
Chapter 6

Control of Aircraft Motions

These notes provide a brief background in modern control theory and its application
to the equations of motion for a flight vehicle. The description is meant to provide the
basic background in linear algebra for understanding how modern tools for the analysis of
linear systems work, and provide examples of their application to flight vehicle dynamics
and control. The treatment includes a brief introduction to optimal control.

6.1 Control Response

6.1.1 Laplace Transforms and State Transition

So far, we have investigated only the response of a system to a perturbation, which corresponds to
the homogeneous solution to the system of ordinary differential equations describing the system. In
order to study the response of the system to control input , it is convenient to use Laplace transforms;
see Section 6.7 for a brief review of Laplace transforms.

The Laplace transform of the function y(t), assumed identically zero for t < 0, is

L(y(t)) = Y (s) =

∫

∞

0

y(t)e−st dt (6.1)

and this operation can be applied to each component of a state vector to give the Laplace transform
of the state vector

L(x(t)) =









L(x1(t))
L(x2(t))

. . .
L(xn(t))









=









X1(s))
X2(s))

. . .
Xn(s))









= X(s) (6.2)

Applying this operation to the terms of the (linear) state space equation (see Eq. (6.233) in Sec-
tion 6.7 for the Laplace transform of the derivative of a function)

ẋ = Ax + Bη (6.3)
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gives
−x(0) + sX(s) = AX(s) + Bη(s)

or
[sI− A]X(s) = x(0) + Bη(s) (6.4)

Assuming that the inverse [sI − B]
−1

exists, this can be written as

X(s) = [sI − A]
−1

[x(0) + Bη(s)] (6.5)

The matrix [sI − B]
−1

is called the resolvent , and its inverse Laplace transform is called the transition
matrix

Φ(t) = L−1
{

(sI − A)
−1
}

(6.6)

Taking the inverse Laplace transform of Eq. (6.5) gives

L−1 (X(s)) = x(t) = L−1
(

[sI − A]
−1
)

x(0) + L−1
(

[sI − A]
−1

Bη(s)
)

(6.7)

The convolution theorem (see Eq. (6.251)) can be used to write the inverse Laplace transform of the
product appearing in the second term on the right hand side of this equation as

L−1
(

[sI − A]
−1

Bη(s)
)

= L−1 (L(Φ)Bη(s)) =

∫ t

0

Φ(t − τ)Bη(τ) dτ (6.8)

whence Eq. (6.7) can be written

x(t) = Φ(t)x(0) +

∫ t

0

Φ(t − τ)Bη(τ) dτ (6.9)

Thus, it is seen that the matrix Φ “transitions” the state vector from its initial state x(0) to its
state at a later time t, including the effects of control input through the convolution integral in the
second term on the right-hand side.

6.1.2 The Matrix Exponential

A useful expression for the transition matrix for the case of linear, time-invariant systems – i.e.,
those systems that can be described by systems of differential equations of the form of Eqs. (6.3) in
which the matrices A and B are constants, independent of time – can be written in terms of the
so-called matrix exponential .

As motivation, recall that for the case of a single (scalar) equation

ẋ = ax (6.10)

the Laplace transform gives
−x(0) + sX(s) = aX(s)

or

X(s) =
1

s − a
x(0) (6.11)

and we can write

x(t) = L−1

(

1

s − a

)

x(0) (6.12)
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Now, recall that (see Eq. (6.239) in the Section 6.7)

L−1

(

1

s − a

)

= eat (6.13)

so the solution to Eq. (6.10) is
x(t) = eatx(0) (6.14)

This is, of course, no surprise; we have simply determined the solution to the almost trivial Eq. (6.10)
using the very powerful tool of Laplace transforms. But Eq. (6.14) shows us that, for the case of a
single equation the transition matrix is simply

Φ(t) = eat

Now, we can also write

1

s − a
=

1

s(1 − a/s)
=

1

s
+

a

s2
+

a2

s3
+

a3

s4
+ · · · (6.15)

and, since

L(tn) =
n!

sn+1
or L−1

(

n!

sn+1

)

= tn (6.16)

the series of Eq. (6.15) can be inverted, term by term, to give

L−1

(

1

s − a

)

= 1 + at +
(at)2

2!
+

(at)3

3!
+

(at)4

4!
+ · · · (6.17)

