THETA-2THETA GEOMETRY

Bragg Brentono —THETATHETA Setup

Focusing

« X-ray tube stationary
 sample moves by angle theta, detector by 2theta

239



THETA-THETA GEOMETRY

« sample horizontal (good for loose samples)
* tube and detector move simultaneously through theta

240



POWDER DIFFRACTOGRAMS

In powder XRD, a finely powdered sample is probed with monochromatic X-rays of a
known wavelength in order to evaluate the d-spacings according to Bragg’s Law.

BRAGG LAW

2d(sinf) = A,

where:
d = lattice interplanar spacing of the crystal
0 = x-ray incidence angle (Bragg angle)
- dsino A = wavelength of the characteristic x-rays

I S —
Cu Ka radiation: A = 1.54 A
CUBIC B?Ti03 101
E . peak positions depend on:
: m 12 .
2 i | - » d-spacings of {hkl}
= lotoone covmaie . o2 o @ w : - "systematic absences"
L N N W
0 10 20 o« o
s | 3 Minimum d?
increasing 6, decreasing d d. =21/2
min

241
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ACTUAL EXAMPLE: PYRITE THIN FILM

FeS, - cubic (a = 5.43 A)
Random crystal orientations

CuKa=154 A

1007, Jm Ak S5 2E M ke & 0 U3 EE @

8.0

6.0

4.0

Intensity

200
111 200 211

“powder pattern”

220

311

/ 2 Theta

20 =28.3° — d=1.54/[2sin(14.15)]
=3.13A=d,

Y T T T T EID

reference pattern from ICDD
(1,004,568+ datasets)

On casual inspection, peaks give us d-spacings, unit cell size, crystal
symmetry, preferred orientation, crystal size, and impurity phases (nonel)



d-SPACING FORMULAS

Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

P2 k5t P

d? a®

La hf + k%7 I8
FER -'_c—2
¥ ol k252

FERERE TR
1 4/h*+hk+k*\ P
E——-g( a? >+c_2
1 1 (h* Kk2sin?B [®> 2hicosf
d—2=sinzﬂ<a_2+ b? ¢4 ac )
1

d?

— ﬁ[hzbzczsinzcx + k*a*c?sin? B

+ 1?a’b?sin?y + 2hkabc?(cos acos f — cos y)

+ 2kla*bc(cos fcosy — cosa)
+ 2hlab*c(cosacosy —cosf) ]
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EXAMPLE 2: textured La,CuO,

Layered Cuprate Thin film, growth oriented along ¢ axis

(001)
c=12.2 A

Epitaxial film is textured.
(It has crystallographic
orientation).

Many reflections are "missing”

2d,, SIN =1
2theta| ( (hkI)
7.2 | 12.2 | (001)
14.4 | 6.1 | (002)
22 | 4.0 | (003)




POWDER DIFFRACTION

Peak positions determined by size and shape of unit cell

Peak intensities determined by the position and atomic
number of the various atoms within the unit cell

Peak widths determined by instrument parameters,
temperature, and crystal size, strain, and imperfections

we will return to this later...



GENERATION OF X-RAYS

X-rays beams are usually generated by colliding high-energy electrons with metals.

e X-ray emission Kd1
target ‘ spectram |:\ - 2p3, — 1s
;_— E_W filament A white 0(2
vacuum ~ radiation
2 \ Kp
X-rays w
: i £ |cut
Fig. 3.2 Schematic design of a filament X-ray tube off

incident electron beam

wavelength (2\)

From the N shell | il = 1/2)
backscatterad characteristic Ko X oo 0 o 0 o 2 52
alactrons ¥-rays -rays Mshell n=3 —® g ®ig 185 s % 3/2
Py o 1
secondary - - — o 12
alactrons bramsstrahlung 1
visibla light 1 [Le2
Augar L1
alectrons haat Lot
. . ° ° o' o 132
Thin Spaciman Lshell n=2 P, — oY Ly
absorbad e h 0
cumarnt Ka2
Kax 1
: diffracted Fig. 5.1 Generation of Cu Ka X-rays. A 2p K's1l  |K'B2
transmittad alactons : . ¥ Y
alectrons electron falls into the empty ls level ((J) and the Kshell n=1 o P o 12

excess energy is released as X-rays S|eg bahn notation



Generating Bremsstrahlung

Ejected
electron
(slowed down
and changed
direction)

Fast incident
electron

electrons

Atom of the anodematerial

X-ray

Generating Characteristic X-rays

g' Photoelectron Emission

Ko-Quant

Electron La-Quant

Kp-Quant

Bohr's model



GENERATION OF X-RAYS
Side-window Coolidge X-ray tube s

BERYLLIUM TUNGSTEN
WINDOW ~ A FILAMENT
COOLING } / ELECTRONS p
WATER ; -
TO TRANSFORMER
TARGET— % =
% e — )
X-RAYS/"*\* I-}ocusmc CUP \VACUUM
SCHEMATIC CROSS SECTION OF AN X-RAY TUBE

X-ray energy is determined by anode material, accelerating voltage,
and monochromators:

E=hv=hc/az Ka,: 1.79 A

. 1 CuKa;: 154 A (~8 keV)
Moseley'sLaw: A" “=C(Z-0) Mo Ka, : 0.71 A
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ROTATING ANODES

* 100X higher powers possible by spinning the anode
at > 6000 rpm to prevent melting it — brighter source

249



SYNCHROTRON LIGHT SOURCES

GeV electron accelerators

* brightest X-ray sources
* high collimation

* tunable energy

* pulsed operation

Bremsstrahlung (“braking radiation”)

Australian Synchrotron 250



MONOCHROMATIC X-RAYS

Filters (old way)

Intensity

A foil of the next lightest element
(Ni in the case of Cu anode) can
often be used to absorb the
unwanted higher-energy radiation to
give a clean K, beam

Crystal Monochromators

Use diffraction from a curved
crystal (or multilayer) to select
X-rays of a specific wavelength

