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X-ray Diffraction

Electron Diffraction

Neutron Diffraction 

Essence of diffraction: Bragg Diffraction

Reading: West 5

A/M 5-6

G/S 3
218



Elements of Modern X-ray Physics, 2nd Ed. by Jens Als-Nielsen and Des McMorrow, 

John Wiley & Sons, Ltd., 2011 (Modern x-ray physics & new developments)

X-ray Diffraction, by B.E. Warren, General Publishing Company, 1969, 1990 

(Classic X-ray physics book)

Elements of X-ray Diffraction, 3rd Ed., by B.D. Cullity, Addison-Wesley, 2001 

(Covers most techniques used in traditional materials characterization)

High Resolution X-ray Diffractometry and Topography, by D. Keith Bowen and Brian 

K. Tanner, Taylor & Francis, Ltd., 1998 (Semiconductors and thin film analysis)

Modern Aspects of Small-Angle Scattering, by H. Brumberger, Editor, Kluwer 

Academic Publishers, 1993 (SAXS techniques)

Principles of Protein X-ray Crystallography, 3rd Ed. by Jan Drenth, Springer, 2007 

(Crystallography)

REFERENCES

219



SCATTERING

Elastic (E’ = E)

X-rays scatter by interaction with the electron density of a material.

Neutrons are scattered by nuclei and by any magnetic moments in a sample.

Electrons are scattered by electric/magnetic fields.

Scattering is the process in which waves or particles are forced to deviate from a 

straight trajectory because of scattering centers in the propagation medium.  

 p' p q E' E h Momentum transfer: Energy change:

Inelastic (E’ ≠ E)

q 2 sin
2

p 


Elastic scattering geometry• Rayleigh (λ >> dobject)

• Mie (λ ≈ dobject)

• Geometric (λ << dobject)

• Thompson (X-rays)

E pcFor X-rays:

• Compton (photons + electrons)
• Brillouin (photons + quasiparticles)
• Raman (photons + molecular vib./rot.)



COMPTON  SCATTERING

X-ray source

Graphite

Target

Crystal 

(selects 

wavelength)

Collimator 

(selects angle)

θ

Compton (1923) measured intensity of scattered X-rays 

from solid target, as function of wavelength for different 

angles. He won the 1927 Nobel prize.

Result: peak in scattered radiation 

shifts to longer wavelength than 

source. Amount depends on θ (but 

not on the target material). A. H. Compton. Phys. Rev. 22, 409 (1923).

Detector

Compton



COMPTON  SCATTERING

Compton’s explanation: “billiard ball” collisions between particles of light 

(X-ray photons) and electrons in the material

Classical picture: oscillating electromagnetic field causes oscillations in positions 

of charged particles, which re-radiate in all directions at same frequency and 

wavelength as incident radiation (Thompson scattering).

Change in wavelength of scattered light is completely unexpected classically
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Conservation of energy Conservation of momentum
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From this Compton derived the change in wavelength:

θ
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 pBefore After

Electron

Incoming photon
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scattered photon

scattered electron

COMPTON  SCATTERING
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Note that there is also an 

unshifted peak at each angle.

Most of this is elastic scatter. 

Some comes from a collision 

between the X-ray photon and 

the nucleus of the atom.

 1 cos 0
N

h

m c
     

N em msince

COMPTON  SCATTERING
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COMPTON  SCATTERING

Contributes to general background noise

Diffuse 

background from 

Compton 

emission by 

gamma rays in

a positron 

emission 

tomography 

(PET) scan.
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X-RAY SCATTERING

• wide-angle diffraction (θ > 5°)
• small-angle diffraction (θ close to 0°)
• X-ray reflectivity (films)

elastic (Thompson, ΔE = 0)

inelastic (ΔE ≠ 0)
• Compton X-ray scattering
• resonant inelastic X-ray scattering (RIXS)
• X-ray Raman scattering

X-rays:

• 100 eV (“soft”) – 100 keV (“hard”) photons
• 12,400 eV X-rays have wavelengths of 1 Å,

somewhat smaller than interatomic distances in solids

Diffraction from crystals!

First X-ray: 1895 

Roentgen
1901 Nobel

λ (in Å) = 12400/E (in eV)
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DIFFRACTION

Diffraction refers to the apparent bending of waves around small objects and the 

spreading out of waves past small apertures.

In our context, diffraction is the scattering of a coherent wave by the atoms in a 

crystal. A diffraction pattern results from interference of the scattered waves.

Refraction is the change in the direction of a wave due to a change in its speed.

W. L. BraggW. H. Bragg

diffraction of plane waves 

von Laue

Crystal diffraction

I. Real space description (Bragg)
II. Momentum (k) space description 

(von Laue)
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OPTICAL INTERFERENCE

δ = nλ,  n = 0, 1, 2, …

δ = nλ,  n = 1/2, 3/2, …

δ: phase difference

n: order

perfectly in phase:

perfectly out of phase:



BRAGG’S LAW OF DIFFRACTION

When a collimated beam of X-rays strikes pair of parallel lattice planes in a crystal, 

each atom acts as a scattering center and emits a secondary wave. 

 All of the secondary waves interfere with each other to produce the diffracted beam 

Bragg provided a simple, intuitive approach to diffraction:

• Regard crystal as parallel planes of atoms separated by distance d
• Assume specular reflection of X-rays from any given plane
→ Peaks in the intensity of scattered radiation will occur when rays  

from successive planes interfere constructively

2Θ
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BRAGG’S LAW OF DIFFRACTION

AC sind 

ACB 2 sind 

ACBn 

2 sinn d Bragg’s Law:

When Bragg’s Law is satisfied, “reflected” beams are in phase 
and interfere constructively. Specular “reflections” can 

occur only at these angles.

No peak is observed unless the condition for constructive interference

(δ = nλ, with n an integer) is precisely met:
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DIFFRACTION ORDERS

1st order:

12 sind 

2nd order:

22 2 sind 

By convention, we set the diffraction order = 1 for XRD. 

For instance, when n=2 (as above), we just halve the d-spacing to make n=1.

