COSTING MARATHON cma inter

Chapter 1 introduction

Cost Accounting: process of accounting for cost which begins with the recording of income and expenditure and ends with the preparation of periodical statements ascertaining costs.
Costing: the technique and process of ascertaining per unit cost of goods and services
cost Accountancy: presentation of information for the purpose of managerial decision making.

Management Accounting: assists management by provision of relevant information for planning, organising, controlling, decision making etc.

Cost: amount of expendíture (actual or notional) incurred on or attributable to a specified article, product or activity.

cost unit: it is a unit of product, service or time in relation to which costs may be ascertained or expressed.

Industry	cost Units
Automobile	Number
Cement	Ton/ per bag etc.
Chemicals	Líre, gallon, kílogram, ton etc.
Power	Kílo-watt hour (kWh)
Steel	Ton
Transport	Passenger- Rílometer
Gas	Cubic feet
Brewing	Barrel
Brick-making	1,000 bricks
Coalmining	Tonne/ton
Electricíty	Kilowatt-hour (kWh)
Engineering	Contract, job
Oíl	Barrel, tonne, lítre
Hotel/catering	Room/meal
Professional services	Chargeable hour, job, contract
Education	Course, enrolled
Hospítals	Patient day

RESPONSIBILITY CENTRES : TO have a better control over the organisation, management delegates its responsibility and authority to various departments or persons. These departments or persons are known as responsibility centres

Types

	Revenue	Profit		
cost centre	centres: The	centres: These	Investment	
held	responsibility	are the	centres	
accountable	centres which	responsibility	authority to	
for incurrence	are	centres which		
of costs which	accountable	have both	make capital	
are underíts	for	responsíbílíty	investment	
control	generation of	generation	decísíons	
	revenue for			
	revenue for	of revenue		
		and		
		incurrence of		
		exdendítures		

LIMITATIONS OF COST ACCOUNTING

Expensive Requirement of Reconciliation Duplication of Work Inefficiency

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 2 Material

Concept 1: Material Procurement Procedure

7. invoice
$\sqrt{2 x A n n u a l ~ D e m a n d ~} x$ cost Per Order/ Carrying cost per unit per annum

Total carrying cost $=$ Average quantity carried in stock x carrying coat per unit p.a.
Average quantity carried in stock $=$ Order size $/ 2$
Total Ordering cost $=$ No. of order \times cost per order
No. of order = Annual demand / order síze
Q1. Compute E.O.Q and the total variable cost for the following:

Annual Demand	$=5,000$ units
Unit price	$=₹ 20.00$
Order cost	$=₹ 16.00$
Storage rate	$=2 \%$ per annum
Interest rate	$=12 \%$ per annum
Obsolescence rate	$=6 \%$ per annum

(ii) Determine the total cost that would result for the items if an incorrect price of
$₹ 12.80$ is used.
(SM, ICAI)
concept 3 Stock Level
$\begin{aligned} \text { ROL }= & \text { Maximum consumption } \times \text { Maximum lead time } \\ & \text { or (Normal consumption } \times \text { normal lead time })+ \text { safety stock }\end{aligned}$
Maximum Stock $=$ ROL - (Mínimum consumption \times Mínimum lead time $)+E O Q$
Minimum Stock / Safety stock $=$ ROL $-($ Normal consumption \times Normal Lead time)
Average Stock $=$ Maximum stock + minimum Stock $/ 2$ Or Minimum consumption + EOQ/2
Danger Level $=$ Average consumption \times emergency delivery time
Q2. M/s Tube Ltd. Are the manufacturers of picture Tube for TV. The following are the details of their operation.

Average Monthly Market Demand	2000 Tube
cost of placing an order	$₹ 100$

Inventory carrying cost	20% p.a.
Lead ítem to supply	$4-6$ weeks
Minimum usage	50 Tube per week
Maximum Usage	200 Tube per week
Average Usage	100 Tube per week
cost of Tube	$₹ 500$ per Tube

compute

a. EOQ, if the supplier is willing to supply 1500 units at a discount of 5%, is it worth accepting?
b. Maximum level of stock
c. Minimum level of stock
d. Re-Order Level

Solution:

Annual Demand of Raw Material $=100 \times 52=5200$
a.EOQ $=\sqrt{2} 2$ Annual Demand x Cost per order / Carrying cost per unit p.a. EOQ $\sqrt{2} \times 5200 \times 100 / 20 \%$ of $500=101.98$ units
b. Statement showing total inventory cost under each alternative

Order síze	Purchase cost	carrying cost	Ordering cost	Total cost
101.98	$\begin{array}{\|lr\|} \hline 5200 \times & 500 \\ 26,00,000 & = \end{array}$	(101.98/2) $100^{*}=5099$	$(5200 / 101.98) \times 100=5099$	$26,10,198$
1500	$\begin{aligned} & 5200 \times 475= \\ & 24,70,000 \end{aligned}$	$\begin{array}{r} \quad(1500 / 2) x \\ 95^{*} \\ =71,250 \end{array}$	$(5200 / 1500) \times 100=346.66$	$25,41,596.66$

*20\% of purchase cost per
unít
Discount offer must be accepted, saving to company ₹ $68,601.34$
ROL = Max Consumption \times Max Lead Time

$$
200 \times 6=1200
$$

Minimum Level $=$ ROL $-($ Normal consumption \times Normal Lead Time $)$

$$
1200-(100 \times 5)=700
$$

Maximum Level $=$ ROL $-($ Min Consumption \times Min Lead Time $)+E O Q$

$$
1200-(50 \times 4)+101.98=1101.98
$$

Average Stock $=$ Max Level + Min Level $/ 2$ $(700+1101.98) / 2=901$

concept 4 valuation of Material Received

Item
Trade Discount
Quantíty Discount
cash Discount
subsidy / Grant / Incentive
Road Tax/toll tax
GST
Credít avaílable
credít Not avaílable
custom duty
Transít insurance
Demurrage
Penalty / Fine / Detention Charges
Freight
cost of container
Returnable
Non returnable
shortage
Normal
Abnormal
Q3.An invoicein respect ofaconsignment of chemicals A and B provid

Q3. An invoice in respect of a consignment of chemicals A and B provides the following information:

	(₹)
chemical A: $10,000 \mathrm{kgs}$. at ₹ 10 per kg.	1,00,000
Chemical B: 8,000 kgs. at ₹ 13 per kg.	1,04,000
Basiocustom duty @-10\% (Gkedit-is not allowed)	-20,400
Railway freíght	3840
Fotat cost	2,28,240

A shortage of 500 kgs . in chemical A and 320 kgs . in chemical B is noticed due to normal breakages. You are required to determine the rate per kg. of each chemical, assuming a provision of 2% for further deterioration.
(SM, ICAI)

Concept 5 valuation of material issued

Q4. X Ltd furnishes the following store transactions for July

Date	Particulars	Qty / Rate
	Opening	
1	Balance	200 units value ₹ 2000
4	Receipts from B \& Co., GRN No. 11	300 units @ ₹ 12 per unit
7	Issue to production department X Req. no. 101	400 units
10	Receipts from M \& Co. GRN 12	400 Units @ ₹ 14 per unit
	Returned by Deptt X; Issued vide Req no. 101 - MRN	
13	No.	
	21 (This Material was received from B \&Co.)	20 Units
16	Returns to B \& Co.	10 Units
19	Issues Req No. 102	300 Units
22	Receipts from N \& Co. GRN NO 13	200 units @ ₹ 16 per unit
25	Receipts replacement from B \& Co. GRN No. 14	
28	Issue Req No. 103	300 Units
	Transfer from job 182 to job 187 in the deptt MTR No.	
29	6	
30	Shortage in stock Taking	20 Units

Required: Prepare the store ledger using FIFO and LIFO Method

Concept 6 Inventory Turnover Ratio

High inventory turnover ratio indicates that the material in the question is a fast moving one. A low turnover ratio indicates over-investment and locking up of the working capital in inventoríes.

Inventory Turnover Ratio = Raw materíal consumed / Average quantity of raw material; Raw material consumed $=$ opening stock + purchases -closing stock

Q5. From the following data for the year ended 31st December, 2017, Calculate the inventory turnover ratio of the two items and put forward your comments on them.

	Material A (₹)	Materíal $B(₹)$

Opening stock 1.1.20×1	10,000	9000
Purchase during the year	52,000	27,000
closing stock 31.12.20×1	6000	11,000

Solution:

	Material A	Material B
Raw Materíal consumed Average Stock Inventory Turnover Ratio	$\begin{aligned} & 10,000+52,000-6000 \\ &=56,000 \\ & 10,000+6000 / 2=8000 \end{aligned}$ $56,000 / 8000=7$ Times	$\begin{aligned} & 9000+27,000-11,000= \\ & 25,000 \\ & 9000+11,000 / 2=10,000 \end{aligned}$ 2.5 Times
Nature	Fast Moving	slow Moving

concept 7 Stock out Cost

Q6. M/s Tyrotubes trades in four wheeler tyres and tubes. It stocks sufficient quantíty of tyres of almost every vehicle. In year end 2017-18, the report of sales manager revealed that M / S Tyrotubes experienced stock-out of tyres.

The stock-out data is as follows:

Stock out of Tyres	No. of Times
100	2
80	5
50	10
20	-20----
10	30
-	-33---

M/s Tyrotubes loses ₹ 150 per unit due to stock-out and spends ₹ 50 per unit on carrying of inventory. Determine optimum safest stock level. (SM, ICAI)

ABC	FSN	VED	HML
ASper	ASper	As per	AS per
Value	frequency usage	críticalíty of production	Value of item

Concept g Defective / scrap / Spoilage / Waste

Waste: The portion of raw material which is lost during storage or production and discarded.
scrap: The materials which are discarded and disposed-off without further treatment.
Spoilage: It is the term used for materials which are badly damaged in manufacturing operations, and they cannot be rectified economically and hence taken out of process to be disposed of in some manner without further processing.

Defectives: It signifies those units or portions of production which do not meet the quality standards.

Obsolescence: Obsolescence is defined as "the loss in the intrinsic value of an asset due to its supersession".

Chapter 3 Labour

Concept 1 Labour Turnover
labour turnover in an organisation is the rate of change in the composition of employee force during a specified period measured against a suitable index.

Replacement Method: No. of employees replaced during the year x100
Average no. of employees on roll during the year

Separation method: No. of employees separated during the year $\times 100$ Average no. of employees on roll during the year

Flux Method: No. of Separations + No. of Replacements $\times 100$ Average no. of employees on roll
\qquad

No. of Separations + No. of Accession $\times 100$
Average no. of employees on roll

causes of Employee (Labour) Turnover:

Personal causes:

(i) change ofjobs for betterment.
(ii) Premature retirement due to ill health or old age.
(iii) Domestic problems and family responsibilities.
(iv) Discontent over the jobs and working environment.
unavoidable causes:
(i) seasonal nature of the business;
(ii) Shortage of raw material, power, slack market for the product etc.;
(iii) Change in the plant location;
(iv) Disability, making a worker unfit for work;
(v) Disciplinary measures;

Avoídable causes:

1. Dissatisfaction with job, remuneration, hours of work, working conditions, etc.,
2. Strained relationship with management, supervisors or fellow workers;
3. Lack of training facilities and promotional avenues;
4. Lack of recreational and medical facilities;
5. Low wages and allowances.

Cost of Employees (Labour) Turnover:
Preventive costs: The cost incurred to prevent employee turnover or keep it as lowest as possíble.
Replacement costs: These are the costs which arise due to employee turnover. If employees leave soon after they acquire the necessary training and experience of good work, additional costs will have to be incurred on new workers

Q1. The following information relates to personnel department of a factory for the month of April 2016

Number of workers on Aprí 1, 2016	950
Number of workers on April 30, 2016	1050
Number of worker who quit the factory in April	10
Number of worker who discharged in April	30
Number of workers engaged in April (including 120 on account of expansion scheme)	140

calculate the labour turnover rate and equivalent annual rate under different methods. (Ans. LTR sep 4\%; Rep 2\%; Flux 6\%; EAR Sep 48.67%; Rep 24.33%; Flux 73%)

Q2. The management of Sunshine Ltd. wants to have an idea of profit lost / foregone as a result of labour turnover last year.
Last year sales accounted to $₹ 66,00,000$ and P / V Ratio was 20%. The total number of actual hours worked by direct workers force was 3,45,000. As a result of the delays by the personnel department in filling vacancies due to labour turnover 75,000 potentially productive hours were lost. The actual direct labour hours included 30,000 hours attributable to training new recruits, Out of which half of the hours were unproductive. The cost incurred consequent to labour turnover revealed on analysis the following

```
Settlement cost due to leaving 27,420
Recruítment cost 18,725
Selection Cost 12,750
Training cost 16,105
```

Assuming that the potential production lost due to labour turnover could have been sold at prevailing prices, ascertain the profit foregone / lost last year on account of labor turnover. (Ans. 3,75,000)

Concept 2 Dírect / Indirect employee Cost

Direct employee cost	Indirect employee cost	
It is the cost incurred in payment	cost incurred for payment of	
of employees who are directly	employee who are not directly	
engaged in the production	Engaged in production process	
process.		
Direct employee cost can be easily	Indirect employee cost is	
identified and allocated to cost	Apportioned on some	on
unit.	appropriate basis.	
Direct employee cost varies with	indirect employee cost may not	
the volume of production and	vary with the volume of	
has positive relationship with the	production.	
volume.		