Gibel Mirror —— ; .
SLA Uy 3 3
‘‘‘‘‘
~~~~~
v .
] \
Xrayaource b ’ i Y
F - . I\l
F | l
| !
| \
\. 1

-
-

—

-

ll

=7 A=013% nm !

4
| & =0.154 nm

Kp I] Mi absorption EdEE
f_\\A\; _ = -
>
Wavelength
Quartz
o crystals

e

" Emission A

*, angle

.
. T
.
* {
- I
L

Sample

Rowland circle with
D = 500 mm diameter

y  X-ray sourcef,,_./”
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DETECTION OF X-RAYS

Table 4-2. Properties of common x-ray detectors,
AE is measured as FWHM.

D@T@CTlon pr'lnC|p|€S Energy  AE/E at Dead Maximum
. . . . range 5.9 keV time/event count rate
905 loni ZGT on Detector (keV) (%0) (Ls) (3_1)
» scintillation Gas ionization 0.2-50 n/a n/a 10l1a
e creation Of e-h pa| rs (current mode)
Gas proportional  0.2-50 15 0.2 109
Multiwire and 3-50 20 0.2 106/mm?
microstrip
proportional
. Scintillation 3—-10.000 40 0.25 2 x 109
* Point detectors [Nal(TI)]
Energy-resolving 1-10.000 3 0.5-30 2% 10°
S . d semiconductor
[ ]
Tri p etectors Surface-barrier 0.1-20 n/a n/a 108
(current mode)
e Area detectors Avalanche 0.1-50 20 0.001 108
photodiode
CCD 0.1-70 n/a n/a n/a
Superconducting  0.1-4 <0.5 100 5% 103
Image plate 4-80 1n/a n/a 1/a
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DETECTION OF X-RAYS

Point detectors

Scintillation counters ||

Incident Particle

Luminous
Photon

Secondary
Photoelectron

Gas proportional counters

-- Ar + CH4 --

counting wire (+U) ﬂ

towards preamplifier

V

entrance
window

nr

X-rays

my

Light Guard

Optical Contact

Scintillator

TLight Screen
Photoelectron

Photo Cathode

High Voltage Divider
& Pulse Amplifier

Photo multiplier

Data storage SN

system

=L High Voltage
— Source
< Pulse discriminator,
digital counter,
= multichannel analyser
» or
coincidence curcuit

pulse-
hight

high voltage supply

on counting wire
+1400<U<1900 Volt




X-RAY DETECTORS

Area detectors
 film
* imaging plate
« CCD
* multiwire

Charge-coupled devices

Phosphor ccp

/{ JT Cooler

Anatomy of a Charge Coupled Device (CCD)

Drain Incomin
Pixel g

Voltage Reset Photons CCD |

Conltrol Ga:te Gatei\'

_dransfer. ‘“

\ \ (O] N
Buried ) )/ [ cate @z
Channel - ,

/

uried
T /Cha nel

Transfer
Potential
Well

Photodiode
O Integrated
Charae Potential

Potential Well  Barrier p-Silicon

Figure 1
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X-RAY DETECTORS
Imaging plates

photostimulated luminescence
fr'om BGFBr'O.85IO.15: EU2+

Unrecorded imaging plate

+ 8.‘8'0“" " Eud
Support

X-ray photons

_Stored Image
./
Exposure

Dlode laser scanner

Readlng

Exci!auon light
(658 nm)
_Luminescence
(400 nm)
Visible Ilght
G - Plate Is ready
for use again

LT YN
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X-RAY DETECTORS
Imaging plates

photostimulated luminescence
fr'om BGFBr'O.85IO.15: EU2+

Unrecorded imaging plate
+ l BB‘BIg.Jg "w Eu*
-Support
X-ray photons

| |

Stored Image

Exposure
Diode laser scanner
e . . ~. Reading
ey e | L -
’ Excitation light
R (658 nm)
N Luminescence
(400 nm)
Visible light
G $ ey
/ ’ 3 for use again
g l \ N\
b | | 1 Erasing

tetragonal Matlockite structure (PbFCI)
9-coordinate Ba!
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The Reciprocal Lattice and the
Laue Description of Diffraction

Reading: A/M 5-6
G/S 3
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PLANE WAVES

A wave whose surfaces of constant phase are infinite parallel planes of
equal spacing hormal to the direction of propagation.

[W) B Ael-k.,.]

y: wave amplitude at point r

A: max amplitude of wave

k: wave vector

r: space vector from arbitrary origin

Amplitude is constant in any plane normal to k because k-r is a constant
for such planes:
k k

4
,;' wavefront k.r.l - kl"l

ker, = kri/2(cos4b) = kr,

origin k-r is indeed constant on wavefronts

1
—t

N

%
o
\
-3
N

N
\



THE RECIPROCAL LATTICE

Reciprocal lattice: The set of all wave vectors K that yield plane waves
with the periodicity of a given Bravais lattice.

Direct lattice position vectors: R =n,a, + n,a, + n,a,
Reciprocal lattice vectors: K =hb, + kb, + Ib,

where the primitive vectors |y _ o & %3
of the reciprocal lattice are: a, -(a,xay)

a, xa,

a, ’(az ><3-3) and {n} and {h,k, [}
are integers

b, =27

d, -(a2 xa3) 259



eiK°R — | is satisfied when K*R = 2mtn, with n an integer

To verify that the {b;} are primitive vectors of the reciprocal
lattice, let's first show that b;-a; = 210,

d, Xd d, -{a, Xd
b,ra,=27—=———-a,=2x (2, 3):27z
a, -(a,xa,) a,-(a,xa,)
X
b2 -, =27 A3 X -a, =0 (since cross product of two
a, -(a2 xa3) vectors is perpendicular to both)
d, Xa
b3 .al — 27Z- : Z .al — O Iﬂdeed, bi'aj = 2T[6’J
a,-(a,xa,)

so, KR = (hb, + kb, + |b;):(n,a, + n,a, + n;a,)

= 2nt(hn, + kn, + In;) = 21 x integer

K is indeed a reciprocal lattice vector




WHAT IS A RECIPROCAL LATTICE VECTOR?

What is K?

a wave vector of a plane wave that has the periodicity of the direct lattice

The direct lattice is periodic (invariant under translation by R)
_ _iKe(r+R) _ _iKer __
py(r+R)=e =e™" =y(r)

KR
et =1

Reciprocal lattice vectors = wave vectors of plane waves that are unity
at all direct lattice sites 261




THE RECIPROCAL LATTICE

* the reciprocal lattice is defined in terms of a Bravais lattice
* the reciprocal lattice is itself one of the 14 Bravais lattices

* the reciprocal of the reciprocal lattice is the original direct lattice

e.g., simple cubic direct lattice

a, =aX a,=ay a, =az
2
a,xa a- . 2w,
b, =27 —F——==2r—%X=—2X
a, -(a,xa,) a a
b, = 2_729 h. = 2_772 — simple cubic reciprocal lattice
P 3 g with lattice constant 2m/a

— b, parallel to a4, etc. 262



Crystals with orthogonal axes (cubic, tetragonal, orthorhombic)

b,, b,, b; are parallel to a4, a,, a;, respectively.
a,=ax a,=by a,=cz

reciprocal lattice 27 .

1
X

NU
N
S

direct lattice

\
\
{
\)

]
)
'
i
A1

L

g
D

263



RECIPROCAL LATTICE OF FCC IS BCC

FCC primitive vectors:

~ 9
I
a =5y +9),
a, = g(z + %), Note: not orthogonal
E -
Le ’ s g(x + 9).
2 (g +2-%)
b, =27 —2%% __or 4 " _A47l g
a, -(a,xa,) a o) a 2
8
A 1 4 1
b,=——=(2+X%X-Y¥ b,=—=(X+y-2

— BCC reciprocal lattice with lattice constant 4mn/a
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RECIPROCAL LATTICE OF BCC IS FCC

a =5 +2- %), a,=5@+%—79)

a2
—(2y + 27
4(y )

b,=27—2%% __o, 4 _A47 L g4s
a, -(a,xa,) a a 2
8(4)
4 1 4 1
b,=—=(2+X b,=—=(X+Y
2 a2( ) 3 a2( y)

— FCC reciprocal lattice with lattice constant 4mn/a

BCC primitive vectors (not orthogonal):
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RECIPROCAL LATTICES

« simple orthorhombic — simple orthorhombic
« FCC — BCC

* BCC — FCC

- simple hexagonal — simple hexagonal (rotated)

266



The reciprocal lattice
Case studies:

Similar: hexagonal/trigonal,
l.e. y* =180° -y

Il) Monoclinic crystal system:

ar
Orientations: b*

—

C*

1 (1, 0, 0), the b,c-plane.

1 (0, 1, 0), the a,c-plane.

1 (0, 0, 1), the a,b-plane.

=>2*NOT || 2
=>b* || b

=>c*NOT || ¢

Lengths: generally a* = 1/d,,,, b* = 1/d,,o, ¢* = 1/d;

here: d,o, = asinp, dysg = b, dypq = CSING;

thus: a* = 1/(asinp), b* = 1/b, ¢* = 1/(csinf}),

*=a*b*c*sinB* =1V, (,:;;:*i:
g |,’
P .|
.l B
—_ CA"" ! | !
a” = b, F oL
o) - : ) :
B b, | PP
- M2 ¢ £ " !
| ! -
—_— | : -
BN - b : * bﬁal’ -’
C 3 £ .‘ B )< -
B _ 0 a

o* = o = 90°

B*=180°-
v* =vy=90°
d. I.