22 2 sind  22( / 2)sind 

e.g. the 2nd order reflection of d100 occurs at same θ as 1st order reflection of d200



XRD TECHNIQUES AND APPLICATIONS

• powder diffraction
• single-crystal diffraction
• thin film techniques
• small-angle diffraction

• phase identification
• crystal structure determination 
• radial distribution functions
• thin film quality
• crystallographic texture
• percent crystalline/amorphous

• crystal size
• residual stress/strain
• defect studies 
• in situ analysis (phase transitions,   

thermal expansion coefficients, etc)
• superlattice structure

Uses:



POWDER X-RAY DIFFRACTION

• uses monochromatic radiation, scans angle
• sample is powder → all orientations simultaneously presented to beam
• some crystals will always be oriented at the various Bragg angles
• this results in cones of diffracted radiation
• cones will be spotty in coarse samples (those w/ few crystallites)

crystallite

no restriction 
on rotational orientation

relative to beam
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DEBYE-SCHERRER METHOD

…or we can use a diffractometer to intercept sections of the cones
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2 sinhkl hkld 



BASIC DIFFRACTOMETER SETUP
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General Area Detector Diffraction System (GADDS)

DIFFRACTOMETERS



THIN FILM SCANS

238

4-axis goniometer



THETA-2THETA GEOMETRY

• X-ray tube stationary
• sample moves by angle theta, detector by 2theta
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THETA-THETA GEOMETRY

• sample horizontal (good for loose samples)
• tube and detector move simultaneously through theta
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POWDER DIFFRACTOGRAMS

increasing θ, decreasing d
Minimum d?

min / 2d 

In powder XRD, a finely powdered sample is probed with monochromatic X-rays of a 

known wavelength in order to evaluate the d-spacings according to Bragg’s Law.

Cu Kα radiation: λ = 1.54 Å

peak positions depend on:

• d-spacings of {hkl}
• “systematic absences”
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ACTUAL EXAMPLE: PYRITE THIN FILM

FeS2 – cubic (a = 5.43 Å) 
Random crystal orientations  

On casual inspection, peaks give us d-spacings, unit cell size, crystal 
symmetry, preferred orientation, crystal size, and impurity phases (none!) 

111

200

210
211

220
311

Cu Kα = 1.54 Å

2 Theta

In
te

n
si

ty

“powder pattern”

2θ = 28.3° →  d = 1.54/[2sin(14.15)] 

= 3.13 Å = d111

reference pattern from ICDD
(1,004,568+ datasets)



d-SPACING FORMULAS
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2 theta d

7.2 12.2

14.4 6.1

22 4.0

002 sinld  

Layered Cuprate Thin film, growth oriented along c axis

(hkl)

(001)

(002)

(003)

c = 12.2 Å

(00l)

EXAMPLE 2: textured La2CuO4

Epitaxial film is textured. 
(It has crystallographic 

orientation).
Many reflections are “missing”  
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POWDER DIFFRACTION

Peak positions determined by size and shape of unit cell  

Peak intensities determined by the position and atomic 
number of the various atoms within the unit cell

Peak widths determined by instrument parameters, 
temperature, and crystal size, strain, and imperfections

245

we will return to this later…



GENERATION OF X-RAYS
X-rays beams are usually generated by colliding high-energy electrons with metals.

2p3/2 → 1s

Siegbahn notation

X-ray emission 

spectrum
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Generating Bremsstrahlung

Generating Characteristic X-rays



GENERATION OF X-RAYS

Co Kα1 : 1.79 Å
Cu Kα1 : 1.54 Å  (~8 keV)
Mo Kα1 : 0.71 Å 

 /hchE 

Side-window Coolidge X-ray tube

X-ray energy is determined by anode material, accelerating voltage, 
and monochromators: 

1/2 ( )C Z   Moseley’s Law:
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ROTATING ANODES

• 100X higher powers possible by spinning the anode
at > 6000 rpm to prevent melting it → brighter source
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SYNCHROTRON LIGHT SOURCES

SOLEIL

• brightest X-ray sources
• high collimation
• tunable energy
• pulsed operation

GeV electron accelerators

250

Bremsstrahlung (“braking radiation”)

Australian Synchrotron



MONOCHROMATIC X-RAYS

Filters (old way)

A foil of the next lightest element 
(Ni in the case of Cu anode) can 
often be used to absorb the 
unwanted higher-energy radiation to 
give a clean Kα beam     

Crystal Monochromators
Use diffraction from a curved
crystal (or multilayer) to select
X-rays of a specific wavelength
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DETECTION OF X-RAYS

• Point detectors

• Strip detectors

• Area detectors

Detection principles

• gas ionization
• scintillation
• creation of e-h pairs
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DETECTION OF X-RAYS

Gas proportional counters

Point detectors

253

Scintillation counters



X-RAY DETECTORS
Area detectors

Charge-coupled devices

• film
• imaging plate
• CCD
• multiwire

254



X-RAY DETECTORS

Imaging plates

255

photostimulated luminescence
from BaFBr0.85I0.15:Eu2+



X-RAY DETECTORS

Imaging plates

256

photostimulated luminescence
from BaFBr0.85I0.15:Eu2+

tetragonal Matlockite structure (PbFCl)

9-coordinate Ba!



The Reciprocal Lattice and the 
Laue Description of Diffraction

257

Reading: A/M 5-6

G/S 3



PLANE WAVES

A wave whose surfaces of constant phase are infinite parallel planes of 
equal spacing normal to the direction of propagation.

ψ: wave amplitude at point r
A: max amplitude of wave
k: wave vector 
r: space vector from arbitrary origin

k

|k|=2π/λ

Amplitude is constant in any plane normal to k because k•r is a constant 
for such planes:

k•r1 = kr1

k•r2 = kr1√2(cos45) = kr1

k

r2

wavefront

origin

k

r1
45°

k•r is indeed constant on wavefronts



THE RECIPROCAL LATTICE
The reciprocal lattice of a Bravais lattice is the set of all vectors K such that

for all real lattice position vectors R. 