Concept 3 Idle Time

The time during which no production is carried-out because the worker remains idle but are paid.

1. The time lost between factory	1. Abnormal factors like lack of
gate and the place of work,	coordination
2.The interval between one job and 2. Power failure, Breakdown of Another machine 3.The setting up time for the 3. Non availability of raw material, Machine strike 4. Normal rest time, break for lunch 4. Abnormal reason Like flood, fire	

Q3. In a factory working six days in a week and eight hours each day, a worker is paid at the rate of $₹ 100$ per day basic plus D.A. @ 120% of basic. He is allowed to take 30 minutes off during his hours shift for meals-break and a 10 minutes recess for rest. During a week, his card showed that his time was chargeable to:

jobx	15 hrs.
job Y	12 hrs.
jobZ	13 hrs.

The time not booked was wasted while waiting for a job. In cost Accounting, STATE how would you allocate the wages of the workers for the week?

Solution: Working notes:
(i) Total effective hours in a week:
$[(8 \mathrm{hrs} .-(30 \mathrm{mts} .+10 \mathrm{mts})] \times 6$ days $=44$ hours
(ii) Total wages for a week:

$$
(₹ 100+120 \% \text { of } ₹ 100) \times 6 \text { days }=₹ 1,320
$$

(iii) wage rate per hour $=₹ 30$
(iv) Time wasted waiting for job (Abnormal idle time):
$=44 \mathrm{hrs} .-(15 \mathrm{hrs} .+12 \mathrm{hrs} .+13 \mathrm{hrs})=.4 \mathrm{hrs}$.
Allocation of wages in cost Accounting

Job	Hours	Amount
X	15	15×30
Y	12	12×30
Z	13	13×30
Abnormalidletime	4	4×30

Concept 4 Overtime

Work done beyond normal working hours is known as 'overtime work'.
overtime premium:
As per the Factories Act 1948 "Where a worker works in a factory for more than nine hours in any day or for more than fourty eight hours in any week, he shall, in respect of overtime work, be entitled to wages at the rate of twice his ordinary rate of wages." Whichever is beneficial to worker
Q4. Calculate earnings of A and B from the following particulars for a month and allocate labour cost to each job X, Y and Z

	A	B

Basic wages	$₹ 100$	$₹ 160$
Dearness Allowance	50%	50%
Contribution to PF (On basic wages)	8%	8%
Contribution to ESI (On basic wages)	2%	2%
Overtime	10 Hours	-

The normal working hours for the month are 200. Overtime is paid at double the total of normal wages and dearness allowance. Employer's contribution to state insurance and provident fund are at equal rate with employee's contribution. The two workers were employed on jobs X, Y and Z in the following proportions:

Jobs	X	Y	Z
Worker A	40%	30%	30%
Worker B	50%	20%	30%

overtime was done on job Y

Treatment:

causes of overtime	Treatment of overtime premium
At the desire of customer	Charged to job
Due to general pressure of work to increase the output	Charged to general overheads
Due to neglígence or delay	charged to department concerned
Due to circumstances beyond control like	charged to costing profit and loss account

Q5. In a factory, the basic wage rate is ₹ 100 per hour and overtime rates are as follows:

Before and after normal working hours	175% of basic wage rate
Sundays and holidays	225% of basic wage rate
During the previous year, the following hours were worked	
- Normal time - Overtime before and after working hours	$1,00,000$
Overtime on sundays and holidays	5000
Total	$1,25,000$

The following hours have been worked on job ' Z '

Normal	1000
Overtime before and after working hrs.	100
Sundays and holidays	25
Total	1125

You are required to CALCULATE the Labour cost chargeable to job ' Z ' and overhead in each of the following instances:
(a) Where overtime is worked regularly throughout the year as a policy due to the workers' shortage.
(b) overtime is worked irregularly to meet the requirements of production.
(c) Where overtime is worked at the request of the customer to expedite the job.

Concept 5 system of wage payment and incentive

	Time based: Straight tíme wage	Hrs. worked \times Rate per Hour
	Output Based : Straight Piece wage	Pieces Produced \times Rate per piece
	combination of time and Output	Time Wage or piece wage whichever is higher
		Bonus
	Premíum Bonus	Halsey's system TS $\times 50 \% \times R$
		Rowen's system TS $\times T$. R
		ST
	Group Bonus	

conclusion:
$T T=50 \%$ of $S T$, Bonus under both plan shall be same
TT $>50 \%$ of ST, Bonus under Rowen shall be higher
T < 50% of ST, bonus under Halsey shall be higher

Q6. A company has its factories at two locations. Rowen plan is in use at Location A and Halsey plan at Location B. Standard time and basic rate of wages are same for a job which is similar and is carried out on similar machinery. Time allowed is 60 hour

Job at Location A is completed in 36 hours while at location B, it has taken 48 hour conversion cost at respective places are ₹ 1224 and $₹ 1500$. Overheads account for $₹ 20$ per hour.

Required (a) To find out normal rate of wages (b) To compare respective conversion cost
Solution: Let Normal Wage rate per hour be ₹ Y

	Location A	Location B
Wages	$36 Y+14.4 Y$	$48 Y+6 Y$
Factory Overheads	36×20	48×20
Factory Cost	1224	1500

$$
\begin{aligned}
& 50.4 Y+720=1224 \\
& 54 Y+960=1500
\end{aligned}
$$

On solving above Equation, Normal wage rate per hour will be ₹ 10 .
Statement showing conversion cost on substituting value of Y

	Location A	Location B
Wages	50.4×10	54×10
Factory Overheads	36×20	48×20
Factory cost	1224	1500

Concept 6 EFFICIENCY RATING PROCEDURES

Step 1: Determining standard time/performance standards:

Step 2: Measuring Actual Performance of workers
Step 3: Efficiency $\%=$ Standard Time / Time Taken $\times 100$
If the time taken by a worker on a job equals or less than the standard time, then he is rated efficient.
Need for efficiency rating

1. When a firm follows a system of payment by results, the payment has a direct relationship with the output given by a worker.
2. The efficiency rating also helps the management in preparing employee requirement budget or for preparing manpower requirements.
Employee Productivity: It is measured by the output in relation to input.
Factors for increasing Employee productivity:
3. Employing only those workers who possess the right type of skill.
4. placing a right type of person to a right job.
5. Training young and old workers by providing them the right types of opportuníties.
4.Taking appropriate measures to avoid the sítuation of excess or shortage of employees.

Q7. A worker is paid ₹ 10,000 per month and a dearness allowance of ₹ 2,000 p.m. Worker contribution to provident fund is @ 10% and employer also contributes the same amount as the employee. The Employees state insurance corporation premium is 6.5% of wages of which 1.75% is paid by the employees. It is the firm's practice to pay 2 months' wages as bonus each year.
The number of working days in a year are 300 of 8 hours each. Out of these the worker is entitled to 15 days leave on full pay. CALCULATE the wage rate per hour for costing purposes.

Solution: Wages paid to worker during the year $\{(` 10,000+2,000) \times 12\}$	$1,44,000$
Add: Employer Contribution to:	
Provident Fund @ 10\%	14,400
E.S.l. Premium @ 4.75\% (6.5-1.75)	6840
Bonus at 2 months' wages (Basic + DA)	24,000
Total	$1,89,240$
Effective hours	2280
Rate per hour	$₹ 83$

Concept 8 Payroll Procedure

Time Keeping
 objectives

1. Preparation of payrolls
2. calculating overtime
3. Ascertaining Idle time
4. Discíplinary purpose

Time Booking: Each activity of employee is recorded.
objectives

1. For costing purpose
2. For Measuring efficiency
3. For fixing responsíbility

To do this job card is opened

Chapter 4 Overheads

Concept 1 Meaning and types of overheads

Overheads are the expendíture which cannot be conveniently traced to or identified with any particular cost unit. Overheads also represent expenses that have been incurred in providing certain services which facilitate the carrying out of the production process

Concept 2 Accounting and control of Manufacturing overheads

Step 1: cost Allocation: The term 'allocation' refers to the direct assignment of cost to a cost object which can be traced directly.

Step 2: Cost Apportionment: The allotment of proportions of items of cost to cost centres or departments

Step 3: Re-apportionment: The process of assigning service department overheads to production departments is called reassignment or re-apportionment

Step 4: Absorption: This process of recovering overheads of a department or any other cost center from its output is called recovery or absorption.

Basis For apportionment

Overheads	Basis
Rent, Lighting, heating, Fire precaution service, Air-conditioning, other building expenses	Flour area
Perquisites, Labour welfare expenses, time keeping, supervision, Personal office	Number of Workers
Compansation to worker, Holiday pay, Esi, Pf	Direct Wages
General Overheads	Direct Wages
Depreciation, Repairs, insurance of Machine	Capital value
Power / Steam, internal transport, managerial salaries	Technical estimate
Lighting	No. of Light points
Electric power	HP, HP HRS
Material handling, stores overheads	Direct material

Basis of Re-apportionment

Service Department	Basis
Maintenance and Repair shop	Direct labour hours, Machine hours,
Planning and progress	Direct labour wages, Asset value
Tool room	Hours worked
canteen and Welfare	No of direct workers
Hospital and Dispensary	No. of employees etc.
Personnel Department	
Time Keeping	Number of cards punched
Computer Section	Computer hours
Power House	HP, KWH
Stores Department	No. of Requisition

Q1. A factory has two service departments P and Q and three production departments A, B and C. You are supplied with following information

Partículars	Total	A	B	C	P	Q
	$₹$	$₹$	$₹$	$₹$	$₹$	$₹$
Rent	12,000	2400	4800	2000	2000	800
Electricity	4000	800	2000	500	400	300
Indírect Labour	6000	1200	2000	1000	800	1000
Depreciation of machinery	5000	2500	1600	200	500	200
Sundries	4500	910	2143	847	300	300
Estimated Working hours		1000	2000	1400		

The expenses of Service Department are allocated as under:

	A	B	C	P	Q
P	30%	40%	20%	-	10%
Q	10%	20%	50%	20%	-

You are required to show the apportionment of overheads under different methods of apportioning inter-service departments and also work out the production hour rate recovery of overheard.
solution:

Partículars	Total	A	B	C	P	Q
	$₹$	$₹$	$₹$	$₹$	$₹$	$₹$
Rent	12,000	2400	4800	2000	2000	800
Electricity	4000	800	2000	500	400	300
Indírect Labour	6000	1200	2000	1000	800	1000
Depreciation of machinery	5000	2500	1600	200	500	200
Sundries	4500	910	2143	847	300	300
Total	31500	7810	12543	4547	4000	2600

Let expenses of S1 Deptt be apportioned equals to x and of Deptt $S 2$
be Y

$X=4000+.20 Y$
$Y=2600+.10 X$

Substitute value of Y in equation 1
$X=4000+.20(2600+.10 X)$
$X=4612 ; Y=3061$
Statement of Re-apportionment of overheads

	A	B	C	P	Q
O/H					
Re-apportionment of overheads					
S1 (4612) in $30 \%, 40 \%, 20 \% .10 \%$	1384	1845	922	(4612)	461
S2 (3061) in 10\%, 20\%,50\%,20\%	306	612	15343	4547	4000
(612)	2600				
3061					
612	(3061)				

Concept 3 Methods of Absorbing Overheads to various Products

(1) Percentage of direct materíals $=$ Total Production overheads $\times 100$ Budget Direct Materíal cost
(2) Percentage of prime cost $=\quad$ Total Production Overheads $\times 100$ Prime cost
(3) Percentage of direct Labour cost $=$ Total Production Overheads $\times 100$

Dírect Labour cost
(4) Labour hour rate $=$
(5) Rate per unit of output $=$

Total Production Overheads Dírect Labour Hour

Amount of overheads Number of units

(6) Machine Hour Rate
(i) Direct machine Hour rate: Expenses directly or immediately connected with the operation of machine are taken
(ii) Comprehensive Machine Hour Rate: Other expenses like incurred for department as a whole also taken.

Q2. A machine shop has 8 identical Drilling machines manned by 6 operators. The machine cannot be worked without an operator wholly engaged on it. The original cost of all these machines works out to ₹ 8 lakhs. These particulars are furnished for a 6 months period:

$$
\text { Normal available hours per month } 208
$$

Absenteeism (without pay) hours 18
Leave (with pay) hours 20
Normal idle time unavoídable-hours 10
Average rate of wages per worker for 8 hours a day. ₹ 20
Production bonus estimated 15% on wages
value of power consumed ₹ 8,050
Supervision and indirect labour ₹ 3,300
Lighting and electricíty ₹ 1,200
These particulars are for a year
Repairs and maintenance including consumables 3% of value of machines.
insurance ₹ 40,000
Depreciation 10% of original cost.
other sundry works expenses ₹ 12,000
General management expenses allocated ₹ 54,530 .
You are required to WORK OUT a comprehensive machine hour rate for the machine shop.

Q3.J0b No. 198 was commenced on October 10, 20×8 and completed on November1,20×8. Materials used were ₹ 600 and labour charged directly to the job was ₹ 400. Other information is as follows:

Machine No. 215 used for 40 hours, the machine hour rate being ₹ 3.50 .
Machine No. 160 used for 30 hours, the machine hour rate being ₹ 4.00. 6 welders worked on the job for five days of 8 hours each: the Direct labour hour per welder is ₹ 0.20 .
Expenses not included for CALCULATING the machine hour or direct labour hour rate total led ₹ 2,000 , total direct wages for the period being ₹ 20,000 . Ascertain the works costs of job No. 198.

