
317

system, CompactLogix system, FlexLogix sys-
tem, SoftLogix 5800 controller, and DriveLogix
system. Software is the essential difference
 between PACs and PLCs. Basically, the ladder
logic confi guration does not change but the
 addressing of the instructions changes. Applica-
tion of the software that pertains to the Logix
control platform of controllers will be covered in
the various sections of this chapter. Knowledge
of basic ladder logic instructions and functions
(bit, timer, counter, etc.) covered in previous
chapters of the text is assumed and is thus not
repeated in this chapter.

 Programmable logic controllers continue to
evolve as new technologies are added to their
 capabilities. The PLC started out as a replace-
ment for banks of relays used to turn outputs
on and off as well as for timing and counting
functions. Gradually, various math and logic
manipulation functions were added. In order to
serve today’s expanding industrial control system
needs, leading automation companies have cre-
ated a new class of industrial controllers called
programmable automation controllers or PACs
(Figure 15-1). They look like PLCs in their physi-
cal appearance but incorporate advanced control
of communication, data logging, and signal pro-
cessing, motion, process control, and machine
vision in a single programming environment.

 The Allen-Bradley programmable automa-
tion controller family includes the ControlLogix

15
 ControlLogix Controllers

 Figure 15-1 Programmable automation controllers (PACs).
Source: Image Used with Permission of Rockwell Automation, Inc.

pet10882_ch15_317-372.indd 317pet10882_ch15_317-372.indd 317 7/27/10 6:42 PM7/27/10 6:42 PM

318

RSLogix 5000 programming software is used to set

up or confi gure the memory organization of an Allen-

Bradley ControlLogix controller. RSLinx communication

software is used to set up a communications link between

RSLogix 5000 programming software and the Control-

Logix hardware as illustrated in Figure 15-3 . To estab-

lish communications with a controller, a driver must be

created in RSLinx software. This driver functions as the

software interface to a hardware device. The RSWho is the

network browse interface that provides a single window

to view all confi gured network drivers.

 Figure 15-4 shows an example of the ControlLogix’s

controllers properties and modules properties dialog

boxes used as part of the confi guration process. The

parameters shown are typical of what general informa-

tion is required. After fi rst confi guring the controller,

 Memory Layout
 ControlLogix processors provide a fl exible memory struc-

ture. There are no fi xed areas of memory allocated for

specifi c types of data or for I/O. The internal memory orga-

nization of a ControlLogix controller is confi gured by the

user when creating a project with RSLogix 5000 software

(Figure 15-2). This feature allows the program data to be

constructed to meet the needs of your applications rather

than requiring your application to fi t a particular memory

structure. A ControlLogix (CLX) system can consist of

anything from a stand-alone controller and I/O modules in

a single chassis, to a highly distributed system consisting

of multiple chassis and networks working together.

 Confi guration
 Confi guration of a modular CLX system involves es-

tablishing a communications link between the control-

ler and the process. The programming software needs to

know what CLX hardware is being used in order to be

able to send or receive data. Confi guration information

includes information about the type of processor and I/O

modules used.

 Part Objectives

 After completing this part, you will be able to:

 • Outline project organization

 • Defi ne tasks, programs, and routines

 • Identify data fi le types

 • Organize and apply the various data fi le types

 Part 1 Memory and
Project Organization

 Figure 15-2 RSLogix 5000 screen.

pet10882_ch15_317-372.indd 318pet10882_ch15_317-372.indd 318 7/27/10 6:42 PM7/27/10 6:42 PM

 Memory and Project Organization Part 1 319

the I/O modules are confi gured using RSLogix 5000

software. Modules will not work unless they have been

properly confi gured. The software contains all the hard-

ware information needed to confi gure any ControlLogix

module.

 Project
 RSLogix software stores a controller’s programming and

confi guration information in a fi le called a project. The

block diagram of the processor’s project fi le is shown in

 Figure 15-5 . A project fi le contains all information relat-

ing to the project. The main components of the project fi le

are tasks, programs, and routines. A controller can hold

and execute only one project at a time.
 Figure 15-5 ControlLogix processor program fi le.
 Source: Image Used with Permission of Rockwell Automation, Inc.

Project

Controller tags
(global data)

Other routines
Program tags

(local data)

I/O data

System-shared data

Task

Main routine

Program

 Figure 15-3 RSLinx and RSLogix software.

RSLogix

Ladder logic program

RSLinx

File View Communications

RSLinx

RSLogix

RSWho

RSWho

Configure Drivers...

5000

ControlLogix
Controller

 Figure 15-4 Controllers properties and modules properties dialog boxes.

Controllers propertiesGeneral

Vendor:

Type:

Revision:

Allen-Bradley

1756-L55ControlLogix5555Controller

10.24

Name:

Description:

Chassis Type:

Slot: 1

Controller 1

Prime Controller

1756-A7 7-Slot Chassis

Modules propertiesGeneral

Type:

Vendor:

Parent:

1756-IB16 16 Point 10V-31.2V DC Input

Allen-Bradley

Local

Name:

Description:

Comm Form:

Revision: Electronic Keying Exact Match1

Digital_Input_16pt

Optional

Input Data

Slot: 0

pet10882_ch15_317-372.indd 319pet10882_ch15_317-372.indd 319 7/27/10 6:42 PM7/27/10 6:42 PM

320 Part 1 Memory and Project Organization

 The RSLogix 5000 controller organizer (Figure 15-6)

displays the project organization in a tree format showing

tasks, programs, routines, data types, trends, I/O confi gu-

ration and tags. Each folder groups common functions

together. This structure simplifi es the navigation and the

overall view of the whole project.

 In front of each folder, there is an icon containing a

1 sign or a 2 sign. The 1 sign indicates that the folder

is closed. Click it to expand the tree display and display

the fi les in the folder. The 2 sign indicates that the folder

is already open and its contents are visible. Clicking on

the right mouse button brings up many different, context-

sensitive popup menus. Often, you fi nd that this is a short-

cut to access the property window or menu options from

the menu bar.

 Tasks
 Tasks are the fi rst level of scheduling within a project. A

task is a collection of scheduled programs. When a task

is executed, the associated programs are executed in the

order listed. This list of programs is known as the program

schedule. Tasks provide scheduling based on specifi c con-

ditions and do not contain any executable code. Only one

task may be executing at any given time. The number of

tasks a controller can support depends on the specifi c con-

troller. The main types of tasks (Figure 15-7) include:

• Continuous tasks execute nonstop but are always

interrupted by a periodic task. Continuous tasks

have the lowest priority. A ControlLogix continuous

task is similar to the File 2 in the SLC 500 platform.

Here the continuous task is named Main Task.

• Periodic tasks function as timed interrupts. They

interrupt the continuous task and execute for a fi xed

length of time at specifi c time intervals.

• Event tasks also function as interrupts. Rather than

being an interrupt on a timed basis, an event task

is triggered by an event that happened or failed to

happen.

 Programs
 Programs are the second level of scheduling within a

project. The function of the folders under Main Task is

to determine and specify the order in which the programs

 Figure 15-6 Controller organizer tree.

Controller RSLogix

Tasks

Controller Tags

Program Tags
MainRoutine

Continuous
Program_01

Controller Fault Handler
Power-Up Handler

Program Tags
MainRoutine

Periodic

Unscheduled Programs

Data Types

Motion Groups
Trends

User-Defined

Program_02

Program Tags
Main

HMI

Strings
Predefined
Module-Defined

I/O Configuration

 Figure 15-7 Continuous and periodic tasks.

Program 1

Program 2

Program 32

Continuous
task

Continuous task scan

T
a
s
k
 a

u
to

-r
e
s
ta

rt

Periodic task scan
5 ms

10 ms
15 ms

...
Program 1

Program 2

Program 32Periodic
task

pet10882_ch15_317-372.indd 320pet10882_ch15_317-372.indd 320 7/27/10 6:42 PM7/27/10 6:42 PM

execute. There is no executable code within a program.

Routines within programs will execute in the order listed

below their associated task in the controller organizer as

shown in Figure 15-8 . In this example, according to the

listed order, the Main Program is scheduled to execute

fi rst, Program_A second, and Progam_B third. Programs

that are not assigned to a task are unscheduled. Unsched-

uled programs are downloaded to the controller but do

not execute. These programs remain unscheduled until

needed. Depending on the RSLogix 5000 software ver-

sion as many as 100 programs could be scheduled within

each task.

 Routines
 Routines are the third level of scheduling within a proj-

ect and provide the executable code for the project. Each

routine contains a set of logic elements for a specifi c

programming language. When a routine is created it is

specifi ed as ladder logic, sequential function chart, func-

tion block diagram or structured text (Figure 15-9). Any

one routine must be completely in the same language.

The number of routines per project is limited only by the

amount of controller memory. Libraries of standard rou-

tines can be created that can be reused on multiple ma-

chines or applications. A routine can be assigned as one

of the following types:

• A main routine is one confi gured to execute fi rst

when the program runs. Each program will have one

main routine typically followed by several or many

subroutines.

• A subroutine is one that is called by another routine.

Subroutines are used for large or complex program-

ming tasks or tasks that require more than one pro-

gramming language.

• A fault routine is one that executes if the controller

fi nds a program fault. Each program can have one

fault routine, if desired.

 Tags
 Unlike conventional controllers, ControlLogix uses a tag-
based addressing structure. Tags are meaningful names,

descriptive of your application and not merely generic

 Figure 15-8 Order of execution of programs.

Main Task

Main Program

Program_A

Program_B

Unscheduled Programs

 Figure 15-9 Each routine contains a set of logic elements for a specifi c programming language.

 Memory and Project Organization Part 1 321

pet10882_ch15_317-372.indd 321pet10882_ch15_317-372.indd 321 7/27/10 6:43 PM7/27/10 6:43 PM

addresses. A tag is created to represent the data and iden-

tify areas in the controller’s memory where these data are

stored. In applications developed using Logix 5000 soft-

ware, there are no predefi ned data tables such as in an

SLC 500. When you want to use or monitor data in a pro-

gram you use tag names to refer to the memory locations,

as illustrated in Figure 15-10 . This functionality allows you

to name your data specifi cally for their functions within the

control program while providing self-documented logic.

Whenever you wish to group data, you create an array,

which is a grouping of tags of similar types.

 Scope refers to which programs have access to a tag.

The scope of a tag must be specifi ed when you create the

tag. There are two scopes for tags: program scope and

controller scope. A program tag consists of data that can

be accessed only by routines within a specifi c program

(local data). The routines in other programs cannot access

program scoped tags of another program. A controller tag

consists of data that are accessible by all routines within

a controller (global data). Figure 15-11 shows two pro-

grams, A and B, within a project. Note that each program

has program scope tags with identical names (Tag_1,

Tag_2, and Tag_3). Because they are program scoped,

there is no relationship between them, even though they

have the same name. The program scope data are acces-

sible only to the routines within a single program. The

same tag name may appear in different programs as local

variables because you can select the scope in which to

create the tag.

 The scope of a tag must be declared when you cre-

ate the tag. Figure 15-12 shows program and controller

scoped tags as listed in the controller organizer under the

program they are assigned to. I/O tags are automatically

created as controller scoped tags.

 There are four different tag types: base, alias, produced,

and consumed tags. The tag type defi nes how the tag op-

erates within the project. A base tag stores various types

of data for use by logic in the project. This tag defi nes a

memory location where data are stored. Base tag memory

use depends on the type of data the tag represents. An

example of the base tag Local:2:O.Data.4 is shown in

 Figure 15-13 and is based on the following format:

 Location Network location

 LOCAL 5 same chassis as the controller

 Slot Slot number of I/O module in its chassis

 Type Type of data
 I 5 input
 O 5 output
 C 5 confi guration
 S 5 status

 Member Specifi c data from the I/O module; depends
on what type of data the module can store.

 SubMember Specifi c data related to a Member.

 Bit Specifi c point on a digital I/O module;
depends on the size of the I/O module
(0-31 for a 32-point module)

 Figure 15-11 Program scoped and controller scoped tags.

Other routines
Main routine

Program
scoped tags

Tag_1

Tag_2
Tag_3

Program A Program B
Program

scoped tags
Tag_1

Tag_2
Tag_3

Controller Scope Tags
Sensor_1

Temp_1

Other routines
Main routine

 Figure 15-10 Tags used to assign memory locations.

Program Tags

Tag 1

Tag 2

Tag 3

Tag 1 Data

Tag 2 Data
Memory
locations

Tag 3 Data

Controller memory

 Figure 15-12 Listing of program and controller scoped tags.

Controller
scoped

Controller RSLogix

Tasks

Controller Tags

Program Tags
MainRoutine

Continuous
Program_01

Controller Fault Handler
Power-Up Handler

Program Tags
MainRoutine

Periodic
Program_02

Program
scoped

Program
scoped

 An alias tag is used to create an alternate name (alias)

for a tag. The alias tag is simply another name for an al-

ready named memory location. An alias tag can refer to

a base, alias, consumed, or produced tag. The alias tag is

often used to create a tag name to represent a real-word

input or output. Figure 15-14 shows an example of the

322 Part 1 Memory and Project Organization

pet10882_ch15_317-372.indd 322pet10882_ch15_317-372.indd 322 7/27/10 6:43 PM7/27/10 6:43 PM

or consume the data. The producing controller will have

a tag that is of the produced type, whereas the consuming

controllers will have a tag with the exact same name that

is of the consumed type.

 When you design your application, you confi gure it

to both produce globally to other controllers in the sys-

tem via the backplane and to consume tags from other

controllers. This feature allows you to be selective about

which data are sent and received by any controller. Like-

wise, multiple controllers can connect to any data being

produced, thereby preventing the need to send multiple

messages containing the same data.

 Logix controllers are based on 32-bit operations. The

types of data that can be a base tag are BOOL, SINT,

INT, DINT, and REAL, as illustrated in Figure 15-16 and

listed below. The controller stores all data in a minimum

of 4 bytes or 32 bits of data.

• A BOOL or Boolean base tag is 1 bit of data stored

in bit 0 of a 4 byte memory location. The other bits,

1 to 31, are unused. BOOLs have a range of 0 to 1,

off or on respectively.

use of an alias tag. The alias tag (Fan_Motor) is linked to

the base tag (<local:2:O.Data.5>) so that any action to the

base also happens to the alias and vice versa. The alias

name is easier to understand and easier to relate to the ap-

plication, while the base tag contains the physical location

of the output point in the ControlLogix chassis.

 Produced/consumed tags are used to share tag informa-

tion over a network between two or more devices. A pro-

duced tag sends data while a consumed tag receives data.

Produced tags are always controller scoped. Figure 15-15

shows an example of how a controller can produce data

and send them over the network to two controllers that use

 Figure 15-14 Alias tag linked to a base tag.

Fan_Motor Local:2:O.Data.5 Controller memory

Tag dataBase tagAlias tag

Fan_Motor
<Local:2:O.Data.5>

 Figure 15-13 Base tag.

OptionalOptional

Location

Base tag

Controller
memory

Tag dataLocal:2:O.Data.4

:Slot :Type .Member .SubMember .BitFormat

Local :2 :O .Data .4

Optional

Tag Name

Controller Scoped Tags

Data Type

Local:2:O.Data BOOL
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

 Figure 15-15 Produced/consumed tags used to share information.
 Source: Image Used with Permission of Rockwell Automation, Inc.

Consumed tag

Produced tag

Producer/consumer I/O model

Network

Output modules
Logix5500

controllers

Commonly shared data

Input modules

 Memory and Project Organization Part 1 323

pet10882_ch15_317-372.indd 323pet10882_ch15_317-372.indd 323 7/27/10 6:43 PM7/27/10 6:43 PM

• A SINT or Single Integer base tag uses 8 bits of

memory and stores the data in bits 0 to 7. These

bits are sometimes called the low byte. The other

3 bytes, bits 8 to 31, are unused. SINTs have a

range of 2128 (negative values) to 127 (positive

values).