1ie K R

R = n1a1 + n2a2 + n3a3 
Direct lattice position vectors:

Reciprocal lattice vectors:

 
2



2 3
1

1 2 3

a a
b

a a a





K = hb1 + kb2 + lb3 

 
2



3 1
2

1 2 3

a a
b

a a a





 
2



1 2
3

1 2 3

a a
b

a a a





where the primitive vectors 
of the reciprocal lattice are:

and {ni} and {h,k,l} 
are integers

Reciprocal lattice: The set of all wave vectors K that yield plane waves 
with the periodicity of a given Bravais lattice.
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is satisfied when K•R = 2πn, with n an integer

To verify that the {bi} are primitive vectors of the reciprocal 
lattice, let’s first show that bi•aj = 2πδij

 

 

 
2 2 2  


    

 

1 2 32 3
1 1 1

1 2 3 1 2 3

a a aa a
b a a

a a a a a a



 

 
2 0   



3 1
2 1 1

1 2 3

a a
b a a

a a a





 
2 0   



1 2
3 1 1

1 2 3

a a
b a a

a a a




Indeed, bi•aj = 2πδij

so, K•R = (hb1 + kb2 + lb3)•(n1a1 + n2a2 + n3a3)

= 2π(hn1 + kn2 + ln3) = 2π × integer

(since cross product of two 
vectors is perpendicular to both)  

K is indeed a reciprocal lattice vector



WHAT IS A RECIPROCAL LATTICE VECTOR?
The reciprocal lattice is defined at the lattice generated from the set of all 

vectors K that satisfy

for all direct lattice position vectors R. 

1ie K R

What is K?
a wave vector of a plane wave that has the periodicity of the direct lattice

The direct lattice is periodic (invariant under translation by R) 

Reciprocal lattice vectors = wave vectors of plane waves that are unity 
at all direct lattice sites 261



THE RECIPROCAL LATTICE

• the reciprocal lattice is defined in terms of a Bravais lattice

• the reciprocal lattice is itself one of the 14 Bravais lattices

• the reciprocal of the reciprocal lattice is the original direct lattice

e.g., simple cubic direct lattice

ˆa1a x ˆa2a y ˆa3a z

 

2

3

2
ˆ ˆ2 2

a

a a


   



2 3
1

1 2 3

a a
b x x

a a a





2
ˆ

a


2b y

2
ˆ

a


3b z → simple cubic reciprocal lattice

with lattice constant 2π/a
→ b1 parallel to a1, etc.  262



Crystals with orthogonal axes (cubic, tetragonal, orthorhombic) 

b1, b2, b3 are parallel to a1, a2, a3, respectively.  

b3

a3

b1 a1

a2

b2

reciprocal lattice 

direct lattice 

2
ˆ

b


2b y

2
ˆ

a


1b x

2
ˆ

c


3b z

ˆa1a x ˆb2a y ˆc3a z
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RECIPROCAL LATTICE OF FCC IS BCC

FCC primitive vectors:

 

2

3

ˆ ˆ ˆ( )
4 14 ˆ ˆ ˆ2 2 ( )

2
(2)

8

a

a a


 



   


2 3
1

1 2 3

y z - x
a a

b y z - x
a a a





Note: not orthogonal

4 1
ˆ ˆ ˆ( + )

2a


2b z x - y

4 1
ˆ ˆ ˆ( + )

2a


3b x y - z

→ BCC reciprocal lattice with lattice constant 4π/a
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RECIPROCAL LATTICE OF BCC IS FCC

BCC primitive vectors (not orthogonal):

 

2

3

ˆ ˆ(2 2 )
4 14 ˆ ˆ2 2 ( )

2
(4)

8

a

a a


 



   


2 3
1

1 2 3

y z
a a

b y z
a a a





4 1
ˆ ˆ( )

2a


2b z + x

4 1
ˆ ˆ( )

2a


3b x + y

→ FCC reciprocal lattice with lattice constant 4π/a
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RECIPROCAL LATTICES

• simple orthorhombic → simple orthorhombic

• FCC → BCC

• BCC → FCC

• simple hexagonal → simple hexagonal (rotated)
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= b1

= b2

= b3

β ≠ 90°

r. l. 

d. l. 

267



α,β,γ ≠ 90°
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Note that these formulas 
are missing a factor of 2π
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FIRST BRILLOUIN ZONES
The Wigner-Seitz cell of the reciprocal lattice is called the first Brillouin zone 

(FBZ).

Wigner-Seitz cell: primitive cell with lattice point at its center

enclosed region is W-S cell

for 2D hexagonal lattice

d.l. FCC
r.l. BCC

1st Brillouin zone:

truncated octahedron
rhombic dodecahedron 

d.l. BCC
r.l. FCC

1st Brillouin zone:
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G 000

X (2/a 0 0)

L
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Brillouin Zone of Diamond and 

Zincblende Structure (FCC Lattice)

• Notation:

– Zone Edge or 
surface : Roman 
alphabet

– Interior of Zone: 
Greek alphabet

– Center of Zone or 
origin: G

3D BAND STRUCTURE

Notation:

D<=>[100] 
direction

X<=>BZ edge 
along [100] 
direction

L<=>[111] 
direction

L<=>BZ edge 
along [111] 
direction273
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Electronic Band Structure of Si

<111> <100> <110>

Eg

275

Electronic band structure is calculated within the 1st Brilluoin zone



Theorem:
For any family of lattice planes separated by distance d, there are 
reciprocal lattice vectors perpendicular to the planes, the shortest of 
which has a length of 2π/d.

Conversely, any reciprocal lattice vector K has a family of real-space 
planes normal to it, separated by d. 

hk in 2D
hkl in 3D

here, g = K

K and LATTICE PLANES

276

𝐊 = 2𝜋𝑛/𝐝



Orientation of a plane is determined by its normal vector

It is natural to pick the shortest perpendicular reciprocal 
lattice vector to represent the normal

Miller indices: coordinates of this reciprocal lattice vector

i.e., A plane with Miller indices hkl is normal to 
the reciprocal lattice vector K = hb1 + kb2 + lb3 

→ Definition #2: directions in k-space

(Definition #1 was inverse intercepts in the real lattice)

MILLER INDICES OF LATTICE PLANES
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Proof that K = hb1 + kb2 + lb3 is normal to (hkl)

h

1a

AB

If K = hb1 + kb2 + lb3 is normal to the plane at left, 
its dot product with any in-plane vector is zero.