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The reciprocal lattice

Case studies:
lIl) Triclinic crystal system:

o

*0_ (1, 0, 0), the b,c-plane.

—

Orientations: b*b_ (0, 1, 0), the a,c-plane.

&b (0, 0, 1), the a,b-plane.

Q

7
/
/
-
"

0By #90° NF7/,

=>a*NOT || a
=>b*NOT | | b
=>c*NOT || ¢

Lengths/angles:
quite complex;
see next slide.
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The reciprocal lattice

Case studies:

Formulas correct for all systems!

lll) Triclinic crystal system: But often much simpler, when
, besina b*c* sin o* e.g. o =90°=>sinaa =1, cosa =0
a*=—= a=—==3 -
. acsin B _a*c*sin g*
="y b=—%+ Note that these formulas
. wn. . aremissing a factor of 2m
c*=absm‘)’ c=ab sin y
|4 Ve
1
=T abecV1 —cos® a —cos®> B —cos® y+2 cos a cos B cos y
1
V*= v a*b*c*V1 —cos® a* ~ cos? B* — cos? y* + 2 cos a* cos B* cos y*
cos o* = %8 B cos y—cos a " cos B* cos y* —cos a*
-_— a —
sin B sin vy sin B* sin y*
»_COsacosy—cosp _ cos a* cos y* —cos g*
PER sin a sin 7y e sin a* sin y*
cosy*___cosacosﬂ—cos'y cosy=cosa*cosﬁ*—cos'y*

sin « sin B8

sin a* sin B* 269



FIRST BRILLOUIN ZONES

Wigner-Seitz cell: primitive cell with lattice point at its center

®
/ 1\ d.l. Fcc d.l. BcC
r.l. BCC r.l. FCC
1s* Brillouin zone: 1st Brillouin zone:
N |/
®

enclosed region is W-S cell
for 2D hexagonal lattice

rhombic dodecahedron
truncated octahedron

270



Examples for Brillouin zones face-centered cubic

~
L

o . 1st Brilloui
d.l.: centered and primitive cell r.l.. 1! Brillouin zone
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3D BAND STRUCTURE

Brillouin Zone of Diamond and
Zincblende Structure (FCC Lattice)

Notation:
Notation: A<=>[100]
. — Zone Edge or direction
surface : Roman  y__sg7 edge
alphabet along [100]
\ ——— — Interior of Zone: direction
Greek alphabet
A<=>[111]
— Center of Zone or directi
o o irection
< origin: I
L<=>BZ edge
along [111]

direction’””



The first Brillouin zone

High symmetry points and directions

T = 2n/a [0, 0, 0]
X = 2n/ag[1, 0, 0]

L = 2n/a %, Y4, Y]
U = 2nlag[1, V4, 4]
W = 2n/ag[1, %, 0]
K = 2n/ag[%, %, O]

A= 2afagle, 0, 0], D=e=
A=2nfaje, &, &), Dze<ts
T=2n/az, & 0], D£e<3
Z =2nlag1, 2, 0], Dere<ts
Q=2mla 1-&, %, 2], 0=r<h
S = 2nfay[1, £. ], Dge<ts
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Electronic band structure is calculated within the 15t Brilluoin zone

Electronic Band Structure of Si

Energy [eV ]
o

Sl

L A I A X UK pX I

q11> j";"gg‘j" <1105
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K and LATTICE PLANES

Theorem:

For any family of lattice planes separated by distance d, there are
reciprocal lattice vectors perpendicular to the planes, the shortest of
which has a length of 2n/d.

Conversely, any reciprocal lattice vector K has a family of real-space
planes normal to it, separated by d.

Real Lattice |K = 21n / d | Reciprocal Lattice

N A
—5 ¥ -22 02 —
¢ ¢ ¢ ¢ 9 e e 8 here, g = K
1111 g hk in 2D
11111 20 @ 8¢ © T hkl in 3D
& & » & » A e
¢ ® & & 9 &

-2-2 0-2 2-2 276



MILLER INDICES OF LATTICE PLANES

Orientation of a plane is determined by its normal vector

It is natural to pick the shortest perpendicular reciprocal
lattice vector to represent the normal

Miller indices: coordinates of this reciprocal lattice vector

i.e., A plane with Miller indices hkl is normal to
the reciprocal lattice vector K = hb, + kb, + Ib,

— Definition #2: directions in k-space

(Definition #1 was inverse intercepts in the real lattice)
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Proof that K = hb, + kb, + Ib; is normal o (hkI)

a If K= hb; + kb, + Ib; is normal to the plane at left,
2 its dot product with any in-plane vector is zero.

Consider vector AB that lies in the plane.

(hkl) 2 g
By vector addition, ﬁ —|—3 =AB
/ﬁ ] The dot product,
AB h a, a
a3 AB AB:K = [ h1 —~ 23 )-(hb1 + kb, +b,)
|

=27—27x=0 etc.

So the reciprocal vector formed by using the Miller indices of a plane as its
components forms a vector in space that is normal to the Miller plane.

Furthermore, the length of the shortest vector K is equal to 2n/d,,,.

. . L a K
In the figure above, the spacing between the planes is the projection of —- on— :

pecton ol Ty e
a, K h2r 2n R ‘K‘:_ﬂ':KO

4. =8 _Ner
" h |K| h‘K‘ ‘K‘ dhkl 278




REMINDER on ELASTIC SCATTERING

scattering vector
Momentum conservation: p p — q

p'|l=|p|=p

elastic scattering:

Elastic scattering geometry




von LAUE DESCRIPTION OF DIFFRACTION

* reciprocal space description, equivalent Yo Bragg description but
more powerful for crystallography & solid state physics

Equivalence to Bragg picture:

2dsin¢9:n/1:n2%

2ksin6?:n2—7r=nKO =K
d

since scattering is elastic and P = 7K,

Pin®

q — 2 % Si N E — 2k Si N 9 = K Figure 3.6. Diffraction from two lattice planes.

— K von Laue: “Constructive interference occurs when
4= scattering vector is a reciprocal lattice vector.”




DERIVATION of von LAUE CONDITION

Consider two scatterers:

dcosf' =-d-.n’

Path difference between the rays: d cos@+d cos@ =ds«(n-n')
Condition for constructive interference: d-(ﬁ - ﬁ') = nA
Multiply through by 2w/k:  de(k-Kk')=27n
For the Bravais lattice of scatterers:  Re(k-Kk')=27n

ez’(k’-k)-R — e:’27m :1

Multiply by i and raise to e:

: _ Diffraction occurs when the change in
SO, k - k =K wave vector, k'-k, is a vector of the

reciprocal lattice. -



K=k -k | aue condition

k-space Bragg plane

(per. bisector of K) Alternatively,

----------------------------------------- K k' - K = KZ/Z

Reciprocal lattice vectors are perpendicular to direct lattice planes

C Bragqg: diffraction when path length difference = ni )

Laue: diffraction when scattering vector = recip. vector
equivalently, when tip of wave vector lies on a k-space Bragg plane




EWALD (“e-val’) SPHERE

A geometrical construction that provides the relationship between the orientation of
a crystal and the direction of the beams diffracted by it.

A sphere of radius K centered on the base of the incident wave vector
k drawn to the origin O (hkl = 000) of the reciprocal lattice.

Projected Ewald sphere (Ewald circle)

origin of reciprocal space

radius = k
o o
Laue condition:
. o o
K=k -k o)
o o
direction of reciprocal lattice

real space

diffracted beam origin of diffraction

283




Diffraction occurs only when a reciprocal lattice point
lies on the surface of the Ewald sphere.

Laue condition:

o o
K=k -k

o o

o o

K|=27z/d,,

In this case, hkl = -2,-1,0 so diffraction occurs from the (210) planes
and the diffracted beam moves off along k'.



diffraction vector

\ direct beam
incident W -
X-ray beam — yetal

crystal lattice
planes hil

W

crystal

Ewald sphere
[in projection)

hkl reciprocal lattice
touches Ewald sphere

reciprocal
lattice
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In general, a sphere in k-space with the origin on its
surface will have no other reciprocal lattice points on
its surface:

No Bragg peaks for a general incident X-ray!

In order to record diffraction patterns, we must either:
« use polychromatic radiation (vary the sphere size) — Laue method
* rotate the crystal (and thus the reciprocal lattice) — rot. cryst. method
* use a powder sample (equivalent to rotating reciprocal
space about all angles) — powder method



Monochromatic source + single crystal

Only one crystal orientation e