Concept 4 Treatment of over and under Recovery	
Overhead expenses are usually applied to production on the basis of pre-determined rates.	
Production overheads are to be determined in advance for fixing selling price,	
The actual overhead rate will rarely coincide with the pre-determined overhead.	
Treatment of under-absorbed and over-absorbed of overheads	
Transfer To cost PGL A/C	Apply Supplementary Rate Method
Amount of under/over Absorption is small Or	charge to cost of sales A / C. Finished Goods A / C and W-I-P A/c.

Due to wrong estimation and abnormal reasons

Q4. In a factory, overheads of a particular department are recovered on the basis of $₹ 5$ per machine hour. The total expenses incurred and the actual machine hours for the department for the month of August were $₹ 80,000$ and 10,000 hours respectively. Of the amount of ₹ 80,000 , ₹ 15,000 became payable due to an award of the Labour court and $₹ 5,000$ was in respect of expenses of the previous year booked in the current month (August). Actual production was 40,000 units, of which 30,000 units were sold. On analysing the reasons, it was found that 60% of the under-absorbed overhead was due to defective planning and the rest was attributed to normal cost increase. EXPLAIN how would you treat the under-absorbed overhead in the cost accounts?

Solution: Under-absorbed overhead expenses during the month of August

(₹)

(₹)

$₹ 4,000$ may be distributed over Finished Goods and cost of sales as follows:

Finished Goods

* $\mathfrak{F}_{1,000}$
cost of sales
* ₹ 3,000
*Working notes
under-absorbed overhead:
units produced:
₹ 4,000

Rate of under-absorbed overhead recover
₹ 0.10 per unit
Amount of under-absorbed overheads
charged to finished goods ($10,000 \times ₹ 0.10$) ₹ 1,000
Amount of under-absorbed overheads
charged to cost of sales: $(30,000 \times ₹ 0.10) \quad ₹ 3,000$

Concept 5 Accounting and control of Administrative Overheads

There are three methods of accounting of administrative overheads

1. Apportioning Administrative Overheads between Production and sales Departments: When this method is adopted, administrative overheads lose their identity and get merged with Production and selling overheads
2. Charging to Profit and Loss Account: cost of products is understated as administrative overheads are not charged to costs.
3. Treating Administrative overheads as a separate addition to cost of Production/ sales: This method considers administration as a separate function like production and sales

control of Administrative Overheads

a. classification and analysis of overheads by administrative departments according to their functions, and a comparison with the accomplished results
b. Control through Budgets
c. Control through Standard

Q5. In an engineering company, the factory overheads are recovered on a fixed percentage basis on direct wages and the administrative overheads are absorbed on a fixed percentage basis on factory cost.

The company has furnished the following data relating to two jobs undertaken by it in a period:

	100101	100102
Direct materials	(₹)	(₹)
Dírect wages	54,000	37,500
Selling price	42,000	30,000
	$1,66,650$	$1,28,250$
Profit percentage on Total cost	10%	20%

Required:
(i) COMPUTATION of percentage recovery rates of factory overheads and administrative overheads.
(ii) CALCULATION of the amount of factory overheads, administrative overheads and profit for each of the two jobs.
(iii) using the above recovery rates FIX the selling price of job 103. The additional data being:

Dírect materíals	$₹ 24,000$
Dírect wages	$₹ 20,000$
Profit percentage on selling price	$12-1 / 2 \%$

Solution: Let factory overhead recovery rate, as percentage of direct wages be Fand administrative overheads recovery rate, as percentage of factory cost be A.
Factory cost of Jobs:
$j 0 b 101=₹ 96,000+₹ 42,000 F$
$j 06102=₹ 67,500+₹ 30,000 F$
Total cost of Jobs:
J0b $101=(₹ 96,000+₹ 42,000 F)+\left(₹ 96,000+₹_{42,000 F)} A=₹_{1,51,500}\right.$
J0b-102 $=(₹ 67,500+₹ 30,000 F)+(₹ 67,500+₹ 30,000 F) A=₹ 1,06,875$
(Refer to working note)
On solving above relations: $F=0.60$ and $A=0.25$
Hence, percentage recovery rates of factory overheads and administrative overheads are 60% and 25% respectively.
working note:

Total cost (₹)
$1,51,500$
$1,06,875$
Selling price
$\left(100 \%+\begin{array}{l}\text { Percentage of } \\ \text { profit })\end{array}\right.$$(₹ 1,66,650 / 110 \%) \quad(₹ 1,28,250 / 120 \%)$
(ii) Statement ofjobs, showing amount of factory overheads, administrative overheads and profit

	106101	106102
Direct materials	54,000	37,500
Direct wages	42,000	30,000
Prime cost	96,000	67,500
Factory overheads		
60\% of direct wages	25,200	18,000
Factory cost	1,21,200	85,500
Administrative overheads		
25% of factory cost	30,300	21,375
Total cost	1,51,500	1,06,875
Profit	15,150	21,375
Selling price	$\overline{1,66,650}$	1,28,250

(iii) Selling price ofjob 103

	(₹)
Dírect materials	24,000
Dírect wages	20,000
Prime cost	44,000
Factory overheads (60\% of Dírect wages)	12,000
Factory cost	56,000
Administrative overheads	14,000

(25\% of factory cost)
Total cost
70,000
Profit margin (balancing figure)
10,000

80,000

concept 6 Accounting and control of Selling overheads

selling cost or overhead expenses are the expenses incurred for the purpose of promoting the marketing and sales of different products. Distribution expenses, on the other hand, are expenses relating to delivery and dispatch of goods sold.
Accounting of selling and distribution overheads: separate fixed expenses from varíable expenses. Apportion the fixed expenses according to the benefit derived by each product. To this should be added the variable expenses which will be different for each product.
control of Selling \& Distribution Overheads:

1. The incidence of selling and distribution overheads depends mainly on external factors, such as distance of market, extent and nature of competition, terms of sales, etc. which are beyond the control of management.
2. These overheads are dependent upon the customers, behaviour, their liking and disliking, tastes etc. Therefore, as such control over the overheads may result in loss of customers.
Q6. A company which sells four products, some of them unprofitable, proposes discontinuing the sale of one of them. The following information is available regarding income, costs and activity for the year ended 31st March, 20×9.

	A	B	C	D
sales (₹)	$30,00,000$	$50,00,000$	$25,00,000$	$45,00,000$
cost of sales (₹)	$20,00,000$	$45,00,000$	$21,00,000$	$22,50,000$
Area of storage (sq.f.)	50,000	40,000	80,000	30,000
Number of parcels sent	$1,00,000$	$1,50,000$	75,000	$1,75,000$
Number of invoíces sent	80,000	$1,40,000$	60,000	$1,20,000$

Selling and Distribution overheads and the basis of allocation are:

	$₹$	Basis of allocation to Products
Fixed costs		
Rent \mathcal{G} insurance	$3,00,000$	Square feet
Depreciation	$1,00,000$	Parcel
Salesmen's salaries \mathcal{E} expenses	$6,00,000$	Sales volume

Admínístrative wages and salaries	$5,00,000$	No. of invoive
variable costs:		
Packing wages \mathcal{E} materials	$₹ 2$ per parcel	
commission	4% of sales	
Stationery	$₹$ per invoice	

You are required to prepare costing Profit and Loss a statement, showing the Percentage of profit or loss for each product.

concept 7 CONCEPTS RELATED TO CAPACITY

installed/ Rated capacity: it refers to the maximum capacity of producing goods or providing services.
Practical capacity: it is defined as actually utilised capacity of a plant. This capacity takes into account loss of time due to repairs, maintenance, minor breakdown, idle time, set up time, normal delays, sundays and holidays, stock taking etc.
Normal capacity: Normal capacíty is the volume of production or services achieved or achíevable on an average over a períod under normal circumstances
Actual capacíty: It is the capacity actually achieved during a given period. It is presented as a percentage of installed capacíty.

1dle capacity: It is that part of the capacity of a plant, machine or equipment which cannot be effectively utilised in production.

Treatment of idle capacity costs: Idle capacíty costs can be treated in product costing, in the following ways:
(a) If the idle capacíty cost is due to unavoidable reasons such as repairs, maintenance, changeover of job etc. a supplementary overhead rate may be used to recover the idle capacity cost. In this case, the costs are charged to the production capacity utilised.
(b) If the idle capacity cost is due to avoidable reasons such as faulty planning, power failure etc.; the cost should be charged to costing profit and loss account.
(c) If the idle capacity cost is due to seasonal factors, then, the cost should be charged to the cost of production by inflating overhead rates.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 5 Activity Based Costing

Meaning: $A B C$ is an accounting methodology that assigns costs to activities rather than
products and services. The enables resources $\mathcal{\xi}$ overhead costs to be more accurately
assigned to products \mathcal{E} services that consume them.

Factors prompting development of $A B C$

1. Growing overhead cost because of increased automated production
2. increasing market competition which necessitated automated production
3. Increasing product diversíty to secure economies of scope \mathcal{G} in 5 reased market share
4. Decreasing cost ifinformation processing because of continual improvements and increasing application of information technology.

Advantages

a. Better understanding overhead
b. utilizes unit cost rather than just total cost
c. Integrates well six sigma and other continuous improvement programs
d. Facílítates benchmarking
e. More accurate costing of products / services, customers

Difference $A B C$	Traditional Absorption costing
overheads are related to activities and grouped into activity cost pools	Overheads are related to cost centres
cost are assigned to cost objects e.g.	
customers, products, services etc.	cost are assigned to cost units i.e. products, services etc.
Activity - wise cost drivers are determined	Time (hours) are assumed to be the only cost driver governing costs in all department.
Activity determined and there is no concept of a single overhead	single overhead recovery rate may be recovery arte
determined for absorbing overheads.	

Activity Based Budgeting (ABB)

Activity based budgeting analyse the resource input or cost for each activity.
key elements of activity based budgeting
Type of work to be done

Quantity of work to be done cost of work to be done

Q1. MNO Ltd. manufactures two types of equipment A and B and absorbs overheads on the basis of direct labour hours. The budgeted overheads and direct labour hours for the month of March 2019 are $₹ 15,00,000$ and 25,000 hours respectively. The information about the company's products is as follows:

	Equipment X	Equipment y
Budget production volume	3200 units	3850 units
Dírect material cost		
Direct labour cost	₹ 350 per unit	₹ 400 per unit
A 3 hours @ ₹ 120 per hour	₹ 360	
B 4 hours @ ₹120 per hour		$₹ 480$

Overheads of $₹ 15,00,000$ can be identified with the following three major activities:
Order Processing: ₹ $3,00,000$
Machine
Processing: $\quad ₹ 10,00,000$
Product Inspection: ₹ $2,00,000$
These activities are driven by the number of orders processed, machine hours worked and inspection hours respectively. The data relevant to these activities is as follows:

	Orders processed	Machine hours worked	Inspection hours
A	400	22,500	5,000
	200	27,500	15,000
Total			
	600	50,000	20,000

Required:

1. Prepare a statement showing the manufacturing cost per unit of each product using the absorption costing method assuming the budgeted manufacturing volume is attained.
2. Determine cost driver rates and prepare a statement showing the manufacturing cost per unit of each product using activity based costing, assuming the budgeted manufacturing volume is attained.
3. MNO Ltd.'s selling prices are based heavily on cost. By using direct labour hours as an application base, calculate the amount of cost distortion (under costed or over costed) for each equipment.
(SM, ICAI/ MAY 2019)
Solution (i) Statement of cost as per Absorption Costing

A	B	
Dírect Material Cost	$3200 \times 350=11,20,000$	$3850 \times 400=15,40,000$
Dírect Labour Cost	$3200 \times 360=11,52,000$	$3850 \times 480=18,48,000$
Overheads 15,00,000 /	$3200 \times 3 \times 60=5,76,000$	$3850 \times 4 \times 60=9,24,000$
$25,000=₹ 60$ per hour	$28,48,000$	$43,12,000$
Total Cost	$28,48,000 / 3200=890$	$43,12,000 / 3850=1120$
Per Unít Cost		

(ii)

Statement of cost as per Activity based costing

	A	B
Dírect Materíal Cost Dírect Labour Cost overheads Order Processing cost $3,00,000 / 600=₹ 500 \mathrm{per}$ Order Machine Processing cost $10,00,000 / 50,000=₹ 20 \mathrm{per}$ M/C Hr Inspection cost $2,00,000 / 20,000=₹ 10 \mathrm{per}$ Hour	$\begin{aligned} & 3200 \times 350=11,20,000 \\ & 3200 \times 360=11,52,000 \end{aligned}$ $400 \times 500=2,00,000$ $22,500 \times 20=4,50,000$ $5000 \times 10=50,000$	$\begin{gathered} 3850 \times 400= \\ 15,40,000 \\ 3850 \times 480= \\ 18,48,000 \\ 200 \times 500=1,00,000 \\ 27,500 \times 20=5,50,000 \\ 15,000 \times 10=1,50,000 \end{gathered}$
Total cost	29,72,000	$41,88,000$
Per Unít Cost	$\begin{gathered} 29,72,000 / 3200= \\ 928.75 \end{gathered}$	$\begin{gathered} 41,88,000 / 3850= \\ 1087.79 \end{gathered}$

(iii) Cost distortion

	A	B
Absorption costing	890	1120
ABC	928.75	1087.79
Cost Distortion	(38.75)	32.21

Q2. PQR Ltd. has decided to analyse the profitability of its five new customers. It buys sof drinte bottles in cases at ₹ 45 per case and sells them to retail customers at a list price of RS. 54 per case. The data pertaining to five customers are given below:

	Customers				
	A	B	C	D	E
Number of Cases Sold	9360	14200	62000	38000	9800
List Selling Price ₹	54	54	54	54	54
Actual Selling Price ₹	54	53.40	49	50.20	48.60
Number of Purchase Orders	30	50	60	50	60
Number of Customers Visits	4	6	12	4	6
Number of Deliveries	20	60	120	80	40
Kilometers travelled per delivery	40	12	10	20	60
Number of expediate Deliveries	0	0	0	0	2

its five activitíes and their cost drovers are:

Activity	cost Driver
Order taking	$₹ 200$ per purchase order
Customer visits	$₹ 300$ per each visit
Deliveries	$₹ 4.00$ per delivery km travelled
Product Handling	$₹ 2.00$ per case sold
Expedited deliveríes	$₹ 100$ per each such delivery

You are required to:
(i) compute the customer level operating income of each of five retail customers by using the cost Driver rates.
(ii) Examine the results to give your comments on customer ' D' in comparison with customer ' C ' and on customer ' E ' in comparison with customer ' A '.