• An INT or Integer base tag is 16 bits, bits 0 to 15,

sometimes called the lower bytes. Bits 16 to 31 are

unused. INTs have a range between 231,768 and

32,767.

• A DINT or Double Integer base tag uses 32 bits,

or all 4 bytes, and has the following range: 22 31 to

2 31 21 (22,147,483,648 to 2,147,483,647).

• A REAL base tag also uses 32 bits of a memory

 location and has a range of values based on the

IEEE Standard for Floating-Point Arithmetic.

 Structures
 There is another class of data types called structures. A

structure-type tag is a grouping of different data types

that function as a single unit and serve a specifi c purpose.

An example of an RSLogix structure is shown in Fig-

ure 15-17 . Each element of a structure is referred to as a

member and each member of a structure can be a different

data type.

 Figure 15-16 Types of base tag data.

BOOL
031

Unused

SINT
031 7

Unused

INT
031 15

Unused

DINT
031

REAL
031

 Figure 15-19 Module-defi ned structure for a digital input
module. Figure 15-17 Structure-type tag.

Name

PRE

ACC

EN

TT

DN

FS

LS

OV

ER

DINT Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

DINT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Data Types Style Description

Data TypesMembers

 Figure 15-18 Predefi ned structure.

Name

Description

Counter

Data type : COUNTER

Data type size : 12 byte(s)Members

PRE

ACC

CU

CD

DN

OV

UN

DINT

DINT

BOOL

BOOL

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Data Type StyleName Description

 There are three different types of structures in a Control-

Logix controller: predefi ned, module-defi ned, and user-
defi ned. The controller creates predefi ned structures for

you that include timers, counters, messages and PID

types. An example of a predefi ned counter instruction

structure is shown in Figure 15-18 . It is made up of the

preset value, the accumulated value, and the instruction’s

status bits.

 Module-defi ned structures are automatically created

when the I/O modules are confi gured for the system.

When you add input or output modules a number of

defi ned tags are automatically added to the controller

tags. Figure 15-19 shows the two tags (Local:1:C and

Local:1:I) created after a digital input module has been

324 Part 1 Memory and Project Organization

pet10882_ch15_317-372.indd 324pet10882_ch15_317-372.indd 324 7/27/10 6:43 PM7/27/10 6:43 PM

in rpm. Installation and maintenance personnel can easily

locate all data associated with the operation of the tank

since all the information is stored together.

 Creating Tags
 There is more than one way to create tags. You may create

tags in the tag editor before your program is entered, enter

tag names as you program, or use question marks [?] in

place of tag names and assign the tags later. Figure 15-21

shows an example of a controller scope base tag created in

the new tag dialog box. When defi ning tags, the following

information has to be specifi ed:

• A tag name, which must begin with an alphabetic

character or an underscore (_). Names can contain

only alphabetic characters, numeric characters,

or underscores and may be up to 40 characters in

length. They may not have consecutive or trailing

underscore characters, are not case sensitive and

cannot have spaces in the tag name.

• An optional tag description, which may be up to

120 characters in length.

• The tag type: base, alias, or consumed.

• The data type, which is obtained from the list of

predefi ned or user-defi ned data types.

• The scope in which to create the tag. Your options

are the controller scope or any one of the existing

program scopes.

• The display style to be used when monitoring the

tag in the programming software. The software will

display the choices of available styles.

• Whether or not you want to make this tag available

to other controllers and the number of other control-

lers that can consume the tag.

added. Tags of these types are created to store input, out-

put, and confi guration data for the module. Input tags

labeled Data contain the actual input bits from the mod-

ule. Confi guration tags determine the characteristics and

operation of the module. The name Local indicates that

these tags are in the same rack as the processor. The 1

 indicates that the module occupies slot 1 in the chassis.

The letters I and C indicate whether the data are input

data or confi guration data.

 A user-defi ned structure supplements the predefi ned

structures by providing the ability to create custom-

defi ned structures to store and handle data as a group.

 Figure 15-20 illustrates a user-defi ned structure that con-

tains data for a storage tank. All data relative to the tank

are stored together. In the design stage the programmer

creates a generic user-defi ned memory structure that con-

tains all the different aspects of the storage tank. Each

member has a meaningful name and is created in the ap-

propriate data type and style like REAL (fl oating point)

for temperature and DINT (decimal) for agitator speed

 Figure 15-21 Controller scope base tag.

New Tag

OKAll_StopName:

BOOLData Type:

BaseTag Type:

Consumed

Produced

Alias

Controller1(controller)Scope:

Controller controller1

BinaryStyle:

This is the Line Stop pushbutton
input.

Description: Cancel

Help

Configure

consumers1

···

Controller tags
New Tag... Ctrl+W

Print Ctrl+P

Monitor Tags
Edit Tags
Verify
Export Tags...

···

 Figure 15-20 User-defi ned storage tank structure.

Tank

Level

Pressure

Temp

Agitator_Speed

INT

DINT

REAL

DINT

Decimal

Decimal

Float

Decimal

Stores the Level in Inches

Stores the Pressure in PSIG

The Temperature in F

Speed in RPM

Name:

Description:

Size: byte(s)16

Data Type StyleName Description

Generic Storage Tank Data Type

 Memory and Project Organization Part 1 325

pet10882_ch15_317-372.indd 325pet10882_ch15_317-372.indd 325 7/27/10 6:43 PM7/27/10 6:43 PM

is selected new tags may be created, and existing tag

properties may be modifi ed.

 Array
 Many control programs require the ability to store blocks

of information in memory in the form of tables that can

be accessed at runtime. An array is a tag type that con-

tains a block of multiple pieces of data. Each element

 Monitoring and Editing Tags
 After tags have been created they can be monitored using

the Monitor Tags window displayed in Figure 15-22 .

When Monitor Tags is selected the actual value(s) for the

tags will be shown. The Force Mask column is used to

force inputs and outputs when troubleshooting. You can

also create new tags or edit existing tags using the Edit

Tags window displayed in Figure 15-23 . When Edit Tags

 Figure 15-22 Monitor Tags window.

Scope:

All_Stop Decimal

Binary

-Local:2:C

-Local:2:I

Show: Sort:Controller1(controller) Show All Base Tag

+

+

Tag Name Value

0

{ . . . }

{ . . . }

{ . . . }

{ . . . }

2#0000_0000Section_3_Run

Force Mask Style

Monitor Tags Edit Tags

 Figure 15-23 Edit Tags window.

All_stop BOOL

AB:1756_DI:C:0

AB:1756_DI:I:0

BOOL

-Local:2:C

-Local:2:I

Controller1(controller) Show All Base Tag

+

+

Tag Name Alias For

Local:2:I.Data.0 Local:2:I.Data.0Section_3_Run

Base Tag TypeP

Monitor Tags Edit Tags

Scope: Show: Sort:

 Figure 15-24 Types of arrays.

OKOK

Cancel

Help

Find match

Selection

DINT[6,3,2]

Array Dimensions

Dim 0

6

Dim 1

3

Dim 2

2

BOOL
CONTROL
COUNTER
DINT
INT
Load
Load_info
MESSAGE

Data Types

Select Data Type

3-dimensional

Block [6,3,2]

2-dimensional

Grid [6,3]

1-dimensional

Table [6]

326 Part 1 Memory and Project Organization

pet10882_ch15_317-372.indd 326pet10882_ch15_317-372.indd 326 7/27/10 6:43 PM7/27/10 6:43 PM

 Figure 15-25 Memory layout for a 1-dimensional array.

Array - Temp
Data Type - INT[5]

Temp[0] 297

Temp[1] 200

Temp[2] 180

Temp[3] 120

Temp[4] 100

of an array must be of the same data type (e.g., BOOL,

SINT, or INT). An array occupies a contiguous block

of controller memory. Arrays are similar to tables of

values. The use of arrayed data types offers the fastest

data throughput (output) from a ControlLogix processor.

Because arrays are numerically sequenced tags of the

same data that occupy a contiguous memory location,

large amounts of data can be retrieved effi ciently. Arrays

can be built using 1, 2 or 3 dimensions, as illustrated in

 Figure 15-24 , to represent the data they are intended to

contain.

 A single tag within the array is one element. The ele-

ment may be a basic data type or a structure. The ele-

ments start with 0 and extend to the number of elements

minus 1. Figure 15-25 is an example of the memory

layout for a 1-dimensional (one column of values)

array created to hold fi ve temperatures. The tag name

is Temp and the array consists of 5 elements numbered

0 through 4.

 Memory and Project Organization Part 1 327

pet10882_ch15_317-372.indd 327pet10882_ch15_317-372.indd 327 7/27/10 6:43 PM7/27/10 6:43 PM

1. Compare the memory confi guration of a Logix

5000 controller with that of an SLC 500 controller.

2. What does a project contain?

3. List four programming functions that can be car-

ried out using the program organizer.

4. Explain the function of tasks within the project.

5. State the three main types of tasks.

6. What type of tasks function as timed interrupts?

7. Explain the function of programs within the

project.

8. Explain the function of routines within the project.

9. Which routine is confi gured to execute fi rst?

10. Name the four types of programming languages

that can be used to program Logix 5000 controllers.

11. What are tags used for?

12. Compare the accessibility of program scope and

controller scope tags.

13. Name the tag type used for each of the following:

a. Create an alternate name for a tag.

b. Share information over a network.

c. Store various types of data.

 PART 1 REVIEW QUESTIONS

14. What is the difference between a produced tag and

a consumed tag?

15. List the fi ve types of base tag data.

16. State the data type used for each of the following:

a. 32-bit memory storage

b. On/Off toggle switch

c. 16-bit memory storage

d. 8-bit memory storage

17. Describe the make-up of a predefi ned structure.

18. Describe the make-up of a module-defi ned

structure.

19. Describe the make-up of a user-defi ned structure.

20. Explain two ways of creating tags.

21. When defi ning tags what limitations are placed on

the entering of a tag name?

22. What is meant by the tag display style?

23. Write an example of an array tag used to hold

4 speeds.

328 Part 1 Memory and Project Organization

pet10882_ch15_317-372.indd 328pet10882_ch15_317-372.indd 328 7/27/10 6:43 PM7/27/10 6:43 PM

329

• The status signals from the inputs are sent to the

input tags where they are stored.

• As the program is scanned by the processor, inputs

are checked for True or False conditions and the

ladder logic is evaluated based on these values.

• The resulting ON or OFF action, as a result of

evaluating each rung, is then sent to the output tags

for storage.

• During the output update portion of the scan, cor-

responding output values are sent to the process or

machine by way of the output module.

 Program Scan
 When a CLX controller executes a program, it must

know—in real time—when external devices controlling

a process are changing. During each operating cycle,

the processor reads all the inputs, takes these values,

and energizes or de-energizes the outputs according to

the user program. This process is known as the program
scan.

 Figure 15-26 illustrates the signal fl ow into and out of

a Logix controller during a controller’s operating cycle

when ladder logic is executing. During the program scan,

the controller reads rungs and branches from left to right

and top to bottom as follows:

• Only one rung at a time is scanned.

• As the program is scanned, the status of inputs are

checked for True (1 or ON) or False (0 of OFF)

conditions.

 Part 2 Bit-Level
Programming

 Part Objectives

 After completing this part, you will be able to:

 • Know what happens during the program scan

 • Demonstrate an understanding of input, output, and

internal relay addressing format for a tag-based Logix

controller

 • Develop ladder logic programs with input instructions

and output coil combinations

 • Develop ladder logic programs with latched outputs

 Figure 15-26 Logix controller operating cycle.

PLC
processor

Input tags

Ladder logic
program

Field output
devices

Field input
devices

Output
tags

PLC
input

module

Field
power
supply

Field power
supply

PLC
output
module

M

pet10882_ch15_317-372.indd 329pet10882_ch15_317-372.indd 329 7/27/10 6:43 PM7/27/10 6:43 PM

• When a rung has only one output instruction it will

always be true.

• The last instruction on a rung must always be an

output instruction.

• The XIC, or Examine If Closed contact instruction,

checks to see if the input has a value of one. If the

input is one, the XIC instruction returns a true value.

• The XIO, or Examine If Open contact instruction,

checks to see if the input has a value of zero. If the

input is zero, the XIO instruction returns a true value.

• The OTE or Output Energize coil instruction sets

the tag associated with it to true or one when the

rung has logic continuity. When true it can be used

to energize an output device or simply set a value in

memory to one.

 ControlLogix PLCs support multiple outputs on one

rung. CLX controllers allow the use of serial logic that

does not conform to traditional electrical hardwired cir-

cuits or ladder logic. For example, both of the rungs shown

in Figure 15-28 are valid in RSLogix 5000. However the

series connection of outputs would not work if wired that

way in an equivalent electrical circuit or programmed that

way in RSLogix 500. In both instances in RSLogix 5000,

instructions tagA and tagB must be true to energize output

tag1 and tag2.

 In ControlLogix output instructions can be placed be-

tween input instructions as illustrated in Figure 15-29 . In

this example instructions tagA and tagB must be true to

energize output tag1. Instructions tagA and tagB and tagC

must all be true before output tag2 is set to energize.

• I/O updates occur asynchronously to the scan

of the logic. With a ControlLogix processor two

separate 32-bit unsynchronized processes gone

on simultaneously—that is, asynchronously.

This means that the module can update the input

tag from the fi eld and write the output tag to the

fi eld at any point (or at several points) during the

 processor’s execution of the ladder rungs. The

 result is more effi ciency and control over when the

input fi eld device data are updated in the input tag

and when the output data resulting from the solved

logic are sent to the output modules and their

 respective fi eld devices.

 Creating Ladder Logic
 Although other programming languages are available,

ladder logic is the most common programming language

for PLCs. The instructions in ladder logic programming

can be divided into two broad categories: input and out-

put instructions. The most common input instruction is

equivalent to a relay contact and the most common output

instruction is the equivalent of a relay coil (Figure 15-27).

When creating ladder I/O bit instructions, the following

rules apply:

• All input instructions must be to the left of an out-

put instruction.

• A rung cannot begin with an output instruction if it

also contains an input instruction. This is because

the controller tests all inputs for true or false before

deciding what value the output instruction should be.

• A rung does not need to contain any input

 instructions, but it must contain at least one output

instruction.

 Figure 15-27 Contacts and coil instructions.

If the Data

Bit is:

Logic 0

Logic 1

False

True

XIC

instruction is:

XIC Inputs

If the Data

Bit is:

Logic 0

Logic 1

True

False

XIO

instruction is:

XIO Output

OTE

If the Data

Bit is:

Logic 0

Logic 1

False

True

OTE

instruction is:

 Figure 15-28 Parallel and series outputs.

tag1

tag2

tagBtagA

Parallel outputs

tag1 tag2tagBtagA

Series outputs

 Figure 15-29 Output instruction placed between input
instructions.

tag1 tag2tagBtagA tagC

330 Part 2 Bit-Level Programming

pet10882_ch15_317-372.indd 330pet10882_ch15_317-372.indd 330 7/27/10 6:43 PM7/27/10 6:43 PM

 Tag-Based Addressing
 Logix 5000 controllers use a tag-based addressing struc-

ture. A tag is a text-based name for an area of the control-

ler where data is stored. An example of how a tag-based

address is implemented using a ControlLogix controller

is shown in Figure 15-30 . Tag names use a meaningful

description of the variable. In this application when the

normally closed high limit switch is activated the program

will switch the high limit output light on. The addressing

format can be summarized as follows:

• The physical address for the tag Limit_switch is

Local:1:I.Data.2(C). Local indicates that the module

is in the same rack as the processor, 1 indicates that

the module is in slot 1 in the rack, I indicates that

the module is an input type, Data indicates that it

is a digital input, 2 indicates that the limit switch is

connected to terminal 2 on the module, and C indi-

cates that it is a controller tag with global access.