Consider vector AB that lies in the plane.

By vector addition, 

l

3a

k

2a

h l
  AB31 aa

The dot product, 

( )h k l
h l

 
   

 
AB K = 31

1 2 3

aa
b b b

2 2 0  =

So the reciprocal vector formed by using the Miller indices of a plane as its 
components forms a vector in space that is normal to the Miller plane. 

Furthermore, the length of the shortest vector K is equal to 2π/dhkl.

In the figure above, the spacing between the planes is the projection of                     :  on
h

K

K

1a

2 2
hkl

h
d

h h

 
  

K

K K K

1a

(hkl)

0

2

hkl

K
d


 K→

278

etc. 



REMINDER on ELASTIC SCATTERING

 p' p qMomentum conservation:

q 2 sin
2

p 


Elastic scattering geometry

p p' pelastic scattering:

scattering vector



von LAUE DESCRIPTION OF DIFFRACTION

2
2 sind n n

k


  

0

2
2 sink n nK K

d


   

• reciprocal space description, equivalent to Bragg description but
more powerful for crystallography & solid state physics

Equivalence to Bragg picture:

K

2 sin 2 sin
2

p
q k K


  

q K

p k

von Laue: “Constructive interference occurs when
scattering vector is a reciprocal lattice vector.” 

since scattering is elastic and               , 



DERIVATION of von LAUE CONDITION

Consider two scatterers:

Path difference between the rays: ˆ ˆcos cos ( )d d ' = '  d n -n

Condition for constructive interference: ˆ ˆ( ) =' nd n -n

Multiply through by 2π/λ: ( - ) = 2' nd k k

For the Bravais lattice of scatterers: ( - ) = 2' nR k k

Multiply by i and raise to e: ( - ) 2= 1i ' i ne e  k k R

So, - ='k k K
Diffraction occurs when the change in 
wave vector, k’-k, is a vector of the 
reciprocal lattice. 281



Reciprocal lattice vectors are perpendicular to direct lattice planes

Bragg: diffraction when path length difference = nλ

Laue: diffraction when scattering vector = recip. vector 

Alternatively,

' K = k k Laue condition

k-space Bragg plane

(per. bisector of K)

equivalently, when tip of wave vector lies on a k-space Bragg plane

𝐤′ ⋅ 𝐊 = 𝐾2/2



EWALD (“e-val”) SPHERE

A geometrical construction that provides the relationship between the orientation of 

a crystal and the direction of the beams diffracted by it. 

A sphere of radius k centered on the base of the incident wave vector 
k drawn to the origin O (hkl = 000) of the reciprocal lattice.

k

k’

θ

θ O

Projected Ewald sphere (Ewald circle)

real space
origin of diffraction

origin of reciprocal space

direction of 
diffracted beam

reciprocal lattice

K

radius = k

' K = k k

Laue condition:

(-2,-1)
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' K = k k

Laue condition:

Diffraction occurs only when a reciprocal lattice point 
lies on the surface of the Ewald sphere.

In this case, hkl = -2,-1,0 so diffraction occurs from the (210) planes 
and the diffracted beam moves off along k’. 

--

K

k

k’

θ

θ

k

k’

θ

θ O

K

(-2,-1)

2102 / dK =

284
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In general, a sphere in k-space with the origin on its 
surface will have no other reciprocal lattice points on 
its surface: 

No Bragg peaks for a general incident X-ray!

In order to record diffraction patterns, we must either:
• use polychromatic radiation (vary the sphere size) → Laue method
• rotate the crystal (and thus the reciprocal lattice) → rot. cryst. method
• use a powder sample (equivalent to rotating reciprocal

space about all angles) → powder method

O

286
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LAUE METHOD
• fixed crystal & angle, many wavelengths

288



The Laue method is mainly used to determine the orientation of 
large single crystals.

When the zone axis lies along the symmetry axis of the crystal, the 
pattern of Bragg spots will have the same symmetry.
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ROTATING CRYSTAL METHOD

http://escher.epfl.ch/x-ray/diff.mpeg

• single wavelength 
• aligned crystal is rotated about one axis to rotate reciprocal lattice
• produces spots on layer lines

k

k’

290

http://escher.epfl.ch/x-ray/diff.mpeg
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POWDER (DEBYE-SCHERRER) METHOD
• single wavelength 
• fixed powder sample
• equivalent to rotating the reciprocal lattice through all possible

angles about the origin 

every point in 
reciprocal space 
traces out a shell 
of radius K

Each shell with radius K < 2k
intersects the Ewald sphere to 
form a circle.

All the diffracted beams from a 
powder lie on the surface of cones

292



Peak intensities depend on (in large part):
1) intensity scattered by individual atoms (form factors)
2) the resultant wave from atoms in unit cell (structure factor)

PEAK INTENSITIES

In many cases, the intensity from certain planes (hkl) is zero.

• symmetry of crystal causes complete cancellation of beam
“systematic absences”

• happenstance

Possible reasons:

Other factors that affect intensity: • scattering angle
• multiplicities
• temperature factor
• absorption factor
• preferred orientation
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MONOATOMIC BASES

( - ) 2= 1i ' i ne e  k k R

up to now we have considered diffraction only from Bravais lattices 
with single atom bases (i.e., atoms only at the lattice points R).

We found the diffraction condition: 

= 1ie K Rwhich is the same as: 

( ) iF f e   K R

K R

R

K

The scattering amplitude FK is the sum over the lattice sites:

The scattered intensity is proportional to the absolute square of the 
amplitude: 

where fR(K) is the “atomic form factor” for a given atom (disc. later).

2

0I I FK K

…this is what is actually measured in an experiment.



Crystals with n atoms in each primitive cell must be further analyzed 
into a set of scatterers at positions d1, d2 … dn within each primitive 
cell.   

( )
( ) ji

j

j

F f e


 
K R+d

K

R

K

n-ATOM BASES

( )j j A R R dThe positions of the atoms are: 

making the scattering amplitude: 

( ) jii

j

j

e f e
  

K dK R

R

K
iL e   K R

R

( ) ji

j

j

f e


  
K d

K K
“Lattice sum”

“Structure factor” of the basis

*If the structure factor = 0, there is no diffraction peak.