Now, it may seem that we’ve just taken the long way around to illustrate the usual power series
representation of eat. But our goal was to suggest that the matrix analog of Eq. (6.13) is

L−1
(

[sI− A]
−1
)

= eAt (6.18)

where the matrix exponential is understood to be defined as

eAt ≡ I + At +
(At)2

2!
+

(At)3

3!
+

(At)4

4!
+ · · · (6.19)

To verify this conjecture, we note that the matrix analog of Eq. (6.15) is

[sI− A]
−1

=
I

s
+

A

s2
+

A2

s3
+

A3

s4
+ · · · (6.20)

The validity of this equation can be verified by premultiplying by sI− A to give

I = I − A

s
+

(

A

s
− A2

s2

)

+

(

A2

s2
− A3

s3

)

+ · · ·

Successive terms on the right hand side cancel to give the identity I = I, so long as the series
converges, which will be assumed here.

Now, taking the inverse Laplace transform of Eq. (6.20) gives

L−1
(

[sI − A]
−1
)

= I + At +
(At)2

2!
+

(At)3

3!
+ · · · = eAt (6.21)
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Thus, we have shown that the state transition matrix for the general linear time-invariant system
can be expressed as

Φ(t) = eAt (6.22)

where the definition of the matrix exponential appearing here is taken to be Eq. (6.19). The numerical
computation of the matrix exponential is not always a trivial task, especially if the matrix is large
and ill-conditioned; but most software packages, such as Matlab have standard routines that work
well for most cases of interest.

Using Eq. (6.22), we can express the solution of the state space system as

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bη(τ) dτ

or

x(t) = eAt

[

x(0) +

∫ t

0

e−AτBη(τ) dτ

]

(6.23)

Some useful properties of the state transition matrix, which can be seen from its definition in terms
of the matrix exponential are:

1. The transition matrix evaluated at t = 0 is the identity matrix; i.e.,

Φ(0) = I (6.24)

2. The transition matrix for the sum of two time intervals is the product of the individual tran-
sition matrices in either order; i.e.,

Φ(t1 + t2) = Φ(t1)Φ(t2) = Φ(t2)Φ(t1) (6.25)

This is equivalent to

eA(t1+t2) = eAt1eAt2 = eAt2eAt1 (6.26)

which can be verified directly by substitution into Eq. (6.19).

3. The relation

e−At =
[

eAt
]−1

(6.27)

can be verified by setting t2 = −t1 in Property 2, then using Property 1.

4. The commutativity property

AeAt = eAtA (6.28)

can be verified directly by pre- and post-multiplying Eq. (6.19) by the matrix A.

5. The differentiation property
d

dt

(

eAt
)

= AeAt (6.29)

can be verified by differentiating Eq. (6.19) term by term.
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6.2 System Time Response

The state vector solution for the homogeneous response of the system

ẋ = Ax + Bη

y = Cx + Dη
(6.30)

has been seen to be
x(t) = eAtx(0) (6.31)

and hence
y(t) = CeAtx(0) (6.32)

We now consider the system response to several typical control inputs.

6.2.1 Impulse Response

For an impulsive input, we define
η(τ) = η0δ(τ) (6.33)

where η0 = [δ10
δ20

. . . δp0
]T is a constant vector that determines the relative weights of the

various control inputs and δ(t) is the Dirac delta function. Recall that the Dirac delta (or impulse)
function has the properties

δ(t − τ) = 0 for t 6= τ
∫

∞

−∞

δ(t − τ) dt = 1
(6.34)

These properties can be used to see that

∫ t

0

e−AτBη0δ(τ) dτ = Bη0 (6.35)

so the system response to the impulsive input of Eq. (6.33) is seen to be

x(t) = eAtBη0

y(t) = CeAtBη0

(6.36)

Note that since the vector Bη0 can be interpreted as a specified initial perturbation x(0), we see
that the system response to an impulsive input at t = 0 is equivalent to the homogeneous solution
for the specified x(0) = Bη0.