• The physical address for the tag High_limit_light is

Local:2:O.Data.4(C). Local indicates that the module

is in the same rack as the processor, 2 indicates that

the module is in slot 2 in the rack, O indicates that

the module is an output type, Data indicates that it is

a digital input, 4 indicates that the high limit light is

connected to terminal 4 on the module, and C indicates

that it is a controller tag with global access.

 One advantage of the use of tag-based addressing is

that the allocation of variable names for program values

is not tied to specifi c memory locations in the memory

structure, as is the case with rack/slot and rack/group type

 Figure 15-30 Tag-based address implementation.

Power

supply

0

TAG EDIT

1 2 3 4 5 6

8-point

discrete

(digital)

input

module

Limit_switch

High_limit_light

Switch - closed

Processor

module

Program

7-slot

ControlLogix

chassis

8-point

discrete

(digital)

onput

module

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Tag Name

Limit_switch

High_limit_light

Alias For

Local:1:I.data.2(C)

Local:2:O.data.4(C)

Base Tag

Local:1:I.data.2(C)

Local:2:O.data.4(C)

Type

BOOL

BOOL

Style

Decimal

Decimal

Limit_switch

<Local:1:I.data.2(C)>

High_limit_light

<Local:2:O.data.4(C)>

TAG MONITOR

Tag Name

Limit_switch

High_limit_light

Style

Decimal

Decimal

Type

BOOL

BOOL

Value

1

0

Light-OFF

 Bit-Level Programming Part 2 331

pet10882_ch15_317-372.indd 331pet10882_ch15_317-372.indd 331 7/27/10 6:43 PM7/27/10 6:43 PM

before adding the next instruction. In this example we have

chosen to use question marks [?] in place of tag names and

assign the tags later. Field device wiring for the two push-

button inputs and the single contactor coil output are as

illustrated. The stop button is connected to terminal 3 and

the start button to terminal 4 of the DC input module lo-

cated in slot 1 of the rack. The contactor coil is connected

to terminal 4 of the DC output module located in slot 2

of the rack. Both the start and stop buttons are examined

for a closed condition (XIC) because both buttons must be

closed to cause the motor starter to operate.

systems. Initially, all program development can proceed

with just the tag names and data types assigned. Using tag

aliases, programmers can write code independent of elec-

trical connection assignments. At a later date, input and

output fi eld devices are easily matched to the pin numbers

on the respective module they are connected to.

 Adding Ladder Logic to the
Main Routine
 Figure 15-31 shows the diagram for a hardwired contac-

tor operated motor start/stop control circuit. The normally

open start button is momentarily closed to energize the

contactor coil and close its main contacts to start the motor.

The seal-in auxiliary contact of the contactor is connected

in parallel with the start button to keep the starter coil

energized when the start button is released. The normally

closed start button is momentarily opened to de-energize

the contactor coil and stop the motor.

 Figure 15-32 shows the ladder logic program for the

motor start/stop control circuit and the RSLogix 5000 tool-

bar used to create it. Free form editing found in RSLogix

5000 helps speed development in that you do not have to

place an instruction and tie an address to the instruction

Contactor auxiliary
contact

Contactor coil

Motor
run

Motor
stop

Motor
start

L1 L2

M

 Figure 15-31 Hardwired motor start/stop control circuit.

 Figure 15-32 Programmed motor start/stop control circuit.

� �

Common Common

Rung
Branch

Bit element toolbar

M3 4

Field

device

power

4

Terminal Terminal

Ladder logic program

ContactorStop

Start

?

?

? ?

Input module

Slot 1

Output module

Slot 2

ONS OSR

Bit

L U

XIC XIO OTE OTL OTU

Field

device

power

ST 0 1 2 3 4 5 6 7 ST 0 1 2 3 4 5 6 7

DC OUTPUTDC INPUT

332 Part 2 Bit-Level Programming

pet10882_ch15_317-372.indd 332pet10882_ch15_317-372.indd 332 7/27/10 6:43 PM7/27/10 6:43 PM

 With text-based Logix systems you can use the name

of the tag to document your ladder code and organize

your data to mirror your application. For the programmed

motor start/stop control circuit three tags Motor_Start,

Motor_Stop, and Motor_Run are created. Figure 15-33

illustrates how the Motor_Start tag is created in the New

Tag window. This window can be accessed by right

clicking the ? mark above the XIC instruction in the lad-

der logic program. Since this tag represents a value from

an input fi eld device a link through the module to the

fi eld device must be created. When Local:1:I.Data is se-

lected a dialog box for all of the terminal numbers on the

input module appears. The tag name (Motor_Start) used

in the program is then linked to input terminal number 3

where the fi eld device represented by the tag name is

connected.

 Figure 15-34 shows what the ladder logic program

would look like after all three tags have been created.

Users have the ability to reference data via multiple names

using Aliases. This allows the fl exibility to name data dif-

ferently depending on their use. The tag description pro-

vides for a more meaningful description of the tag name.

Tag names are downloaded and stored in the controller

but the description is not as it is part of the documentation

of the project.

 Figure 15-35 shows the state of the tags created for

the motor start/stop program as seen in the program and

 Figure 15-33 Creating the Motor_Start tag.

New Tag

Alias

Local:1:I.Data

Motor_StartName:

Start button for

motor

Description:

Name

Local:1:C

Local:1:I

Local:1:I.Fault

Local:1:I.Data

DINT

AB:1756_DO:C:0

AB:1756_DO:I:0

Data Type

+

–

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

5

13

21

29

6

14

22

30

7

15

23

31

4

12

20

28

 Figure 15-34 Ladder logic program after all tags have been created.

Motor contactor coil

Motor_Run

<Local:2:O.Data.4>

Motor contactor coil

Motor_Run

<Local:2:O.Data.4>

Stop button for

motor

Motor_Stop

<Local:1:I.Data.4>

Start button for

motor

Motor_Start

<Local:1:I.Data.3>

Description

Tag Name

Alias

 Figure 15-35 Ladder logic program and Monitor Tags window with motor operating.

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Motor contactor coil

Motor_Run
<Local:2:O.Data.4>

Stop button for
motor

Motor_Stop

<Local:1:I.Data.4>

Ladder logic programInputs Output

Contactor

Start button for
motor

Motor_Start

<Local:1:I.Data.3>

Stop

Start Monitor Tags Window

Tag Name Value Style Data Type

Motor_Start 0 Decimal BOOL

Description

Start button for motor

Motor_Stop 1 Decimal BOOL Stop button for motor

Motor_Run 1 Decimal BOOL Motor contactor coil

M

L2L1

Motor_Stop

Motor_Start

Motor_Run

 Bit-Level Programming Part 2 333

pet10882_ch15_317-372.indd 333pet10882_ch15_317-372.indd 333 7/27/10 6:43 PM7/27/10 6:43 PM

an equivalent hardwired control circuit. The operation of

the program can be summarized as follows:

• An internal relay is used to execute the logic of

the circuit without having to use a real-world

output.

• The status value stored in memory for all tags, when

all input switches are open, is 0 and so the room

light will be off.

• Closing Position_1_Switch changes the status of its

XIC instruction from false to true thereby establish-

ing logic continuity for Rung 1.

• As a result, the status of the internal relay coil and

its XIC contact change from false to true.

• This establishes logic continuity for Rung 2 and

switches the room light on.

• A change in the state of any of input switches will

change the current state of the light.

 Latch and Unlatch Instructions
 The output latch (OTL) instruction is a retentive output

instruction that is used to maintain, or latch, an output. If

this output is turned on, it will stay on even if the status

Monitor Tags window, when the motor is operating. When

the motor is operating:

• The XIC Motor_Start instruction is false because

the NO start button is open; therefore its value is 0.

• The XIC Motor_Stop instruction is true because the

NC stop button is closed; therefore its value is 1.

• The OTE Motor_Run instruction is true because the

rung has logic continuity; therefore its value is 1.

 Internal Relay Instructions
 Internal relay instructions are used when other than real-

world fi eld devices are needed as input or output reference

instructions. For example, an internal relay bit is used as

an output when the logical resultant of a rung is used to

control other internal logic. An internal control relay is

programmed in the ControlLogix system by creating a tag

(either program or controller type) and assigning a Boolean

type to the tag.

 Figure 15-36 shows a ControlLogix program that uses

an internal relay to implement on/off control of a room

light from three different entrances or positions. Three

single pole switches are used for inputs in place of the

two 3-way and one 4-way switches normally required for

 Figure 15-36 Internal relay to implement on/off control of a room light from three different entrances.

Name Value Force Mask

Monitor Tags Window

Style Data Type

Internal_Relay 0 Decimal BOOL

Position_1_Sw... 0 Decimal BOOL

Position_2_Sw... 0 Decimal

Decimal

BOOL

0 BOOLPosition_3_Sw...

Decimal0 BOOLRoom_Light

Ladder logic program

Position_1_Switch

<Local:1:I.Data.1>

L

Position_2_Switch

<Local:1:I.Data.2> Internal_Relay

Position_2_Switch

<Local:1:I.Data.2>

Position_1_Switch

<Local:1:I.Data.1>

Internal_Relay

Position_3_Switch
<Local:1:I.Data.3>

Room_Light
<Local:2:O.Data.5>

Position_3_Switch
<Local:1:I.Data.3> Internal_Relay

OutputInputs

L2
L1

Room_LightPosition_1_Switch

Position_2_Switch

Position_3_Switch

334 Part 2 Bit-Level Programming

pet10882_ch15_317-372.indd 334pet10882_ch15_317-372.indd 334 7/27/10 6:43 PM7/27/10 6:43 PM

of the input logic that caused the output to energize be-

comes false. The OTL instruction will remain in a latched

on condition until an unlatch instruction (OTU) with the

same referenced tag is energized. The OTL instruction is

often used in programs where the value of a variable must

be maintained in instances where there is a shutdown due

to a power failure or system fault. Retentive memory per-

mits the system to be restarted with memory locations

holding the values that were present when the program

execution was halted.

 Figure 15-37 shows a ControlLogix program that uses

an output latch and unlatch instruction pair to implement

the control of a vent fan motor. The operation of the pro-

gram can be summarized as follows:

• The OTL instruction will write a 1 to its address

when true.

• When the OTL goes false, the output address will

remain a 1.

• This is true even if the processor powers down and

then back up.

• The output address will remain a 1 until reset to 0

by the unlatch instruction.

• If the output address is off, both the latch and un-

latch instructions are not intensifi ed, but once the bit

is turned on, you will see both the latch and unlatch

intensifi ed even though both inputs are shut off.

 One-Shot Instruction
 The CLX One-Shot (ONS) instruction is an input instruc-

tion used to turn an output on for one program scan only.

The program of Figure 15-38 uses the ONS instruction

with a math instruction to perform a calculation once per

scan. This program is used to execute the ADD math func-

tion only once per actuation of the limit switch, no matter

how long the limit switch is held closed. The operation of

the program can be summarized as follows:

• On any scan for which limit_switch_1 is cleared or

 storage_1 is set, this rung has no effect.

• On any scan for which limit_switch_1 is set and stor-
age_1 is cleared, the ONS instruction sets storage_1

and the ADD instruction increments sum by 1.

• As long as limit_switch_1 stays set, sum stays

the same value. The limit_switch_1 must go from

cleared to set again for sum to be incremented again.

 Figure 15-37 Output latch and unlatch instructions used to control a vent
fan motor.

Vent_Fan

<Local:2:O.Data.4>

Fan_OFF_Button

<Local:1:I.Data.3>

Ladder logic programInputs Output

Vent_Fan

<Local:2:O.Data.4>

L

U

Fan_ON_Button

<Local:1:I.Data.2>

ON

OFF

Monitor Tags Window

Tag Name Value Style Data Type

Fan_ON_Button 0 Decimal BOOL

Fan_OFF_Button 0 Decimal BOOL

Vent_Fan 1 Decimal BOOL

M

L2

L1

Fan_ON_Button

Fan_OFF_Button

Vent_Fan

 Figure 15-38 ONS instruction used to perform a calculation once per scan.

Ladder logic programInput

L1

Limit_Switch_1

Limit_Switch_1
<Local:1:I.Data.6> Storage_1

ONS

ADD
Add
Source A

Source B

Sum
0
1

Dest Sum
0

 Bit-Level Programming Part 2 335

pet10882_ch15_317-372.indd 335pet10882_ch15_317-372.indd 335 7/27/10 6:43 PM7/27/10 6:43 PM

1. What operations are performed by the processor

during the program scan?

2. With a ControlLogix processor I/O updates occur

asynchronously. Explain what this means.

3. In ladder logic programming into what two broad

categories can instruction types be classifi ed?

4. A fi eld input switch is examined using an XIC

instruction.

a. What is the value (0 or 1) stored in its memory

bit when the switch is opened and closed?

b. What is the state of the instruction (true or false)

when the switch is opened and closed?

5. A fi eld input switch is examined using an XIO

instruction.

a. What is the value (0 or 1) stored in its memory

bit when the switch is opened and closed?

b. What is the state of the instruction (true or false)

when the switch is opened and closed?

6. The value of an OTE instruction as it appears in

the Monitor Tags window is 1. Explain what this

means as far as the status of a real-world fi eld out-

put and programmed XIC and XIO instructions

 associated with this tag are concerned.

7. Defi ne a tag in the ControlLogix system.

8. What advantage do tag-based addressing systems

have over rack/slot and rack/group types?

9. How is an internal relay programmed in the

 ControlLogix system?

10. The output latch instruction is a retentive output

instruction. Explain what retentive means.

11. The ControlLogix ONS instruction is a one-shot

instruction. Explain what this means.

 PART 2 REVIEW QUESTIONS

1. Modify the original ControlLogix start/stop motor

control program with a second start and stop button

added to the program. The additional start button is

to be connected to pin 1 and the stop button to pin 2

of the digital input module.

2. Extend control of the original ControlLogix inter-

nal relay program used to control a room light from

3 entrances to 4. The additional single-pole switch

is to be connected to pin 4 of the digital input

module.

3. Implement the hardwired latching relay alarm circuit

of Figure 15-39 in Logix format. The alarm will be

latched on anytime:

• The normally open temperature switch closes.

• Both normally open fl oat switches 1 and

2 close.

• Either normally open sensor switch 1 or 2 closes

while the normally closed pressure switch is closed.

4. Implement the hardwired tank fi lling and emptying

operation shown in Figure 15-40 in Logix format.

 PART 2 PROBLEMS

 Figure 15-39 Hardwired latching relay alarm circuit
for Problem 3.

Relay

contact
Latch
coil

120 VAC

Reset button

24 VDC

Temp Sw

Float Sw 1

Sensor Sw 1

Sensor Sw 2

Float Sw 2

Pressure

Sw

Alarm
L

Unlatch
coil

U

336 Part 2 Bit-Level Programming

pet10882_ch15_317-372.indd 336pet10882_ch15_317-372.indd 336 7/27/10 6:43 PM7/27/10 6:43 PM

Solenoid B

Stop
Fill

1CR1

2CR1

2CR2

1CR2

Full tank
sensor

Empty tank
sensor

L1 L2

Empty

1CR

2CR

Solenoid A

Full tank
sensor

Empty tank
sensor

Control panel

Stop

Fill

Empty
Solenoid B

Solenoid A

 Figure 15-40 Hardwired tank fi lling and emptying operation for Problem 4.
 Source: Photo courtesy ASCO Valve Inc., www.ascovalve.com.

• Anytime the liquid level of the tank is above

the empty-level mark, momentarily pressing

the EMPTY pushbutton will energize control

relay 2CR.

• Contacts 2CR
1
 and 2CR

2
 will both close to seal

in the 2CR coil and energize normally closed

 solenoid valve B to start emptying the tank.