— Fixed Q &}‘\X
— Only points on surface of fixed “}3{{:@
sphere diffract \\i\:kx |
— Almost zero probability of
diffraction

® 023 ®013) ® 003 ®o13) 023

®022) ®022)
® 021 ® 021
.[030] .[ozo]

.[031»] .[0 H) .[004-] .[0 14) .[028 7



LAUE METHOD "White" source + singlextal sample

- fixed crystal & angle, many wavelengths

« All possible wavelengths (ideally)
— Sample has only one value of Q

— Points swept out by surface of variable
size sphere diffract

— Finite camera angle restricts diffraction
to certain portion of sphere

— Interpretation of photographs difficult Points in
hatched
® g ® 0 ® o) .lom] °|uza] region are
iImaged
L]
.lcaz] 0|022] a3y
.y -
® ® )
Oy
Q @
=) 120)
.M
® ey ®0s ® o4 g sy é . . . o 288



As used mn Laue’s original experiment
— Use the “white” Bremsstrahlung radiation from the tube so
that many different wavelengths are incident on the sample

» Many reflections will simultaneously satisfy Bragg’s law without
rotating the crystal

film
crystal -/ \‘ \'g‘ﬁ
/’% Record a spot
Xrays NG
X-rayvs
Transmission Laue Back reflection Laue

The Laue method is mainly used to determine the orientation of
large single crystals.

When the zone axis lies along the symmeftry axis of the crystal, the

pattern of Bragg spots will have the same symmetry. 289



ROTATING CRYSTAL METHOD

« single wavelength
- aligned crystal is rotated about one axis to rotate reciprocal lattice
* produces spots on layer lines

rotation axis rotation axis of
of erystal and  reciprocal lattice
axis of film

d o
| o o
L _-"

) X
/._ =K
" - -

S o
»

Beam direction

http://escher.epfl.ch/x-ray/diff. mpeg

Rotation photograph of quart
showing spots on layer lines
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http://escher.epfl.ch/x-ray/diff.mpeg

Simplest scanning geometry has:
- 24?2

— =0

—  girrelevant

Applicable only to powder samples

More complex scanning systems
required for aligned materials

Other rotation axes




POWDER (DEBYE-SCHERRER) METHOD

« single wavelength

- fixed powder sample

* equivalent to rotating the reciprocal lattice through all possible
angles about the origin

Ewald sphere

every point in Each shell with radius K < 2k
reciprocal space intersects the Ewald sphere to
traces out a shell form a circle.

of radius K

All the diffracted beams from a

powder lie on the surface of cones
292



PEAK INTENSITIES

Peak intensities depend on (in large part):
1) intensity scattered by individual atoms (form factors)
2) the resultant wave from atoms in unit cell (structure factor)

In many cases, the intensity from certain planes (hkl) is zero.

Possible reasons: + symmetry of crystal causes complete cancellation of beam
"systematic absences”
* happenstance

Other factors that affect intensity: e« scattering angle
« multiplicities
* femperature factor
* absorption factor
* preferred orientation



MONOATOMIC BASES

up to now we have considered diffraction only from Bravais lattices
with single atom bases (i.e., atoms only at the lattice points R).

We found the diffraction condition: e’i(kr'k)'R = eizm =1

which is the same as: R =1

The scattering amplitude Fy is the sum over the lattice sites:
iK-R
R = Z fr(K)e
R

where fi(K) is the "atomic form factor” for a given atom (disc. later).

The scattered intensity is proportional to the absolute square of the
amplitude: 2
|, oc |o“:|<‘

..this is what is actually measured in an experiment.



n-ATOM BASES

Crystals with n atoms in each primitive cell must be further analyzed
into a set of scatterers at positions dy, d, ... d, within each primitive
cell.

The positions of the atoms are: A, (R)=R+d,

making the scattering amplitude: F, = ZZ f. (K)eiK‘(R+dj)
R ]
iK. iK.d.
| :ZeIKRZfJ(K)eI |
L — eIK-R - — R j
2 )

Lattice sum D, = Z fj (K)eiK-dj
j

"Structure factor" of the basis

*If the structure factor = 0, there is no diffraction peak.



STRUCTURE FACTOR

The structure factor gives the amplitude of a scattered wave arising
from the atoms with a single primitive cell.

O, = f, (K)e" ™
J

For crystals composed of only one type of atom, it's common to split
the structure factor into two parts:

@, = f,(K)S,

"atomic form factor” iK.d.

atomic form factor SK=ZeKd’
J

"geometric structure factor”

S = 0 gives a systematic absence (i.e., absence of expected diff. peak).
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STRUCTURE FACTORS

The amplitude of the rays scattered at positions d,, ..., d,
are in the ratios:

iKd iKed,
e ' .e

The net ray scattered by the entire cell is the sum of
the individual rays:

n

Geometric iK-d,

structure SK — Z e -Adds up scattered
. waves from unit cell

factor j=

I oC S 2 -In particular, no
(hkl) K peak when S, = 0
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SIMPLE CUBIC

For simple cubic: one atom basis (0,0,0)

d, = 0a, + Oa, + Oa,

S =€’ =1

/ Same result as simple monatomic basis
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MONATOMIC BCC

For monoatomic BCC:
we can think of this as SC with two point basis (0,0,0), (¥2,%2,%2)

2
o
=»e Y =" e
1

ForSC, K =2§(hf<+k§/+li)

> 5 -

IK- (x+y+z)

_ 1_|_ ei7z(h+k+|)

_ 1_|_ (_1)h+k+|

when h + k + | even
when h + k + | odd (systematic absences)

299

S =2,
S =0,



e.g. consider the powder pattern of BCC molybdenum

== PDE#00-04 2-1120{RDB): OM=Star(S); d=Diffractometer; I-Diffractometer

| oo

#| 2Theta| did) | 10| (hki)| Theta| 142d)]  2pitd | nz2]
4051622247 1000 20256 02247 26243 2

Beference  Lines(7] l

3 T3EE3 1.284 A0 [211) 3e842 03832 48909 E
4 B7RIT 1128 90 [220] 43793 04433 G5E4EE a
5 101412 059353 140 (310) 50706 05023 63127 10
6 115365 09085 30 [(222) 57954 05504 B9162 12
7132645 084171 240 [321] BE323 05545 F4702 14

Powder card shows only even hkl sums b/c Mo is BCC
Why?

- Diffraction from other (hkl) results in destructive interference:

Beam cancels b/c body center atoms Strong reflection b/c all atoms lie on
scatter exactly 180° out of phase 200 planes and scatter in phase



MONATOMIC FCC

For monoatomic FCC:
SC with four point basis (0,0,0), (¥2,%,0), (0,%2,%2), (¥2,0,%2)

iK.d. e IK=(Xx+Y) IK=(y+2) IK-—=(x+2)
Sc=Ye 1=e""4e 7 T4e 7 e

=

o7 (h& + k§ +12)

ForSC, K=—
a

SK — 14 a7k | gi(kel) | qiz(he)

S=4whenh+k,k+1, h+1lalleven (h, k, | all even or all odd)

S = 0 otherwise.
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POLYATOMIC STRUCTURES

Atoms of different Z in the unit cell have different scattering
powers, so we explicitly include the form factors:

Total Ked
structure @ Zf (K)e

factor

{fi }: atomic form factors
oc # of electrons
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CsCl STRUCTURE

Cesium Chloride is primitive cubic
Cs (0,0,0) -
Cl (1/2,1/2,1/2) D, :Z fj(K)e' d,

J

D, = fc:s n fc:| aiz(n+kcH)

®=f.+f; whenh+k+1even

®=f.-f;, whenh+k+1|odd

Cs* and Cl- are not isoelectronic
— systematic absences unlikely

but what about Csl?
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(hkI) CsCl Csl
(100) \

(110) \ \
(111) \

(200) \ \
(210) \

(211) \ \
(220) \ \
(221) \

(300) \

(310) \ \
(311) \

Cs* and I- are isoelectronic, so CsI looks like BCC lattice:

h + k + | even
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Diatomic FCC Lattices
Sodium Chloride (NacCl)

Na: (0,0,0)(0,1/2,1/2)(1/2,0,1/2)(1/2,1/2,0)

