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ABSTRACT 
In this paper, a coupled numerical model in the time domain 

has been developed to study the interaction between interior 

liquid sloshing and the motion of a cylindrical closed fish cage 

when the cage is exposed to regular waves. The single-dominant 

nonlinear multimodal theory for sloshing in a cylindrical cage 

presented in [1] was implemented to simulate the liquid 

responses in the cage. A time-domain simulator based on the 

Cummins formulation of the equations of motion [2] is used to 

solve for the cage motion, while WAMIT is used to provide all 

required frequency-domain hydrodynamic coefficients for the 

external diffraction/radiation problems. Details of the coupling 

between cage motion and sloshing will be presented.  

The coupled solver is verified against the linear frequency-

domain solution from WAMIT for the very small wave 

steepness, where linear theory is valid. The results show that the 

sloshing effect is a vital factor in the coupling process, which 

means that the liquid in the closed cage cannot be treated as a 

solid mass. This is particularly true close to the resonant 

frequencies of the liquid in the tank. Furthermore, the importance 

of nonlinearity due to sloshing responses is investigated by 

applying incident waves with different steepness. When the cage 

is exposed to regular waves, if certain criteria are met, nonlinear 

swirling waves are observed in the closed cage. The nonlinear 

swirling waves are due to the interactions between different 

sloshing modes, which can only be explained by a proper 

nonlinear theory, such as the multimodal theory applied in this 

study. The influence of the swirling waves on the cage motions 

will also be discussed in the paper. How this effect will impact 

the design of a closed fish cage and its mooring system can only 

be answered by studying the cage responses in irregular waves, 

which is the subject of ongoing research. 

 

INTRODUCTION 
 To meet the Sustainable Development Goals (SDGs) 

presented by the United Nations, the aquaculture industry has 

gained special attention for contributing to several of the SDGs, 

such as Zero Hunger (GOAL 2), Clean Water and Sanitation 

(GOAL 6) and Life below Water (GOAL 14). Closed fish cages 

have been proposed by the aquaculture industry to efficiently 

solve the problems of sea lice and fish escape, which have a 

strong influence on fish health and production levels. 

                                                           
1 Contact author: brtan1314@gmail.com 

Meanwhile, the pollution that is caused by the fish and feed can 

be filtered through the pipes around the cage. Therefore, the 

ocean environment will be protected effectively, which is 

essential if marine aquaculture is to be sustainable. An example 

of a cylindrical closed fish cage is shown in Fig. 1. 

 

 
FIGURE 1: RIGID CYLINDRICAL CLOSED CAGE FROM 

AQUAFARM EQUIPMENT [3] 
 

Despite their importance, there has been limited research 

investigating the behavior of closed cages when they are exposed 

to waves. In 2015, the closed fish cage “AquaDorm” from 

MSC and Norpartners damaged and sunk by storm Ole, which 

was reported to lead to EUR 1.4 million cost due to the damage. 

This accident encouraged designers and researchers to 

investigate the cage behaviors in the real waves. More 

knowledge of the closed fish cage is now expected to understand 

the behavior of the closed cages in waves, and to guide the design 

of closed fish cages in general.  

This paper concerns the floating rigid cylindrical fish cage 

design, which has a non-negligible interior fluid with a free 

surface. The fundamental theories of the liquid sloshing problem 

inside tanks has been comprehensively reviewed in [1] and [4], 

where wave free surface elevation and hydrodynamic loads 

induced by liquid sloshing have been extensively studied. The 

sloshing problems have also been studied by many others, for 

example in [5], where a finite element method was used to 

analyze sloshing waves in a three-dimensional tank. Among 

others, coupled ship motions and sloshing analysis have been 

carried out for ships, using either Computational Fluid Dynamic 

(CFD) [6] or the multimodal approach [7] for sloshing. For the 
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flexible floating cylindrical cage, the responses of the cage in 

waves have been studied by [8], followed by experimental 

studies on the wave induced responses [9], where the drag forces 

on a half ellipsoidal closed flexible fish cage were modeled.  

Kristiansen et al. [10] carried out model tests of a closed fish 

cage in regular waves, and compared with linear numerical 

results in the frequency domain. The results showed that the 

influence of sloshing on the rigid body motion is significant. 

Since a linear theory was used for the sloshing in the cage, the 

significance of the nonlinear sloshing effects was not clear. One 

example is the nonlinear swirling waves that may occur in the 

cylindrical tank for certain combinations of excitation frequency 

and amplitude. To the authors' knowledge, no previous numerical 

analysis on the motion of the cylindrical closed fish cage with 

consideration of different possible types of nonlinear waves e.g. 

swirling waves in the tank, have been reported in the literature. 

In the present paper, a numerical model for simulating the 

rigid body motion of a cylindrical based cage will be presented. 

The interior wave sloshing effects and exterior wave 

hydrodynamic effects will be introduced separately. Thereafter, 

the coupling between sloshing in the cage and cage motion in 

waves will be presented. Verification of the coupled model will 

be shown before the final results from the coupled numerical 

model are presented. The nonlinear effects of sloshing will be 

examined by varying the wave steepness of the incident waves. 

The occurrence of swirling waves in a freely floating closed 

cylindrical rigid cage in regular waves is also confirmed through 

numerical analysis. Influence of swirling waves will be analyzed 

in details for cage motion and sloshing induced forces on the 

cage. Only results for regular waves are presented. However, the 

coupled model is ready for analysis using irregular waves. 

 

2 Multimodal solutions for sloshing in a cylindrical 
cage 

The fluid in the cage is assumed to be inviscid, 

incompressible and irrotational. Thus, the potential flow 

theory can be applied in this study. The velocity potential, 

which is a scalar function, represents the solution in the fluid. 