( ) ji

j

j

f e


  
K d

K K

The structure factor gives the amplitude of a scattered wave arising 
from the atoms with a single primitive cell.   

STRUCTURE FACTOR

For crystals composed of only one type of atom, it’s common to split 
the structure factor into two parts:

( )jf S K KK

ji

j

S e


 
K d

K

“atomic form factor”

“geometric structure factor”

S = 0 gives a systematic absence (i.e., absence of expected diff. peak).
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2

( )hklI S K

1ie K d ni
e

K d
…

1

j

n
i

j

S e




 
K

K

d

The amplitude of the rays scattered at positions d1, …, dn

are in the ratios:

The net ray scattered by the entire cell is the sum of 
the individual rays: 

STRUCTURE FACTORS

Geometric 
structure
factor

-Adds up scattered
waves from unit cell 

-In particular, no
peak when SK = 0 
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For simple cubic: one atom basis (0,0,0)

0 1iS e  K

K

SIMPLE CUBIC

d1 = 0a1 + 0a2 + 0a3

298

Same result as simple monatomic basis



For monoatomic BCC: 

we can think of this as SC with two point basis (0,0,0), (½,½,½)

lkh  )1(1

S = 2, when h + k + l even
S = 0, when h + k + l odd (systematic absences)

2 ( )
0 2

1

( )1

j

a
i x y zi i

j

i h k l

S e e e

e 

  

   



 

  

 


KK K

K

d

MONATOMIC BCC

2
ˆ ˆ ˆ( )h k l

a


  K x y zFor SC,
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e.g. consider the powder pattern of BCC molybdenum

Powder card shows only even hkl sums b/c Mo is BCC

Why?
- Diffraction from other (hkl) results in destructive interference:

(100)

d100

Beam cancels b/c body center atoms 
scatter exactly 180° out of phase

(200)

d200

Strong reflection b/c all atoms lie on 
200 planes and scatter in phase



S = 4 when h + k, k + l, h + l all even (h, k, l all even or all odd)

S = 0 otherwise.

( ) ( ) ( )1 i h k i k l i h lS e e e       K

For monoatomic FCC: 

SC with four point basis (0,0,0), (½,½,0), (0,½,½), (½,0,½)

4 ( ) ( ) ( )
0 2 2 2

1

j

a a a
i x y i y z i x zi i

j

S e e e e e

     

      



    
K K KK K

K

d

MONATOMIC FCC

2
ˆ ˆ ˆ( )h k l

a


  K x y zFor SC,
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POLYATOMIC STRUCTURES

Atoms of different Z in the unit cell have different scattering 

powers, so we explicitly include the form factors:  

Total 
structure
factor

{fj }: atomic form factors

 # of electrons

( ) ji

j

j

f e


  
K d

K K

302



Cesium Chloride is primitive cubic
Cs (0,0,0)

Cl (1/2,1/2,1/2)

but what about CsI?

( )i h k l

Cs Clf f e     K

CsCl STRUCTURE

Cs+ and Cl- are not isoelectronic
→ systematic absences unlikely

( ) ji

j

j

f e


  
K d

K K
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Φ = f Cs + fCl when h + k + l even 

Φ = f Cs - fCl when h + k + l odd



(hkl) CsCl CsI

(100) 

(110)  

(111) 

(200)  

(210) 

(211)  

(220)  

(221) 

(300) 

(310)  

(311) 

Cs+ and I- are isoelectronic, so CsI looks like BCC lattice:

304
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Diatomic FCC Lattices

Sodium Chloride (NaCl) 

Na: (0,0,0)(0,1/2,1/2)(1/2,0,1/2)(1/2,1/2,0)

Cl: (1/2,1/2,1/2) (1/2,1,1)(1,1/2,1)(1,1,1/2)

Add (1/2,1/2,1/2)
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Φ = 4(fNa + fCl) when h, k, l, all even

Φ = 4(fNa - fCl) when h, k, l all odd  

Φ = 0 otherwise

( )

,[ ][ ]i h k l

Na Cl FCCf f e S    K K
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(hkl) NaCl KCl

(100)

(110)

(111) 

(200)  

(210)

(211)

(220)  

(221)

(300)

(310)

(311) 

Once again, there are more systematic absences for 
isoelectronic ions (e.g., K and Cl)

(110) always absent in RS

(111) sometimes absent
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For RS, we expect the intensity of the all odd reflections 
to increase with increasing ΔZ between cation and anion:

I111,311 : KCl < KF < KBr < KI 

Less complete destructive interference
between cation and anion sublattices.
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DIAMOND STRUCTURE

Diamond: FCC lattice with two-atom basis (0,0,0,), (¼,¼,¼)  

( )
0 4

, ,

( /2)( )

,

[ ][ ]

           [1 ][ ]

a
iK x y z

iK

diamond FCC

i h k l

FCC

S e e S

e S

  

  


 

 

 

K K

K

S = 8         h + k + l twice an even number
S = 4(1 ± i)  h + k + l odd
S = 0         h + k + l twice an odd number 

IFCC : all nonvanishing spots have equal intensity.

Idiamond : spots allowed by FCC have relative intensities 
of 64, 32, or 0. 309

Only for all even or all odd hkl is S ≠ 0. For these unmixed values,

Additional condition:

http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/Diamond.cmdf
http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Coords/Diamond.cmdf


(hkl) Al Si

(100)

(110)

(111)  

(200) 

(210)

(211)

(220)  

(221)

(300)

(310)

(311)  

What about 

zinc blende?

FCC diamond
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SUMMARY OF SYSTEMATIC ABSENCES

crystal structure condition for peak to occur

SC any h,k,l

BCC h + k + l = even

FCC h,k,l all even or all odd 

NaCl h,k,l all even,

or all odd if fA ≠ fB

diamond h,k,l all even and twice an even #, 

or all odd 

HCP any h,k,l except when h + 2k = 3n

and l is odd

( ) ji

j

j

f e


  
K d

K K
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Observable diffraction 

peaks for monoatomic 

crystals

222 lkh 
SC: 1,2,3,4,5,6,8,9,10,11,12,…

BCC: 2,4,6,8,10,12,...