Add (1/2,1/2,1/2)

Cl: (1/2,1/2,1/2) (1/2,1,1)(1,1/2,1)(1,1,1/2)
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CDK — [ fNa T fCIeiﬂ(h+k+l)][SK,FCC]

D, :[fNa n fCIeiz(h+k+I)][1 L pir(hek) | qiz(hel) ei;z(l+k)]

® = 4(fva + fa) when h, k, |, all even
® = 4(fxa- fa) when h, k, | all odd

® = 0 otherwise
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Once again, there are more systematic absences for
isoelectronic ions (e.g., K and Cl)

(hkl) NaCl KCI
(100)
(110)
(111) \
(200) \ \
(210)
(211)
(220) \ \
(221)
(300)
(310)
(311) \

(110) always absent in RS




For RS, we expect the intensity of the all odd reflections
to increase with increasing AZ between cation and anion:

Table 5.7 X-ray powder diffraction patterns for potassium halides. (Data from Joint
Committee on Powder Diffraction Standards, Swarthmore)

KF,a=5.347A KCl,a=6.2931A KL a=7.0655A

(hki) d(A) I d(A) I d(A) [
—_— 111 3.087 29 o 4.08 42
200 2671 100 3.146 100 3.53 100
220 1.890 63 2.224 59 2.498 70
—> 311 1.612 10 ) - 2.131 29
222 1.542 17 1.816 23 2.039 27
400 1.337 8 1.573 8 1.767 15

I111,311 : KCI < KF < KBr < KT

~
v

Less complete destructive interference
between cation and anion sublattices.




DIAMOND STRUCTURE
Diamond: FCC lattice with two-atom basis (0,0,0,), (¥s,Y4,Y4)

a > -

e IK-—(Xx+y+17)
K ,diamond :[eIKO +€ ’ ][SK,FCC]

_ [1_|_ ei(7r/2)(h+k+l)][SK’FCC]

S

Only for all even or all odd hklis S # 0. For these unmixed values,

Additional condition: g = 8 h + k + | twice an even number
S=41=+i) h+k+|odd
S=0 h + k + | twice an odd number

Ircc : all nonvanishing spots have equal intensity.

Ldiamond + Spots allowed by FCC have relative intensities
of 64, 32, or O.


http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/Diamond.cmdf
http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/Diamond.cmdf

FCC diamond

(hkI) Al Si
(100)

(110)

(111) \ \
(200) \

(210)

(211)

(220) \ \
(221)

(300)

(310)

(311) \ \

What about
zinc blende?
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SUMMARY OF SYSTEMATIC ABSENCES

crystal structure condition for peak to occur
SC any h,k,l
BCC h+k+1=even
FCC h,k,l all even or all odd
NaCl h,k, I all even,
or all odd If f, # f
diamond h,k,l all even and twice an even #,
or all odd
HCP any h,k,l except when h + 2k = 3n
and | Is odd

D =D (K)e™
J
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SIMPLE ANALYSIS OF SIMPLE PATTERNS
What will we see in XRD patterns of SC, BCC, FCC?

Miller indices of the Diffracting Planes for BCC and FCC

Lattices
2 2 2
e h +k- +1
(e |
cublo pianes b SC: 1,2,3,4,5,6,8,9,10,11,12,...
planes Sum

{hkd} h* + k*+ 17 3(h+k*+1?) FCC BCC BCC:246,.81012....

{100} 12+ 07 + O

1

{110} 12 + 12 4 (2 2 110
M1} 12412 4 92 3 111 FCC: 3,4,8,11,12,16,24,...
{200} 22 1 0P+ ® 4 200 200
{210} 22 + 17 + 07 5
{211} 22 + 12 4+ 42 & 211 \
P 7
2 2 2 - -
%1%(?} § AR ¢ 20 20 Observable diffraction
B0 3 0 0 B peaks for monoatomic

SC FCC BCC

crystals

We can take ratios of (h? + k? + |?) to determine structure.



SIMPLE ANALY SIS OF SIMPLE PATTERNS
1

2
hkl

2dsin@d=nA ™) sin“H«

. a
For cubic crystals: d,,, =

Jh? +k2 +12

sin @ oc (h? + k2 +12)

= 2 2 2 2
Sin Hnthpeak (’] +k +I )nthpeak

=2 2 2 2
Sin glstpeak (’] +k +I )1stpeak
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SIMPLE ANALY SIS OF SIMPLE PATTERNS

a-Fe is cubic. Is it FCC or BCC?
_ BCCl

110 | _ )
= sin®g, sin®33" _
: sin@, sin®22° 211
=] f 200
WMMM MWMWMG

Diffraction angle 2¢&

Ficves 3,20 Diffraction pattern for polycrystalline e-iron.

What about Al?

S _ _ FCC!
0000000 A §in?g, sin?225°
- ——=——>——=~1.33
000000 sin©g,  sin“19
°°°°°° b 200 311
| 220 331 420
! B | 222
[! | ~l | \ 400 hv'a f»#.
o Jor——T— “—4.0 o ™ s Y—’l‘goir, S {tbo - bljé\i"'#.\? - 314




Ex: An element, BCC or FCC, shows diffraction
peaks at 26. 40, 58, 73, 86.8,100.4 and 114.7.
Determine:(a) Crystal structure?(b) Lattice constant?
(c) What is the element?

normalized

2theta theta sin? @ 2 L k2|2 (hkl)
40 20 0.117 1 (110)
58 29 0.235 2 (200)
73 36.5 0.3538 3 (211)
86.8 43.4 0.4721 4 (220)
100.4 50.2 0.5903 5 (310)
114.7 57.35 0.7090 6 (222)

BCC,a=3.18A> W
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ELASTIC X-RAY SCATTERING BY ATOMS

Atoms scatter X-rays because the oscillating electric field of an X-ray sets
each electron in an atom into vibration. Each vibrating electron acts as a
secondary point source of coherent X-rays (in elastic scattering).

The X-ray scattered from an atom is the resultant wave from all its electrons

Particle picture: " B
&

- zero phase difference for forward/backward scattering

— scattering factor (form factor, f ) proportional to atomic number, Z
« increasingly destructive interference with larger scattering angle (to 90°)
- for a given angle, intensity decreases with decreasing X-ray wavelength

Thomson relation: I o<:%(l+cos2 20)

* max scattering intensity at 26 = 0 & 180°
« gradual decrease to 50% as 26 approaches 90°



SCATTERING OF X-RAYS BY ATOMS
scattering angle probabilities for a free electron:

Klein—Nishina formula

8e-030

120

180

Low energy: Thomson
High energy: Compton

g0

Thomson relation: I oc%(1+COSZ 20)



ATOMIC FORM FACTORS

Form factor f = scattering amplitude of a wave by an isolated atom

For X-rays, f depends on: « Z (# electrons)

- scattering angle ,
+ X-ray wavelength scattering vector q

General elastic formula: 2

—iger 73
fi(@ = p,(r)e"at .|
. A7rsin @ g 10 |
with, Q= 8
A =

For © = O (forward scattering), s |

f;(0) = [ p(r)dP =# electrons

0 | |
0 0.1 0.2 0.3 04 05 0.

sin(0)/A (1/4)

consequences: « powder patterns show weak lines at large 26.
* light atoms scatter weakly and are difficult to see.



ELECTRON DENSITY MAPS

The electron density as a function of position X,y,z is
the inverse Fourier transform of the structure factors:

7

oﬂs/ . 1 —127 (hx+ky+1z)
p(Xyz) = \7 thl thkIe

Fig. 5.39 Electron density map for NaCl

The electron density map
describes the contents of
the unit cells averaged 2
over the whole crystal (not =
the contents of a single unit / l/(/(ﬂ
SRR
§/

cell) A if“;k

¥ cma ‘\J. A

o

P
- e s
et
e

rd

/ I %/r Vol BN /. n/.

(0) Si EXPERIMENT (b) Ge EXPERIMENT 319
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PEAK WIDTHS

Peak shape is a Voigt function (mixture of Gaussian and Lorentzian)
* Gaussian component arises from natural linewidth and strain
* Lorentzian component arises from coherent domain size

Viz,o,7) = fm G(x'0)L(x —2';7) da’ nasj —om1c0 tmdis

—oe Pure  — N\ _oiwie

Cla: o) e~/ (20%) Gaussian
T, T) = 0.15 -
| o 2w . Pure
| : Lorentzian
L{x;~) = ; . o
ﬂ_[ T _|_ :-:r } 0'00,1-0 : (,) ; .

Peak width (broadening) is determined by several factors:

* natural linewidth of X-ray emission
* instrumental effects (polychromatic A, focusing, detector)
* specimen effects
1) crystadllite size
2) crystallite strain 320



FULL WIDTH AT HALF MAXIMUM (FWHM)

FWHM Important for:

Peak position 20 + Particle or
grain size

& mode 2. Residual

strain

Can also be fit with Gaussian,

5
A

Background

Bragg angle 20 ———p

Lorentzian, Gaussian-Lorentzian etc.

321



Instrument and Sample Contributions to the Peak Profile
must be Deconvoluted

* In order to analyze crystallite size, we must deconvolute:
— Instrumental Broadening FW(I)