Solution: Customer level operating income

Particulars	A	B	C	C	E
Sales	9360×54	14200×53.40	62000×49	38000×50.20	9800×48.60
Less,					
Cost					
Order Taking					
Cost	3360×45	14200×45	62000×45	38000×45	9800×45
Customer Visít	4×300	6×300	12×300	4×300	6×300
Cost Delivery cost Product Handling cost	$20 \times 40 \times 4$	$60 \times 12 \times 4$	$120 \times 10 \times 4$	$80 \times 20 \times 4$	$40 \times 60 \times 4$

Expediate Delívery cost					
Profit	55,120	76,200	103600	104000	(7920)

(ii) Comment: Customer D is purchasing less quantity in comparison to customer C, but profit is almost same from both customers, this is because of higher discount to customer C. Further customer D is placing more orders, that is less quantity per order in comparison to customer C
Customer E is giving Loss, as compared to A, because heavy discount to E, further placing expediate delivery request, more orders, more visit, higher distance travelled per delivery.
\qquad

Chapter 6 cost Sheet

Dírect Materíal consumed	$x x x$
Direct Labour	$x x x$
Direct Expenses	$x x x$
Prime cost	$x x x$
Factory Overheads	$x x x$
Gross Factory cost	$x x x$
+opening Stock of work in Progress	$x x x$
-closing Stock of Work in Progress	$x x x$
Factory cost	$x x x$
Quality control cost	$x x x$
Research and development cost	$x x x$
Administrative overheads (relating to production)	$x x x$
Primary Packing	$x x x$
(Scrap sale)	$x x x$
cost of Production	$x x x$
+opening stock of Finished Goods	$x x x$
-closing stock of finished Goods	$x x x$
Cost of goods sold	$x x x$
Administration overheads (General)	$x x x$
Selling overheads	$x x x$
Distribution overheads	$x x x$
cost of sales	$x x x$
Profit	$x x x$
Sales	

1. Dírect Material Consumed

Opening Stock of Raw Material

+ Purchase of Raw Material
- closing stock of raw material

+ Frieght / cartage

-scrap sale of raw material

2. Direct Employee (Labour) cost:

(a) Wages and salary;
(b) Allowances and incentives;
(c) Payment for overtimes;
(d) Employer's contribution to Provident fund and other welfare funds;
(e) Other benefits (leave with pay, free or subsidised food, leave travel concession etc.)

3. Dírect Expenses:

(a) Royalty paid/ payable for production or provision of service;
(b) Hire charges paid for hiring specific equipment;
(c) Cost for product/ service specific design or drawing;
(d) cost of product/ service specific software;
(e) Other expenses which are directly related with the production of goods or provision of service.
4. Factory Overheads:
(b) Depreciation of plant and machinery, factory building etc.
(c) Lease rent of production assets
(d) Repair and maintenance of plant and machinery, factory building etc.
(e) indirect employees cost related with production activities
(f) Drawing and Designing department cost.
(g) insurance of plant and machinery, factory building, stock of raw material \& WIP etc.
(h) Amortized cost ofj'igs, fixtures, tooling etc.
(i) Service department cost such as Tool Room, Engineering \& Maintenance, Pollution control etc.
5. Quality control cost: This is the cost of resources consumed towards quality control procedures.
6. Research \mathcal{E} Development cost: It includes only those research and development related cost which is incurred for the improvement of process, system, product or services.
7. Credit for recoveries: The realised or realisable value of scrap or waste is deducted as it reduces the cost of production.
8. Packing cost (primary): packing material which is essential to hold and preserve the product for its use by the customer.
9. Administrative Overheads:
a) Depreciation and maintenance of, building, furniture etc. of corporate or general management.
b) salary of administrative employees, accountants, directors, secretaries etc.
c) Rent, insurance, lighting, office expenses etc.

Selling Overheads:

(a) salary and wages related with sales department and employees directly related with selling of goods.
(b) Rent, depreciation, maintenance and other cost related with sales department.
(c) Cost of advertisement, maintenance of website for online sales, market research etc.

Dístríbution Overheads

(a) salary and wages of employees engaged in distribution of goods.
(b) Transportation and insurance costs related with distribution.
(c) Depreciation, hire charges, maintenance and other operating costs related with distríbution vehícles etc.

Q1. DFG Ltd. manufactures leather bags for office and school purpose. The following information is related with the production of leather bags for the month of september 2019.
(i) Leather sheets and cotton cloths are the main inputs, and the estimated requirement per bag is two meters of leather sheets and one meter of cotton cloth. 2,000 meter of leather sheets and 1,000 meter of cotton cloths are purchased at $₹ 3,20,000$ and $₹ 15,000$ respectively. Freight paid on purchases is $₹ 8,500$.
(ii) Stitching and finishing need 2,000 man hours at ₹80 per hour.
(iii) Other direct cost of ₹ 10 per labour hour is incurred.
(iv) DFG has 4 machines at a total cost of $₹ 22,00,000$. Machine has a life of 10 years with a scrape value of 10% of the original cost. Depreciation is charged on straight line method.
(v) The monthly cost of administrative and sales office staffs are $₹ 45,000$ and $₹ 72,000$ respectively. DFG pays $₹ 1,20,000$ per month as rent for a 2400 sq. feet factory premises. The administrative and sales office occupies 240 sq. feet and 200 sq. feet respectively of factory space.
(Vi) Freight paid on delivery of finished bags is ₹ 18,000 .
(vii) During the month 35 kg . of leather and cotton cuttings are sold at ₹ 150 per kg.
(Viii) There is no opening and closing stocks for input materials. There is 100 bags in stock at the end of the month.

Required: PREPARE a cost sheet following functional classification for the month of september 2019.
(RTP NOV 2019)

Solution: cost sheet	
	₹
Direct Materíal Consumed Dírect Labour 2000×80 Dírect Expenses 2000×10	$\begin{aligned} & 3,43,500 \\ & 1,60,000 \\ & 20,000 \end{aligned}$
Prime cost Factory Overheads	$\begin{aligned} & 5,23,500 \\ & 114500 \end{aligned}$
Gross Factory Cost +Opening Stock of Work in Progress	$6,38,000$

-closing stock of work in Progress	-
Factory cost	$6,38,000$
Quality control cost	-
Research and development cost	-
Administrative overheads (relating to production)	57,000
Primary Packing	-
(Scrap sale)	(5250)
Cost of Production	$6,89,750$
+Opening Stock of Finished Goods	-
-closing stock of finished G00ds 689750 /1000 x100	(68975)
Cost of goods sold	$6,20,775$
Administration Overheads (ceneral)	-
Selling Overheads	$1,00,000$
Distribution Overheads	-
Cost of sales	$7,20,775$

Workings

1. Material Leather $=₹ 3,20,000$

$$
\begin{array}{ll}
\text { Cotton }= & ₹_{15,000} \\
\text { Freight }= & \underline{₹} 8500 \\
& \underline{₹} 3,43,500
\end{array}
$$

2. Factory Overheads Depreciation $=22,00,000-2,20,000 / 10 \times 1 / 12=16,500$
3. Overheads

	Factory	Administration	Selling
Depreciation	16,500	-	-
Staffcost	-	45,000	72,000
Rent	$1,20,000-12000$	$1,20,000 / 2400$	$1,20,000 / 2400$
	$-10,000=98000$	$\times 240=12,000$	$\times 200=10,000$
Freight			18,000
Total	$1,14,500$	57,000	$1,00,000$

4. Administrative overheads are assumed to be relating to production.

Q2. Following details are provided by M/s ZIA Private Limited for the quarter ending 30 September, 2018:

(i)	Direct expenses	$₹_{1,80,000}$
(ii)	Direct wages being 175\% of factory overheads	$₹_{2,57,250}$
(iii)	Cost of goods sold	$₹_{18,75,000}$
(iv)	Selling \& distríbution overheads	$₹_{60,000}$
(v)	sales	$₹_{22,10,000}$

Stock details as per Stock Regíster:
$\left.\begin{array}{|l|r|r|}\hline \text { Particulars } & 30.06 .2018 & 30.09 .2018 \\ & & ₹\end{array}\right)$

You are required to prepare a cost sheet showing:
(i) Raw material consumed
(ii) Prime cost
(iii) Factory cost
(iv) Cost of goods sold
(v) cost of sales and profit
(Nov 2018)

Solution: cost sheet	
	₹
Direct Materíal Consumed Dírect Labour Dírect Expenses	$\begin{aligned} & 12,60,250 \\ & 2,57,250 \\ & 1,80,000 \end{aligned}$
Prime cost Factory Overheads	$\begin{aligned} & 16,97,500 \\ & 1,47,000 \end{aligned}$
Gross Factory cost +Opening stock of Work in Progress - closing Stock of Work in Progress	$\begin{aligned} & 18,44,500 \\ & 1,70,800 \\ & (1,90,000) \end{aligned}$
Factory cost Quality control cost Research and development cost Administrative overheads (relating to production) Primary Packing (scrap sale)	$18,25,300$ $14,700$
cost of Production +Opening Stock of Finished Goods - closing stock of finished cioods	$\begin{aligned} & 18,40,000 \\ & 3,10,000 \\ & (2,75,000) \end{aligned}$
cost of goods sold Administration overheads (ceneral) selling overheads Distríbution Overheads	$\begin{aligned} & 18,75,000 \\ & - \\ & 60,000 \end{aligned}$

Cost of sales	$19,35,000$
Profit	$2,75,000$
Sales	$22,10,000$

Workings

1. Dírect wages $=$ Factory overheads $\times 175 \%$
$2,57,250=$ Factory overheads $\times 175 \%$
Factory overheads $=2,57,250 / 175 \%=1,47,000$
2. Administration Overheads $=10 \%$ of $1,47,000=14,700$ (Assumed to be relating to production)
3. Raw material Consumed = Raw material purchases + Opening stock of Raw material - closing stock of raw material
$12,60,250=$ Raw material purchases $+2,45,600-2,08,000$
Raw materíal purchases $=12,22,650$

Note: If administration overheads are taken as General then profit will be ₹ 2,60,300

Q3. M/s Areeba Private Limíted has a normal production capacíty of 36,000 units of toys per annum. The estimated costs of production are as under:
(i) Direct Material ₹ 40 per unit
₹ 30 per unit (subject to a minimum of ₹
(ii) Direct Labour 48,000 p.m.)

Factory
(iii) Overheads:
(a) Fixed $₹ 3,60,000$ per annum
(b) variable $₹ 10$ per unit
semi-variable $₹_{1,08,000}$ per annum up to 50% capacíty and additional

46,800 for every 20% increase in capacíty or any part thereof.
(v) Administrative overheads ₹ $5,18,400$ per annum (fixed)
(vi) Selling overheads are incurred at ₹ 8 per unit.
(Vii) Each unit of raw material yields scrap which is sold at the rate of $₹$ 5 per unít.
(Viii) In year 2019, the factory worked at 50% capacity for the first three months but it was expected that it would work at 80% capacíty for the remaining nine months.
(ix) During the first three months, the selling price per unit was ₹ 145 .