In specific, the linear and the single dominant nonlinear 

multimodal theories in [1] will be used. For completeness, the 

governing equation, boundary conditions and multimodal 

theories will only be shown briefly. More details can be found 

in [1]. 

In the multimodal theory, the velocity potential will be 

decomposed into two parts. The first part incorporates the 

Neumann boundary conditions due to the cage motions, 

which are associated with the so-called Stokes-Joukowski 

potentials. The second part consists of a linear superposition 

of an infinite number of natural modes. The generalized 

coordinates for the natural modes are the unknowns, which 

need to be solved in either the time-domain, or the frequency-

domain if possible. The sloshing natural modes determine the 

velocity potential distribution in space ϕ(x, y, z) . The 
generalized coordinates denote the time-dependent 

component corresponding to each mode.  

 
2.1 Basis of the multimodal theory 

Tank-fixed coordinate system  The coordinate system 

for the closed fish cage will be introduced. For boundary-

value problem to be solved, the multimodal theory will be 

formulated in a tank-fixed coordinate system (Fig. 2). The 

model for the floating cylindrical fish cage here is based on a 

cage filled with liquid. The origin of the coordinate system is 

located at O, which is the geometrical center of the mean free 

surface Σ
0
. Q0 is the cage volume that is bounded by the 

mean free surface, Σ
0
, and the mean wetted cage surface, 

S0. 

 

 
FIGURE 2: SKETCH OF THE CAGE WITH SIX DEGREES OF 

FREEDOM 
 

As the cage is axisymmetric, the tank-fixed Cartesian 

coordinate system will be transferred into the cylindrical 

coordinate system (r, θ, z).  

 

Laplace equation  In potential flow theory, the Laplace 

equation serves as the governing equation. In the cylindrical 

coordinate system (r, θ, z), the Laplace equation is: 

 
∂2ϕ

∂r2 +
1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2 +
∂2ϕ

∂z2 = 0.                     (1) 

 

Body boundary condition  The body boundary 

condition ensures that flow is not able to travel across the cage 

surface. The body boundary condition can be expressed as: 

 
∂ϕ

∂n
= v ⋅ n = vO ⋅ n + ω ⋅ [r × n],                    (2) 

 

where n is the normal vector on body surface, vO is the 

translatory velocity of the cage at the origin O, ω  is the 

angular velocity of the cage around the origin, and r is the 

position vector, such that r = xe1 + ye2 + ze3  denotes a 
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point on the body surface. Here e1 , e2  and e3  are 

respectively the unit vectors along the x-, y- and z-axis of the 

tank-fixed coordinate system.  

Dynamic free-surface condition  In the dynamic free-

surface condition, the pressure in the liquid at the free surface 

is equal to the atmospheric pressure. Thus, this boundary 

condition is: 

 
∂ϕ

∂t
+

1

2
(∇ϕ)2 − (vO + ω × r) ⋅ ∇ϕ + Ug = 0 on  Σ

0
, (3) 

 

where the gravity potential Ug = −g ⋅ r = −g1x −

g2y − g3z , Σ
0
  is the free surface. Here the atmospheric 

pressure has been set to zero, as this will not influence the 

hydrodynamic analysis. The acceleration due to gravity is 

g = (g1, g2, g3), which is equal to (0, 0, -g) when the tank 

does not have any angular motions.  

Kinematic free-surface condition  On the free surface, 

the fluid particle has to remain on the free surface. Thus, the 

kinematic free surface condition is given by: 

 
∂ϕ

∂z
−

∂ϕ

∂x

∂ζ

∂x
−

∂ϕ

∂y

∂ζ

∂y
= (vO + ω × r) ⋅ (−

∂ζ

∂x
, −

∂ζ

∂y
, 1) +

∂ζ

∂t
,                                                             

(4) 
 

where ζ is the free surface elevation.  

 
2.2 Natural frequencies and modes for upright circular 
cylindrical cage 

The natural frequencies and corresponding natural modes 

can be solved without considering any excitation. No cage 

excitation means that there are no cage motions. Therefore, 

the flow velocity potential ϕ, satisfies ∂ϕ/ ∂n =  0  on 

S0 . The solutions for the velocity potential and wave 

elevations need to satisfy the rest of the linearized boundary 

conditions. In this case, the natural sloshing modes can be 

expressed as 

 

φ(r, θ, z) = Jm (ιm,j
r

R0
)

cosh(ιm,j(z+h)/R0)

cosh(ιm,jh/R0)
{
𝑐𝑜𝑠(𝑚θ)

𝑠𝑖𝑛(𝑚𝜃)
,     (5) 

 

where Jm is the Bessel function of first kind with 𝑚 −
th order, 𝑗 is the integer which represents the mode number, 

ιm,j is the root of Jm
′ (ιm,j = 0), and h and R0 represent the 

water depth and radius of the cage, respectively. The 

corresponding surface wave elevation patterns of natural 

modes f(r, θ) are defined as by substituting z = 0 into Eq. 5: 

 

f(r, θ) = Jm (ιm,j

r

R0
) ⋅ {

𝑐𝑜𝑠(𝑚θ)

𝑠𝑖𝑛(𝑚θ)
,  𝑚 = 0,1,… ;  𝑗 = 

1,2,…,                                                                   

(6)  

 

As can be seen in Eq. 5 and Eq. 6, the different natural 

sloshing modes solutions are indexed by integer indices m and 

j. The natural frequencies σm,j corresponding to each mode 

can then be written as 

 

σm,j
2 = (g/R0)ιm,jtanh(ιm,jh/R0),m = 0,1,… ; j = 1,2,…,                                                                     

(7) 
 