6.2.2 Doublet Response

A doublet is the derivative of the delta function, so the system response to a doublet control input
is simply the derivative of the analogous impulsive response. Thus, if

η(τ) = η0
dδ(τ)

dτ
(6.37)
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where η0 = [δ10
δ20

. . . δp0
]T is a constant vector that determines the relative weights of the

various control inputs and δ(t) is the Dirac delta function, the system response will be the derivative
of the impulsive response given by Eq. (6.36), i.e.,

x(t) = eAtABη0

y(t) = CeAtABη0

(6.38)

As for the impulsive response, here the vector ABη0 can be interpreted as a specified initial per-
turbation x(0), so we see that the system response to a doublet input at t = 0 is equivalent to the
homogeneous solution for the specified initial perturbation x(0) = ABη0.

6.2.3 Step Response

For a step input, we define
η(τ) = η0H(τ) (6.39)

where the Heaviside step function is defined as

H(τ) =

{

0, for τ < 0

1, for τ ≥ 0
(6.40)

These properties can be used to see that
∫ t

0

e−AτBη0H(τ) dτ =

∫ t

0

e−AτBη0 dτ =

(∫ t

0

e−Aτ dτ

)

Bη0 (6.41)

We can evaluate the integral in this expression by integrating the definition of the matrix exponential
term by term to give

∫ t

0

e−Aτ dτ =

∫ t

0

(

I− Aτ +
(Aτ)2

2!
− (Aτ)3

3!
· · ·
)

dτ

= It − At2

2!
+

A2t3

3!
− A3t4

4!
+ · · ·

=

(

At − (At)2

2!
+

(At)3

3!
− (At)4

4!
+ · · ·

)

A−1

=
(

I − e−At
)

A−1

(6.42)

so the system response to a step input becomes

x(t) =
[

eAt − I
]

A−1Bη0

y(t) = C
[

eAt − I
]

A−1Bη0 + Dη0

(6.43)

For a stable system,1

lim
t→∞

eAt = 0 (6.44)

so Eq. (6.43) gives
lim

t→∞

x(t) = −A−1Bη0 (6.45)

as the steady state limit for the step response.

1The easiest way to see the validity of Eq. (6.44) is to realize that the response to an initial perturbation is shown
by Eq. (6.23) to be equal to this matrix exponential times the initial perturbation. For a stable system, this must
vanish in the limit as t → ∞ for any initial perturbation.
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6.2.4 Example of Response to Control Input

We here include two examples of aircraft response to control input. We examine the longitudinal
response to both, impulsive and step, elevator input for the Boeing 747 in powered approach at
M = 0.25 and standard sea level conditions. This is the same equilibrium flight condition studied in
the earlier chapter on unforced response. The aircraft properties and flight condition are given by

V = 279.1 ft/sec, ρ = 0.002377 slug/ft
3

S = 5, 500. ft2, c̄ = 27.3 ft (6.46)

W = 564, 032. lb, Iy = 32.3 × 106 slug-ft2

and the relevant aerodynamic coefficients are

CL = 1.108, CD = 0.102, Θ0 = 0

CLα = 5.70, CLα̇ = 6.7, CLq = 5.4, CLM = 0 CLδe
= 0.338

CDα = 0.66, (6.47)

Cmα = −1.26, Cmα̇ = −3.2, Cmq = −20.8, CmM = 0 Cmδe
= −1.34

These values correspond to the following dimensional stability derivatives

Xu = −0.0212, Xw = 0.0466

Zu = −0.2306, Zw = −0.6038, Zẇ = −0.0341, Zq = −7.674 Zδe
= −9.8175 (6.48)

Mu = 0.0, Mw = −0.0019, Mẇ = −0.0002, Mq = −0.4381 Mδe
= −.5769

and the plant and control matrices are

A =









−0.0212 0.0466 0.0000 −.1153
−0.2229 −0.5839 0.9404 0.0000
0.0150 −0.5031 −0.5015 0.0000

0.0 0.0 1.0 0.0









and B =









0.0000
−.0340
−.5746
0.0000









(6.49)

when the state vector is chosen to be2

x =
(

u/u0 α q θ
)T

(6.50)

The response to an impulsive input is shown in Fig. 6.1. Both short period and phugoid modes are
excited, and the phugoid is very lightly damped and persists for a long time. Ultimately, however,
original equilibrium state will be restored, since impulsive input is equivalent to unforced response
with a particular initial perturbation, as shown if Eq.(6.36).

The response to a one-degree step input is shown in Fig. 6.2. Both short period and phugoid modes
are again excited, the short-period less than for the impulsive input as the step input has less
high-frequency content. Since the phugoid is very lightly damped it again persists for a long time.