You are required to:
(i) Prepare a cost sheet showing Prime cost, Works cost, cost of Production and cost of sales.
(ii) calculate selling price for remaining nine months to achieve total profit of $₹ 8,76,600$. (May 2019)

Solution: cost sheet		
	3 Months	9 months
Dírect Material Consumed Dírect Labour Direct Expenses	$\begin{aligned} & 1,57,500 \\ & 1,44,000 \end{aligned}$	$\begin{aligned} & 7,56,000 \\ & 6,48,000 \end{aligned}$
Prime Cost Factory overheads (FIXED + VARIABLE + SEMI)	$\begin{aligned} & 3,01,500 \\ & 1,62,000 \end{aligned}$	$\begin{aligned} & 14,04,000 \\ & 6,37,200 \end{aligned}$
Gross Factory cost +opening stock of Work in Progress - closing stock of Work in Progress	$4,63,500$	$20,41,200$
Factory cost Qualíty control cost Research and development cost Administrative overheads (relating to production) Primary Packing (scrap sale)	$4,63,500$ $1,29,600$	$20,41,200$ $3,88,800$
cost of Production +Opening stock of Finished Goods - closing stock of finished Goods	$5,93,100$	$24,30,000$
cost of goods sold Administration Overheads (General) selling overheads @ 8 per unit Distribution Overheads	$\begin{aligned} & 5,93,100 \\ & - \\ & 36,000 \end{aligned}$	$\begin{aligned} & 24,30,00,000 \\ & - \\ & 1,72,800 \end{aligned}$
Cost of sales Profit	$\begin{aligned} & 6,29,100 \\ & 23,400 b . f . \end{aligned}$	$\begin{aligned} & 26,02,800 \\ & 8,53,200 \end{aligned}$
sales	6,52,500	34,56,000

Workings:
First 3 Months
Next 9 Months
1.Units

$$
36,000 \times 50 \% \times 3 / 12=4500
$$

$36,000 \times 80 \% \times 9 / 12=$
21,600
2.Material-scrap $4500 \times 40-4500 \times 5=1,57,50021,600 \times 40-21,600 \times 5=$

7,56,000
3. Labour

Higher
4.Factory Overheads

Fixed
$3,60,000 \times 3 / 12=90,000$
$3,60,000 \times 9 / 12=2,70,000$
$+$

```
varíable
4500\times10=45,000
21,600\times10=2,16,000
semi-variable
1,08,000 <3/12 (1,08,000+46,800+
46,800)\times9/12
5.Administration Overhead 5,18,400 <3/12=1,29,600 5,18,400\times9/12=3,88,800
6. profit 8,76,600-23,400=8,53,200
7. Selling Price 34,56,000/21,600 = ₹ 160 per unit
8. Administration overheads are taken as relating to production
```

\qquad

Chapter 7 Cost Accounting System

Non integral System

journal entries

> 1. Purchase of Materíal (cash / Credít / Dírect / indirect)
> Store ledger Control A/C Dr.
> To Cost Ledger Control A/C
2. Material Returned to Vendor Cost ledger Control A/C Dr.

To Store Ledger Control A / C
3. Direct Material issued to production / Specialjob

WIP Control A/C Dr.
To Store Ledger Control A / C
4. Indirect Material issued to production / For Repairs

Production Overhead Control A/C Dr.
To Store Ledger Control A / C
5. Material Returned from shop to store
store Ledger Control A/C Dr.
To WIP Ledger Control A/C
6. Material Transfer from between Jobs

No entry
7. Normal Loss of Material

Production Overhead Control A/C Dr.
To Store Ledger Control A / C
8. Abnormal Loss of Material

Costing PGL Control A/C Dr.
To Store Ledger Control A/C
9. Direct Wages Paid to Worker
wage Control A/C Dr.
To Cost Ledger Control A / C

WIP Control A/C Dr
To wage Control A / C
10. Indirect Wages Paid to Worker in Production

Wage Control A/C Dr.
To Cost Ledger Control A/C
Production Overhead control A/C Dr
To wage control A/C
11. Indirect Wages Paid to Worker in Administration
wage control A/C Dr.
To Cost Ledger Control A / C

Administration Overhead Control A/C Dr To wage control A/C
12. Indirect Wages Paid to Worker in Selling Department
wage control A/C Dr.
To Cost Ledger Control A / C
selling Overhead control A/C Dr To wage control A / C
13. Direct Expenses

WIP Control A/C Dr.
To Cost Ledger Control A/C
14. Factory Overheads Incurred/Recovered

Factory Overheads Control A/C Dr.
To Cost Ledger Control A/C
WIP Control A/C Dr
To Factory Overheads Control A/C
15. Administration Overheads incurred/Recovered

Administration Overheads control A / C Dr.
To Cost Ledger Control A/C
Finished Goods Control A/C Dr
To Factory Overheads Control A/C
16. Selling Overheads incurred/Recovered
selling Overheads control A/C Dr.
To Cost Ledger Control A/C
Cost of sales control A/CDr
To Factory Overheads Control A / C
17. Under Recovery of Overheads

Costing PEGL A/C Dr.

TO Overheads control A / C

TO Overheads control A/C		
18. Over Recovery of Overheads		
Overheads control A/C Dr.		
TO Costing PE L Control A/C		
19. Sales		
Cost Ledger control A/C Dr		
TO Costing PEL A / C		
Integral Account		
CLC A / C is not maintained		
Q1. As on 31 st March 2016, the following balances existed in a firm's cost ledger:		
	$\operatorname{Dr}(\mathrm{F})$	$\operatorname{Cr}(\mathrm{F})$
Stores ledger control Account	3,01,435	
Work in progress control Account	1,22,365	
Finished stock Ledger control Account	$2,51,945$	
Manufacturing overhead control Account		10,525
cost ledger control account		6,65,220
	6,75,745	6,75,745

During the next three months the following items arose:

Finished product (at cost) $2,10,835$

Manufacturing overhead incurred 91,510

Raw material purchased $1,23,000$
$\begin{array}{ll}\text { Factory wages } & 50,530\end{array}$
Indirect labour 21,665
cost of sales
$1,85,890$
Material issued to production
$1,27,315$
sales returned at cost 5380

Q2. During the year ended $31^{\text {st }}$ March 2016, the profits of a company stood at $₹$ 36,450 as per financial accounts. The cost book, however, showed a profit of $₹$ 51,950 for the same period.
You are required to reconcile the profit as shown by two set of accounts.

1	Opening stock overstated in cost account	3500
2	Closing stock understated in cost account	4600
3	Factory overhead under recovered in cost account	2500
4	Administration overhead over recovered in cost account	750
5	Selling and distribution overhead under recovered in cost account	1650
6	Depreciation over recovered in cost account	1500
7	interest on investment not included in cost account	5000
8	Obsolesce loss in respect of machineries charged in financial account	2450
9	income tax provided in financial account	25,000
10	Bank interest credited in financial account	1500
11	Store adjustment debit in financial account	750

Q3. Given below is the trading and profit \mathcal{E} loss account of a company for the year ended 31st

March 2016
Profit and loss account

	$₹$		$₹$
Material	$27,40,000$	Sales (60,000 units)	$60,00,000$
Wages	$15,10,000$	Stock (2000 units)	$1,60,000$
Factory Expenses	$8,30,000$	Work-in-progress	
Administration	$3,82,000$	Material 64,000	
Expenses			

| Selling Expenses | $4,50,000$ | Wages | W6,000 |
| :--- | ---: | :--- | :--- | :--- |
| Preliminary Expenses | 60,000 | Factory expenses
 20,000
 Dividend
 received | $1,20,000$ |
| Net Profit | $3,26,000$ | 18,000 | |
| | $62,98,000$ | | $62,98,000$ |

in cost accounts
7. Factory expenses have been allocated to production 20% of prime cost
8. Administrative overhead at ₹ 6 per unit
9. Selling expenses at ₹ 8 per unít sold

Prepare costing profit and loss account of the company and reconcile the same with the profit disclosed by the financial account.
\qquad

CHAPTER 8 unit \& Batch costing

UNIT COSTING: unit costing is a method of costing, used where the output produced is
identical and each unit of output requires identical cost.
Q1. Atharva Pharmacare Limited produced a uniform type of product and has a manufacturing capacity of 3,000 units per week of 48 hours. From the records of the company, the following data are available relating to output and cost of 3 consecutive weeks

Week Number	Units Manufactured	Direct Material $₹$	Dírect Labour $₹$	Factory Overheads₹
1	1,200	9,000	3,600	31,000
2	1,600	12,000	4,800	33,000
3	1,800	13,500	5,400	34,000

Assuming that the company charges a profit of 20% on selling price, FIND OUT the selling price per unit when the weekly output is 2,000 units (SM, ICAI)
Solution: Statement of cost and selling price for 2,000 units of output

Particulars	cost Per unit	Total cost
Dírect Materíals	7.50	15,000
Direct Labour	3.00	6000
	10.50	21,000
Add: Factory Overheads (Refer working note-2)	17.50	35,000
Total cost	28.00	56,000
Add: Profit (25\% of cost)	7.00	14,000
Sales	35.00	70,000

Batch costing : specific order costing where articles are manufactured in predetermined
lots, known as batch
COSTING PROCEDURE IN BATCH COSTING:
One number is allotted for each batch.
Material cost is arrived at on the basis of material requisitions for the batch
labour cost is arrived at by multiplying the time spent on the batch with wage rate Overheads are absorbed on some suitable basis like machine hours, direct labour hours etc.
Q2. Arnav confectioners (AC) owns a bakery which is used to make bakery items like pastries, cakes and muffins. AC use to bake atleast 50 units of any item at a time. A customer has given an order for 600 muffins. To process a batch of 50 muffins, the following cost would be incurred:
Direct materials-
$₹ 500$
Direct wages- ₹ 50
oven set-up cost ₹150
AC absorbs production overheads at a rate of 20% of direct wages cost. 10% is added to the total production cost of each batch to allow for selling, distribution and administration overheads. AC requires a profit margin of 25% of sales value.
DETERMINE the selling price for 600 muffins. (SM, ICAI)

Solution: Statement of cost per batch and per order
No. of batch $=600$ units $\div 50$ units $=12$ batches

Particulars	Cost per Batch	Total cost
Direct Material Cost	500.00	6,000
Direct Wages	50.00	600
Oven set-up cost	150.00	1,800
Add: Production Overheads (20\% of Direct wages)	10.00	120
Total Production cost	710.00	8,520
Add: SED and Administration overheads	71.00	852
(10\% of Total production cost)		9,372
Total Cost	781.00	3,124
Add: Profit (1/3rd oftotal cost)	$1,041.33$	12,496
Selling price		

ECONOMIC BATCH QUANTITY (EBQ): Economic Batch quantíty is the size of a batch where total cost of set-up and holding costs are at minimum.
The total production cost under Batch production comprises two main costs namely

1. Machine set up Costs and
2. inventory holding costs.

If the size is higher, the set up cost may decline due to lesser set ups required but units in inventory will go up leading to higher holding costs. If the lot size is lower, lower inventory holding costs are accomplished but only with higher set up costs.
Q3. A customer has been ordering 90,000 special design metal columns at the rate of 18,000 columus per order during the past years. The production cost comprises ₹2,120 for material, ₹ 60 for labour and ₹ 20 for fixed overheads. It costs ₹ 1,500 to set up for one run of 18,000 column and inventory carrying cost is 5%.
(i) FIND the most economic production run.
(ii) CALCULATE the extra cost that company incur due to processing of

18,000 columns in a batch.
(SM, ICAI)
\qquad

chapter 9 Job \& contract costing

JOB COSTING
Meaning: Each job is treated as a separate entity for the purpose of costing. Job costing is carried out for the purpose of ascertaining cost of each job and takes into account the cost of materials, employees and overhead etc.
industries where it is followed: printing; furniture; hardware; ship-building; heavy machinery; interior decoration, repairs and other similar work.
suitability of job costing:

1. When jobs are executed for different customers according to their specifications.
2. when no two orders are alike and each order/job needs special treatment.
3. Where the work-in-progress differs from period to period on the basis of the number of jobs in hand.
JOB COST CARD/ SHEET: To ascertain cost of a particularjob, it is necessary to record all the expenditure related with a job separately
Q1. A shop floor supervisor of a small factory presented the following cost for job No. 303, to determine the selling price.

	Per unít (₹)
Materíals	70
Dírect wages 18 hours @ ₹ 2.50	45
(Deptt. $\times 8$ hours; Deptt. Y 6 hours; Deptt. Z 4 hours)	
Chargeable expenses	5
Add: 33-1/3 \% for expenses cost	120

Analysis of the Profit/Loss Account
(for the year 20×9)

	(₹)	(₹)
Materíals used	$1,50,000$	sales less returns

Direct wages:
Deptt. X 10,000
Deptt. Y 12,000
Deptt. 2 8,000 30,000

Special stores
ítems 4,000
overheads:

Deptt. x	5,000			
Deptt. Y	9,000			
Deptt. z	2,000	16,000		
Works cost		2,00,000		
Gross profit c / d		50,000		
		2,50,000		2,50,000
selling expenses		20,000	Gross profit b/d	50,000
Net profit		30,000		
		$\overline{50,000}$		50,000

It is also noted that average hourly rates for the three Departments X, Y and Z are similar.

You are required to:
(i) PREPARE a job cost sheet.
(ii) CALCULATE the entire revised cost using 20×g actual figures as basis.
(iii) Add 20% to total cost to DETERMINE selling price.