2.3 Nonlinear multimodal equations for circular 
cylinder 

For the natural mode solutions, it has been assumed that 

there is no excitation of the cage. The cage under excitation 

will now be studied, which means that the non-trivial body 

boundary condition and free surface conditions need to be 

considered. The multimodal theory denotes the velocity 

potential and free surface elevation by the summation of the 

infinite number of products between natural sloshing modes 

and generalized coordinates. Recalling the motions of the 

cage in Fig. 2, adjusting the velocity potential to satisfy the 

body boundary condition, Eq. 2 and the governing equation, 

Eq. 1, the total velocity potential may be expanded as: 

 

Φ(x, y, z, t) = vO(t) ⋅ r + ω(t) ⋅Ω
0
(x, y, z) +

∑ Rj(t)φj(x, y, z)
∞

j=1 ,                            (8) 

 

where φj is the j-th natural sloshing mode defined in the 

previous section, and Ω
0
(x, y, z)  is the so-called Stokes-

Joukowski potential that is associated with the angular 

motions of the cage, when both the mean body surface and 

the mean free surface boundaries are assumed to be solid. The 

potentials due to rigid body motions are vO(t) ⋅ r and ω(t) ⋅

Ω
0
(x, y, z) , which satisfy the Laplace equation, Eq. 1, and 

body boundary condition, Eq. 2. Rj(t)  is the so-called 

generalized coordinate of the natural sloshing modes. The 

free surface elevation is given by 

 

ζ(x, y, t) = ∑ βj(t)φj(x, y, 0)
∞

j=1 = ∑ βj(t)fj(x, y)
∞

j=1 , (9) 

 

where βj(t)  is also the generalized coordinate for 

expanding the free surface elevation as a series in terms of the 

natural sloshing modes.  

Substituting Eq. 8 and Eq. 9 into the dynamic and 

kinematic free surface boundary conditions (Eq. 3 and Eq.4), 

the solution of the generalized coordinates can be derived. 

Since the free-surface conditions are fully nonlinear, they are 

satisfied on the instantaneous position of the free surface. The 

generalized coordinates βj, j = 1,… ,\infity  are fully 

coupled. Thus, the Moiseeve ordering was applied for 

simplifying the general solution of the multimodal theory. It 

is applied with two primary excited modes and secondary 
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modes. The secondary modes are related to modes with m = 

0 and m = 2 while the third-order modes are associated with 

m = 3. In summary, the ordering of the generalized 

coordinates βj and Rj can be expressed as: 

 

β1,1,k ∼ R1,1,k ∼ ε1/3, 

β0,j ∼ R0,1 ∼ β2,j,k ∼ R2,j,k ∼ ε2/3, 

β3,j,k ∼ R3,j,k ∼ ε,  k = 1,  2;  j = 1,  2,…,          (10) 

 

where k is denoted by 1 for the cosine term and 2 for the 

sine term in Eq. 5 and Eq. 6, ε is the parameter indicating the 

smallness of the excitation amplitude. The ordering here is 

different from the Stokes expansion that is used in the weakly 

nonlinear theories for external water waves, where ε1 , ε2 

and ε3  represent first order, second order, and third order 

terms, respectively. 

As can be seen in Eq. 10, the modal system has an infinite 

number of nonlinear equations. However, Chernova and 

Lukovsky [11] have proved that the second order modes that 

contribute to the cylindrical tank, are mainly based on three 

particular modes: (0,1), (2,1,1) and (2,1,2). It should be 

mentioned that m = 0 in the mode (0,1), which leads to the 

nonzero natural mode including a cosine term (k = 1) in Eq.8. 

The contributions of the higher modes (3,j,k) are much less. 

Therefore, the other second order modes (0,j) and (2,j,k) and 

the higher modes (3,j,k) are negligible. All the geometric 

dimensions are scaled by the radius R0. Thus, the multimodal 

method will couple the first and second order modes as: 

 

p1 = β1,1,1,  r1 = β1,1,2,  p0 = β0,1, 

p2 = β2,1,1,  r2 = β2,1,2,
                                (11) 

Chernova and Lukovsky [11] have derived the modal 

equations with these five modes in Eq. 11  for a cylindrical 

cage as: 

 

p1̈ + σ1
2p1 + d1

∗p1(p1p1̈ + p1
2̇ + r1r1̈ + r1

2̇)

+ d2
∗(r1

2p1̈ + 2r1r1p1̇
̇ − r1p1r1̈ − 2p1r1

2̇)

+ d3
∗(p2p1̈ + r2r1̈ + r1r2̇

̇ + p1p2̇
̇ )

− d4
∗(p1p2̈ + r1r2̈) + d5

∗(p0p1̈ + p1p0̇
̇ )

+ d6
∗p1p0̈

= −P1[η1̈(t)/R0 − gη5(t)/R0 − S1̅𝜂5̈(t)] 

r1̈ + σ1
2r1 + d1

∗r1(r1r1̈ + r1
2̇ + p1p1̈ + p1

2̇)

+ d2
∗(p1

2r1̈ + 2p1r1p1̇
̇ − r1p1p1̈ − 2r1p1

2̇)

− d3
∗(p2r1̈ − r2p1̈ + r1p2̇

̇ − p1r2̇
̇ )

+ d4
∗(r1p2̈ − p1r2̈) + d5

∗(p0r1̈ + r1p0̇
̇ )

+ d6
∗r1p0̈

= −P1[η2̈(t)/R0 + gη4(t)/R0 + S1̅𝜂4̈(t)] 

p0̈ + σ0
2p0 + d10

∗ (r1r1̈ + p1p1̈) + d8
∗(r1

2̇ + p1
2̇) = 0 

p2̈ + σ2
2p2 + d9

∗(r1r1̈ − p1p1̈) + d7
∗(r1

2̇ − p1
2̇) = 0 

r2̈ + σ2
2r2 − d9

∗(r1p1̈ + p1r1̈) − 2d7
∗r1̇p1̇ = 0           

(12) 
 

where ηj are the motions of the cage shown in Fig. 2. 