In this case, the system ultimately settles into a new equilibrium state, that given by Eq. (6.45)
which, for this case, is found to be

lim
t→∞

x(t) = −A−1Bη0 = [0.0459 − .0186 0.0 − .0160]
T

(6.51)

2Note that this is the form introduced in Chapter 5 in which the velocities have been normalized by the equilibrium
flight speed.
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Figure 6.1: Response of Boeing 747 in powered approach at M = 0.25 and standard sea level
conditions to impulsive elevator input. Left plot is scaled to illustrate short-period response, and
right plot is scaled to illustrate phugoid.
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Figure 6.2: Response of Boeing 747 in powered approach at M = 0.25 and standard sea level
conditions to one-degree step elevator input. Left plot is scaled to illustrate short-period response,
and right plot is scaled to illustrate phugoid.
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for the one-degree value of η0. The new equilibrium state corresponds to an increase in flight speed
at a reduced angle of attack. Since the resulting lift coefficient is reduced, the pitch angle becomes
negative – i.e., the aircraft has begun to descend.

The approximations of the preceding analysis are completely consistent with those made in our
earlier study of static longitudinal control, where we found the control sensitivity to be

dδe

dCL

)

trim

=
Cmα

∆
(6.52)

where
∆ = −CLαCmδe

+ CmαCLδe
(6.53)

Thus, from the static analysis we estimate for a step input of one degree in elevator

∆CL =
δe

Cmα/∆
=

π/180

(−1.26)/(7.212)
= −.100 (6.54)

The asymptotic steady state of the dynamic analysis gives exactly the same result

∆CL = CLαα + CLδe
= 5.70(−.0186) + 0.338(π/180) = −.100 (6.55)

This result illustrates the consistency of the static and dynamic analyses. Note, however, that if the
dynamic analysis included compressibility or aeroelastic effects, the results would not have agreed
exactly, as these effects were not taken into account in the static control analysis.

6.3 System Frequency Response

The frequency response of a system corresponds to its response to harmonic control input of the
form

η(t) = η0e
ıωtH(t)

= η0 (cosωt + ı sinωt)H(t)
(6.56)

where H(t) is the Heaviside step function, see Eq. (6.40). This input corresponds to a sinusoidal
oscillation of the control at frequency ω, and the system response consists of a start-up transient
which ultimately evolves into an asymptotically steady-state harmonic response. Plots of the am-
plitude of the steady-state harmonic response as a function of the input frequency ω are known as
Bode plots , and are useful for identifying resonant frequencies of the system.

Frequency response is an important element of classical control theory, and is the principal reason
that Laplace transforms are such an important tool for control system designers. We will, however,
constrain ourselves (at least for now) to dealing with response in the time domain, and not consider
frequency response further.

6.4 Controllability and Observability

Two important properties of a system are its controllability and its observability. Controllability
relates to the ability of the control input to influence all modes of the system. For a system having
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a single scalar control variable η(t) the system is described by

ẋ = Ax + Bη(t) (6.57)

The system response is related to the eigenvalues of the matrix A, and these are invariant under a
transformation of coordinates. The state vector can be transformed to modal coordinates by

v(t) = P−1x(t) (6.58)

where P is the modal matrix of A. That is, the similarity transformation

P−1AP = Λ (6.59)

transforms A to the diagonal matrix Λ. If such a transformation exists,3 then the state equations
can be written as

Pv̇ = APv + Bη(t) (6.60)

or, after pre-multiplying by P−1,
v̇ = Λv + P−1Bη(t) (6.61)

Since Λ is a diagonal matrix, this transformation has completely decoupled the equations; i.e.,
Eqs. (6.61) are equivalent to

v̇j = λjvj + fjη(t) (6.62)

where fj are the elements of the vector P−1B. Thus, the evolution of each mode is independent of
all the others, and the j-th mode is affected by the control so long as fj 6= 0. In other words, all the
modes are controllable so long as no element of P−1B is zero.

This same transformation process can be applied to the case when η is a vector – i.e., when there
are multiple control inputs. In this case, all modes are controllable so long as at least one element
in each row of the matrix P−1B is non-zero.