• When the liquid reaches the empty level, the

 normally open empty-level sensor switch opens to

open the circuit to the 2CR relay coil and switch

solenoid valve B to its de-energized closed state.

• The stop button may be pressed at any time to halt

the process.

The operation of the control circuit can be summa-

rized as follows:

• Assuming the liquid level of the tank is at or below

the empty level mark, momentarily pressing the

FILL pushbutton will energize control relay 1CR.

• Contacts 1CR
1
 and 1CR

2
 will both close to seal

in the 1CR coil and energize normally closed

 solenoid valve A to start fi lling the tank.

• As the tank fi lls, the normally open empty-level

sensor switch closes.

• When the liquid reaches the full level, the normally

closed full-level sensor switch opens to open the

circuit to the 1CR relay coil and switch solenoid

valve A to its de-energized closed state.

 Bit-Level Programming Part 2 337

pet10882_ch15_317-372.indd 337pet10882_ch15_317-372.indd 337 7/27/10 6:43 PM7/27/10 6:43 PM

www.ascovalve.com

338

number (DINT). The time base is always 1 msec.

For example, for a 3 second timer, enter 3000 for

the PRE value.

• Accumulator (ACC) —The accumulator value is

the number of milliseconds the instruction has been

enabled. The accumulator value stops changing

when ACC value 5 PRE value.

• Enable Bit (EN) —The enable bit indicates the

TON instruction is enabled. The EN bit is true when

the rung input logic is true, and false when the rung

input logic is false.

• Timer Timing Bit (TT) —The timing bit indicates

that a timing operation is in process. The TT bit is

true only when the accumulator is incrementing.

TT remains true until the accumulator reaches the

preset value.

• Done Bit (DN) —The done bit indicates that ac-

cumulated value (ACC) is equal to the preset (PRE)

 Timer Predefi ned Structure
 Timers are used to turn outputs on and off after a time

delay, turn outputs on or off for a set amount of time, and

keep track of the time an output is on or off. The timer

address in the SLC 500 controller is a data table address

or symbol, whereas the timer address in the ControlLogix

controller is a predefi ned structure of the TIMER data

type. The TIMER structure is shown in Figure 15-41 .

Timer parameters and status bits include:

• Tag Name —User-friendly tag name for the timer

(e.g., Pump_Timer). If you want to use a timer, you

must create a tag of type timer.

• Preset (PRE) —The number of time increments that

the timer must accumulate to reach the desired time

delay. Specifi es the value (in milliseconds) which

the timer must reach before the done bit (DN)

changes state. The preset value is stored as a binary

 Part Objectives

 After completing this part, you will be able to:

 • Understand ControlLogix timer tags and their members

 • Utilize status bits from timers in logic

 • Develop ladder logic programs using ControlLogix

timers

 Part 3 Programming Timers

 Figure 15-41 TIMER predefi ned structure.

Data Type: TIMER

Name

Members: Data Type Size: 12 byte(s)

Data Type Style Description

PRE

ACC

EN

TT

DN

DINT Decimal

DINT

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Name:

Description:

Pump_Timer

pet10882_ch15_317-372.indd 338pet10882_ch15_317-372.indd 338 7/27/10 6:43 PM7/27/10 6:43 PM

value. The DN bit signals the end of the timing pro-

cess by changing states from false-to-true or from

true-to-false depending on the type of time contact

instruction used. The DN bit is the most commonly

used timer status bit.

 On-Delay Timer (TON)
 The on-delay timer (TON) is a nonretentive output in-

struction used when the application requires an action to

occur at some time after the rung conditions for the timer

become true. The ControlLogix TON on-delay instruction

and timer selection toolbar are shown in Figure 15-42 .

When you want to use a timer, you must create a tag of

type TIMER (it is a predefi ned data type) and enter the

preset and the accumulated value. The tag must be defi ned

before the preset and accumulated values can be entered.

A value can be entered for the accumulator while pro-

gramming. When the program is downloaded this value

will be in the timer for the fi rst scan. If the TON timer is

not enabled the value will be set back to zero. Normally

zero will be entered for the accumulator value.

 The timer tag name is declared using the new tag prop-

erties dialog box shown in Figure 15-43 . Tag name, de-

scription (optional), tag type, data type, and scope are

selected or typed to complete the validation. A descriptive

tag name, such as Solenoid_Delay, makes it easier to know

what function the timer serves in the control system.

 The program of Figure 15-44 is an example of a 10000 ms

(10 s) TON timer. Timers generate both word level (DINT)

and bit level (BOOL) data and status. The operation of the

program can be summarized with reference to the Moni-

tor Tags window.

• The status of all instruction is shown after the timer

input switch has been switched from off to on (1)

and accumulated 5000 ms (5 s) of time.

• At this halfway point the EN bit is 1 since the rung

is true, the TT bit is 1 since the accumulated value is

changing, and the DN bit is 0 since the accumulated

value does not yet equal the preset value.

• When the ACC equals PRE, the accumulated value

stops incrementing, EN stays on for as long as the

rung remains true, TT equals 0 since the accumu-

lated value is not changing, and DN equals 1 since

ACC 5 PRE.

• This will result in the DN pilot light switching on at

the same time as the TT pilot light switches off.

• The EN pilot light remains on as long as the input

switch is closed.

• Opening the input switch at any time causes the

TON instruction to go false resetting the counter

ACC value to 0 and EN, TT, and DN bits to 0. This

in turn switches off all output pilot lights.

• The TON instruction is a self-resetting timer. When

the rung goes false, the timer is automatically reset.

A reset instruction can be used, but usually is not.

 Figure 15-45 shows a TON timer used to delay the op-

eration of a diverter gate solenoid for 3 seconds after a tar-

get has been sensed by the solenoid energize sensor. The

operation of the program can be summarized as follows:

• Detection of the target causes closure of the SOL_

Energize_Sensor contacts making the timer rung

true and start timing.

• With passage of the target the SOL_Energize_

Sensor contacts open but the rung remains true

through the EN bit of the TON timer.

• After 3000 ms (3 s) delay time has elapsed, delay

timer DN bit is set to 1 to energize the SOL_Gate. Figure 15-42 TON on-delay instruction.

TON TOF RTO

Add-OnFavorites Alarms Bit

CTU CTD RES

Timer/Counter

Tag name

Input side of rung

TIMER ON DELAY

Timer

Preset

Accum

Solenoid_Delay

3000

0

TON

EN

DN

 Figure 15-43 Timer tag validation.

Diverter gate

solenoid delay timer

TIMER ON DELAY

Timer

Preset

Accum

Solenoid_Delay

3000

0

TON

EN

DN

 Programming Timers Part 3 339

pet10882_ch15_317-372.indd 339pet10882_ch15_317-372.indd 339 7/27/10 6:43 PM7/27/10 6:43 PM

 Figure 15-45 TON timer used to delay the operation of a diverter gate solenoid.
 Source: Photos courtesy Omron Industrial Automation, www.ia.omron.com.

Tag Name Value Style Data Type

SOL_Energize_Sensor 0

{…}

3000 Decimal

Decimal

DINT

DINT

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

0

0

0

0

BOOL

SOL_Deenergize_Sensor 1 Decimal BOOL

SOL_Gate 0 Decimal BOOL

TIMERT_SOL_Delay

T_SOL_Delay.PRE

T_SOL_Delay.ACC

T_SOL_Delay.EN

T_SOL_Delay.TT

T_SOL_Delay.DN

Ladder logic program

L1

Inputs

L2

Output

SOL_Energize_Sensor

<Local:1:I.Data.3>

SOL_De-energize_Sensor

<Local:1:I.Data.6>

T_SOL_Delay.EN
T_SOL_Delay

TON
TIMER ON DELAY
Timer
Preset
Accum

3000
0

EN

DN

T_SOL_Delay.DN
SOL_Gate

<Local:2:O.Data.2>

SOL_Energize_Sensor

SOL_Deenergize_Sensor

SOL_Gate

 Figure 15-44 Ten-second TON timer program.

DN

Tag Name Value Style Data Type

Timer_Sw 1

{…}

10000 Decimal

Decimal

DINT

DINT

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

500

1

1

0

BOOL

EN_PL 1 Decimal BOOL

TT_PL 1 Decimal

Decimal

BOOL

TIMER-Status_Timer

Status_Timer.PRE

Status_Timer.ACC

Status_Timer.EN

Status_Timer.TT

Status_Timer.DN

0 BOOLDN_PL

Ladder logic program

Timer_Sw
<Local:1:I.Data.6>

Status_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

10000
5000

EN_PL
<Local:2:O.Data.1>Status_Timer.EN

Status_Timer.TT

Status_Timer.DN

EN EN

TT_PL
<Local:2:O.Data.2>

DN_PL
<Local:2:O.Data.3>

OutputsInput
L2

L1

EN_PLTimer_Sw

TTTT_PL

DNDN_PL

340 Part 3 Programming Timers

pet10882_ch15_317-372.indd 340pet10882_ch15_317-372.indd 340 7/27/10 6:43 PM7/27/10 6:43 PM

www.ia.omron.com

• When the button is then opened the timer rung

remains true through the logic path created by the

Pilot_Light_Timer.EN bit.

• After 20000 ms (20 s) have elapsed the timer DN

bit is set to reset the timer to its original state and

unlatch the Green_PL and switch it off.

 The ControlLogix program of Figure 15-47 shows

three TON timers cascaded (connected together) for traf-

fi c light control. The ladder logic used is the same as that

used to program the traffi c lights using the SLC 500 con-

troller. The different tags created to fi t the program are

• Momentary detection of the target by the SOL_

Deenergize_Sensor causes the opening of its con-

tacts and resets the program to its original state.

 Figure 15-46 shows a program that uses a TON timer to

illuminate a green pilot light for 20 seconds each time a mo-

mentary button is pressed. In addition to the TON timer this

program uses multiple outputs on one rung, output latch and

unlatch instructions, as well as a timer reset instruction. The

operation of the program can be summarized as follows:

• Initially closing the Timer_Button sets (latches) the

Green_PL on and enables the Pilot_Light_Timer.

 Figure 15-47 ControlLogix traffi c control program.

Ladder logic program

Amber_Light_Timer.DN

Red_Light_Timer.DN

Red_Light_Timer

Green_Light_Timer.DN

Red_Light_Timer.EN

Green_Light_Timer.EN

Amber_Light_Timer.EN

Red_Light_Timer.DN
Red_Light

<Local:2:O.Data.0>

Green_Light_Timer.DN

Amber_Light_Timer.DN

TON
TIMER ON DELAY
Timer
Preset
Accum

30000
0

Green_Light_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

25000

Amber_ Light

Green_ Light

Red_ Light

Outputs

L2

0

Amber_Light_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

5000
0

EN

DN

Green_Light
<Local:2:O.Data.1>

Amber_Light
<Local:2:O.Data.2>

EN

DN

EN

DN

 Figure 15-46 Pilot light TON timer.

Green_ PL
Timer_Button

L2L1

Ladder logic program OutputInput

Green_PL

<Local:2:O.Data.3>

L

Time_Button

<Local:1:I.Data.0>

Pilot_Light_Timer.EN

Pilot_Light_Timer.DN Pilot_Light_Timer
Green_PL

<Local:2:O.Data.3>

URES

Pilot_Light_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

20000
0

EN

DN

 Programming Timers Part 3 341

pet10882_ch15_317-372.indd 341pet10882_ch15_317-372.indd 341 7/27/10 6:43 PM7/27/10 6:43 PM

shown in Figure 15-48 . Operation of the program can be

summarized as follows:

• Transition from red light to green light to amber

light is accomplished by the interconnection of the

EN and DN bits of the three TON timer instructions.

• The input to the Red_Light_Timer is controlled by

the Amber_Light_Timer.DN bit.

• The input to the Green_Light_Timer is controlled

by the Red_Light_Timer.DN bit.

• The input to the Amber_Light_Timer is controlled

by the Green_Light_Timer.DN bit.

• The timed sequence of the lights is:

 - Red—30 s on

 - Green—25 s on

 - Amber—5 s on

• The sequence then repeats itself.

 Off-Delay Timer (TOF)
 The off-delay timer (TOF) operates in a fashion opposite

to the TON on-delay timer. An off-delay timer will turn

on immediately when the rung of ladder logic is true, Figure 15-49 ControlLogix TOF off-delay timer instruction.

Tag name

TOF
TIMER OFF DELAY
Timer Sample_TOF
Preset
Accum

5000
0

Input side

of rung
EN

DN

 Figure 15-50 Pilot light TOF timer.

Green_ PL
Timer_Button

L2L1

Ladder logic program OutputInput

Timer_Button

<Local:1:I.Data.0>

Pilot_Light_Timer.DN
Green_PL

<Local:2:O.Data.3>

Pilot_Light_Timer

TOF
TIMER OFF DELAY
Timer
Preset
Accum

20000
0

EN

DN

 Figure 15-48 Tags created for traffi c light program.

Tag Name Value Style Data Type

-Amber_Light_Timer {…}

{…}

{…}

30000 Decimal DINT

DINT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

0

1

1

0

1

0

0

TIMER

TIMER

TIMER

-Green_Light_Timer

-Red_Light_Timer

Red_Light

Green_Light

Amber_Light

-Red_Light_Timer.PRE

-Red_Light_Timer.ACC

Red_Light_Timer.EN

Red_Light_Timer.TT

Red_Light_Timer.DN

but it will delay before turning off after the rung goes

false. The ControlLogix TOF off-delay timer instruction

is shown in Figure 15-49 . The description of the function

block fi elds and tag references are the same as for that of

a TON timer.

 Figure 15-50 shows a program that uses a TOF timer

to illuminate a green pilot light for 20 seconds each time

a momentary button is pressed. The program code is sim-

pler than that used to accomplish the same task using a

TON timer. The operation of the program can be sum-

marized as follows:

• When the Timer_Button is initially closed the

timer rung and instruction and DN bit all become

true.

• The DN bit switches on the Green_PL and the

 program remains in this state as long as the button is

held closed.

• When the button is released the Timer_Button

 instruction goes false and starts the timing cycle.

• The light remains on and the timer begins accumu-

lating time.

• When the accumulator reaches 20000 ms (20 s)

the timer DN bit becomes false and the light is

switched off.

 The program of Figure 15-51 uses both on-delay and

off-delay timers for control of a heating oven process.

The different tags created to fi t the program are shown

342 Part 3 Programming Timers

pet10882_ch15_317-372.indd 342pet10882_ch15_317-372.indd 342 7/27/10 6:43 PM7/27/10 6:43 PM

• The Timer_Cooling.DN bit of the TOF timer

 becomes true which energizes the Fan_Motor.

• After 10 s (10000 ms) have elapsed the Timer_Heat.

TT bit becomes false to turn off the Warning_Horn

and the Timer_Heat.DN bit becomes true to

 energize the Heater_Contactor and turn on the

 heating coils.

• When the Oven_Off_Button is momentarily actu-

ated the Oven_On_PL output goes false which turns

the pilot light off and opens the continuity of its

seal-in logic path.

• The Timer_Heat timer instruction and its DN

bit instruction become false which de-energizes

the Heater_Contactor and turns off the heating

coils.

• The Timer_Cooling timer begins accumulating time

and the fan continues to operate for the 5 minute

(300000 ms) delay period after which the Timer_

Cooling.DN bit becomes false to turn the fan off.

 Figure 15-51 Timer control of a heating oven process.