The coefficients P1 and S1̅ = S1/R0 are defined as 

 

P1 =
2ι1,1tanh(ι1,1h/R0)

ι1,1
2 −1

,  

S1̅ =
2tanh(ι1,1h/2R0)

ι1,1
.                                    (13) 

     

The natural frequency corresponding to each mode can 

be calculated by Eq. 7. The hydrodynamic coefficients dt
∗ 

are tabulated in [11] as functions of the ratio h/R0.  

Either the ODE45 solver or the ODE15s solver in 

MATLAB can be applied in order to solve the differential 

equations. ODE15s is able to solve problems with a mass 

matrix that is singular, known as differential-algebraic 

equations. Therefore, the ODE15s solver better suited to 

solving the differential equations with stiff problems. 

 
2.4 Linear multimodal equations for circular cylinder 

Applying linearized boundary conditions, the linear 

sloshing multimodal equations can be derived. While similar 

to the nonlinear equations, the linear equations ignore all the 

nonlinear terms in Eq. 12: 

 

β1,j,1
̈ + σ1,j

2 β1,j,1 = −Pj[η1̈(t) − gη5(t) − Sjη5̈(t)], 

β1,j,2
̈ + σ1,j

2 β1,j,2 = −Pj[η2̈(t) + gη4(t) + Sjη4̈(t)], 
  (14) 

 

where Faltinsen and Timokha [1] have proved that the 

modes with m = 1 are the only nonzero modes in a linear 

multimodal theory.  

For both nonlinear and linear multimodal equations,  

Eq. 12 and Eq. 14, there is no damping because of the 

potential flow assumption. However, the damping exists 

inside the cage in reality because of, e.g. the boundary layer 

flow, internal slender structures or wave breaking. In this 

study, a linear damping term 2ξjσjβj
̇  will be added to each 

modal equation, where $\xi_j$ is the damping ratio. 

Therefore, the multimodal equations Eq. 12 and Eq. 14 take 

the following the general form: 

 

βi,j,k
̈ + 2ξjσi,jβi,j,k

̇ + σi,j
2 βi,j,k = Kj,

                    (15) 

 

where Kj represents the terms on the right hand sides of 

Eq. 12 and Eq. 14 induced by rigid body motion. Without the 

damping effect, the time domain solution of the generalized 

coordinates will have 'beating' oscillations in the time series 

at the resonant frequencies [1]. The amplitude of the solution 
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increases linearly with time in a typical 'beating' oscillation. 

Therefore, in order to analyze the steady state solutions in the 

following sections, a very small damping ratio ξj  will be 

included in the modal equations to damp out the transient 

effect. The damping coefficients should be so small that their 

influence on the final steady-state solutions is negligible. 

 
2.5 Hydrodynamic force and moment 

In order to couple the sloshing effects with the exterior 

effects on the cylindrical cage, the hydrodynamic forces and 

moments caused by the sloshing need to be considered. The 

linearized momentum and force are derived by integrating the 

pressure around the cage surface. The desired expression for 

the resulting linear hydrodynamic force in terms of the 

introduced generalized coordinates is: 

F(t) = −Mlge3 + e1 [Ml(−η1̈ − η5̈zlC0
+ η6̈ylC0

) −

∑ λ1j
∞

j=1 βj
̈ ] + e2 [Ml(−η2̈ − η6̈xlC0

+ η4̈zlC0
) −

∑ λ2j
∞

j=1 βj
̈ ] + e3[Ml(−η3̈ − η4̈ylC0

+ η5̈xlC0
)],        (16) 

 

where the forces in the 𝑒1 , 𝑒2  and 𝑒3  directions 

correspond to the surge, sway and heave forces. 

(xlC0
, ylC0

, zlC0
) is the position of the liquid mass center in 

the Oxyz system. The nonzero hydrodynamic coefficients are:  

 

λ1(1,j,1) = λ2(1,j,2) =
𝜌𝜋𝑅0

3

ι1,j
2 .

                           (17) 

 

The moment can be expressed as 

MO(t) = [Mlg(xlC0
e2 − ylC0

e1)] + e1 [Ml(gzlC0
η4 +

zlC0
η2̈ − ylC0

η3̈) − ∑ J01(k−3)
1 ηk̈

6
k=4 − ∑ (gλ2jβj +

∞

j=1

λ01jβj
̈ )] + e2 [Ml(gzlC0

η5 + xlC0
η3̈ − zlC0

η1̈) −

∑ J02(k−3)
1 ηk̈

6
k=4 − ∑ (gλ1jβj + λ02jβj

̈ )
∞

j=1 ] +

e3 [Ml(−g(xlC0
η4 + ylC0

η5) + ylC0
η1̈ − xlC0

η2̈) −

∑ J03(k−3)
1 ηk̈

6
k=4 − ∑ λ03jβj

̈∞

j=1 ],               (18) 

where the momentum along the e1 , e2  and e3 

directions describe the moments about the x, y and z axes. The 

nonzero hydrodynamic coefficients are:  

 

λ02(1,j,1) = −λ01(1,j,2) = −
2𝜋𝜌𝑅0

4

ι1,j
3 .

tanh (
𝜄1,𝑗ℎ

2𝑅0
).       (19) 

 

Furthermore, for the inertia tensor, there are only two 

non-zero diagonal elements. They are expressed as follows 

after a typo in the text book [1] is corrected.  

 

J011
1 = J022

1 = ρπR0
2 [

1

3
h3 −

3

4
hR0

2 +

16R0
3 ∑

tanh(ι1,jh/2R0)

ι1,j
3 (ι1,j

2 −1)

∞

j=1 ].                       