Solution:	
Direct Material	$₹ \neq 0$
Direct wages	
Deptt $\times 8 \mathrm{hrs} \times 2.50=20$	
Deptt Y 6 hrs $\times 2.50=15$	
Deptt $24 \mathrm{hrs} \times 2.50=10$	45
chargeable exp	5
Príme Cost	120
overheads	
Deptt $\times 50 \%$ of $20=10$	
Deptt Y 75% of $15=11.25$	
Deptt 225% of $10=2.50$	23.75
Works cost	143.75
selling cost 10 \% of works cost	14.38

Total cost
158.13

Profit 20% of total cost 31.63
Selling Price $\quad 189.76$

CONTRACT COSTING
contract costing is a form of specific order costing where job undertaken is relatively large and normally takes period longer than a year to complete
TERMS USED IN CONTRACT COSTING
Work-in-Progress: contract which is not complete at the reporting date
Work certified: value of the work completed as on a particular date; assessment of the completion of work is carried out by an expert
Work uncertified: cost of the work which has been carried out by the contractor but has not been certified by the expert
Progress Payment: Advance Payment
Retention Money: To have a cushion against any defect or undesirable work, the contractee upholds some money payable to contractor.
Notional Profit: It represents the difference between the value of work certified and cost of work certified.
Estimated Profit: It is the excess of the contract price over the estimated total cost of the contract.

COST PLUS CONTRACT: value of the contract is determined by adding an agreed percentage of profit to the total cost.
Escalation clause in a contract: As per this clause, the contractor increases the contract price if the cost of materials, employees and other expenses increase beyond a certain limit.
Q3. The following expenses were incurred on a contract:
Materials purchased 6,00,000
Materíal drawn from stores 1,00,000
Wages 2,25,000
Plant issued 75,000
Chargeable expenses 75,000
$\begin{array}{ll}\text { Apportioned indirect expenses } & 25,000\end{array}$
The contract was for ₹ $20,00,000$ and it commenced on january 1,20×8. The value of the work completed and certified upto 30th November, 20×8 was $₹ 13,00,000$ of which $10,40,000$ was received in cash, the balance being held back as retention money by the contractee. The value of work completed subsequent to the architect's certificate but before 31st December, 20×8 was $₹ 60,000$. There were also lying on the site materials of the value of $₹ 40,000$. It was estimated that the value of plant as at 31st December, 20×8 was $₹ 30,000$.

You are required to COMPUTE value of work certified, cost of work not certified and notional profit on the contract till the year ended 31 ${ }^{\text {st }}$ December, 20×8. (SM, ICAI)
Solution: Contract Account

Partículars	(₹)	Partículars	(₹)
To Materíal purchased	$6,00,000$	By Work-in-progress:	
" Stores issued	$1,00,000$	value of work	$13,00,000$

Q4. A contractor prepares his accounts for the year ending 31st December each year.
He commenced a contract on 1st Apríl, 20×8.
The following information relates to the contract as on 31st December, 20X8:

Materíal issued	$2,51,000$
wages	$5,65,600$
salary to Foreman	81,300

A machine costing $₹ 2,60,000$ has been on the site for 146 days, its working life is estimated at 7 years and its final scrap value at $₹ 15,000$.

A superisor, who is paid ₹ 8,000 p.m. has devoted one-half of his time to this contract. All other expenses and administration charges amount to ₹ $1,36,500$.
Material in hand at síte costs ₹ 35,400 on 31st December, 20×8.
The contract price is ₹ 20,00,000. On 31st December, 20×8 two-third of the contract was completed. The architect issued certificates covering 50% of the contract price, and the contractor had been paid ₹ $7,50,000$ on account.
PREPARE Contract A/c and show the notional profit or loss as on 31 st December, 20×8
Solution
Contract Account

Particulars	()	Particulars	()
Material issued	2,51,000	Machine (Working note 1)	2,46,000
Wages	5,65,600	Material (in hand)	35,400
Foreman's salary	81,300	Works cost (balancing figure)	10,49,000
Machine	2,60,000		
```Supervisor's salary (`,000 < 9)/2```	36,000		
Administrative charges	1,36,500		
	13,30,400		13,30,400
Works cost	10,49,000	Value of work certified	10,00,000
Costing P\&L A/c (Notional profit)	2,13,250	Cost of work uncertified   (Working Note 2)	2,62,250
	12,62,250		12,62,250

## Chapter 10 Process costing

Meaning: Process Costing is a method of costing used in industries where the material has to pass through two or more processes
industries where it is followed: steel, paper, medicines, soaps, chemicals, rubber, vegetable oil, paints, varnish
Loss: Process loss is defined as the loss of material arising during the course of a processing operation


Abnormal Process Gain/ Yield: actual production exceeds the expected figures.
Treatment: The process account is debited with the abnormal gain and credited to abnormal gain account


Q1.A product passes through three process $A, B$ and $C$. The normal wastage at each process is as follows:

Process A

Process B

Process C
$3 \%$
$5 \%$
$8 \%$

Wastage of process $A$ was sold at 25 paise per unit, that of process $B$ at 50 paise per unit and of process $C$ at $₹ 1$ per unit. 10,000 units were issued to process $A$ in the beginning of October 2016 at a cost of $₹ 1$ per unit, the other expenses were as follows:

	Process A ₹	Process B ₹	Process C ₹
Sundry materials	1000	1500	500
Labor	5000	8000	6500


Direct expenses	1050	1188	2009

Actual output was:

Process A

Process B

Process C 8100 uníts

Prepare the process accounts assuming that there were no opening or closing stock. Also give the abnormal wastage and abnormal effectiveness account.

Q2. The following details are given in respect of manufacturing unit for the month of Apríl:
a. Opening

WIP 5000 units
$\begin{array}{lr}\text { Material ( } 100 \% \text { complete) } & ₹ 8,750 \\ \text { Labour ( } 60 \% \text { complete) } & ₹ 7500 \\ \text { Overheads }(60 \% \text { complete) } & ₹ 3750\end{array}$
b. Units introduced in process 17,500 units
c.17,500 units are transferred to next process
d. Process cost for the period are

Material	$₹, 50,000$
Labour	$₹, 95,000$
overheads	$₹ 97,500$

e. The stage of completion of units in closing WIP are estimated to be Material 100\%,

Labour $50 \%$, overhead $50 \%$
You are required to prepare a statement of equivalent units of production; statement of cost of (a) Output transferred (b) closing WIP

In some process industries the output of one process is transferred to the next process not at cost but at market value or cost plus a percentage of profit. The difference between cost and transfer price is known as inert process profit.
Advantages

1. Comparison between cost of output and its market price at the stage of completion is facilitated
2. Each process is made to stand by itself as to the profitability

## Disadvantages

1. The use of inter process profit involve complication
2. The system shows profits which are not realised because of stock not sold out.

Question 3. A Ltd. Produces AXE which passes through two processes before it is completed and transferred to finished stock. The following data relate to jan 2016

	Process $1 ₹$	Process 2 ₹	Finished stock ₹
Opening Stock	7500	9000	22,500
Direct materíal	15,000	15,750	
Direct wages	11,200	11,250	
Factory overheads	10,500	4500	11,250
Closing stock	3700	4500	8250
Inter process profit		1500	
included			
in op. Stock			

Output of process 1 is transferred to process 2 at $25 \%$ profit on transfer price
Output of process 2 is transferred to finished stock at $20 \%$ profit on transfer price. Stock in process are valued at prime cost. Finished stock is valued at the price at which it is received from process 2 . Sales during the period are ₹ $1,40,000$

Prepare process account and finished goods account.
Solution:
process $1 \mathrm{~A} / \mathrm{C}$

Particulars	cost	profit	Total	Particulars	cost	Profit	Total
Opening stock	7500	-	7500	Transfer to Process 2 A/C	40,500	13,500	54,000
D Material	15,000	-	15,000				
D Labour	11,200	-	11,200				
Prime cost	33,700	-	33,700				
-closing Stock	$-3700$	-	$-3700$				
	30,000	-	30,000				



## Chapter 11 Joint product and By Product

Joint Product: two or more products of equal importance, produced, simultaneously from the same process, with each having a significant relative sale value
By Product: by-product is a secondary or subsidiary product which emanates as a result of manufacture of the main product.
Co-Products: two or more products which are contemporary but do not emerge necessarily from the same material in the same process
METHODS OF APPORTIONMENT OFJOINT COST TOJOINT PRODUCTS


TREATMENT OF BY-PRODUCT COSTIN COST-ACCOUNTING

1. When they are of small total value: credited to the costing Profit and Loss Account or deductions from the total costs.
2. When the by-products are of considerable total value: regarded as joint products rather than as by-products.
3. Where they require further processing:

Total NRV Is
$\qquad$

## METHODS OF APPORTIONMENT OFJOINT COST TO BY-PRODUCTS

1. Net Realisable value method: The realisation on the disposal of the by-product may be deducted from the total cost of production so as to arrive at the cost of the main product.
2. Standard cost in Technical Estimates: may be determined by averaging costs recorded in the past and making technical estimates of the number of units of original raw material going into the main product and the number forming the by-product
3. comparative price: Under this method, the value of the by-product is ascertained with reference to the price of a similar or an alternative material.
4. Re-use basis: In some cases, the by-product may be of such a nature that it can be reprocessed in the same process as part of the input of the process. In that case the value put on the by-product should be same as that of the materials introduced into the process.

Q1. Sellwell Ltd. Operates a chemical process which produces four products $A, B, C$ and $D$ from a basic raw material. The company's budget for a month is as under:

	$₹$
Raw Material consumption	17,520
Initial processing wages	16,240
Initial processing overheads	16,240


Products	Production (kgs)	sales (₹)	Additional proct   cost after split
A	16,000	$1,09,600$	28,800
B	200	5600	-
C	2000	30,000	16,000
$D$	360	21,600	6600

The company presently intends to sell product B at the point of split off without further processing. The remaining products $A, B$ and $D$ are to be further processed and sold. However management has been advised that it would be possible to sell all the four
products at the split offpoint without further processing and if this course was adopted, the selling price would be as follows.

Products	A	$B$	$C$	$D$
Selling price per Kg.	4.00	28.00	8.00	40.00

The joint cost are to be apportioned on the basis of sale value realization at the point of split off.

You are required to

1. Prepare a statement showing apportionment of joint cost.
2. Prepare a statement showing the product wise and total budgeted profit or loss based on the proposal to sell product B at the split off point and products A, C and $D$ after further processing.
3. Prepare a statement to show the products wise and total profit or loss if the alternative strategy to sell all the products at split off stage was adopted.
4. Recommend any other alternative which, in your opinion, can increase the total profit further. calculate the total profit as also the product wise total profit or loss based on your recommendation.

## Solution: Workings: Joint Cost

Raw material consumption
Initial processing wages

Initial processing overheads

Total
a. Allocation of Joint cost

Method: Sale value at split off point

	$A$	$B$	$C$	$D$
sale value at spilt off	$16000 \times 4$	$200 \times 28$	$2000 \times 8$	$360 \times 40$
joint cost 50,000 in $(64: 5.6: 16: 14.4)$	32,000	2800	8000	7200

6. Profit statement (sale after processing)

	$A$	$B$	$C$	$D$	Total
Final sale value	$1,09,600$	5600	30,000	21,600	$1,66,800$
Less,					


Pre Separation cost	32,000	2800	8000	7200	50,000
Post Separation cost	28,800	-	16,000	6600	51,400
Profit	48,800	2800	6000	7800	65,400

c. Profit Statement (sale at
splít off point)

	A	B	C	D	Total
Sale value at split off	64,000	5600	16,000	14,400	$1,00,000$
Less,					
Profit	32,000	2800	8000	7200	50,000

Processed further
A 48,800
D 7800

Not to process further
B 2800
c 8000

Total expected net income is ₹
67,400

## Chapter 12

## service costing

service costing / Product costing
services are intangible and cannot be stored
use of composíte cost units for cost measurement
Employee (labour) cost constítutes a major cost element than materíal cost.
Administration overheads are generally have a significant proportion in total cost


COSTING OF TRANSPORT SERVICES: Transport organizations can be divided into two categories viz. Goods transport and Passenger transport.
The cost unit for Goods transport organization is Ton-Kilometer - that means cost of carrying one Ton of goods over a distance of one kilometer.
cost unit for Passenger transport organization is Passenger- Kilometer - that means cost of carrying one Passenger over a distance of one kilometer.

Q1. AXA Passenger Transport company is running 5 buses between two towns, which are 40 kms apart. Seating capacity of each bus is 40 passengers. Following etails are available from their books, for the month of April 20×g:

Salary of Drivers, Cleaners and Conductors	Amount (₹)
Salary to Supervisor	24,000
Diesel and other Oil	10,000
Repairs and Maintenance	40,000
Tax and Insurance	8,000



Actual passengers carried were $75 \%$ of the seating capacity. All the four buses run on all days for the month. Each bus made one round trip per day. CALCULATE cost per passenger - Kílometer.

Solution: Working Note:
Total Passenger Kílometres $=$
Number of Buses $\times$ Distance $\times$ seating capacity $\times$ used capacity $\times$ Number of days in the month $\times$ Number of trips
(a) 5 Buses $\times 40 \mathrm{kms} . \times 40$ seats $\times 75 \% \times 30$ Days $\times 2$ single trips ( 1 Round
Trip)
(b) 3,60,000 Passenger-Kms.

Cost per Passenger-Km = Total costs $\div$ Total Passenger Kílometers
Statement of cost per Passenger - Km


## B. Running Charges

Diesel and other Oil


C. Maintenance Charges		
Repairs and Maintenance	8,000	0.022
- Totat	1,44,000	0.400

Cost per Passenger-Km =` 0.40

Q2.ABC Transport company has given a route 40 kílometers long to run bus.
(a) The bus costs the company a sum of $₹ 20,00,000$
(b) It has been insured at $3 \%$ p.a. and
(c) The annual tax will amount to ₹ 20,000
(d) Garage rent is ₹ 20,000 per month.
(e) Annual repairs wíll be ₹ $2,04,000$
(f) The bus is likely to last for 5 years
(g) The driver's salary will be ₹ 30,000 per month and the conductor's salary will be $₹ 25,000$ per month in addition to $10 \%$ of takings as commission [To be shared by the driver and conductor equallyl.
(h) cost of stationery will be $₹ 1,000$ per month.
(i) Manager-cum-accountant's salary is $₹ 17,000$ per month.
(j) Petrol and oil wíll be ₹ 500 per 100 kílometers.
(k) The bus will make 3 up and down trips carrying on an average 40 passengers on each trip.
(L) The bus will run on an average 25 days in a month.

Assuming 15\% profit on takings, CALCULATE the bus fare to be charged from each passenger.

## Solution: Working Note:

## (1) Total Kilometres run per annum:

$=$ Number of Buses $\times$ Distance $\times$ Number of days in the Month $\times$ Number of trips $\times$ 12 months
$=1$ Bus $\times 40 \mathrm{kms} \times 25$ Days $\times 6$ Single trips ( 3 Round Trips) $\times 12$ months $=72,000$ kms.
(2) Total Passenger Kilometres per annum:

Total Kilometres run per annum $\times$ Seating Capacity
$=72,000 \mathrm{Kms} \times 40$ Seats $=28,80,000$ Passenger -Kms.

## (3) Petrol \& oil Consumption per annum:

Total Kilometres run per annum $\times$ Petrol Consumption per KM

$$
=72,000 \mathrm{Kms} \times(₹ 500 / 100 \mathrm{Kms})=₹ 3,60,000
$$

## Statement of Cost per Passenger - Km

\begin{tabular}{|c|c|c|}
\hline Particulars \& Per Annum \& Per Passenger - <br>

\hline | A. Standing Charges: |
| :--- |
| Insurance @ 3\% on `10,00,000 |
| Annual Tax |
| Garage rent ( $20,000 \times 12$ ) |
| Depreciation | \&  \& <br>

\hline Salary of Driver (fixed part) \& 3,60,000 \& <br>
\hline Salary of Conductor (fixed part) \& 3,00,000 \& <br>
\hline Stationary \& 12,000 \& <br>
\hline Manager-cum-accountant's salary \& 2,04,000 \& <br>
\hline -- Total Standing Charges \& --15,66,000 \& 0.5438 <br>
\hline  \& \& <br>
\hline Diesel and other Oil (WN-3) \& 3,60,000 \& <br>
\hline _ Commission to Driver* \& -- - 1,42,000. \& <br>

\hline | $----(10 \% \times 28,40,000 \times 1 / 2)$ |
| :--- |
| Commission to Conductor* | \& 1,42,000 \& <br>

\hline $$
\begin{aligned}
& (10 \% \times 28,40,000 \times 1 / 2) \\
& - \text { Totat Running Charges }
\end{aligned}
$$ \& 6,44,000 \& 0.2236 <br>

\hline
\end{tabular}

## C. Maintenance Charges:

## Repairs

Grand Total $(\mathrm{A}+\mathrm{B}+\mathrm{C})$

$2,04,000$
$\mathbf{2 4 , 1 4 , 0 0 0}$


*Total takings = Standing Charges + (Running cost + Commission on takings)

+ Maintenance cost + Profit
Let Takings $=X$
Or, $X=15,66,000+(3,60,000+0.1 X)+2,04,000+0.15 X$ Or, $X$
$-0.25 \mathrm{X}=21,30,000$
Or, $X=28,40,000$
COSTING OF HOTELS AND LODGES
Q3. A company runs a holiday home. For this purpose, it has hired a building at a rent of $\boldsymbol{F}_{10,000}$ per month along with $5 \%$ of total taking. It has three types of suites for its customers, Viz., single room, double rooms and triple rooms.
Following information is given:

Type of suite	Number	Occupancy percentage
Single room	100	$100 \%$
Double rooms	50	$80 \%$
Triple rooms	30	$60 \%$


	$($ ()
Staff salaries	$14,25,000$
Room attendants' wages	$4,50,000$
Lighting, heating and power	$2,15,000$
Repairs and renovation	$1,23,500$
Laundry charges	80,500
Interior decoration	74,000
Sundries	$1,53,000$

Provide profit @ 20\% on total taking and assume 360 days in a year. Calculaye rent to be charged for each type of room

## Working Notes:

(i) Total equivalent single room suites

Nature of suite	Occupancy (Room-days)	Equivalent single


		room suites   (Room-days)
Single room suites	$36,000$   (100 rooms 360 days . 100\%)	$\begin{gathered} 36,000 \\ (36,000 \cdot 1) \end{gathered}$
Double rooms suites	$14,400$   (50 rooms • 360 days $\cdot 80 \%$ )	$\begin{gathered} 36,000 \\ (14,400 \cdot 2.5) \end{gathered}$
Triple rooms suites	$6,480$   (30 rooms $\cdot 360$ days $\cdot 60 \%$ )	$\begin{gathered} 32,400 \\ (6,480 \cdot 5) \end{gathered}$
		1,04,400

## Statement of total cost:

	(')
Staff salaries	14,25,000
Room attendant's wages	4,50,000
Lighting, heating and power	2,15,000
Repairs and renovation	1,23,500
Laundry charges	80,500
Interior decoration	74,000
Sundries	-1,53,000
	25,21, $\overline{0} \overline{0}$
Building rent \{( 10,000 - 12 months) +	1,20,000+5\% on total takings
5\% on total taking ${ }^{\text {- }}$	
Total cost	26,41,000 + 5\% on total takings

Profit is $20 \%$ of total takings
$\therefore$ Total takings $=$ ₹ $26,41,000+25 \%(5 \%+20 \%)$ of total takings Let $R$ be rent for single room suite
Then $1,04,400 R=26,41,000+(0.25 \times 1,04,400 R)$

Q4. From the following data pertaining to the year 20×8-×9 PREPARE a cost statement showing the cost of electricity generated per kwh by chambal Thermal Power Station.

Total units generated $\quad 10,00,000 \mathrm{kWh}$
(F)

Operating labour	$15,00,000$
Repairs \& maintenance	$5,00,000$
Lubricants, spares and stores	$4,00,000$
Plant supervision	$3,00,000$
Administration overheads	$20,00,000$

5 kWh . of electricity generated per kg. of coal consumed @ ₹ 4.25 per kg. Depreciation charges @ 5\% on capítal cost of ₹ $2,00,00,000$.

## Chapter 13 Standard costing

## Meaning of Standard Cost: Planned unit cost of the product, component or service produced in a period

PROCESS OF STANDARD COSTING

- Setting of Standards:
- Ascertainment of actual costs:
- comparison of actual cost with standard cost:
- Investigate the reasons for variances
- Disposition of variances:

COSTV

$\qquad$

variable overheads variance


Q1. The standard cost of certain chemical mixture is as under:
$40 \%$ of material $A$ at $₹ 20$ per tonne. $60 \%$ of material B at $₹ 30$ per tonne.
A standard loss of $10 \%$ is expected in production. The following actual cost data is given for the period.

180 tonnes material $A$ at a cost of $₹ 18$ per tonne.
220 tonnes of materíal $B$ at a cost of $₹ 34$ per tonne.
The weight produced is 364 tonnes.
calculate material variances.

Solution: Let Standard input be 100 tonnes
Data For Standard

Raw Materíal	Standard   Quantíty	Standard price
A	40	20
B	60	30

Standard Output $=90$
Data For Actual

Raw Material	Actual   Quantíty	Actual price
A	180	18
B	220	34

Actual Output $=364$

$S P \times S Q$	$S P \times S M$	$S P \times A Q(C)$	$A P \times A Q(C)$
$20 \times 161.77=$	$20 \times 160=$	$20 \times 180=$	$18 \times 180=$
3235.40	3200	3600	3240
$30 \times 242.66=$	$30 \times 240=$	$30 \times 220=$	$34 \times 220=$
7279.8	7200	6600	7480
$M C V=S P \times S Q-A P \times A Q(C)$			

$A 3235.40-3240=$
B7279.8-7480=