FCC: 3,4,8,11,12,16,24,…

SIMPLE ANALYSIS OF SIMPLE PATTERNS

What will we see in XRD patterns of SC, BCC, FCC?

SC FCC BCC

We can take ratios of (h2 + k2 + l2) to determine structure.



SIMPLE ANALYSIS OF SIMPLE PATTERNS

 nd sin2

222 lkh

a
dhkl


For cubic crystals:

2

2

1
sin

hkld
 

2 2 2 2sin ( )h k l   

2 2 2 2

th peak th peak

2 2 2 2

1st peak 1st peak

sin ( )

sin ( )

n nh k l

h k l





 


 
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2 2

2

2 2

1

sin sin 33
2

sin sin 22




   

SIMPLE ANALYSIS OF SIMPLE PATTERNS

110

200

211

α-Fe is cubic. Is it FCC or BCC?
BCC!

What about Al?

2 2

2

2 2

1

sin sin 22.5
1.33

sin sin 19




   

111

200
220

311

222
400

331 420

FCC!
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Ex: An element, BCC or FCC, shows diffraction 

peaks at 2: 40, 58, 73, 86.8,100.4 and 114.7. 

Determine:(a) Crystal structure?(b) Lattice constant?

(c) What is the element?

2theta theta (hkl)

40 20 0.117 1 (110)

58 29 0.235 2 (200)

73 36.5 0.3538 3 (211)

86.8 43.4 0.4721 4 (220)

100.4 50.2 0.5903 5 (310)

114.7 57.35 0.7090 6 (222)

2sin 222 lkh 

BCC, a =3.18 Å  W

normalized
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ELASTIC X-RAY SCATTERING BY ATOMS
Atoms scatter X-rays because the oscillating electric field of an X-ray sets 

each electron in an atom into vibration. Each vibrating electron acts as a 

secondary point source of coherent X-rays (in elastic scattering).

Thomson relation:

The X-ray scattered from an atom is the resultant wave from all its electrons

Particle picture:

• zero phase difference for forward/backward scattering
→ scattering factor (form factor, f ) proportional to atomic number, Z

• increasingly destructive interference with larger scattering angle (to 90°)
• for a given angle, intensity decreases with decreasing X-ray wavelength 

• max scattering intensity at 2θ = 0 & 180°
• gradual decrease to 50% as 2θ approaches 90°

21
(1 cos 2 )

2
I  



SCATTERING OF X-RAYS BY ATOMS

Thomson relation: 21
(1 cos 2 )

2
I  

scattering angle probabilities for a free electron:

Low energy: Thomson

High energy: Compton 

Klein–Nishina formula



ATOMIC FORM FACTORS

Form factor f = scattering amplitude of a wave by an isolated atom

• Z (# electrons)
• scattering angle
• X-ray wavelength

For X-rays, f depends on:

consequences: • powder patterns show weak lines at large 2θ. 
• light atoms scatter weakly and are difficult to see.

0

( ) ( ) i

j jf e d


 
q r

q r r

4 sin
q

 


with,

For θ = 0 (forward scattering),

scattering vector q

General elastic formula:

0

(0) ( )jf d # electrons


  r r =

O

K+

Cl-

Cl  

θ = 37°

3

3



ELECTRON DENSITY MAPS

The electron density as a function of position x,y,z is 

the inverse Fourier transform of the structure factors:

The electron density map 

describes the contents of 

the unit cells averaged 

over the whole crystal (not 

the contents of a single unit 

cell)

2 ( )1
( ) i hx ky lz

hkl hkl
xyz e

V

    
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PEAK WIDTHS

Peak shape is a Voigt function (mixture of Gaussian and Lorentzian)

Peak width (broadening) is determined by several factors:

• natural linewidth of X-ray emission
• instrumental effects (polychromatic λ, focusing, detector)
• specimen effects 

1) crystallite size
2) crystallite strain

• Gaussian component arises from natural linewidth and strain 

• Lorentzian component arises from coherent domain size

Pure
Lorentzian

Pure
Gaussian

320
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FULL WIDTH AT HALF MAXIMUM (FWHM)

Can also be fit with Gaussian,

Lorentzian, Gaussian-Lorentzian etc.



Instrument and Sample Contributions to the Peak Profile 

must be Deconvoluted

• In order to analyze crystallite size, we must deconvolute:

– Instrumental Broadening FW(I)

• also referred to as the Instrumental Profile, Instrumental 

FWHM Curve, Instrumental Peak Profile

– Specimen Broadening FW(S)

• also referred to as the Sample Profile, Specimen Profile

• We must then separate the different contributions to specimen 

broadening

– Crystallite size and microstrain broadening of diffraction peaks 

322



SIZE BROADENING

Small crystallites (< 200 nm) show broadened diffraction lines

Nanocrystal X-ray 

Diffraction

323
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Which of these diffraction patterns comes from a 

nanocrystalline material?

66 67 68 69 70 71 72 73 74

2 (deg.)

In
te

n
s

it
y
 (

a
.u

.)

These diffraction patterns were produced from the same sample!

• Two different diffractometers, with different optical configurations, were used

• The apparent peak broadening is due solely to the instrumentation in   

this case
325



1

2

3

4

j-1

j

j+1

2j-1

2j

B 1

2

at Bragg angle,

phase lag between two planes =  

perfectly in phase, constructive

B

B 1
At some angle 

Phase lag between two planes:

At (j+1)th plane:

Phase lag: 

• Rays from planes 1 and j+1 cancel

• Ditto for 2 & j+2, … j & 2j

• Net diffraction over 2j planes = 0

 

2


  j



The finite size of real crystals results

in incomplete destructive interference

over some range of angles

Crystal with 2j planes
Total thickness T

T = (2j-1)d

The angular range θB to θ1 is the range where 
diffracted intensity falls from a maximum to 

zero (half of Bragg peak profile).



Same arguments apply to 
B 2

So we see diffracted X-rays over all scattering angles between 2θ1

and 2θ2.