(20) 

 

The above equations are presented for linear forces and 

moments. The nonlinear versions of the formulas are similar 

but slightly more complex, and these can be found in [1].   

 
3 Coupling process of exterior and interior wave 
effects 

As the interior liquid sloshing problem can be solved by 

the single-dominant multimodal approach as explained in 

Section 2, the motion of the closed fish cage in waves can be 

analyzed with consideration of coupled sloshing in the tank. 

The coupled motion is based on the Impulse Response 

Function derived from Cummins equation [2]: 

 

(Mjk + Ajk
t + Ajk

∞
)ηk̈(t) + ∫ Kjk(t − τ)ηk̇(τ)dτ

t

−∞
+

Cjkηk(t) = ∫ KjD(t − τ)ζ0(τ)dτ
∞

−∞
+ Fsloshing

r (t)   (21) 

 

where Mjk  is the mass matirx of the cage, Ajk
t   and 

Fsloshing
r  are the terms induced by sloshing effect which will 

be discussed in the following sections. A∞ is the added mass 

induced by a wave with infinite frequency, Cjk  is the 

hydrostatic matrix, and ζ0 is the incident wave elevation at 

the center of the structure. Kjk  and KjD  are the impulse-

response functions for the radiation force and diffraction 

force, respectively. Kjk and KjD are linked with frequency-

domain coefficients as:  

 

Bjk = ∫ Kjk(t) cosωt dt
∞

0

, 

Xj = ∫ KjD(t)e−iωt∞

−∞
dt,                       (22) 

 

where Bjk is the damping matrix, Xj is the diffraction 

force in frequency-domain, and ω  is the wave frequency. 

Kjk  and KjD  can therefore be calculated using the Inverse 

Fast Fourier Transformation (IFFT). 

 
3.1 Exterior wave hydrodynamics for the upright 
circular cylindrical cage 

The aforementioned frequency domain hydrodynamic 

coefficients A∞ , Bjk  and Xj  can all be obtained from 

WAMIT. However, the WAMIT results are in the frequency-

domain, while the final simulator should operate in the time-

domain. For this purpose, the MATLAB script package 
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DTUMotionSimulator will be applied to carry out the 

convolution integrals and solve the time-domain motion 

equations in Eq. 21. 

 

WAMIT simulation  WAMIT is used to calculate the 

interaction between floating bodies and waves, which is based 

on the linear wave-structure interaction theory to solve the 

wave diffraction and radiation problems in the frequency 

domain. An example of the panel model in WAMIT is shown 

in Fig. 3. 

 

 
FIGURE 3: INPUT PANEL MODEL FOR WAMIT 

 

DTUMotionSimulator  DTUMotionSimulator is used 

to simulate the linear and nonlinear response of a floating 

marine structure in ocean waves. Nonlinear loads, such as 

sloshing loads and mooring loads, can be included on the right 

hand side of the Cummins equations. The script solves the 

equations of motion in the time domain to simulate a floating 

structure interacting with a prescribed time series of ocean 

wave elevation. The hydrodynamic coefficients for the body 

are read in from WAMIT output files and used together with 

an input wave elevation time series to integrate the motion 

equations forward in time using the classical explicit Runge-

Kutta (4,4) scheme. The process is shown in Fig. 4 below. 

 

 
FIGURE 4: THE PROGRESS OF CAGE RESPONSE 

CALCULATION 

 

The RAO in Fig. 4 is the response amplitude operator 

which denotes the ratio of the response amplitude to the wave 

amplitude. The calculation of the RAO from the time domain 

results is obtained, through Fast Fourier Transformation for 

the steady-state part of the cage responses, which will be used 

for the verification of the coupled solver in the time domain. 

WAMIT can also generate the RAO from a frequency-domain 

analysis. When the incident waves are asymptotically small, 

the frequency-domain results from WAMIT are regarded as a 

good reference to verify the present time domain results. 

At the beginning of the time domain simulation, zero 

cage movement (displacement ηj , velocity ηj̇   and 

acceleration ηj̈ ) and zero sloshing properties (βj, βj
̇  and βj

̈ ) 

are used as initial conditions. Using the standard 4-stage 

Runge-Kutta method, the cage motion for the next time step 

can be simulated, which can be regarded as excitation for 

interior liquid sloshing. The loads induced by sloshing are 

obtained from the multimodal theory, which will be used in 

the coupled motion equations in Eq. 21. Using this approach, 

the cage motion at a new time step can be obtained. Running 

the loop, the cage motions and loads can be calculated in the 

time-domain. 

Recalling Eq. 21, the terms At  and Fsloshing
r   are 

induced by sloshing. The reason of separating the sloshing 

loads into two parts, is that the stability of the explicit Runge 

Kutta method can be improved when the terms associated 

with accelerations are moved to the left hand side of Eq. 21. 

From Eq. 16 and Eq. 18, the sloshing loads are equal to Fj =

−Atηj̈ + Fsloshing
r . Here At is defined as: 
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[
 
 
 
 
 
 

𝑀𝑙 0 0 0 𝑀𝑙𝑧𝑙𝐶0
0

0 𝑀𝑙 0 −𝑀𝑙𝑧𝑙𝐶0
0 0

0 0 𝑀𝑙 0 0 0

0 −𝑀𝑙𝑧𝑙𝐶0
0 𝐽011

1 0 0

𝑀𝑙𝑧𝑙𝐶0
0 0 0 𝐽022

1 0

0 0 0 0 0 0]
 
 
 
 
 
 

= At      

(23) 
 

where J011
1   and J022

1   are the inertia tensor defined in 

Eq. 20. zlCO
  is the position of liquid mass center as 

mentioned in Eq. 16, while in this case zlCO
= −h/2. 