```
\(M P V=S P \times A Q(c)-A P \times A Q(c)\)
 A3600-3240 \(=360(F)\)
 \(\mathrm{B} 6600-7480=880(\mathrm{~A})\)
 520 (A)
\(M U V=S P \times S Q(C)-S P \times A Q(C)\)
```

$A 3235.40-600=$	$\begin{array}{c}364.60 \\ B 7279.80-6600\end{array}$
$\begin{array}{c}\text { (A) }\end{array}$	
$679.8(F)$	
$315.2(F)$	

$M M V=S P \times S M-S P \times A Q(C)$
A 3200-3600 400 (A)
B7200-6600 600 (F)
200 (F)
$M Y V=S P \times S Q-S P$
$\times S M$
A $3235.40-3200 \quad 35.40$ (F)
B7279.80-7200 79.80 (F)
115.20 (F)

Q2. Following information is given regarding standard composition and standard rates of gang of worker

Standard composítion	Standard hourly rate
10 men	₹ 0.625
5 women	0.400
5 boys	0.350

According to the given specifications, a week consists of 40 hours and standard output for a week is 1000 units. In a partícular week, gang consísted of 13 men, 4 women, 3 boys and actual wages were paíd as follows

Men	@₹ 0.6 per hour
Women	@₹ 0.425 per hour
Boys	@₹ 0.325 per hour

Two hours were lost in the week due to abnormal idle time. Actual production was 960 units in the week. Find out
(a) Labour rate variance
(b) Labour mix varíance
(c) Labour idle time variance
(e) Labour efficiency varíance
(d) Labour yield variance
( $f$ ) Labour cost variance

Solution:

## Data For Standard

Labour	Standard Time	Standard Rate
Men	$10 \times 40=400$	.625
Women	$5 \times 40=200$	.40
Boys	$5 \times 40=200$	.35

Standard Output $=1000$

Data For Actual

Labour	Standard Time	Standard Rate
Men	$13 \times 40=520$	.60
Women	$4 \times 40=160$	.425
Boys	$3 \times 40=120$	.325

Actual Output $=960$
$L C V=S R \times S T-A R \times A T(P)$
Men 240-312 =
Women 76.80-68=
Boys $67.20-39=$

## $L R V=S R \times A T(P)-A R \times A T(P)$

Men 325-312=

## $L E V=S R \times S T-S R \times A T(W)$

Men 240-308.75 =
Women 76.80-60.80=
Boys $67.20-39.90=$
$L M V=S R \times S M-S R \times A T(W)$
Men $237.50-308.75=$
Women 76-60.80=
Boys $66.50-39.90=$
$L Y V=S R \times S T-S R \times S M$

$$
\operatorname{Men} 240-237.50=
$$

Women $76.80-76=$
Boys $67.20-66.50=$

## LITV $=S R \times A T(W)-S R \times A T(P)$

$\operatorname{Men} 308.75-325=$
Women 60.80-64=
Boys 39.90-42 =
ST = Standard time for Actual Output
Men $=(400 / 1000) \times 960=384$
women $=(200 / 1000) \times 960=192$
Boys $=(200 / 1000) \times 960=192$
$S M=$ standard Mix, Actual time worked in standard Ratio
$(494+152+114)$ in 400:200:200; Men 380, Women 190, Boys 190

Q3. From the following calculate the fixed overhead variances.

Budgeted Actual
No. of working days
20
8000
1.0
0.9

Overhead cost (₹)
$1,60,000$
1,68,000

Solution:

	Budget	Actual
Fixed Overheads	$1,60,000$	$1,68,000$
Hours	$800 \times 20=1,60,000$	$8400 \times 22=1,84,800$
Days	20	22
Units	$1,60,000 \times 1=1,60,000$	$1,84,800 \times 0.9=1,66,320$

$S R=$ Budget fixed Overheads $/$ Budget Hours $=1,60,000 / 1,60,000=₹ 1$
$A R=$ Actual Fixed Overheads $/$ Actual Hours $=1,68,000 / 1,84,800=1680 / 1848$ ST $=$ Standard time for Actual Output $=(1,60,000 / 1,60,000) \times 1,66,320=1,66,320$ RT $=($ Budget Hours $x$ Actual Days) $/$ Budget Days $=(1,60,000 \times 22) / 20=1,76,000$

SR XST	SRXAT(W)	SRXRT	SRXBT	AR XAT (P)
$1 \times 1,66,320$	$1 \times 1,84,800$	$1 \times 1,76,000$	$1 \times 1,60,000$	$1680 / 1848 \times 1,84,800$
$1,66,320$	$1,84,800$	$1,76,000$	$1,60,000$	$1,68,000$

Fixed overhead cost variances $=S R \times S T-S R \times A T(P)$

$$
1,66,320-1,68,000=1680(\mathrm{~A})
$$

Fixed overheads volume variance $=S R \times S T-S R \times B T$

$$
1,66,320-1,60,000=6320(F)
$$

Fixed Overheads Budget variance $=S R \times B T-S R \times A T(P)$

$$
1,60,000-1,68,000=8000(\mathrm{~A})
$$

Fixed Overheads calendar variance $=S R \times R T-S R \times B T$

$$
1,76,000-1,60,000=16,000(\mathrm{~A})
$$

Fixed overhead capacity variance $=S R \times A T(W)-S R \times R T$

$$
1,84,800-1,76,000=8800(\mathrm{~A})
$$

Fixed Overheads Efficiency variance $=S R \times S T-S R \times A T(W)$

$$
1,666,320-1,84,800=18,480(\mathrm{~A})
$$

## Chapter 14 marginal costing

1. BEP (UNITS) = Fixed cost / contribution per unit OR BEP (in ₹) / SP Per unit
2. $\operatorname{BEP}(₹)=$ Fixed cost/PV ratio OR BEP (in ₹) $\times$ SP Per unít
3. Sale units to earn desired Profit $=$ Fixed cost + desired profit / contribution per unit
4. Sale ₹ to earn desired profit $=$ Fixed Cost + Desired Profit $/$ PV ratio
5. contribution per Unít $=$ SP per unit $-V C$ Per unít
6. PV Ratio (profit Volume ratio) $=$ contribution / sales $\times 1000 \mathrm{O}$
i. Contribution per unit / selling price per unit $\times 100$
7. Margin of safety (units) = Actual sales in units - BEP sale in units
8. Margin of safety $(₹)=$ Actual sales in $₹-$ BEP sale in $₹$
9. MS Ratio $=$ Margin of safety $/$ sales $\times 100$
10. Total sales $=$ BEP sale + MES
11. Profit $=$ sale $-V C-F C O R$ contribution $-F C$ OR Margin of safety (₹) $\times$ PV ratio
12. General Equation: Sales $-V C=F C+$ Profit OR sales $\times P V$ ratio $=F C+$ Profit Contribution sales - VC OR FC + Profit OR Sales $\times$ PV ratio
13. Before tax profits = After tax profits / 1- Tax rate
14. If PV ratio is $40 \%$ of sales than $V C$ ratio will be $60 \%$ of sales
15. PV Ratio If information of two years are given = change in profit/change in sales $\times 100$
16. cost $B E P=$ change in FC / change in VC Per unít
a. Decision criteria in case of COSTBEP

Expected production	17. Alternate
Below cost BEP	18. Alternate with less FC
Equals to cost BEP	19. Any Alternate

18. Overall BEP (UNITS) FC/ Weighted contribution per unit
19. Weighted contribution per unit $=$ Total contribution $/ \sum w$
20. Overall BEP (₹) =FC/Weighted PV Ratio
21. Weighed PV Ratio $=$ Total contribution $/$ Total Sales $\times 100$
22. If Overall BEP is in units than it will be divided in the ratio of $W$, If it is in $₹$ than it will be ratio of sales in ₹
(a) Format Under Marginal Costing

Sales		xxxx
Less, variable cost		
Direct material	Xxxx	
Direct Labour	Xxxx	
Direct expenses	xxxx	
Variable factory overhead	xxxx	
Variable cost of goods produced	$\overline{x x x x}$	
+ opening stock of finished goods	xxxx	
-closing stock of finished goods	xxxx	
Variable cost of goods sold	xxxx	
+ Variable administration overhead	xxxx	
+ Variable selling overhead	xxxx	
Total variable cost		Xxxx
Contribution		Xxxx
Less, Fixed factory overheads		Xxxx
Fixed administration overhead		Xxxx
Fixed selling overhead		Xxxx
Profit		xxxx

## Format Under Absorption Costing



Q1. The following data are obtained from the records of a company
First year (₹)
second Year (₹)
sales
80,000
90,000
Profit
10,000
14,000

## Calculate BEP

Solution: $P / V$ Ratio $=($ change in Profits $/$ change in sales $) \times 100$
Change in profit $\quad 14,000-10,000=4000$
Changeinsales $\quad 90,000-80,000=10,000$

$$
(4000 / 10,000) \times 100=40 \%
$$

sales $\times P / \vee$ Ratio $=$ Fixed cost + Profit
Ist Year
$80,000 \times 40 \%=$ Fixed Cost $+10,000$
Fixed Cost $=22,000$
$B E P=$ Fixed Cost $/ P \vee$ Ratio $22,000 / 40 \%=₹ 55,000$

Q2. XY Limited has been offered a choice to buy machine A or Machine B. From the following data, you are required to compute:
(d) Break even point for each of the machines.
(e) The level of sales at which both machines earn equal profits.
( $f$ ) The range of sales at which one is more profitable than the other Machines

	A	B
Annual output (in uníts )	10,000	10,000
Fixed cost (₹)	30,000	16,000
Profit at given level of production (₹)	30,000	24,000

The market price of the product is expected to be $₹ 10$ per unit.

[^0]given that the unit contribution of $Y$ is one fifth less than the unit contribution of $X$, that the total of $F_{1}$ and $F_{2}$ is $₹ 1,50,000$, that the BEP of $X$ is 1,800 units (for BEP of $X F_{2}$ is not considered) uníts is the indifference point between $X$ and $Y$. (i.e. $X$ and $Y$ make equal profits at 3,000 unit volume, considering their respective fixed costs). There is no inventory build up as whatever is produced is sold.

Required: Find out the values F1 and F2 and units contributions of $X$ and $Y$.

Q4. Mr. $x$ has ₹ 2,00,000 investments in his business firm. He wants a 15 per cent return on his money. From an analysis of recent cost figures, he finds that his variable cost of operating is 60 per cent of sales, his fixed costs are $₹ 80,000$ per year. Show computations to answer the following questions:

1. What sales volume must be obtained to break even?
2. What sales volume must be obtained to get 15 per cent return on investment?
N. Mr. X estimates that even if he closed the doors of his business, he would incur ₹ 25,000 as expenses per year. At what sales would he be better off by locking his business up?

Q5. WONDER LTD. manufactures a single product, ZEST. The following figures relate to ZEST for a one-year períod:

	$50 \%$	$100 \%$
Sales and Production units	400	800
sales	$₹, 00,000$	$₹ 16,00,000$
Production costs:	$3,20,000$	$6,40,000$
- Variable	$1,60,000$	$1,60,000$
- Fixed	$1,60,000$	$3,20,000$
Selling and Distribution costs:	$2,40,000$	$2,40,000$
- Variable		
- Fixed		

The normal level of activity for the year is 800 units. Fixed costs are incurred evenly throughout the year, and actual fixed costs are the same as budgeted. There were no stocks of ZEST at the beginning of the year.

In the first quarter, 220 units were produced and 160 units were sold.
Required:
(a) What would be the fixed production costs absorbed by ZEST if absorption costing is used?
(b) What would be the under/over-recovery of overheads during the period?
(c) What would be the profit using absorption costing?
(d) What would be the profit using marginal costing?

## Chapter 15 Budgetary control

Fixed / Flexible budget: fixed budget is a budget designed to remain unchanged irrespective of the level of activity actually attained.
Flexible budget is a budget which by recognizing the difference between fixed, semi-variable and variable cost is designed in relation to level of activity attained

Long term budget: Prepared for a period longer than a year, helpful in business forecasting and forward planning. capital expenditure budget and R \& D budget are examples of long term budget. Short term budget: prepared for period for less than a year, cash budget is an example of short term budget; such types of budgets are prepared in cases where a specific action has to be immediately taken to bring any variation under control
Q1. A department of company $x$ attains sale of ' $6,00,000$ at 80 per cent of its normal capacíty and its expenses are given below:

Administration costs:

## office salaries

General expenses
Depreciation
Rates and taxes
Selling costs:
salaries
Travelling expenses
sales office expenses
General expenses
Distribution costs:
wages
Rent
other expenses

## (₹)

90,000
2 per cent of sales
7,500
8,750

8 per cent of sales
2 per cent of sales
1 per cent of sales
1 per cent of sales

15,000
1 per cent of sales
4 per cent of sales

PREPARE flexible administration, selling and distribution costs budget, operating at go per cent, 100 per cent and 110 per cent of normal capacíty.

Solution Flexible Budget of Department....of Company 'X'

	$80 \% ~(₹)$	$90 \%$ (₹)	$100 \%$ (₹)	$110 \%(₹)$
Sales	$6,00,000$	$6,75,000$	$7,50,000$	$8,25,000$
Administration Costs:	90,000	90,000	90,000	90,000
Office Salaries (fixed)	12,000	13,500	15,000	16,500
General expenses (2\% of Sales)	7,500	7,500	7,500	7,500
Depreciation (fixed)				


Rent and rates (fixed)	8,750	8,750	8,750	8,750
(A) Total Adm. Costs	$1,18,250$	$1,19,750$	$1,21,250$	$1,22,750$
Selling Costs:	48,000	54,000	60,000	66,000
Salaries (8\% of sales)	12,000	13,500	15,000	16,500
Travelling expenses (2\% of sales)	6,000	6,750	7,500	8,250
Sales office (1\% of sales)	6,000	6,750	7,500	8,250
General expenses (1\% of sales)	72,000	81,000	90,000	99,000
(B) Total Selling Costs				
Distribution Costs:	15,000	15,000	15,000	15,000
Wages (fixed)	6,000	6,750	7,500	8,250
Rent (1\% of sales)	24,000	27,000	30,000	33,000
Other expenses (4\% of sales)	45,000	48,750	52,500	56,250
(C) Total Distribution Costs	$2,35,250$	$2,49,500$	$2,63,750$	$2,78,000$
Total Costs (A + B + C)				

Q2. Float glass Manufacturing company requires you to PREPARE the Master budget for the next year fro information:
sales:

Toughened class
Bent Class
Dírect materíal cost
Direct wages
Factory overheads:
indirect Labour -

## Works manager

Foreman
stores and spares
₹ $6,00,000$
₹ $2,00,000$
$60 \%$ of sales
20 workers @ ₹ 150 per month
₹ 500 per month
₹ 400 per month
$2.5 \%$ on sales

Depreciation on machinery
Light and power
Repairs and maintenance ₹ 8,000
others sundries
$10 \%$ on direct wages

Administration, selling and distribution expenses