– If we assume a triangular shape for the peak, the full width at
half maximum of the peak will be B = (2θ1 – 2θ2)/2 = θ1 – θ2
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If we have more than 2j planes:

1

2

3

4

j-1

j

j+1

2j+1

2j+2

B 1

2

If we have fewer than 2j planes:

1

2

3

4

j-1

j

j+1

2j-3

2j-2

B 1

2

still zero intensity at θ1 nonzero intensity at θ1

Rays from planes j-1 & j not canceledRays from new planes are canceled

Thinner crystals result in broader peaks! 328

Peak sharpens! Peak broadens!



Let’s derive the relation between crystal thickness T and peak width B:

2 sind  

1

2

2 sin (2 1)

2 sin (2 1)

T j

T j

 

 

 

 

1 2(sin sin )T    

1 2 1 22 (cos( )sin( ))
2 2

T
   


 



1 22 (cos )( )) .
2

BT
 

 




cos B

T
B




1 22( )

2
B

 


Considering the path length differences between X-rays scattered from the front 

and back planes of a crystal with 2j+1 planes and total thickness T:

If we subtract them:

Using trig identity:

Since                            and                                              ,    
1 2

2
B

 





1 2 1 2sin( )
2 2

    


But,                               , so

1 2 1 2
1 2sin sin 2cos sin

2 2

   
 

 
 

Here, T = 2jd



cos B

K
T

B






2 2 2

M RB B B 

BM: Measured FWHM (in radians)
BR: Corresponding FWHM of bulk reference (large grain size, > 200 nm)

Readily applied for crystal size of 2-100 nm.
Up to 500 nm if synchrotron is used.

SCHERRER FORMULA
A more rigorous treatment includes a unitless shape factor:

Scherrer Formula (1918)

T = crystallite thickness
λ (X-ray wavelength, Å)
K (shape factor) ~ 0.9 
B, θB in radians

Accurate size analysis requires correction for instrument broadening:

330

For Gaussian peaks:



• The constant of proportionality, K (the Scherrer constant) 
depends on the how the width is determined, the shape of the 
crystal, and the size distribution

– the most common values for K are:

• 0.94 for FWHM of spherical crystals with cubic symmetry

• 0.89 for integral breadth of spherical crystals w/ cubic symmetry

• 1, because 0.94 and 0.89 both round up to 1 

– K actually varies from 0.62 to 2.08

• For an excellent discussion of K, refer to JI Langford and AJC 
Wilson, “Scherrer after sixty years: A survey and some new 
results in the determination of crystallite size,” J. Appl. Cryst. 11
(1978) 102-113.

cos B

K
T

B






SCHERRER CONSTANT

0.94

cos B

T
B






331



Suppose =1.5 Å, d=1.0 Å, and =49°. Then for a crystal 1

mm in diameter, the width B, due to the small crystal

effect alone, would be about 2x10-7 radian (10-5 degree),

too small to be observable. Such a crystal would contain

some 107 parallel lattice planes of the spacing assumed

above.

However, if the crystal were only 50 Å thick, it would

contain only 51 planes, and the diffraction curve would be

very broad, namely about 43x10-2 radian (2.46°), which is

easily measurable.

332

“Incomplete destructive interference 
at angles slightly off the Bragg angles”



What do we mean by crystallite size?

“A single-crystalline domain that scatters coherently”

• A particle may be made up of several different 

crystallites (also called grains)

• The crystallites, not the particles, are the coherent 

scattering units

333



• Though the shape of crystallites is usually irregular, we can often 
approximate them as:

– sphere, cube, tetrahedra, or octahedra

– parallelepipeds such as needles or plates

– prisms or cylinders

• Most applications of Scherrer analysis assume spherical crystallite 
shapes

• If we know the average crystallite shape from another analysis, we 
can select the proper value for the Scherrer constant K

• Anisotropic crystal shapes can be identified by unequal peak 
broadening

– if the dimensions of a crystallite are 2x * 2y * 200z, then (h00) and (0k0) 
peaks will be more broadened than (00l) peaks. 

CRYSTALLITE SHAPE

334
e.g., a nanowire



STRAIN EFFECTS

L

L


D
Strain:
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SOURCES OF STRAIN
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Non-Uniform Lattice Distortions

• Rather than a single d-spacing, 
the crystallographic plane has a 
distribution of d-spacings

• This produces a broader 
observed diffraction peak

• Such distortions can be 
introduced by: 

– mechanical force

– surface tension of 
nanocrystals

– morphology of crystal shape, 
such as nanotubes

– interstitial impurities 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

2(deg.)

In
te

n
s
it
y
 (

a
.u

.)
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THIN FILM SCANS

338
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340

EPITAXY - “above in an ordered fashion”

when one crystal grows on another with a well-defined 3D crystallographic 
relationship

Homoepitaxy: epitaxy between identical crystals (e.g., Si on Si)
Heteroepitaxy: the two crystals are different (e.g., ZnO on Al2O3)   

requirements: lattice symmetry & lattice constant matching



341
Dan Connelly

Molecular picture – Si growth on Si (100)
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NTNU
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Rock salt PbS “nanotrees”

Jin group – U. Wisc. branches grow epitaxially –
each tree is a single crystal



A polycrystalline sample should contain thousands of 

crystallites. Therefore, all possible diffraction peaks should 

be observed.

2 2 2

• For every set of planes, there will be a small percentage of crystallites that are 

properly oriented to diffract (the plane perpendicular bisects the incident and 

diffracted beams). 

• Basic assumptions of powder diffraction are that for every set of planes there is 

an equal number of crystallites that will diffract and that there is a statistically 

relevant number of crystallites, not just one or two. 344



A single crystal specimen in a Bragg-Brentano 

diffractometer would produce only one family of peaks in 

the diffraction pattern.

2

At 20.6 °2, Bragg’s law 

fulfilled for the (100) planes, 

producing a diffraction peak.

The (110) planes would diffract at 29.3 

°2; however, they are not properly 

aligned to produce a diffraction peak 

(the perpendicular to those planes does 

not bisect the incident and diffracted 

beams). Only background is observed.