 
4 Verification and swirling wave analysis 

The geometry and the loading condition of the upright 

circular cylindrical cage that will be considered are listed in 

Table 1 (Dimension data from [3]). The natural frequency of 

the first mode, calculated by Eq. 7 together with the cage 

dimension in Table 1, is σ1 = 0.9339rad−1. 

 
Table 1: CAGE GEOMETRY AND LOADING CONDITION 

Item Symbol Value Unit 

Radius R0 20 𝑚 

Draft h 22 𝑚 

Wave depth Hw 60 𝑚 

Density ρ 1000 𝑘𝑔/𝑚3 

Interior liquid damping ξ 0.01  

Excitation amplitude ηja 0.1 𝑚 

Excitation frequency ωj 0.5 rad−1 

 
4.1 Verification of multimodal sloshing solution 

If the excitation frequency is far from the natural 

frequency of the cage, and the excitation amplitude is small 

enough, the nonlinear multimodal approach should give 

similar results to the linear multimodal method, because the 

nonlinear terms in Eq. 12 are negligibly small. For the 

nonlinear multimodal solution, five modes are involved in the 

coupled modal equations, which can contribute to the 

nonlinear simulation in Eq. 12. And it can be proved that, the 

value of the first two modes (m = 1) dominates all of the 

modes. One example is shown in Fig. 5. 

 

 
FIGURE 5: GENERALIZED COORDINATES SOLUTION FROM 

NONLINEAR MULTIMODAL THEORY ( η1a = 0.1m & ω1 =
0.5rad−1) 
 

Fig. 5 confirms that the generalized coordinates of the 

first mode p1 is much higher than that for the other modes p0 

and p2. The reason that r1 does not have a value, is that there 

is no excitation in the sway direction in this case. The two 

primary modes p1 and r1 in nonlinear multimodal equations 

are the same as the first modes (1,1,k) of linear multimodal 

equations. Meanwhile, far from the resonant state, the first 

modes m = 1 of the linear solution can also be proved to have 

the highest value among all the modes. Therefore, in the 

following comparison, only the first mode (1,1,k) of the 

generalized coordinates will be selected for comparing. The 

comparison between the nonlinear and linear multimodal 

equations of the first mode p1 is shown in Fig. 6. 

 
FIGURE 6: GENERALIZED COORDINATES VERIFICATION 

BETWEEN LINEAR AND NONLINEAR MULTIMODAL THEORY 

(η1a = 0.1m & ω1 = 0.5rad−1) 
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Fig. 6 indicates that the generalized coordinate for the 

first natural mode in the nonlinear solution is almost the same 

as that of the linear solution when the excitation frequency is 

far from the resonant frequency and the excitation amplitude 

is small. 

A verification for the linear solutions will be made by 

comparing with a linear analytical solution from [4]. The 

solutions provided by [4] are based on the linear steady state 

solution. Thus, to validate the linear multimodal solution, the 

damping ratio (ξj = 0.01) has been added as shown in Eq. 15. 

Therefore, the transient effect will be damped out and the 

solution will reach the steady state because of linear damping 

term added into the modal equations. But it should be noted 

that the solutions provided by [4] have some printing errors. 

After some corrections, the free surface elevation and 

hydrodynamic force can be used for verification. 

The solution of the surface wave elevation in [4] is given 

by 

 

η =
X0Ω

2

g
cos θ sin(Ωt) [r +

         ∑
2R

(λ1n
2 −1)

∞

n=1

Ω
2

(ω1n
2 −Ω

2
)

J1(λ1nr/R)

J1(λ1n)
],           

(24) 
 

where λ1n are the roots of Bessel function, X0 and Ω 

are the excitation amplitude and frequency, respectively. 

Comparison of the wave elevation at a a point (x = R0, θ =
0) between the present multimodal solution and the steady-

state solution of [1] is shown in Fig. 7. 

 

 
FIGURE 7: FREE SURFACE ELEVATION WITH ONLY SURGE 

EXCITATION (η1a = 0.1m & ω1 = 0.5rad−1). 

 

It can be seen that the present multimodal result agrees 

very well with the that in [1]. It should be noted that the 

present multimodal results will not be exactly the same as the 

linear steady-state solution of [4]. The reason is that a small 

linear damping has been applied in the modal equations, 

while the damping is zero in [4]. However, one can see from 

the comparison that the very small damping ratio of 0.01 has 

very little effects when the time domain results have reached 

steady state values. 

The force components acting on the cage wall and bottom 

are obtained by integrating the pressure over the 

corresponding area of the boundary. In a linear sloshing 

theory, the tank has only a surge force and a pitch moment 

around the y-axis. The force along the x-axis is: 

 

Fx = mfX0Ω
2
sinΩt × [1 +

         ∑
1

λ1nh

∞

n=1

2R

(λ1n
2 −1)

Ω
2

(ω1n
2 −Ω

2
)
tanh(λ1nh/R)],      

(25) 

 

where mf = ρπhR2  is the total mass of the fluid. The 

comparison of the force calculated from [1] and [4] is shown 

in Fig. 8. Similar with the free surface elevation, the steady 

state comparison shows relatively close values of the force 

(Fig. 8).  

 

 
FIGURE 8: SURGE FORCE DUE TO FORCED HARMONIC 

SURGE MOTION (η1a = 0.1m & ω1 = 0.5rad−1). 