L1

Inputs

Oven_On_PL
<Local:2:O.Data.2>

Oven_On_Bautton

Oven_Off_Button

Ladder logic program

Timer_Heat

10000←
0←

TON
TIMER ON DELAY
Timer
Preset
Accum

Warning_Horn
<Local:2:O.data.3>

Oven_On_PL

Timer_Heat.TT

Timer_Cooling

300000←
0←

TOF
TIMER OFF DELAY
Timer
Preset
Accum

EN

Heater_Contactor

<Local:2:O.data.4>

Warning_Horn

Timer_Heat.DN

Fan_Motor

<Local:2:O.data.5>

L2

Outputs

Heater_Contactor

Fan_Motor

Timer_Cooling.DN

Oven_On_PL
<Local:2:O.Data.2>

Oven_On_Button
<Local:1:I.Data.1>

Oven_Off_Button
<Local:1:I.Data.2>

Oven_On_PL
<Local:2:O.Data.2>

DN

DN

EN

ON

OFF

 Figure 15-52 Tags created for heating oven process.

Tag Name

Warning_Horn

Heater_Contactor

Fan_Motor

Oven_On_PL

Oven_On_Button

Oven_Off_Button

Local:2:O.Data.3

Local:2:O.Data.4

Local:2:O.Data.5

Local:2:O.Data.2

Local:1:I.Data.1

Local:1:I.Data.2

Local:2:O.Data.3

Local:2:O.Data.4

Local:2:O.Data.5

Local:2:O.Data.2

Local:1:I.Data.1

Local:1:I.Data.2

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

TIMER

TIMER

-Timer_Heat

-Timer_Cooling

Alias For Base Tag Data Type Style

in Figure 15-52 . Operation of the program can be sum-

marized as follows:

• Pressing the Oven_On_Button energizes the Oven_

On_PL output which seals itself in and enables the

TON and TOF timer instructions.

• The Timer_Heat.TT bit of the TON timer becomes

true which sounds the Warning_Horn to warn that

the oven is about to come on.

 Programming Timers Part 3 343

pet10882_ch15_317-372.indd 343pet10882_ch15_317-372.indd 343 7/27/10 6:43 PM7/27/10 6:43 PM

 Retentive Timer On (RTO)
 A retentive on-delay timer (RTO) operates the same

as a TON timer, except that the retentive timer retains

(remembers) its ACC value even if:

• The rung goes false.

• The processor is placed in the program mode.

• The processor faults.

• Power to the processor is temporarily interrupted

and the processor battery is functioning properly.

 The ControlLogix RTO retentive on-delay timer in-

struction is shown in Figure 15-53 . The description of the

function block fi elds and tag references are the same as

for that of a TON timer; however, a RES reset instruction

must be used to reset the accumulated value of a retentive

timer. The RES instruction must have the same tag name

as the timer you want to reset.

 An example application of a limit switch 2 minute

(120000 ms) RTO timer program is shown in Figure 15-54 .

The different tags created to fi t the program are shown in

 Figure 15-55 . The operation of the program can be sum-

marized as follows:

• The status and value of all instructions, with the

timer initially reset, are as shown in the monitor

tags window.

• When the Limit_Switch has been closed for 1 min-

ute, the status and value of the instructions would be:

 - PRE – 120000

 - ACC – 60000

 - LS_Timer.EN – 1

 - LS_Timer.TT – 1

 - LS_Timer.DN – 0

 - LS_EN_PL – 1

 - LS_TT_PL – 1

 - LS_Alarm – 0

• When the Limit_Switch is opened after 1.5 minutes,

the status and value of the instructions would be:

 - PRE – 120000

 - ACC – 90000

 - LS_Timer.EN – 0

 - LS_Timer.TT – 0

 - LS_Timer.DN – 0

 - LS_EN_PL – 0

 - LS_TT_PL – 0

 - LS_Alarm – 0 Figure 15-53 RTO retentive on-delay timer instruction.

EN

DN

RES

SOL_On_Timer

Input side of rung

SOL_On_Timer

10000

0

RTO
RETENTIVE TIMER ON

Timer

Preset

Accum

 Figure 15-54 Limit switch RTO timer program.

Ladder logic program

Limit_Switch

<Local:1:I.Data.7>

LS_Timer

RTO
RETENTIVE TIMER ON
Timer
Preset
Accum

120000
0

LS_EN_PL
<Local:2:O.Data.0>LS_Timer.EN

LS_Timer.TT

LS_Timer.DN

EN

DN

LS_TT_PL

<Local:2:O.Data.1>

LS_Alarm
<Local:2:O.Data.2>

Reset_LS_Timer
<Local:1:I.Data.2> LS_Timer

RES

OutputsInput

L2L1

LS_EN_PLLimit_Switch

Reset_LS_Timer

LS_TT_PL

AlarmLS_Alarm

344 Part 3 Programming Timers

pet10882_ch15_317-372.indd 344pet10882_ch15_317-372.indd 344 7/27/10 6:43 PM7/27/10 6:43 PM

• When the Limit_Switch is closed and stays closed

until the timer times out, the status and value of the

instructions would be:

 - PRE – 120000

 - ACC –120000

 - LS_Timer.EN – 1

 - LS_Timer.TT – 0

 - LS_Timer.DN – 1

 - LS_EN_PL – 1

 - LS_TT_PL – 0

 - LS_Alarm – 1

• When the Limit_Switch is opened after the timer

times out, the status and value of the instructions

would be:

 - PRE – 120000

 - ACC –120000

 - LS_Timer.EN – 0

 - LS_Timer.TT – 0

 - LS_Timer.DN – 1

 - LS_EN_PL – 0

 - LS_TT_PL – 0

 - LS_Alarm – 1

• When the Reset_LS_Timer is closed, the status and

value of the instructions are reset to their original

values.

 Figure 15-55 Tags created for the RTO retentive on-delay
timer program.

{…}

120000

0

0

0

0

DINT

DINT

BOOL

BOOL

BOOL

BOOL

TIMER

BOOL

Limit_Switch

LS_EN_PL

0

0

0

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

LS_TT_PL

LS_Alarm

-LS_Timer.PRE

-LS_Timer.ACC

LS_Timer.EN

LS_Timer.TT

LS_Timer.DN

-LS_Timer

Tag Name Value Style Data Type

 Programming Timers Part 3 345

pet10882_ch15_317-372.indd 345pet10882_ch15_317-372.indd 345 7/27/10 6:43 PM7/27/10 6:43 PM

1. Compare the methods used to address timers in an

SLC 500 and a ControlLogix controller.

2. List the fi ve different members of a TIMER

structure.

3. What type of timing application may require you to

use a TON on-delay timer?

4. What PRE value is used for a timer?

5. To what value is the accumulated value of a timer

normally set?

6. What timer status bit is set to 1 when the TON

timer times out?

7. The TON instruction is self-resetting. Explain what

this means.

8. What number would be entered into the PRE value

of a ControlLogix timer for a timing period of

4.5 minutes?

9. Compare the operation a TOF and a TON timer.

10. When does the rung of a TOF timer begin accumu-

lating time?

11. The RTO timer is a retentive timer. Explain what

this means.

12. How are the retentive timer and reset instruction

related?

 PART 3 REVIEW QUESTIONS

1. Modify the original CLX ten-second TON timer pro-

gram with an additional rung added to the program

that will energize a solenoid whenever the timer is

enabled and timing. The solenoid is to be connected

to pin 6 of the digital output module.

2. With reference to the ladder logic of the CLX di-

verter gate program, assume the solenoid gate fails

to energize as programmed. You suspect the problem

is due to an open in the solenoid coil or wiring to it.

How might observation of the solenoid output status

light help confi rm this?

3. You are required to extend the Green light-on

time of the CLX traffi c control program to 40 sec-

onds. What changes would have to be made to the

program?

4. With reference to the CLX heating oven process

program, assume the oven-on pilot light burns out.

In what way would the operation of the program be

affected?

5. With reference to the CLX limit switch RTO pro-

gram, in addition to the alarm you are required to

install a warning pilot light to indicate that the timer

has timed out. How would you proceed?

6. Implement the hardwired TON alarm circuit of

 Figure 15-56 in Logix format.

 PART 3 PROBLEMS

 Figure 15-56 Hardwired TON alarm circuit for Problem 6.

L1 L2

CR

TR

10 s

ON/OFF

switch

Low pressure

switch
On-delay timer

TR

CR

Alarm

346 Part 3 Programming Timers

pet10882_ch15_317-372.indd 346pet10882_ch15_317-372.indd 346 7/27/10 6:43 PM7/27/10 6:43 PM

347

counter must be used to reset the accumulated value of

the counter to zero.

 All counters are retentive in that the accumulated value

of any counter is retained, even during a power failure,

until reset. The on/off status of the counter done, over-

fl ow, and underfl ow bits are retentive as well. Control-

Logix counter parameters and status bits are shown in the

edit tags window of Figure 15-58 and can be summarized

as follows:

• Preset (PRE) Value —Specifi es the value the

counter must reach before the done (DN) bit turns

on (1).

• Accumulated (ACC) Value —Is the number of

false-to-true transitions of the counter run. ACC is

reset to zero when a reset (RES) instruction (of the

same counter address) is executed.

• CU (Count-Up Enable Bit) —The count-up enable

bit indicates the CTU instruction is enabled.

 Counters
 Counters are similar to timers, except that a counter ac-

cumulates (counts) the changes in state of an external

trigger signal whereas timers increment using an internal

clock. PLC counters are generally triggered by a change

in an input fi eld device that causes a false-to-true transi-

tion of the counter ladder rung. It does not matter how

long the rung stays true or false—it is only the transition

that counts.

 There are two basic counter types: count-up (CTU)

and count-down (CTD). The ControlLogix CTU in-

struction and counter selection toolbar are shown in

 Figure 15-57 . When you want to use a timer, you must

create a tag of type COUNTER (it is a predefi ned data

type) and enter the preset and the accumulated value.

When entering the instruction, this tag must be defi ned

before the preset and accumulated values can be entered.

A RES reset instruction that has the same tag name as the

 Part Objectives

 After completing this part, you will be able to:

 • Understand ControlLogix counter tags and their

members

 • Utilize status bits from counters in logic

 • Develop ladder logic programs using ControlLogix

counters

 Part 4 Programming
Counters

 Figure 15-57 CTU count-up counter instruction.

CU

DN

Package_Counter

Input side of rung

False

True

RES

24←
0←

Tag name

CTU

Count Up

Counter Package_Counter

Preset

Accum

TON

Favorites

TOF RTO CTU CTD RES

Add-On Alarms Bit Timer/Counter

pet10882_ch15_317-372.indd 347pet10882_ch15_317-372.indd 347 7/27/10 6:43 PM7/27/10 6:43 PM

348 Part 4 Programming Counters

• CD (Count-Down Enable Bit) —The count-down

enable bit indicates the CTD instruction is

enabled.

• DN (Count-Up Done Bit) —Is set (1) when ACC

value is equal to or greater than the PRE value. Is

reset by the RES instruction.

• OV (Overfl ow Bit) —The overfl ow bit indicates the

counter exceeded the upper limit. Is set when the

ACC value is greater than +2,147,483,647 and reset

when the reset instruction is executed. Note that the

accumulated value keeps incrementing even after

the ACC value equals the PRE value.

• UN (Underfl ow Bit) —Indicates that the counter

 exceeded the lower limit of 22,147,483,648.

 The counter tag name is declared using the new tag

properties dialog box shown in Figure 15-59 . Tag name,

description (optional), tag type, data type (base type is

used most often), and scope are selected or typed to com-

plete the validation.

 Count-Up (CTU) Counter
 Count-up (CTU) counters will cause the accumulated count

to increase by 1 every time there is a false-to-true transi-

tion of the counter ladder rung. An example application

of a count-up counter program used to count packets of

bottles is shown in Figure 15-60 . The operation of the

program can be summarized as follows:

• Each open-to-close transition of the Bottle_Sensor

proximity switch causes the counter to increment by 1.

 Figure 15-58 ControlLogix counter parameters and
status bits.

DINT

DINT

BOOL

BOOL

BOOL

BOOL

COUNTER

BOOL

Part_Counter.OV

Part_Counter.UN

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

-Part_Counter.PRE

-Part_Counter.ACC

Part_Counter.CU

Part_Counter.CD

Part_Counter.DN

-Part_Counter

Tag Name Data Type Style

 Figure 15-59 Counter tag validation.

Main programScope

COUNTERData Type

BaseTag Type

24 bottle counterDescription

Package_CounterName

CV

DN

Package_Counter

24←
0←

CTU
Count Up
Counter
Preset
Accum

New Tag

24 bottle counter

 Figure 15-60 Count-up counter program used to count packets of bottles.

Ladder logic program

24 bottle counter
Bottle_Sensor

<Local:1:I.Data.1>

Increment_PL
<Local:2:O.Data.4>

24 bottle counter
Package_Counter.CU

24 bottle counter
Package_Counter.DN

CU

DN

Preset_Reached_PL
<Local:2:O.Data.5>

Reset_Button
<Local:1:I.Data.3>

24 bottle counter
Package_Counter

OutputsInputs

L2L1

Increment_PLBottle_Sensor

Reset_Button

Preset_Reached_PL

CTU

Count Up

Counter

Preset
Accum

Package_Counter

24*
0*

RES

pet10882_ch15_317-372.indd 348pet10882_ch15_317-372.indd 348 7/27/10 6:43 PM7/27/10 6:43 PM

• The Increment_PL controlled by the Package_

Counter.CU status bit turns on and off as

each bottle passes to show that the counter is

incrementing.

• When the accumulated value of the counter is 24

the DN bit of the counter is set and switches on the

Preset_Reached_PL.

• The counter is reset by momentarily closing the

Reset_Button.

 The program shown in Figure 15-61 uses two CTU in-

structions as part of a program to remove 5 out of every

10 containers from a conveyor line using an electric so-

lenoid. The different tags created to fi t the program are

shown in Figure 15-62 . The operation of the program can

be summarized as follows:

• The preset for the Container_Counter_Counts is set

for 6 and that for the Container_Counter_Max is

set to 11.
 Figure 15-62 Tags created for the CTU program used to
remove containers from a conveyor line.

Container_Counter_Counts .CU

Container_Counter_Counts .CD

Container_Counter_Counts .DN

Container_Counter_Counts .OV

Container_Counter_Counts .UN

Container_Counter_Counts

Container_Counter_Counts .PRE

Container_Counter_Counts .ACC

0

0

0

0

0

{...}

6

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

COUNTER

DINT

DINT

Container_Counter_Max .CU

Container_Counter_Max .CD

Container_Counter_Max .DN

Container_Counter_Max .OV

Container_Counter_Max .UN

Container_Counter_Max

Container_Counter_Max .PRE

Container_Counter_Max .ACC

0

0

0

0

0

{...}

11

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

0 Decimal BOOL

0

Container_Sensor

SOL Decimal BOOL

COUNTER

DINT

DINT

Tag Name Value Style Data Type

 Figure 15-61 CTU program used to remove containers from a conveyor line.

L1 L2

Input

Container_Sensor

<Local:1:I.Data.2>

Container_Sensor

<Local:1:I.Data.2>

SOL

<Local:2:O.Data.2>

Container_Counter_Max.DN Container_Counter_Counts

Container_Counter_Max

Container_Counter_Counts.DN

Ladder logic program

CTU
Count Up

Counter

Preset

Accum

Container_Counter_Counts

6←
0←

Output

Sensor

Solenoid

SOL

Container_Sensor CU

DN

CTU
Count Up

Counter

Preset

Accum

Container_Counter_Max

11←
0←

CU

DN

RES

RES

 Programming Counters Part 4 349

pet10882_ch15_317-372.indd 349pet10882_ch15_317-372.indd 349 7/27/10 6:43 PM7/27/10 6:43 PM

• When the container is detected both counters will

increase their accumulated values by 1.

• When the sixth part arrives the Container_Counter_

Counts counter will then be done, thereby allow-

ing the solenoid to actuate for any container after

the fi fth.

• The Container_Counter_Max counter will continue

until the eleventh part is detected and then both of

the counters will be reset.