e also referred to as the Instrumental Profile, Instrumental
FWHM Curve, Instrumental Peak Profile

— Specimen Broadening FW(S)
+ also referred to as the Sample Profile, Specimen Profile

 We must then separate the different contributions to specimen
broadening

— Crystallite size and microstrain broadening of diffraction peaks



SIZE BROADENING

Small crystallites (< 200 nm) show broadened diffraction lines

Nanocrystal X-ray
Diffraction

.
0

P

d
®
b
»
&

9 nm 70 nm

Intensity (arbitrary units)

10

0

Gl

40

b

e (M)

101

-

4 m 7

6 nim

H]mnj

60

70

A (degrees)

K0

80

T
S0

L]
100

110

323

Intensity (arbitrary units)



Effect of Coherent Domain Size

As rolled

t-CosB Scherrer Model

— As rolled 300°C
@ 120 .
3 A
S 100
frary -
[ N ,
7))
£ % o
2 i Z
0 O Q 40 450°C
= = o
3 = g N L 1 | | L |
= ‘D 0 100 200 300 400 500
© i
g ANNEALING TEMPERATURE (°C) *
c
1 B = M Peak Broadening

e g W o As grain size decreases hardness
(331) Peak of cold-rolled and increases and peaks become

Annealed 70Cu-30Zn (brass) broader
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Which of these diffraction patterns comes from a
nanocrystalline material?

Intensity (a.u.)

2 (deg.)

These diffraction patterns were produced from the same sample!

» Two different diffractometers, with different optical configurations, were used

* The apparent peak broadening is due solely to the instrumentation in
this case
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The finite size of real crystals results
in incomplete destructive interference
over some range of angles

6,
92

AW N

j*+1

T = (2j-1)d

2j-1
\ 4 2]

Crystal with 2j planes

at Bragg angle, HB
phase lag between two planes = ﬂ
perfectly in phase, constructive

At I
some angle 6’1 > ‘98
Phase lag between two planes: 4 + O/

At (j+1)" plane:

Phase lag: A

Z5/1=j-5/1=5

 Rays from planes 1 and j+1 cancel
* Ditto for2 & j+2, ... ] & 2]
* Net diffraction over 2j planes =0

Total thickness T The angular range 8, to 6, is the range where
diffracted intensity falls from a maximum to

zero (half of Bragg peak profile).



Same arguments apply to 92 < ‘98

So we see diffracted X-rays over all scattering angles between 26,
and 20,

- If we assume a triangular shape for the peak, the full width at
half maximum of the peak will be B = (26, - 26,)/2 =6, -6,

Ipax
[‘)itr“ﬁ‘act@on from E | E Diffraction from
finite thickness Bl oy 8 infinitely thick
crystal E - | | E crystal

| ' :
26, 26g 26, - 26y
20 ———» . G

(2) (b)



If we have more than 2j planes:

6,

0,

AW

+1

2j+1
2j+2

Rays from new planes are canceled
still zero intensity at 6,

Peak sharpens!

Thinner crystals result in broader peaks!

If we have fewer than 2j planes:

6,

0,

AW

j*+1

2j-3
2j-2

Rays from planes j-1 & | not canceled
honzero intensity at 6,

Peak broadens!
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Let's derive the relation between crystal thickness T and peak width B:

2dsin@ =41

Considering the path length differences between X-rays scattered from the front
and back planes of a crystal with 2j+1 planes and total thickness T-:

2Tsing, =(2]+1)A

_ _ Here, T = 2jd
2T sind, =(2)-1)A

: : sin 6, —sin @, = 2cos 4+ %2 gjn &=
If we subtract them: T (SING,—sIin@,) = A ' ‘ 2 2
6, +0
Using trig identity: 2T (COS(— 2)SII’]( 2)) A
6 +6 .0, — 6 -0,
Since ———2 =0, and Sm( 2) ~ 2

2T(cos@B)(91_02) =A. Bu, B=2(6)1_92),so T = A
2 2 Bcosd,




SCHERRER FORMULA

A more rigorous treatment includes a unitless shape factor:

KA T = crystallite thickness

Scherrer Formula (1918) | = 7& ((Xl;r'ay VT\C’GV?@?Q“B é)
shape factor) ~ 0.
Bcosd,

B, ©; in radians

Accurate size analysis requires correction for instrument broadening:

For Gaussian peaks: B2 — BI\2/| — Bé

By Measured FWHM (in radians)
Bg: Corresponding FWHM of bulk reference (large grain size, > 200 nm)

Readily applied for crystal size of 2-100 nm.
Up to 500 nm if synchrotron is used.
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SCHERRER CONSTANT

K4 = T- 0.944
B cos 6, B cos 6,

* The constant of proportionality, K (the Scherrer constant)
depends on the how the width is determined, the shape of the
crystal, and the size distribution

— the most common values for K are:
* 0.94 for FWHM of spherical crystals with cubic symmetry
» 0.89 for integral breadth of spherical crystals w/ cubic symmetry
* 1, because 0.94 and 0.89 both round up to 1
— K actually varies from 0.62 to 2.08
» For an excellent discussion of K, refer to JI Langford and AJC
Wilson, “Scherrer after sixty years: A survey and some new

results in the determination of crystallite size,” J. Appl. Cryst. 11
(1978) 102-113.

T
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Suppose 1=1.5 A, d=1.0 A, and 6=49°. Then for a crystal 1
mm in diameter, the width B, due to the small crystal
effect alone, would be about 2x10-" radian (10~ degree),
too small to be observable. Such a crystal would contain
some 10/ parallel lattice planes of the spacing assumed
above.

However, if the crystal were only 50 A thick, it would
contain only 51 planes, and the diffraction curve would be
very broad, namely about 43x10 radian (2.46°), which is
easily measurable.

"Incomplete destructive interference
at angles slightly off the Bragg angles”
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What do we mean by crystallite size?
“A single-crystalline domain that scatters coherently”

« A particle may be made up of several different
crystallites (also called grains)

» The crystallites, not the particles, are the coherent
scattering units
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CRYSTALLITE SHAPE

Though the shape of crystallites is usually irregular, we can often
approximate them as:

— sphere, cube, tetrahedra, or octahedra
— parallelepipeds such as needles or plates
— prisms or cylinders

« Most applications of Scherrer analysis assume spherical crystallite
shapes

* If we know the average crystallite shape from another analysis, we
can select the proper value for the Scherrer constant K

« Anisotropic crystal shapes can be identified by unequal peak
broadening

— if the dimensions of a crystallite are 2x * 2y * 200z, then (h00) and (0kO)
peaks will be more broadened than (00I) peaks.

Bl

L e.g., a hanowire -




STRAIN EFFECTS
AL

Straini & = ——

L

No Strain

Uniform Strain
(dq-do)/d,

Peak moves, no shape changes

Non-uniform Strain

d,#constant
Peak broadens

Diffraction
Line

—]

II:’1
|

Shifts to lower angles

EEE LN, RMS Strain

2 —=
Exceeds d; on top, smaller than d; on the bottom




SOURCES OF STRAIN

Tahle 1. The most typical correlations between diffraction peak aberrations, i.e. broadening, shifts ar asymmetries, and the different elements of microstructure

Souces of strain

" Dislocations
Stacking faults
Twinning
Microstresses
Long-range internal
sltresses
Grain boundaries
Sub-boundaries
Intemal stresses
Coherency strains
Chemical heterogeneities
Point defects
Precipitates and inclusions
Crystallite smallness

Peak abenations
Peak shift  Peak broadening Peak asymmetry  Anisotropic peak broaden- Peak shape
................................................................................................................................ -
I i ¥ +
' 1 I TS +
+ + + + +
-+
i +
+ +