 

Eq. 25 indicates that when the natural frequency equals 

the excitation frequency, the hydrodynamic forces due to 

sloshing should reach infinity. Indeed, with the sloshing 

solver, it is convenient to see that the value of force along the 

x-axis will reach very large values every time when the 

excitation frequency reaches the natural frequency in each 

mode (Fig. 9). It should be mentioned that the properties in 
the figure are non-dimensional. The red points in Fig. 9 are 

the experimental data provided by 4. For the results presented 
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in Fig. 9, the draft to radius ratio is h/R0=2. As can be seen 

in Fig. 9, when the excitation frequency is far from the natural 

frequencies and the excitation amplitude is very small, the 

linear solution is very accurate. However, when the excitation 

frequency is close to natural frequencies, the linear solution 

has inappropriate results for the sloshing responses as the 

results will reach very large values if no additional damping 

is included. This is not physical, and will not occur when a 

proper nonlinear theory is applied. In that case, the energy 

will be transferred from lower mode to higher mode. Because 

of this an infinite response will not occur when a proper 

nonlinear theory is applied. 

 

 
FIGURE 9 FORCE AMPLITUDE ALONG X-AXIS AS FUNCTION 

OF EXCITATION FREQUENCY FOR h/R0 = 2 . THE TANK IS 

UNDER FORCED HARMONIC MOTIONS IN SURGE. 

 
4.2 Simulator verification 

When the incident wave steepness is very small, so that 

the linear hydrodynamic coefficients are valid for the external 

hydrodynamic problem, the steady-state results of WAMIT 

can be used to verify the present coupled time-domain solver. 

To avoid drifting of the model in the horizontal plane, soft 

springs have been added to the cage in surge, sway and yaw. 

Fig. 10 shows the comparison for surge RAOs between 

the present coupled model and WAMIT. ' RAOsurge 

calculated by the linear solver' represents the present results 

applying a linear multimodal sloshing solver, i.e. all the 

nonlinear terms in the model equations Eq. 12 are ignored. 

' RAOsurge  calculated by the nonlinear solver' shows the 

results using the single-dominant multimodal method in the 

coupled time-domain solver. The wave steepness of the 

incident wave is δ =  0.02. It is seen that the present results 

based on the linear multimodal approach agree very well with 

WAMIT linear frequency results.  Both the exterior and 
interior free surface have been modelled in WAMIT, thus the 

model in WAMIT is also a coupled model in the frequency 

domain. It is seen from Fig. 10 that, the nonlinear sloshing 

effects on the cage motion seem to be negligible for the wave 

steepness of 0.02. The incident wave steepness has been 

further increased up to 0.2 to check the nonlinear sloshing 

effect. The results are compared with the WAMIT linear 

results and that for the wave steepness of 0.02 in Fig.11. The 

wave frequency was set to be the same for these two cases, 

but the high wave steepness will lead to high incident wave 

amplitude. For the studied cases, the results in Fig. 10 and 

Fig. 11 indicate that the wave steepness has little effect on the 

surge RAO.  

 

 
FIGURE 10 COMPARISON OF SURGE MOTION RAOS 

BETWEEN WAMIT AND PRESENT COUPLED TIME DOMAIN 

SOLVER WITH WAVE STEEPNESS 0.02. RESULTS BASED ON 

BOTH LINEAR AND NONLINEAR SLOSHING SOLUTIONS ARE 

CONSIDERED. 

 

 
FIGURE 11 COMPARISON OF SURGE MOTION RAOS 

BETWEEN WAMIT AND PRESENT COUPLED TIME DOMAIN 

SOLVER. WAVE STEEPNESS 0.02 AND 0.2 ARE CONSIDERED 

IN THE PRESENT RESULTS. 
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4.3 Flow regimes from nonlinear free surface elevation 

From the nonlinear multimodal theory, the free surface 

elevation inside the cage can be simulated by Eq. 9. In 

contrast to the linear sloshing solution, the modes in the 

differential equations Eq. 12 have coupled which each other, 

meaning that the energy can be transferred from the first mode 

to the other modes. Considering a cage with surge motion 

only, the liquid inside the cage may have different wave 

regimes, namely a planar wave, a swirling wave and a chaos 

wave. 

The planar and swirling waves are stable steady-state 

solutions of the nonlinear equations in Eq. 12. To trigger the 

swirling waves in the tank, a very small disturbance should 

be added as part of the initial conditions in the time domain 

solution of the modal equations. If steady state swirling waves 

are the possible solution to the nonlinear modal equations, the 

initial small disturbance will die out with time, while the 

steady state swirling waves are generated which do not decay 

with time. If no initial disturbance is included, the solution of 

Eq. 12 will always be planar waves. Those planar waves may 

be unstable solutions of the modal equations, as a tiny 

disturbance in the tank will destroy the solution and a stable 

steady-state swirling wave may be generated instead. In 

reality, disturbance is always presented as part of the natural 

process.     

To distinguish the flow regimes, two probes have been set 

at two different horizontal locations with a 90o differences 

in the angular direction, i.e. a point at (r =  R  &  θ =  0) 

and (r =  R  &  θ =  π/2 ). The free surface elevation is 

measured when the liquid response has reached steady state. 

The phase planes of the wave elevation at the two locations 

for different possible flow regimes are shown in Figure 12. 

In Fig. 12, the free surface elevation measured by one 

probe in the planar wave remains zero while the value 

measured by another probe continues to oscillate. The 

swirling wave in Fig. 12 can be considered as an analogy to 

the pendulum rotary motion. The range of the measured free 

surface elevation from each of the two probes is almost the 

same. The chaos wave in Fig. 12 represents an irregular wave. 

In this wave regime, there is are steady state wave motions in 

the upright circular cylindrical cage. Both of the amplitude 

and the frequency of the free surface elevation cannot be 

predicted, and they are dependent on the applied initial 

conditions. 

 

 
FIGURE 12 PHASE PLANE PLOTS FOR TYPICAL PLANAR 

WAVE, SWIRLING WAVE AND CHAOTIC WAVE. 

 

By taking different combinations of excitation amplitude 

and excitation frequency, the bounds of the flow regimes 

could be identified in Fig. 13. 