 Count-Down (CTD) Counter
 The count-down (CTD) counter operates in a fashion op-

posite to the count-up CTU counter. CTD counters will

cause the accumulated count to decrease instead of in-

crease by one every time there is a false-to-true transi-

tion of the counter ladder rung. The ControlLogix CTD

down-counter instruction is shown in Figure 15-63 . The

descriptions of the function block fi elds and the tag ref-

erences are the same as those associated with the CTU

function block. The CTD instruction is typically used

with a CTU instruction that references the same counter

structure.

 The application program shown in Figure 15-64 is

used to limit the number of parts that can be stored in

the buffer zone to a maximum of 50. A CTU counter

and a CTD counter are used together with the same

 Figure 15-63 Count-down CTD counter instruction.

Counter_1.CU

Counter_1.CD

Counter_1.DN

Counter_1.OV

Counter_1.UN

Counter_1

Counter_1.PRE

Counter_1.ACC

Tag Name

Count Down

Counter

Preset

Accum

CTD

Counter_1

Tag name

Input

side of

rung
Counter_1

CD

DN

RES

 Figure 15-64 CTU counter and CTD counter used together to form an Up/Down counter.

Restart_Button

<Local:1:I.Data.1> Counter_1

Ladder logic program

CTU

Restart_Button

Count Up

Counter Counter_1

Preset

Accum

50←
0←

CU

DN

Enter_Limit_Sw

<Local:1:I.Data.3>

CTD
Count Up

Counter Counter_1

Preset

Accum

50←
0←

CD

DN

Enter_Limit_Sw

<Local:1:I.Data.4>

Counter_1.DN
Conveyor_Contactor

<Local:2:O.Data.2>

RES

L1

Inputs

L2

Output

C

Enter_Limit_Sw

Exit_Limit_Sw

Conveyor_Contactor

address to form an Up/Down counter. This is the most

common type of application of the CTD counter. The

different tags created to fi t the program are shown in

 Figure 15-65 . The operation of the program can be sum-

marized as follows:

• The Restart_Button is momentarily actuated at any

time to reset the accumulated value of the counter

to zero.

• Conveyor brings parts into a buffer zone.

• Each time a part enters the buffer zone, the

Enter_Limit_Sw is actuated and Counter_1

increments by 1.

350 Part 4 Programming Counters

pet10882_ch15_317-372.indd 350pet10882_ch15_317-372.indd 350 7/27/10 6:43 PM7/27/10 6:43 PM

• Each time a part leaves the buffer zone, the

Exit_Limit_Sw is actuated and Counter_1

decrements by 1.

• When the number of parts in the buffer zone, at

any one time, reaches 50, the Counter_1.DN bit

is set.

• As a result the Conveyor_Contactor rung goes

false to de-energize the conveyor contactor, auto-

matically stopping the conveyor from bringing in

any more parts until the accumulated count drops

below 50.

 Figure 15-65 Tags created for the Up/Down counter
program.

Counter_1.CU

Counter_1.CD

Counter_1.DN

Counter_1.OV

Counter_1.UN

Counter_1

Counter_1.PRE

Counter_1.ACC

0

0

0

0

0

0

{ . . . }

50

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

COUNTER

DINT

DINT

Conveyor_Contactor

Restart_Button

Enter_Limit_Sw

Exit_Limit_Sw

1

0

0

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

Tag Name Value Style Data Type

 Programming Counters Part 4 351

pet10882_ch15_317-372.indd 351pet10882_ch15_317-372.indd 351 7/27/10 6:43 PM7/27/10 6:43 PM

1. In what way are timers and counters similar?

2. Outline the procedure followed to create a tag when

you want to use a counter.

3. All counters are retentive. In what way does this af-

fect their operation?

4. What is specifi ed by the preset value of a counter?

5. When is each of the following counter bits set?

a. CU

b. DN

c. CD

6. Compare the operations of a CTU and a CTD

counter.

7. What is an Up/Down counter?

8. Explain how you go about creating tags for an Up/

Down counter that uses a CTU and CTD instruction.

 PART 4 REVIEW QUESTIONS

1. With reference to the CTU packets of bottles pro-

gram, what changes to the program would be re-

quired to count 6 bottle packets?

2. With reference to the CTU program used to remove

containers from a conveyor line, assume the output

solenoid coil failed open. In what way would the

 operation of the program be affected?

3. Modify the original Up/Down counter program to

include:

a. A red pilot light to indicate entry of a part into the

buffer zone. Light to be connected to pin 4 of the

digital output module.

b. A green pilot light to indicate exit of a part from

the buffer zone. Light to be connected to pin 3 of

the digital output module.

4. Write a ControlLogix program, complete with tags,

for an Up/Down counter used to keep track of cars

entering and exiting a parking lot. The program re-

quirements for this application can be summarized

as follows:

• The parking lot holds 30 vehicles.

• There is an entrance vehicle sensor and an exit

 vehicle sensor.

• When the parking lot is full a Lot Full sign is

illuminated.

• Whenever a car exits the lot, a Caution Buzzer/

Light is activated to warn pedestrians.

 PART 4 PROBLEMS

352 Part 4 Programming Counters

pet10882_ch15_317-372.indd 352pet10882_ch15_317-372.indd 352 7/27/10 6:43 PM7/27/10 6:43 PM

353

 Math Instructions
 ControlLogix basic math instructions include addition,

subtraction, multiplication, division, square root, and

clear. Figure 15-66 shows the Compute/Math toolbar for

the ControlLogix controller.

 The ADD instruction is used to add two numbers. This

instruction adds these values from Source A and Source B.

The source can be a constant value or a tag. The result of

the ADD instruction is put in the destination (Dest) tag.

 Figure 15-67 shows an example of an ADD instruction

rung along with its Monitor Tags window. The operation

of the rung can be summarized as follows:

• When the ADD_Sw is closed the rung will be true.

• The ADD instruction will execute to add the num-

ber from Source A (Value_A) and the value from

Source B (Value_B).

 Part Objectives

 After completing this part, you will be able to:

 • Utilize ControlLogix math instructions in programs

 • Utilize ControlLogix comparison instructions in

programs

 • Utilize ControlLogix move instructions in programs

 • Develop and follow the operation of programs that use

math, comparison, and move instructions

 Part 5 Math, Comparison,
and Move Instructions

 Figure 15-66 Compute/Math toolbar for the ControlLogix
controller.

CPT

Compare

ADD SUB MUL DIV MOD SQR

Move/Logical File/Misc.Compute/Math

 Figure 15-67 ADD instruction rung and its Monitor Tags
window.

Ladder logic program Input

L1
ADD

Add

Source A

Source B

Dest

Value_A

25

Value_B

50

Total_Value

75

Add_Sw

<Local:1:I.Data.1>

Add_Sw

Value_B

ADD_Sw

Total_Value

Value_A

50

1

75

25

Decimal

Decimal

Decimal

Decimal

DINT

BOOL

DINT

DINT

Tag Name Value Style Data Type

pet10882_ch15_317-372.indd 353pet10882_ch15_317-372.indd 353 7/27/10 6:43 PM7/27/10 6:43 PM

354 Part 5 Math, Comparison, and Move Instructions

• The result will be stored in the Dest tag

(Total_Value).

• In this example, the 25 was added to 50 and the

 result (75) was stored in Total_Value.

 The SUB instruction is used to subtract two numbers.

 Figure 15-68 shows an example of a SUB instruction rung

along with its Monitor Tags window. The operation of the

rung can be summarized as follows:

• When the SUB_Sw or Calculate tag is true the SUB

instruction is executed.

• Source B (Shipped_Parts) is subtracted from Source

A (Parts_Stock) and the result is stored in the Dest

tag named Current_Inventory.

• In this example, the 200 was subtracted from 900

and the result (700) was stored in Current_Inventory.

• Source A and Source B can be constants (numbers)

or tags.

 The MUL instruction is used to multiply two numbers.

 Figure 15-69 shows an example of a MUL instruction

rung along with its Monitor Tags window. When multiple

bottles are packed in cases, the number of bottles per case,

the number of cases, and the multiply instruction will give

you the total number of bottles. The operation of the rung

can be summarized as follows:

• When the Sw_1 and Sw_2 are both true the MUL

instruction is executed.

 Figure 15-68 SUB instruction rung and its Monitor Tags window.

Ladder logic program Input

L1
SUB

Subtract

Source A

Source B

Dest

Parts_Stock

900

Shipped_Parts

200

Current_Inventory

700

Sub_Sw

<Local:1:I.Data.4>

Calculate

Add_Sw

Current_Inventory

Sub_Sw

Parts_Stock

Shipped_Parts

700

1

900

200

Decimal

Decimal

Decimal

Decimal

DINT

BOOL

DINT

DINT

Calculate 0 Decimal BOOL

Tag Name Value Style Data Type

 Figure 15-69 MUL instruction rung and its Monitor Tags window.

Ladder logic program Input

L1
MUL

Multiply

Source A

Source B

Dest

Cases_Produced

60

Bottles_Per_Case

12

Bottles_Produced

720

Sw_2

<Local:1:I.Data.2>
Sw_1

<Local:1:I.Data.1>

Sw_1

Sw_2

Cases_Produced

Bottles_Per_Case

Sw_1

Sw_2

60

12

1

1

Decimal

Decimal

Decimal

Decimal

DINT

DINT

BOOL

BOOL

Bottles_Produced 720 Decimal DINT

Tag Name Value Style Data Type

pet10882_ch15_317-372.indd 354pet10882_ch15_317-372.indd 354 7/27/10 6:43 PM7/27/10 6:43 PM

 Math, Comparison, and Move Instructions Part 5 355

• The addition in the ADD instruction places the sum

of the accumulated values of the two counters in the

Conveyor_3_Parts tag.

• When the accumulated value for either counter is

equal to 150 the reset (RES) instructions for both

counters are enabled to automatically reset both

counter ACC values to zero.

• Both counters can also be reset manually at any time

by actuation of the Manual_Conveyor_Reset button.

 Comparison Instructions
 Compare instructions are used to compare two val-

ues. They can be used to see if two values are equal, if

one value is greater or less than the other, and so on. In

 ControlLogix controllers compare instructions are input

instructions that do comparisons by either using an ex-

pression or doing the comparison indicated by the specifi c

instruction. Figure 15-72 shows the Compare toolbar for

the ControlLogix controller.

 The equal (EQU) instruction is used to test if two val-

ues are equal. Values compared can be actual values or

tags that contain values. Figure 15-73 shows an example

of an EQU instruction rung along with its Monitor Tags

window. The operation of the rung can be summarized as

follows:

• The value stored at Source A is compared to the

value stored at Source B.

• If the values are equal, the instruction is

logically true.

• If the values are unequal, the instruction is

logically false.

• In this example Source A (25) is equal to Source B

(25) so the instruction is true and output Equal_PL

is on.

• Source A and Source B may be SINT, INT, DINT,

or REAL data types.

 The not equal (NEQ) instruction is used to test two

values for inequality. Figure 15-74 shows an example of

an NEQ instruction rung. When Source A is not equal to

Source B, the instruction is logically true; otherwise, it

is logically false. In this example the two values are not

equal so the Not_Equal_PL is energized.

 The less than (LES) instruction is used to check if a

value from one source is less than the value from a sec-

ond source. Figure 15-75 shows an example of an LES

instruction rung. When Source A is less than Source B,

the instruction is logically true; otherwise, it is logically

false. In this example Value_1 (100) is less than Value_2

(300) so the Less_Than_PL is energized.

 Figure 15-70 DIV instruction rung and its Monitor Tags
window.

Ladder logic program

DIV

Divide

Source A

Source B

Dest

5

3

Answer_Real

1.6666666

Calculate

Calculate

Answer_Real

1

1.6666666

Decimal

Float

BOOL

REAL

Tag Name Value Style Data Type

• Source A (the value in tag Cases_Produced) is

multiplied by Source B (the value in tag Bottles_

Per_Case) and the result is stored in the Dest tag

Bottles_Produced.

• Source A and Source B can be constants (numbers)

or tags.

 The DIV instruction is used to divide two numbers.

 Figure 15-70 shows an example of a DIV instruction rung

along with its Monitor Tags window. The operation of the

rung can be summarized as follows:

• A constant (5) is used for Source A and a con-

stant (3) for Source B. Note that tags could have

been used for Source A or Source B.

• When the Calculate tag is true the DIV instruction

is executed.

• Source A (5) is divided by Source B (3) and the

result (1.6666666) is stored in the Dest tag Answer_

Real. Note that in this example a Real-type tag has

been used for its destination.

 The program of Figure 15-71 is used as part of a parts

tracking system with three conveyors. The number of

parts in conveyor 1 and the number of parts in conveyor

2 are added to get the number of parts on conveyor 3.

The operation of the program can be summarized as

follows:

• Each time Conveyor_1_Sensor is actuated

the accumulated value of Counter_1_Parts is

incremented by 1.

• Each time Conveyor_2_Sensor is actuated

the accumulated value of Counter_2_Parts is

incremented by 1.

pet10882_ch15_317-372.indd 355pet10882_ch15_317-372.indd 355 7/27/10 6:43 PM7/27/10 6:43 PM

 The greater than (GRT) instruction is used to check

if a value from one source is greater than the value from

a second source. Figure 15-76 shows an example of a

GRT instruction rung. When Source A is greater than

Source B, the instruction is logically true; otherwise,

it is logically false. In this example Value_1 (1420) is
 Figure 15-72 Compare toolbar for the ControlLogix
controller.

CMP

Bit

LIM MEQ EQU NEQ LES GRT

Input/Output CompareTimer/Counter

 Figure 15-71 Program used as part of a parts tracking system.

Conveyor_1_Sensor
<Local:1:I.Data.4>

Conveyor_2_Sensor
<Local:1:I.Data.5>

Ladder logic program

Conveyor_1_Parts
250
30

CTU
Count Up
Counter
Preset
Accum

Conveyor_1_Parts.DN

Conveyor_2_Parts
250
70

CTU
Count Up
Counter
Preset
Accum

Conveyor_1_Parts.ACC
30

Conveyor_2_Parts.ACC
70

Conveyor_3_Parts
100

Conveyor_2_Parts

ADD
Add
Source A

Source B

Dest

CU

DN

CU

DN

Conveyor_2_Parts.DN

Manual_Conveyor_Reset

<Local:1:I.Data.2>

Conveyor 1

Conveyor 2

Conveyor 3

RES

Conveyor_1_Parts

RES

L1

Inputs

Manual_Conveyor_Reset

Conveyor_1_Sensor

Conveyor_2_Sensor

Conveyor_1_Parts.CU

Conveyor_1_Parts.DN

Conveyor_1_Parts

Conveyor_1_Parts.PRE

Conveyor_1_Parts.ACC

Conveyor_3_Parts

Manual_Conveyor_Reset

Conveyor_2_Parts.CU

Conveyor_2_Parts.DN

Conveyor_1_Sensor

Conveyor_2_Parts

Conveyor_2_Parts.PRE

Conveyor_2_Parts.ACC

0

0

0

{ . . . }

{ . . . }

250

250

70

30

0

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

0

100

0

Decimal

Decimal

Decimal

BOOL

BOOL

Conveyor_2_Sensor

COUNTER

COUNTER

DINT

DINT

DINT

DINT

DINT

Tag Name Value Style Data Type

356 Part 5 Math, Comparison, and Move Instructions

pet10882_ch15_317-372.indd 356pet10882_ch15_317-372.indd 356 7/27/10 6:43 PM7/27/10 6:43 PM

 Figure 15-73 EQU instruction rung and its Monitor Tags
window.