1 '
-+
+ + +
. | 1
+
+ +
+ + +
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Non-Uniform Lattice Distortions

« Rather than a single d-spacing,
the crystallographic plane has a
distribution of d-spacings

« This produces a broader
observed diffraction peak

e Such distortions can be
iIntroduced by:

— mechanical force

— surface tension of
nanocrystals

— morphology of crystal shape,
such as nanotubes

— inte rStitial impurities 1265 27.0 27.5 28.0 285 29.0 295 30.0
X (deg.)

Intensity (a.u.)




THIN FILM SCANS
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. Classification of thin film texture

~» a

T filmm normal

« Untextured
— rare inthin films
— will give theoretical powder intensities

« Uniaxial texture
— Canrange from mild preferential orientation
— to fully aligned (e.q. fully [100] film)

« Biaxial texture
— Induced by epitaxial registration with substrate
— Distinguished from fully aligned by texture scan
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EPITAXY - “above in an ordered fashion"

when one crystal grows on another with a well-defined 3D crystallographic
relationship

Homoepitaxy: epitaxy between identical crystals (e.g., Si on Si)
Heteroepitaxy: the two crystals are different (e.g., ZnO on Al,O;)

requwements lattice symmetry & lattice constant matchlng

I'um
R —



Molecular picture — Si growth on Si (100)
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Rock salt PbS “nanotrees’
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A polycrystalline sample should contain thousands of
crystallites. Therefore, all possible diffraction peaks should
be observed.

(100)

(110)

(111)

r%:— (210)

» For every set of planes, there will be a small percentage of crystallites that are
properly oriented to diffract (the plane perpendicular bisects the incident and

diffracted beams).
» Basic assumptions of powder diffraction are that for every set of planes there is

an equal number of crystallites that will diffract and that there is a statistically
relevant number of crystallites, not just one or two. 344



A single crystal specimen in a Bragg-Brentano
diffractometer would produce only one family of peaks in
the diffraction pattern.

(100)

(110)

(210)

25 30 35 40 45
Two-Theta (deg)

M |
}-----.D_gf
— (111)
= (200)

>
e m -

-
-
=

o , The (110) planes would diffract at 29.3  The (200) planes are parallel to the (100)
At 20.6 °260, Bragg’s law : _
fulfilled for the (100) planes °20; however, they are not properly planes. Therefore, they also diffract for this
' aligned to produce a diffraction peak crystal. Since d,, is %2 d,, they appear at
(the perpendicular to those planes does 42 °26.
not bisect the incident and diffracted
beams). Only background is observed.

producing a diffraction peak.
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Waurtzite ZnO nanowire arrays on glass

600 — —— - r — '
C
500 +
Poor
.. 400 |
UnIClXICll ;300 JLA nanowires
3 a0of A
texture 2
5 200t
3
100 - m particle seeds
ok
30 35 40 45 50 55 60
20
a 1o (0002)
1000 +
Good = 80p
.. 8 eool
uniaxial g | |
5 nanowires
texture 8
200 +
. x30 acetate seeds

30 35 40 45 50 55 60

20

General route to vertical ZnO ..

nanowire arrays using textured Biaxial

ZnO seeds. texture
Greene, L. E., Law, M., Tan,

D. H., Montano, M., Goldberger, (growth on A|203)

J., Somorjai, G., Yang, P. Nano
Letters 5, 1231-1236 (2005).




ROCKING CURVES

The detector is fixed at 26 position
The sample is scanned around 6

The defects in the sample will cause the width of the
peak broaden

Rocking curve is usually used to indicate the quality
of the thin film

e & & & @& & @ e & & & & & @& @ Q

e & & & & & & & & & & & 5 & & 9

4
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ROCKING CURVES

()-scans and thin film texture

v « Untextured

\»\ \ e k — Nointensity variation with Q

e — will give theoretical powder intensities

T « Textured
v f ‘3 f X / f — Maximum intensity when lattice planes aligned
1 f f with normal to bisector

— Rate of decrease with Q a measure of alignment

—  Q-scanknownas a rocking curve
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ROCKING CURVE EXAMPLES

10°
10° |

10°

Intensity (a.u.)

Thickness, composition, and strain state of epitaxial single crystal films

& farcsec

LaAIO,_ Lamu € .| Coi0 O ek cune
= u’
] r.I 1
(001) o A
- %
a‘ LA Y
e ; .
> % ST s ma T AT R
i Imcident angle O (deg])
La Alﬂz
(003) \
0 20 40 60 80 100
20 (deg)
PPDi%
F{EE~50 arcsec
7 RERDMOCVDI%
% H{ENZ~150 arcsec
g
=500 =300 =100 100 300 500

o | | [ ‘ :
ol a
| LGy
o

200 080 100 S8 © 80 180 mm
Arimuthal angle ¢ (deg)



ROCKING CURVE EXAMPLE

10 3 L) L) L) L) I L) Ll L)
B ~—— EXP_profileTXT txt
! —— SIMU_coxr.txt
I3 :
10 | Sy 553080 137 T
4924 nm 4

N
=
&
= 10 -
.
e ]
o
-
’i 10
«
b
e

10

-5 | |

10 .
=500 0
X-ray Incident Angle (sec.)

(1° = 3600 arcsec)

Thickness, composition, and strain state of epitaxial single crystal films
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PHI SCANS
0 ¢—scan

//\q’ w o

Q

Asymmetric reflections from powder
sample

—  girrelevant

Oriented sample
— Depends on ¢

¢— scan enables measurement of
orientation

sit on a reflection,
then rotate in-plane
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k-SPACE GEOMETRY

rotation axis rotation axis of
of crystal and  reciprocal lattice
axis of hHilm

for rotation around [001] c 1> -
of cubic crystal: :

Ewald sphere —

two examples:

monitor {O11}: expect 4 peaks separated by 90° rotation.

monitor {111}: expect 4 peaks separated by 90° rotation.
(ignoring possible systematic absences)
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PHI SCAN EXAMPLE

- GaN
. o 4 3 —_
1 um GaN (wurtzite) on Silicon(111) . (1011)
2 , |
5 s
_ GaN(0002) Z o o
P 2 ' .
= = _ Si
tad 1 =
% || Sidi O 30 (002)
s
© |
- 1.5
| R e ———— e ]
20 30 40 50 60
26 (degrees) 0 1 N R
0 100 200 300 400
uni-axial fexture phi scan proves

bi-axial texture (epitaxy)
In plane alignment: GaN[1120]//Si[110] =



_ YBCO
o F (003) CeO,

Intensity (arbitrary units)

20 (degrees)

Epitaxial YBa,Cu;0O- on Biaxially Textured Nickel (001):
An Approach to Superconducting Tapes with High Critical Current Density

Science, Vol 274, Issue 5288, 755-757 , 1 November 1996 >


http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195001.jpeg
http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195001.jpeg

Out-of-plane In-plane
YBCO

| YBCO |

-1° ~5.5°
30 (005) AB ~ 1 226) a0 .
omegaj
L o 0
Epitaxial YBa,Cu;0O- on Biaxially 1} YszZ B~ 5°
Textured Nickel (001): w | (002)
An Approach to Superconducting |5 ! .
Tapes with High Critical Current Density g
-
- 5 o
Science, Vol 274, Issue 5288, = CeOs AB -~ 5.5°
755-757 , 1 November 1996 “5 gl (202)
[
c
£
0
Ni(222)
| L

0
{-]1'[] - 0 5 10 -180-80 0 90 180

0 - Hp&al-r. (deg) u [degf%


http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195002.jpeg
http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195002.jpeg

TEXTURE MEASUREMENT (POLE FIGURES)

A texture measurement is also called a pole figure

* [tis plotted in polar coordinates around a given
crystallographic orientation

* The detector is fixed at 260 position

* The sample is scanned by in-plane rotation around
the plane normal at different azimuthal angles