 



 11  

 
FIGURE 13 BOUND OF FLOW REGIMES ( h =
 22m,R =  20m). 

 

The swirling waves and chaos waves can only be found 

close to the resonant state. However, although the excitation 

frequencies are selected at the resonant region, the swirling 

waves and chaos waves do not occur exactly at the primary 

resonance as in Fig. 13. As the excitation motion that can 

generate swirling waves is specified, the swirling effect on the 

cage can be studied. 

 
4.4 Hydrodynamic loads induced by swirling waves 

Applying Eq. 16 and Eq. 18, the hydrodynamic loads can 

be calculated for planar waves and swirling waves. For this 

purpose, the excitation amplitude and frequency are chosen to 

excite swirling waves according to Fig. 13. However, with 

this excitation combination, the swirling wave will not be 

excited if no disturbance is added into the system, which 

means only the planar wave will be generated. 

Considering only the hydrodynamic forces along the 

surge direction (Fx) and the sway direction (Fy), Fig. 14 and 

Fig. 15 contain the forces induced by planar waves and 

swirling waves, respectively. It should be mentioned that only 

the excitation along the surge direction is added into the 

system. The results in the figures indicate that, the 

hydrodynamic forces induced by swirling waves can be much 

more intense than those induced by planar waves. Meanwhile, 

the planar wave can not generate hydrodynamic force Fy as 

shown in Fig. 14. This is easy to understand because there is 

no exciting energy along this direction. However, due to the 

swirling wave, the hydrodynamic force Fy is generated. And 

Fy  will not vanish which means the wave keeps rotating 

inside the cage. The value of Fy at the steady state period is 

still relatively large compared with Fx. 

 

 
FIGURE 14 HYDRODYNAMIC FORCES IN SURGE AND 

SWAY DIRECTION FOR PLANAR WAVES ( η1a =
0.05R0 & ω1 = 1.05σ1). 

 

 
FIGURE 15 HYDRODYNAMIC FORCES IN SURGE AND 

SWAY DIRECTION FOR SWIRLING WAVES ( η1a =
0.05R0 & ω1 = 1.05σ1). 

 
4.5 Swirling wave effect on closed fish cage 

The hydrodynamic loads in swirling waves have been 

proven to be very intense compared to the planar wave. As the 

motion of a cylindrical cage with a prescribed regular wave 

can be simulated now, the cage behavior coupled with the 

swirling wave generated inside the cage can be analyzed. The 
new properties of exterior waves are defined in Table 2. 
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Table 2: WAVE PROPERTIES FOR ANALYZING SWIRLING 

WAVE EFFECT 

Item Property 

Incident wave frequency 1.05σ1 

Incident wave direction x − 

Disturbance 0.005R0 

Disturbance direction y − 

Exterior damping ratio 0.01 

Wave steepness 0.4 

By adding disturbance in the simulator, the swirling 

wave inside the cage may be generated if the combination of 

the excitation frequency and amplitude meet certain criteria. 

If no disturbance is added, only planar waves can be observed 

in the numerical results, even though the planar waves are not 

stable in reality. Therefore, the swirling wave effect on the 

cage responses can be investigated by comparing the results 

with the case, where only planar waves in the cage are 

considered. The initial disturbance could induce a little sway 

motion which may further induce the force along the y-

direction. And the force may enlarge the sway motion which 

generates the swirling wave at the end. Therefore, it is 

necessary to verify that the swirling wave is not induced by 

the combined cage motions in surge and sway. For this 

purpose, the sway and roll motions have been restrained in 

the time domain simulation as a starting point. In this case, 

the value of two primary generalized coordinates (p1 and r1) 

are shown in Fig. 16. In Fig. 16, without sway and roll 

motions, r1 still has a similar value to p1. This means the sway 

and roll motions are not the direct cause of the swirling waves. 

 

 
FIGURE 16 GENERALIZED COORDINATES FOR 

VALIDATING THE SWIRLING WAVE EFFECTS. 

In the next step, the sway and roll motions are not 

restrained to simulate the actual cage responses in regular 

waves when the cage motion is coupled with interior swirling 

waves. The resulting cage motions are shown in Fig. 17.  

 

 

 
FIGURE 17 COMPARISON OF THE SURGE MOTION OF 

THE CAGE IN REGULAR WAVES DEFINED IN TABLE 

2. UPPER: SWIRLING WAVE IN THE TANK; LOWER: 

PLANAR WAVE IN THE TANK. 

 

By comparing the magnitude of surge motion in Fig. 17, 

the cage motion with swirling wave happening inside the cage 

is obviously much more violent than the cage with the planar 

wave. As indicated by the comparison of Fig. 14 and Fig. 15 

for a surging cylindrical tank with interior planar and swirling 

waves respectively, the sloshing-induced forces induced by 

swirling waves are much higher than the planar wave, which 

has caused the extra displacements of the cage in both surge 

and sway directions. 

 
Conclusion 

In this paper, a numerical model for studying the closed 

fish cage behavior under interior sloshing effect and exterior 

wave effect was presented. After some derivation and 

verification, the model is available to simulate the cage 

motions coupled with liquid sloshing effects inside the cage. 

Special attention was drawn to the swirling wave effect which 

can only be measured by a proper nonlinear sloshing solver. 

Although the wave frequency for exciting the swirling wave 

has to be close to the natural frequency, it may still occur in 
the reality. Comparison between the planar wave and swirling 

wave effects, showed that the hydrodynamic loads induced by 
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swirling waves are much higher than planar waves, which 

will lead to violent cage motions even in the direction that is 

perpendicular to the incident wave direction. In addition, the 

violent cage motion and the free surface elevation oscillation 

may also influence the health and safety of fish. Future 

research should address the cages responses in irregular 

waves with coupled effects of nonlinear sloshing. 
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