```
Q3. Following data is available for DKG and
CO:
```

Standard working hours
Maximum capacíty 50 employees
Actual working

8 hours per day of 5 days per week

40 employees

Actual hours expected to be worked per four week 6,400 hours

Std. hours expected to be earned per four weeks	8,000 hours
Actual hours worked in the four-week period	6,000 hours
standard hours earned in the four-week period	7,000 hours.

The related period is of 4 weeks. In this period there was a one special day holiday due to national event. CALCULATE the following ratios:
(1) Efficiency Ratio, (2) Activity Ratio, (3) Calendar Ratio, (4) Standard Capacíty usage Ratio,
(5) Actual Capacity usage Ratio. (6) Actual usage of Budgeted Capacity Ratio.

Solution; Maximum Capacity in a budget period
$=50$ Employees $\times 8$ Hrs. $\times 5$ Days $\times 4$ Weeks $=8,000 \mathrm{Hrs}$.
Budgeted Hours
40 Employees $\times 8 \mathrm{Hrs} . \times 5$ Days $\times 4$ Weeks $=6,400 \mathrm{Hrs}$.
Actual Hrs. $=6,000 \mathrm{Hrs}$. (given)
Standard Hrs. for Actual Output $=7,000 \mathrm{Hrs}$.
Budget No. of Days = 20 Days $=20$ Days (4 Weeks $\times 5$ Days)
Actual No. of Days $=20-1=19$ Days

1. Efficiency Ratio $=\frac{\text { Standard Hrs }}{\text { Actual Hrs }} \times 100=\frac{7,000 \text { hours }}{6,000 \text { hours }} \times 100=116.67 \%$

2. Standard Capacity Usage Ratio $=\overline{\text { Max. possible hours in the budgeted period }} \times 100$

$$
=\overbrace{8,000 \text { hours }} \times 100=80 \%
$$

> Actual Hours worked
5.Actual Capacity Usage Ratio =


$$
=\frac{6,000}{8,000} \underline{\text { hours }}_{\text {hours }} \times 100=75 \%
$$

6. Actual Usage of Budgeted Capacity Ratio $=\underline{\text { Actual working Hours }} \times 100$ Budgeted Hours

$$
=\underline{6,000 ~ h o u r s ~}^{6} \times 100=93.75 \% 6,400 \text { hours }
$$

Q4. Action Plan Manufacturers normally produce 8,000 units of their product in a month, in their Machine shop. For the month of January, they had planned for a production of 10,000 units. Owing to a sudden cancellation of a contract in the middle of January, they could only produce 6,000
units in january.

Indirect manufacturing costs are carefully planned and monitored in the Machine shop and the Foreman of the shop is paid a $10 \%$ of the savings as bonus when in any month the indirect manufacturing cost incurred is less than the budgeted provision.

The Foreman has put in a claim that he should be paid a bonus of $₹ 88.50$ for the month of january. The Works Manager wonders how anyone can claim a bonus when the company has lost a sizeable contract. The relevant figures are as under:

Indirect manufacturing   Expenses	Expenses for a   normal month	Planned for   January	Actual Cost in   January


Salary of foreman	1000	1000	1000
Indirect Labour	720	900	600
Indirect Material	800	1000	700
Repairs	600	650	600
Power	800	875	740
Tools consumed	320	150	800
Rtaes and Taxes	800	100	500
Depreciation	5290	150	800
Insurance	100	4990	

Do you agree with the Works Manager? Is the Foreman entitled to any bonus for the performance
in January? Substantiate your answer with facts and figures.


[^0]:    Q3.XY Ltd. makes two products $X$ and $Y$, whose respective fixed costs are $F_{1}$ and $F_{2}$. You are