Value_1
25

Value_2
25

Equal_PL

Equal_PL
<Local:2:O.Data.2>

Ladder logic program

L2

Output

Tag Name Value Style Data Type

Equal_PL 1

25

25

Decimal

Decimal

Decimal

BOOL

DINT

DINT

-Value_1

-Value_2

EQU
Equal
Source A

Source B

 Figure 15-74 NEQ instruction rung.

Value_1
10

Value_2
25

Not_Equal_PL
<Local:2:O.Data.3>

Ladder logic program

L2

Output

NEQ
Not Equal
Source A

Source B

Not_Equal_PL

 Figure 15-75 LES instruction rung.

Value_1

100

Value_2

300

Less_Than_PL
<Local:2:O.Data.4>

Ladder logic program

L2

Output

LES

Less than (A<B)

Source A

Source B

Less_Than_PL

greater than Value_2 (1200) so the Greater_Than_PL is

energized.

 The compare (CMP) instruction performs a compari-

son on the arithmetic operations specifi ed by the expres-

sion. The expression may contain arithmetic operators,

comparison operators, and tags. The execution of a CMP

instruction is slightly slower and uses more memory than

the execution of the other comparison instructions. The

advantage of the CMP instruction is that it allows you

to enter complex expressions in one instruction. Fig-

ure 15-77 shows an example of a CMP instruction rung.

In this example the comparison operator found in the

expression is the equivalent of an EQU instruction. The

comparison instruction is true because Value_1 (300) is

equal to Value_2 (300).

 The program of Figure 15-78 is an example of the use

of comparison instructions used to test the accumulated

value of a counter. The operation of the program can be

summarized as follows:

• When the accumulated count is between 5 and 10

the GRT and LES instructions will both be logically

true so the PL_1 pilot light will be on.

• When the accumulated count is equal to 15, the

EQU instruction will be logically true so the PL_2

pilot light will be on.

• The PL_3 pilot light will be on at all times except

when the accumulated count is 20 at which time the

NEQ instruction is logically false.

• The counter is reset automatically when the accu-

mulated count reaches 25 or manually anytime the

Reset_PB is actuated.

 Move Instructions
 The move (MOV) instruction is an output instruction

that can move a constant or the contents of one mem-

ory location to another location. Figure 15-79 shows

the Move toolbar and instruction for the ControlLogix

 Figure 15-76 GRT instruction rung.

Value_1
1420

Value_2

1200

Greater_Than_PL
<Local:2:O.Data.5>

Ladder logic program

L2

Output

GRT

Greater than (A>B)

Source A

Source B

Greater_Than_PL

 Figure 15-77 CMP instruction rung.

Compare
Expression Value_1 = Value_2

CMP

Equal_PL

Equal_PL
<Local:2:O.Data.2>

Ladder logic program

L2

Output

Tag Name Value Style Data Type

Equal_PL 1

300

300

Decimal

Decimal

Decimal

BOOL

DINT

DINT

-Value_1

-Value_2

 Math, Comparison, and Move Instructions Part 5 357

pet10882_ch15_317-372.indd 357pet10882_ch15_317-372.indd 357 7/27/10 6:43 PM7/27/10 6:43 PM

controller. The MOV instruction is used to copy data

from a source to a destination. Both the source and the

destination data type of a MOV instruction may be INT,

DINT, SINT, or REAL.

 Figure 15-79 Move toolbar for the ControlLogix
controller.

MOV MVM AND OR XOR NOT SWPB

Move/Logical

Move
Source

Dest

MOV

 Figure 15-78 Comparison instructions used to test the accumulated value of a counter.

Ladder Logic program

Outputs L2

PL_3

L1 Inputs

Count_PB

Reset_PB

Count Up
Counter
Preset
Accum

C1
25
0

CTU

Greater Than (A>B)
Source A

Source B

C1.ACC
0
5

GRT
Less Than (A<B)
Source A

Source B

C1.ACC
0

10

LES

CU

Equal
Source A

Source B

C1.ACC
0

15

EQU

Count_PB
<Local:1:I.Data.1>

C1.DN

PL_1
<Local:2:O.Data.1>

RES

C1

PL_2
<Local:2:O.Data.2>

Not Equal
Source A

Source B

C1.ACC
0

20

NEQ

PL_3
<Local:2:O.Data.3>

Reset_PB
<Local:1:I.Data.2>

DN

PL_2

PL_1

 The program of Figure 15-80 is an example of how the

MOV instruction can be used to create a variable preset

timer. The operation of the program can be summarized

as follows:

• Actuating the PB_10s button executes its MOV in-

struction to transfer 10000 to the timer preset value

setting the delay period for 10 seconds.

• Actuating the PB_15s button executes its MOV in-

struction to transfer 15000 to the timer preset value

setting the delay period for 15 seconds.

• Closing the Timer_Start switch starts the timer

timing.

• While the timer is timing, the pilot light PL_1 is on

for the duration of the timer preset period.

• When the timer times out, PL_1 turns off and PL_2

turns on.

358 Part 5 Math, Comparison, and Move Instructions

pet10882_ch15_317-372.indd 358pet10882_ch15_317-372.indd 358 7/27/10 6:43 PM7/27/10 6:43 PM

 Figure 15-80 MOV instruction used to create a variable preset timer.

Ladder Logic program Outputs
L2

PL_2

L1
Inputs

PB_10s

PB_15s

Timer_Start

Move
Source
Dest

10000
T1.PRE

10000

MOV

PB_10s
<Local:1:I.Data.1>

Move
Source
Dest

15000
T1.PRE

10000

MOV

PB_15s
<Local:1:I.Data.2>

TIMER ON DELAY
Timer
Preset
Accum

T1
10000

0

TON

Timer_Start
<Local:1:I.Data.3>

EN

T1.TT
PL_1

<Local:2:O.Data.1>

T1.DN
PL_2

<Local:2:O.Data.2>

DN

PL_2

PL_1

 Math, Comparison, and Move Instructions Part 5 359

pet10882_ch15_317-372.indd 359pet10882_ch15_317-372.indd 359 7/27/10 6:43 PM7/27/10 6:43 PM

1. Construct a ControlLogix ladder rung with a math

instruction that executes when a toggle switch is

closed to add the tag named Pressure_A (value 680)

to the constant of 50 and store the answer in the tag

named Result.

2. Construct a ControlLogix ladder rung with a math

instruction that executes when two normally open

limit switches are closed to subtract the tag named

Count_1 (value 60) from the tag named Count_2

(value 460) and store the answer in the tag named

Count_Total.

3. Construct a ControlLogix ladder rung with a math

instruction that executes when either one of two nor-

mally open pushbuttons is closed to multiply the tag

named Cases (value 10) by the constant 24 and store

the answer in the tag named Cans.

4. Construct a ControlLogix ladder rung with a com-

pare instruction that will energize a pilot light output

anytime the value stored at Data_3 is 60.

5. Construct a ControlLogix ladder rung with a com-

pare instruction that will energize a pilot light output

anytime the value stored at Data_2 is not the same as

that stored at Data_6.

6. Construct a ControlLogix ladder rung with compare

instructions that will energize a pilot light output

anytime the pressure of a system goes above 300 psi

or below 100 psi.

 PART 5 REVIEW QUESTIONS

1. While checking the operation of the parts tracking sys-

tem with the Monitor Tags window, you note that the

value of Conveyor_Sensor_1 remains at 1 with parts

passing by. What can you surmise from this? Why?

2. Three conveyors are delivering the same parts in dif-

ferent packages. A package can hold 12, 24, or 18

parts. Proximity switches installed on each of the

conveyor lines are used to advance the accumulated

 PART 5 PROBLEMS

value of the three counters. Write a ControlLogix

program that uses multiply and add instructions to

calculate the sum of the parts.

3. A single pole switch is used in place of the two

pushbuttons for the variable preset timer program.

When this switch is closed the timer is to be set for

10 seconds and when open to 15 seconds. Make the

necessary changes to the program.

360 Part 5 Math, Comparison, and Move Instructions

pet10882_ch15_317-372.indd 360pet10882_ch15_317-372.indd 360 7/27/10 6:43 PM7/27/10 6:43 PM

361

indicates what type of data are present. A dash line indi-

cates a Boolean signal path (e.g., 0 or 1) and a solid line

indicates an integer or real value.

Function blocks are graphical representations of ex-

ecutable code. A function block can take one or more in-

puts and make decisions or calculations and then generate

one or more outputs. There are many different types of

function blocks included in the programming software to

perform various common tasks. In addition, customized

Add-On instructions can be created by the programmer

for sets of commonly used logic. Once an Add-On in-

struction is defi ned in a project, it appears on the instruc-

tion toolbar and behaves like the standard instructions.

 Figure 15-82 shows an example of a BAND (Boolean

AND) function block. The information associated with a

function block can be summarized as follows:

• Inputs are shown entering from the left and outputs

exiting on the right.

 Function Block Diagram (FBD)
 A function block diagram (FBD) is a graphical depic-

tion of process fl ow using simple and complex intercon-

necting blocks. It is similar to a ladder logic diagram,

except that function blocks replace the interconnec-

tion of contacts and the coils. In addition, there are no

power rails.

 A function block circuit is analogous to an electrical

circuit where links and wires depict signal paths between

components. The workplace is known as a sheet and con-

sists of function blocks joined together with lines called

wires. The structure of a function block program, or rou-

tine, is shown in Figure 15-81 . A function block diagram

consists of four basic elements: function block, refer-

ences, wire connectors, and wires. Data fl ow on a wire

from wire connectors or input references, move through

the function block, and then pass on to an output refer-

ence. The line type of the link between function blocks

 Part Objectives

 After completing this part, you will be able to:

• Describe the difference between ladder logic and

function block diagram programming

• Recognize the basic elements of a function block

diagram

• Write and read a function block diagram

 Part 6 Function Block
Programming

 Figure 15-81 Structure of function block or routine.

Input wire connector

Input reference

Function block

Value

Value

Value

Value

Wire

Value

Value

Output reference
Boolean
(0 or 1)

Integer
or real

pet10882_ch15_317-372.indd 361pet10882_ch15_317-372.indd 361 7/27/10 6:43 PM7/27/10 6:43 PM

362 Part 6 Function Block Programming

• The function block type is shown within the block.

• A tag name for the block is placed above it.

• The names of the inputs and outputs are shown

within the block.

• The default view of the block has some but not all

of the input and output parameters visible when the

box is placed into the program.

• The properties box, used to set the option of input

and output parameters, is displayed by clicking

the selection button located at the upper right hand

 corner of the block.

• The 1 and 0 next to the inputs and outputs identifi es

the logical state of the input and output pins for the

instruction.

• The dots on the input and output pins indicate

BOOL type data is required.

 References represent tags that are linked to values

stored in a controller’s memory. The two types of refer-

ences, input and output, are illustrated in Figure 15-83 . An

input reference, or IREF, is used to receive a value from

an input device or tag. An output reference, or OREF, is

used to send a value to an output device or tag. When you

use an IREF or an OREF you must create a tag or assign

an existing tag to the element. You may use any of the data

types for an IREF or OREF.

 Function blocks can be connected to other function

blocks by connecting their outputs to the input of an-

other function block using wires and pins (Figure 15-84).

Wires map a signal’s path and show the fl ow of control-

ler execution. Each element in a function block diagram

contains pins. Elements are connected by moving wires

from input pins to output pins or vice versa. The pins on

the left of a function block are input pins, and those on the

 Figure 15-82 Example of a BAND (Boolean AND) function block.

Properties - Tag_Name

Vis

I

I

I

I

I

I

I

I

I

O

O

Name

Parameters Tag

Type Description

Enable Input. If false, the instru...

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Enable Output.

The result of ANDing all eight

EnableIn

In1

In2

In3

In4

In5

In6

In7

In8

EnableOut

Out

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

1

1

1

1

1

1

1

1

1

0

0

Value

In 1
1 0

1

1

1

Out

BAND

Tag_Name

Click to open properties box

Boolean And

In 2

In 3

In 4

...

 Figure 15-83 Input and output references.

Input references

IREF

IREF

OREF

IREF

OREF

Output references

pet10882_ch15_317-372.indd 362pet10882_ch15_317-372.indd 362 7/28/10 10:05 PM7/28/10 10:05 PM

 Function Block Programming Part 6 363

right are output pins. To wire two elements together, click

the output pin of the fi rst element (A) and then click the

input pin of the other element (B). A green dot shows a

valid connection point.

 Wire connectors are used to create a path without

using a wire. When there are many function blocks on a

sheet, or the function blocks are far apart, wire connectors

used in place of wires can make the logic harder to read.

Wire connectors are also used to connect function blocks

that are on a different sheet of the same function block

routine, as illustrated in Figure 15-85 . The use of wire

connectors can be summarized as follows:

• An output wire connector, or OCON , sends a value

or signal to an input wire connector, or ICON .

• Each output wire connector must have at least one

corresponding input wire connector.

• Each output wire connector requires a unique tag

name and the corresponding input connector must

have the same name.

• Multiple input wire connectors can reference

the same output wire connector. This lets you

share data at several points in your function block

diagram.

 Figure 15-86 illustrates the signal fl ow and execution

of an FBD program. The operation can be summarized as

follows:

• Each program scan sets all the FBD blocks starting

on the left side of the signal fl ow and continues to

evaluate all blocks according to the signal fl ow until

the fi nal output is determined.

• The location of a block does not affect the order in

which the blocks execute.

• The inputs of a block require data to be available

before the controller can execute that block.

• If function blocks are not wired together, it does not

matter which block executes fi rst as there is no data

fl ow between the blocks.

• The interconnected line between the blocks indi-

cates what type of signal is present.

 Data latching refers to how the controller verifi es

that the data present at the input to a function block are

valid. If you use an IREF to specify input data for a func-

tion block instruction, as illustrated in Figure 15- 87 , the

data in that IREF are latched (won’t change) for the

scan of the function block routine. The IREF latches

data from program-scoped and controller-scoped tags.

The controller updates all IREF data at the beginning

of each scan. A function block routine executes in the

following order:

• The controller latches all data values in IREFs.

 Figure 15-84 Function block diagram wire and pins.

Input
pin

Wire

Output
pin Output

pin

Output
pin

Output
pin

Input
pin

Input
pins

Wire

Wire

Wiring elements
...

A B

 Figure 15-85 OCON and ICON wire connectors.

Speed

Speed

OCON

ICON

Sheet 1

Output wire connector

Sheet 2

Output wire connector

pet10882_ch15_317-372.indd 363pet10882_ch15_317-372.indd 363 7/27/10 6:43 PM7/27/10 6:43 PM

 When a group of function blocks are in a feedback

loop, the controller cannot determine which block to

execute fi rst. This problem is resolved by placing an

 Assume Data Available indicator mark at the input pin

of the function block that should be executed fi rst. In the

example shown in Figure 15-89 , the input for block 1

uses the data from block 3 that were produced in the

previous scan. To place the indicator click on the inter-

connecting wire and select the Assume Data Available

choice.
• The controller executes the other function blocks

in order.

• The controller writes outputs in OREFs.

 To create a feedback loop around a block, wire an out-

put pin of the block to an input pin of the same block.

The input pin will receive the value of the output that was

produced on the last scan of the function block. The loop

contains only a single block, so execution order does not

matter. Figure 15-88 shows an example of a feedback loop

used to reset an on-delay timer. When the timer fi nishes

timing its DN bit is used to reset the timer.

 Figure 15-87 IREF is latched for the scan of the function
block routine.

...

Start_PB

IREF

 Figure 15-88 Feedback loop used to reset an on-delay timer.

TONR_01

TONR

Timer On Delay with Reset

TimerEnable

PRE

ACC

DN

Reset

Feedback loop

Timer_Enable_Bit

Preset_Value

Accumulated_Time

 Figure 15-86 Signal fl ow and execution of an FBD program.