» Texture measurement is used to determine the
orientation distribution in a polycrystalline sample

Wy
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POLE FIGURES

stereograms showing all poles of a particular hkl plane,
with axes defined by an external frame of reference.
— pole figures map the intensity of a single hkl as a function of tilt

and rotation of the sample
— most common way to map crystallographic texture

untextured sheet

textured sheet

e.g., a textured
polycrystalline rolled
metal sheet: A
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POLE FIGURE EXAMPLE — PHI ONLY

Example: c-axis aligned superconducting thin films.

\

(@)

Biaxial Texture (105 planes) Random in-plane alignment
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SMALL ANGLE X-RAY SCATTERING

» SAXS technique is commonly used for large length
scale structures such as self-assembled
superlattices

* From Bragg’s law, 2dsin6=n/, the scattering angle
will be small for the same x-ray wavelength if the
periodicity is large

= SAXS typically has scattering angle 26<1°

* Due to the small angular separation of the direct
beam and the scattered beam, to achfeve good
signal-to noise ratio:

= [ arge sample-to-detector distances
= High quality collimating optics
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Real Lattice og=2mn/d Reciprocal Lattice
N Adf
¥ ¥ 9 ¥ §
Se - o

9 9 § 2@ G=® o © 4
%9 9 ¢ §
¢ ® & & 9 NEE R RN N

-2-2 0-2 2-1

SAXS: diffraction from planes with > 1 nm d-spacing
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Small Angle
X-ray Diffraction

Direct Visualization of Individual
Cylindrical and Spherical
Supramolecular Dendrimers

Science 17 October 1997; 278: 449-452

NSy

\;‘iﬁ%
\J . . .. :

,4.



http://www.sciencemag.org/content/vol278/issue5337/images/large/se4275847003.jpeg
http://www.sciencemag.org/content/vol278/issue5337/images/large/se4275847003.jpeg

d(A)
104

60.0
52.0
39.4
34.6
30.0
28.5

-

=

)

c

9 A

C

1 2 3 4 5 6
2 0 (degrees)

Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom
Pores Science, Vol 279, Issue 5350, 548-552 , 23 January 1998 o



http://www.sciencemag.org/content/vol279/issue5350/images/large/se0286194003.jpeg
http://www.sciencemag.org/content/vol279/issue5350/images/large/se0286194003.jpeg
http://www.sciencemag.org/content/vol279/issue5350/images/large/se0286194001.jpeg
http://www.sciencemag.org/content/vol279/issue5350/images/large/se0286194001.jpeg

GRAZING INCIDENCE SAXS (GISAXS)
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IN-SITU X-RAY DIFFRACTION

High Temperature XRD Patterns of the

Decomposition of YBa,Cu;07;

3496896 : ; e e T T T T m 4
m o{ \zm - S 5
o - = =) | i o o R ==l = ==
= g f\‘*\",\ P L LS 170
i A *&‘*\ ,\‘} I 7 _‘:‘;f\::,f\(\ s Ases _“_:*4}
=————ull NEESSE=r—L
==t . ;Iv." e | ~—/ 1170
— R i 1160
= {1130
e ‘ X~ 1100
e —~3_ i
7] — — 711070
= N
o f 1040
E -
s | = 471010
: . \,"\.‘
= Yoy
0
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Laboratory for Electron and X-ray Instrumentation
Cl's Ma}t/erials Characterizatlyon User Facility UCI XRD

= 0D, 1D, 2D detectors

* In-plane & Out-of-plane
= Thin-film XRD

= High resolution XRD

= SAXS

= u-XRD

= Capillary transmission
= 1500°C heating stage

» 1100°C dome stage







ELECTRON DIFFRACTION

In a TEM the electron beam hits
the object being studied. Some A A
. —_— ]
electrons are diffracted and some 11/
pass through the sample. The G 0
objective lens focuses all the L OBJECTIVE LENS

beams to points 1n the diffraction
plane. So we would see a

diffraction pattern here. The “ A ¢ DIFFRACTION PLANE
diffracted beams combine 1n the /

1mage plane to form an 1mage. \

Other lenses can be used to form / \

magnified images of either the L—L 1\ macerLane

diffraction or umage planes.

100 nm 367



Why ED patterns have so many spots

Typically, in X-ray or neutron diffraction only one reciprocal lattice point
IS on the surface of the Ewald sphere at one time.

In electron diffraction the Ewald sphere is not highly curved b/c of the
very short wavelength electrons that are used. This nearly-flat Ewald
sphere intersects with many reciprocal lattice points at once.

- In real crystals reciprocal lattice points are not infinitely small and in a
real microscope the Ewald sphere is not infinitely thin

Ay.ray = NC/E = 0.154 nm @ 8 keV
L. = h/[2meV(1 + eV/2m,c?)]¥2 = 0.0037 nm @ 100 keV

llllllllll

Ewald sphere for Cu radiation 15 much Electron Diffraction
more curved than that for electrons in pattern from N1Al
an electron diffraction experiment
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DIFFRACTION FROM DISORDERED SOLIDS

All materials scatter x-rays, even 1f
they are not crystalline. Deviations
from perfect periodicity spread the
scattering out through reciprocal
space, but there 1s still information
about mteratomic distances

eryaial

INTEMSITY

Hegusd or amorphous salid

INTEMSITY

amorphous solids

No long-range order
— Only significant order is nearest neighbour spacing
— Diffraction pattern forms diffuse halo
— Typical of colloidal suspensions and globular clusters

Diffraction is large or small angle depending on the size of the “particle”

wre g e Y

i Ol 181
DIFFRACTION [(3CATTERING)
ANGLE 28 [(degrees)

Vs iy
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DIFFRACTION: WHAT YOU SHOULD KNOW

Index planes

Calculate crystal density

Calculate d-spacings

Derive/use Bragg’s Law

Index diffraction peaks

Determine lattice constants

Reciprocal lattice

Ewald sphere construction

Calculate structural factors, predicting X-ray diffraction pattern
(systematic absences)

Use of Scherrer relation
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Term Paper and Presentation

Choose a contemporary materials topic that interests you. For
example:

* Organic LEDs * Synthetic Biomaterials
* Metamaterials * Infrared Photodetectors
« Multiferroics  Conducting Polymers
 Graphene * Inorganic Solar Cells

* Photonic Crystals * Plasmonics

« Amorphous Metals  High x Dielectrics

* Colossal Magnetoresistance ¢ Quantum Dots

In >10 pages of double-spaced text (+ figures and references):

1) Quantitatively explain the basic principles at work

2) Summarize the state-of-the-art in synthesis, properties, and apps

3) Identify a key challenge facing the field and propose an original
solution to this challenge
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Term Paper Due Dates

February 24: Topic selection. E-mail me with a one-paragraph
abstract describing your topic, challenge, and proposed solution

8-10 am March 20: Paper submission and 5-minute presentation to
educate the class on your topic.
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Midterm Exam

February 19

full class period

short answer gquestions

topics up through the end of diffraction

calculator, pens, pencils, nothing else

focused on conceptual understanding, not memorization

(b) 4 pts. The graph below shows a single Bragg reflection from a powder sample of large crystallites.
On the same graph, sketch the peak expected for a sample of this solid consisting of small crystals
under substantial uniform compressive stress.

Peak will be broader and shifted
to higher 26 (smaller d-spacing)

intensity

\ L

2 theta 373