The (200) planes are parallel to the (100) 

planes. Therefore, they also diffract for this 

crystal. Since d200 is ½ d100, they appear at 

42 °2.
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Wurtzite ZnO nanowire arrays on glass

Good
uniaxial 
texture

Poor
uniaxial 
texture

Biaxial
texture

(growth on Al2O3)

c

346

General route to vertical ZnO 

nanowire arrays using textured 

ZnO seeds. 

Greene, L. E., Law, M., Tan, 

D. H., Montano, M., Goldberger, 

J., Somorjai, G., Yang, P. Nano 

Letters 5, 1231-1236 (2005).



ROCKING CURVES
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ROCKING CURVES
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ROCKING CURVE EXAMPLES

Thickness, composition, and strain state of epitaxial single crystal films



ROCKING CURVE EXAMPLE

Thickness, composition, and strain state of epitaxial single crystal films

350

(1° = 3600 arcsec)
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sit on a reflection, 
then rotate in-plane

PHI SCANS



352

k-SPACE GEOMETRY

for rotation around [001]
of cubic crystal:

monitor {011}: expect 4 peaks separated by 90° rotation.

monitor {111}: expect 4 peaks separated by 90° rotation.
(ignoring possible systematic absences) 

two examples:



PHI SCAN EXAMPLE

1 um GaN (wurtzite) on Silicon(111)

2-theta scan proves 
uni-axial texture phi scan proves 

bi-axial texture (epitaxy)

(002)

(1011)

In plane alignment: GaN[1120]//Si[110] 353



Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001): 

An Approach to Superconducting Tapes with High Critical Current Density 

Science, Vol 274, Issue 5288, 755-757 , 1 November 1996 
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http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195001.jpeg
http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195001.jpeg


Epitaxial YBa2Cu3O7 on Biaxially 

Textured Nickel (001): 

An Approach to Superconducting 

Tapes with High Critical Current Density 

Science, Vol 274, Issue 5288, 

755-757 , 1 November 1996 

omega

phi
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http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195002.jpeg
http://www.sciencemag.org/content/vol274/issue5288/images/large/se4264195002.jpeg


TEXTURE MEASUREMENT (POLE FIGURES)

ψ

356



stereograms showing all poles of a particular hkl plane, 

with axes defined by an external frame of reference.

– pole figures map the intensity of a single hkl as a function of tilt 

and rotation of the sample

– most common way to map crystallographic texture

POLE FIGURES
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e.g., a textured 

polycrystalline rolled 

metal sheet:

untextured sheettextured sheet



Example: c-axis aligned superconducting thin films.



(b)



(a)

Biaxial Texture (105 planes) Random in-plane alignment

POLE FIGURE EXAMPLE – PHI ONLY
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SMALL ANGLE X-RAY SCATTERING

359



SAXS: diffraction from planes with > 1 nm d-spacing
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Direct Visualization of Individual 

Cylindrical and Spherical 

Supramolecular Dendrimers

Science 17 October 1997; 278: 449-452 

Small Angle 

X-ray Diffraction
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http://www.sciencemag.org/content/vol278/issue5337/images/large/se4275847003.jpeg
http://www.sciencemag.org/content/vol278/issue5337/images/large/se4275847003.jpeg


Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom 

Pores Science, Vol 279, Issue 5350, 548-552 , 23 January 1998
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http://www.sciencemag.org/content/vol279/issue5350/images/large/se0286194003.jpeg
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GRAZING INCIDENCE SAXS (GISAXS)



IN-SITU X-RAY DIFFRACTION
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Rigaku SmartLab XRD

 0D, 1D, 2D detectors

 In-plane & Out-of-plane

 Thin-film XRD

 High resolution XRD

 SAXS

 μ-XRD

 Capillary transmission

 1500°C heating stage

 1100°C dome stage

UCI XRD
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ELECTRON DIFFRACTION
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Why ED patterns have so many spots

λX-ray = hc/E = 0.154 nm @ 8 keV

λe- = h/[2m0eV(1 + eV/2m0c
2)]1/2 = 0.0037 nm @ 100 keV

Typically, in X-ray or neutron diffraction only one reciprocal lattice point 

is on the surface of the Ewald sphere at one time.

In electron diffraction the Ewald sphere is not highly curved b/c of the 

very short wavelength electrons that are used. This nearly-flat Ewald 

sphere intersects with many reciprocal lattice points at once.

- In real crystals reciprocal lattice points are not infinitely small and in a

real microscope the Ewald sphere is not infinitely thin
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DIFFRACTION FROM DISORDERED SOLIDS

amorphous solids
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Index planes

Calculate crystal density

Calculate d-spacings

Derive/use Bragg’s Law

Index diffraction peaks

Determine lattice constants

Reciprocal lattice

Ewald sphere construction

Calculate structural factors, predicting X-ray diffraction pattern

(systematic absences)

Use of Scherrer relation

DIFFRACTION: WHAT YOU SHOULD KNOW
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Term Paper and Presentation

Choose a contemporary materials topic that interests you. For 

example:

• Organic LEDs

• Metamaterials

• Multiferroics

• Graphene

• Photonic Crystals

• Amorphous Metals

• Colossal Magnetoresistance

• Synthetic Biomaterials

• Infrared Photodetectors

• Conducting Polymers

• Inorganic Solar Cells

• Plasmonics

• High κ Dielectrics

• Quantum Dots

1) Quantitatively explain the basic principles at work

2) Summarize the state-of-the-art in synthesis, properties, and apps

3) Identify a key challenge facing the field and propose an original 

solution to this challenge     

In ≥10 pages of double-spaced text (+ figures and references):
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Term Paper Due Dates

February 24: Topic selection. E-mail me with a one-paragraph 

abstract describing your topic, challenge, and proposed solution

372

8-10 am March 20: Paper submission and 5-minute presentation to 

educate the class on your topic.  



Midterm Exam

• February 19

• full class period

• short answer questions

• topics up through the end of diffraction

• calculator, pens, pencils, nothing else

• focused on conceptual understanding, not memorization
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(b) 4 pts. The graph below shows a single Bragg reflection from a powder sample of large crystallites. 

On the same graph, sketch the peak expected for a sample of this solid consisting of small crystals

under substantial uniform compressive stress. 

2 theta

in
te

ns
it

y

Peak will be broader and shifted

to higher 2θ (smaller d-spacing)