Function blockInput reference

Input reference

Output reference

Solenoid

Output wire
connectorInput wire

connector

Input reference

Function block

IREF

OREF

OCON

ICON

IREF

IREF

Function block

 Figure 15-89 Assume Data Available indicator marker.

...

Feedback loop

Assume Data
Available indicator

Block 1 ...Block 2 ...Block 3

364 Part 6 Function Block Programming

pet10882_ch15_317-372.indd 364pet10882_ch15_317-372.indd 364 7/27/10 6:43 PM7/27/10 6:43 PM

 FBD Programming
 Figure 15-90 illustrates the setup procedure for FBD pro-

gramming. The steps to be followed can be summarized

as follows:

• Right click on the MainProgram fi le and select New

Routine from the pop-up menu.

• Select the Function Block diagram entry from the

Type window.

• Enter a name for the Routine (e.g., FDB_Sample).

• You will now see the new program (FDB_Sample)

listed under MainProgram.

• Left clicking the FBD_Sample twice opens the

graphic development window.

• FBD instructions selected from the Language Element

toolbar are used in the development of the program.

• Extra sheets can be added when the current sheet is

full by clicking the add sheet icon. Movement be-

tween sheets is provided by left and right arrows.

 The MainRoutine is always a ladder logic program in

RSLogix 5000 software, and all other routines are called

from the MainRoutine. Therefore, the MainRoutine will

have one unconditional rung with a jump to subroutine

(JSR) calling FBD_Sample. The FBD program will ex-

ecute from the JSR instruction. No subroutine or return

subroutine instruction in the FBD is necessary.

 Function block programs are similar to ladder logic

programs, except that the process is visualized in the form

of function blocks instead of ladder rungs. Figure 15-91

shows a comparison between ladder logic and the FBD

equivalent for a three-input AND ladder logic rung. The

operation of the FBD can be summarized as follows:

 Figure 15-90 Setup procedure for FDB programming.

IREF OREF ICON

Add sheet

MainProgram

Move Sheet

OCON Function blocks

Other function blocks

Program Tags

MainRoutine

FBD_Sample

 Figure 15-91 Comparison between ladder logic and the FBD equivalent for a three-input AND ladder logic rung.

Caution_PL

...

BAND_01

BAND

Boolean And

In1

In2

Out

In3

Sensor_1

Ladder logic

FBD equivalent

Output

L2

Caution_PL

Sensor_1
<Local:1:I.Data.1>

Sensor_2
<Local:1:I.Data.2>

Sensor_3
<Local:1:I.Data.3>

00

Sensor_2
0

Sensor_3
0

Caution_PL
<Local:2:O.Data.4>

L1

Inputs

Sensor_1

Sensor_2

Sensor_3

 Function Block Programming Part 6 365

pet10882_ch15_317-372.indd 365pet10882_ch15_317-372.indd 365 7/27/10 6:43 PM7/27/10 6:43 PM

• When the inputs represented by Sensor_1, Sensor_2,

and Sensor_3 are true (value 1) the BAND (Boolean

AND) function block will be true.

• The BAND block executes to set output Caution_PL

true and switch the pilot light on.

• The 0 to the right of the input reference and out pin

indicates its logic state. A 0 indicates the state of the

tag is false, while a 1 signifi es it is true.

• The same fi eld input sensors and output pilot

light devices and tags can be used with either

program.

• The XIC and OTE contact and coil instructions have

been replaced by the BAND function block.

 Figure 15-92 shows a comparison between ladder

logic and the FBD equivalent for a two-input OR lad-

der logic rung. As with ladder OR logic, if any of the

two inputs is true the BOR function block will be true.

In this example, with the BOR function block true, the

output reference tag SOL_1 will be true energizing the

solenoid.

 Figure 15-93 shows a comparison between ladder logic

and the FBD equivalent for a combination of multiple in-

puts. The operation of the FBD can be summarized as

follows:

• The alarm will be energized if either input In1 or

In2 to the BOR block is true.

• Input In2 of the BOR block will be true only when

all three of the sensor switches are closed.

• Input In1 of the BOR block will be true only when

the Temp_Sw is closed at the same time as the

Press_Sw is open.

• The BNOT function block executes similarly to an

XIO ladder logic contact instruction. When In is 0,

Out is 1 and vice versa.

 Figure 15-94 shows a comparison between ladder logic

and the FBD equivalent for the motor start/stop control

circuit. The logic sequence for starting and stopping the

motor can be summarized as follows:

• When Motor_Start button is closed the BOR output

will become true making the BAND output true.

• Motor_Run output energizes the contactor coil, the

contacts of which close to start the motor operating.

• When the Motor_Start button is then opened

the output of the BOR block remains true due to

the 1 status of the feedback signal from the

Motor_Run tag.

• When the Motor_Stop button is opened the output

of the BAND block turns false to de-energize the

contactor coil and stop the motor.

 Figure 15-95 shows a comparison between ladder logic

and the FBD equivalent for the 10 second TON (on-delay

 Figure 15-92 Comparison between ladder logic and the FBD equivalent for a
two-input OR ladder logic rung.

SOL_1

...

BOR_01

BOR

Boolean Or

In1

In2

OutSw_1

FBD equivalent

00

Sw_2
0

Sw_1
<Local:1:I.Data.3>

Sw_2
<Local:1:I.Data.4>

SOL_1
<Local:2:O.Data.4>

Ladder logic

Inputs

L1

Sw_1

Sw_2

L2

Output

SOL_1

366 Part 6 Function Block Programming

pet10882_ch15_317-372.indd 366pet10882_ch15_317-372.indd 366 7/27/10 6:43 PM7/27/10 6:43 PM

 Figure 15-93 Comparison between ladder logic and the FBD equivalent for a combination of multiple inputs.

FBD equivalent

Alarm

...

BAND_01

BAND

Boolean And

In1

In2

Out

Temp_Sw

0

0

Press_Sw
0 1

Sensor_1
0

Sensor_2
0

Sensor_3
0

...

BOR_01

BOR

Boolean Or

In1

In2

Out
0

...

BAND_02

BAND

Boolean And

In1

In2

Out
0

In3

...

BNOT_01

BNOT

Boolean Not

In Out

Temp_Sw
<Local:1:I.Data.1>

Sensor_1
<Local:1:I.Data.3>

Sensor_2
<Local:1:I.Data.4>

Press_Sw
<Local:1:I.Data.2>

Sensor_3
<Local:1:I.Data.5>

Alarm
<Local:2:O.Data.4>

Ladder logic

Inputs

Temp_Sw

L1

Sensor_1

Sensor_2

Sensor_3

Press_Sw

L2

Output

Alarm Alarm

 Figure 15-94 Comparison between ladder logic and the FBD equivalent for a motor start/stop
control circuit.

...

BAND_01

BAND

Boolean And

In1

In2

Out
0

1

Start button for
motor

Motor_Start

Stop button for
motor

Motor_Stop

Motor
contactor coil

Motor_Run
0

Start button for
motor

Motor_Start
<Local:1:I.Data.3>

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Stop button for
motor

Motor_Stop
<Local:1:I.Data.4>

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Ladder logic

...

BOR_01

BOR

Boolean Or

In1

In2

Out
0

Inputs

L1

Motor_Start

Motor_Stop

Start

Stop

FBD equivalent

L2Output

CMotor_Run

 Function Block Programming Part 6 367

pet10882_ch15_317-372.indd 367pet10882_ch15_317-372.indd 367 7/27/10 6:43 PM7/27/10 6:43 PM

 Figure 15-96 shows a comparison between ladder logic

and the FBD equivalent for the Up/Down counter used to

limit the number of parts stored in a buffer zone to 50. The

operation of the FBD can be summarized as follows:

• The CTUD up/down counter function block accu-

mulated value is initially reset by momentary actua-

tion of the Restart_Button.

• The accumulated count is monitored by the output

reference tag named ACC.

• Each time a part enters the buffer zone, the Enter_

Limit_Sw is actuated and the CUEnable input turns

true to increment the count by 1.

• Each time a part exits the buffer zone, the Exit_

Limit_Sw is actuated and the CDEnable input turns

true to decrement the count by 1.

• Whenever the number of parts in the buffer zone

reaches 50 the DN bit is set to 1 and the output of

the BNOT block is reset to zero. This de-energizes

the Conveyor_Contactor to stop the conveyor motor

from delivering more parts to the buffer zone.

timer) and TONR (on-delay with reset). The operation of

the FBD can be summarized as follows:

• When the Timer_Sw is closed, the TONR func-

tion block timer turns true and starts accumulating

time.

• The accumulated time is monitored by the output

reference tag named ACC.

• The EN (enable bit) output changes to 1 to turn on

the EN_PL.

• The TT (timer timing bit) output changes to 1 to

turn on the TT_PL.

• The timer times out after 10 seconds to set the DN

(done bit) to 1 and turn on the DN_PL and reset the

TT bit to zero and turn off the TT_PL.

• The EN bit and EN_PL remain on as long as the

Timer_Sw stays toggled closed.

• Opening the Timer_Sw resets all outputs as well as

the accumulated value to zero.

• The timer can also be reset by way of the Reset

input.

10000

0
DN_PL

0
TT_PL

0
EN_PL

Status_Timer.DN
DN_PL

<Local:2:O.Data.3>

Status_Timer.TT

Input

L1

TT_PL
<Local:2:O.Data.2>

Status_Timer.EN

ENTimer On Delay
Timer
Preset
Accum

Status_Timer
10000

0

EN_PL
<Local:2:O.Data.1>

DN

Timer_Sw
<Local:1:I.Data.6>

TON

Ladder logic

FBD equivalent

TONR_01

...TONR

Timer On Delay with Reset

TimerEnable ACC

PRE

Reset

EN

TT

DN

Timer_Sw

Outputs L2

TT_PL

EN_PL

0
ACC_Value

0

10000
Timer_Sw

DN_PL

 Figure 15-95 Comparison between ladder logic and the FBD equivalent for a
10 second TON and TONR timer.

368 Part 6 Function Block Programming

pet10882_ch15_317-372.indd 368pet10882_ch15_317-372.indd 368 7/27/10 6:43 PM7/27/10 6:43 PM

• Using one sheet for each device that is to be pro-

grammed helps organize your program and make it

easier to understand.

• The use of the OCON and ICON named ACC

 enables the function blocks to be on different sheets

of the same function block routine.

• The numbers and letters under the ACC output

 indicate the sheet number and location on the sheet

where the output is used.

 Figure 15-97 shows a comparison between ladder logic

and the FBD equivalent for the program used to test the

accumulated value of a counter. The operation of the FBD

can be summarized as follows:

• The function block routine is broken into four

sheets.

• The order of the sheets does not affect the order in

which the function blocks execute.

• When a function block routine executes, all sheets

execute.

50
50

0
Exit_Limit_Sw

0
Restart_Button

1
Conveyor_Contactor

L1 Inputs
Count Up
Counter
Preset
Accum

Counter_1
50
0

CTU

RES

Counter_1

Restart_Button
<Local:1:I.Data.1>

Enter_Limit_Sw
<Local:1:I.Data.3>

Ladder logic

CTUD_01

...CTUD

Count Up/Down

CUEnable ACC

CDEnable

PRE

Reset

DN

L2Output

Conveyor_Contactor C

...BNOT

Boolean Not

In Out

0
ACC

0

0
Enter_Limit_Sw

Count Down
Counter
Preset
Accum

Counter_1
50
0

CTD

Counter_1.DN

Exit_Limit_Sw
<Local:1:I.Data.4>

Conveyor_Contactor
<Local:2:O.Data.2>

Restart_Button

Enter_Limit_Sw

Exit_Limit_Sw

FBD equivalent

BNOT_01

CU

DN

CD

DN

 Figure 15-96 Comparison between ladder logic and the FBD equivalent for an Up/Down counter
application.

 Function Block Programming Part 6 369

pet10882_ch15_317-372.indd 369pet10882_ch15_317-372.indd 369 7/27/10 6:43 PM7/27/10 6:43 PM

25
25

0

L1 Inputs

Count_PB
<Local:1:I.Data.1>

Ladder logic

CTUD_01

...CTUD

Count Up/Down

CUEnable ACC

CDEnable

PRE

Reset

DN

L2Outputs

PL_1

PL_2

PL_3

0
ACC

2-B2 3-B2

4-B2

0

0
Count_PB

0
Reset_PB

Sheet 1 of 4 Sheet 2 of 4

Sheet 3 of 4 Sheet 4 of 4

C1_DN

PL_1
<Local:2:O.Data.1>

Count_PB

Reset_PB

FBD equivalent

...BOR

Boolean Or

In2

In1
Out

BOR_01

5
5

10
10

PL_1

0

0

PL_2

GRT_02

...GRT

Greater Than (A>B)

Source A

Source B Dest
0

0

...LES

Less Than (A<B)

Source B

Source A
Dest

LES_02

...BAND

Boolean And

In2

In1
Out

BAND_01

Count Up
Counter
Preset
Accum

C1
25
0

CTU

DN

C1

RES

Less than (A<B)
Source A

Source B

C1.ACC
0

10

LES
Greater than (A>B)
Source A

Source B

C1.ACC
0
5

GRT

PL_2
<Local:2:O.Data.2>

Equal
Source A

Source B

C1.ACC
0

15

EQU

PL_3
<Local:2:O.Data.3>

Reset_PB
<Local:1:I.Data.2>

Not Equal
Source A

Source B

C1.ACC
0

20

NEQ

ACC

0
ACC

0

...EQU

Equal

SourceB

SourceA Dest

EQU_01

PL_3
0

ACC

20
20

15
15

1-C2 1-C2

0

...NEQ

Not Equal

SourceB

SourceA Dest

NEQ_01

1-C2

CU

 Figure 15-97 Comparison between ladder logic and the FBD equivalent for a program used to test the accumulated
value of a counter.

370 Part 6 Function Block Programming

pet10882_ch15_317-372.indd 370pet10882_ch15_317-372.indd 370 7/27/10 6:43 PM7/27/10 6:43 PM

1. Compare the graphical representation of a function

block diagram to that of a logic ladder diagram.

2. Name the four basic elements of an FBD.

3. What do the solid and dashed interconnecting lines

between FBD function blocks indicate?

4. What is an Add-On instruction?

5. How are the input and output parameter options for

a function block set?

6. What does the dot on an input or output pin of a

function block indicate?

7. Compare the functions of input and output refer-

ence tags.

8. Which pins of a function block are inputs and

which are outputs?

9. Explain the role of input and output wire

connectors.

10. How does the program scan function for an FBD

program?

11. Explain data latching as it applies to function block

inputs.

12. How is a function block feedback loop created?

13. What is the Assume Data Available indicator

used for?

14. Outline how an FBD program is initiated.

 PART 6 REVIEW QUESTIONS

1. Write an FBD program that will cause the output,

solenoid SOL_1, to be energized when pushbutton

PB_1 is open and PB_2 is closed, and either limit

switch LS_1 is open or limit switch LS_2 is closed.

Assume all pushbuttons and limit switches are of the

normally open type.

2. Modify the motor start/stop FBD program to include

a second start/stop pushbutton station.

3. You are required to change the on-delay time of the

10 second timer program to 1 minute. What changes

would have to be made to the FBD program?

4. Modify the Up/Down counter FBD program to

 include the following pilot lights:

• PL_1 to come on when a part enters

• PL_2 to come on when a part exits

• PL_3 to come on when the buffer zone is full

5. Modify the test accumulated value of a counter FBD

program as follows:

• PL_1 to be on for an accumulated count between

0 and 5

• PL_2 to be on for an accumulated count of 12

• PL_3 to be on at all times except for when the

 accumulated count is 15

 PART 6 PROBLEMS

 Function Block Programming Part 6 371

pet10882_ch15_317-372.indd 371pet10882_ch15_317-372.indd 371 7/27/10 6:43 PM7/27/10 6:43 PM