6.4.1 Controllability

For cases in which the plant matrix is not diagonalizable a more general procedure must be followed
to determine whether the system is controllable. In these cases, we introduce the more specific
definition of controllability:

Definition: A system is said to be controllable if it is possible by means of an uncon-
strained controller to transfer the physical system between any two arbitrarily specified
states in a finite time.

The requirement for controllability is well understood for linear, time-invariant systems. For such
systems we can write

ẋ = Ax + Bη(t) (6.63)

where we assume, for simplicity of presentation, that η(t) represents a single control variable. Thus,
if the state vector x has n elements, A is an n × n matrix and B is an n × 1 column vector.

3A diagonalizing transformation will exist if the matrix A has a complete set of linearly independent eigenvectors;
in this case the modal matrix P will be non-singular and its inverse will exist. A sufficient condition for the matrix
A to have a complete set of linearly independent eigenvectors is that its eigenvalues be real and distinct, but this
condition is not necessary.
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The system of Eqs. (6.63) has the response

ẋ(t) = eAt

[

x(0) +

∫ t

0

e−AtBη(τ) dτ

]

(6.64)

Since the states are arbitrary, we can choose the final state x(t) = 0 with no loss of generality, in
which case Eqs. (6.64) become

x(0) = −
∫ t

0

e−AtBη(τ) dτ (6.65)

Thus, the question of controllability reduces to whether a control law η(τ) exists that satisfies
Eqs. (6.65) for every possible initial state x(0).

Recall that the Cayley-Hamilton theorem tells us that, if the characteristic equation of the plant
matrix is

λn + an−1λ
n−1 + an−2λ

n−2 + · · · + a1λ + a0 = 0 (6.66)

then we also have

An + an−1A
n−1 + an−2A

n−2 + · · · + a1A + a0I = 0 (6.67)

This equation can be used to represent any polynomial in the matrix A as a polynomial of order
n − 1. In particular, it can be used to represent the matrix exponential as the finite sum

e−Aτ = I− Aτ +
A2τ2

2!
− A3τ3

3!
+ · · ·

=
n−1
∑

k=0

fk(τ)Ak
(6.68)

The actual process of determining the coefficient functions fk(τ) might be very difficult and tedious,
but for our purposes here we don’t need to determine these coefficient functions explicitly, we only
need to believe that such a representation is always possible.

Using Eq. (6.68) allows us to write the controllability requirement as

x(0) = −
∫ t

0

n−1
∑

k=0

fk(τ)AkBη(τ) dτ (6.69)

or

x(0) = −
n−1
∑

k=0

AkB

∫ t

0

fk(τ)η(τ) dτ (6.70)

Now, for any fk(τ) and η(τ) we can write

∫ t

0

fk(τ)η(τ) dτ = gk for k = 0, 1, 2, . . . , n − 1 (6.71)
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so Eqs.(6.70) can be written as

x(0) = −
n−1
∑

k=0

AkBgk

= −Bg0 − ABg1 − A2Bg2 − · · · − An−1Bgn−1

= −
[

B AB A2B · · · An−1B
]





















g0

g1

g2

.

.

.
gn−1





















(6.72)

This is a system of equations for the vector g = [g0 g1 g2 . . . gn−1]
T

of the form

Vg = −x(0) (6.73)

which will have a solution for any arbitrarily chosen x(0) if the controllability matrix

V =
[

B AB A2B · · · An−1B
]

(6.74)

has full rank n.

Our analysis here has assumed there is only a single (scalar) control variable, but the analysis follows
through with no essential change in the case when the control variable η(τ) is a p-element vector.
In this case g will be an n · p × 1 vector, and the corresponding controllability matrix will have the
same form as in Eq. (6.74), but since each element there has the same shape as B – an n× p matrix
– the controllability matrix will have n rows and n · p columns. The controllability criterion still
requires that the rank of this matrix be n.

Generally, elevator control alone is sufficient to control all longitudinal modes, and either rudder or
aileron control is sufficient to control all lateral/directional modes.

It should be noted that controllability alone says nothing about the quality of the control, since
arbitrarily large control input was assumed to be available. So, it is still important to look at
specific control responses and/or sensitivities to determine if sufficient control action is available to
achieve desired motions without saturating the controls.

Example

We consider the example of the system

ẋ = Ax + Bη(t) (6.75)

where

A =

(

0 1
−2 −3

)

, and B =

(

0
1

)

(6.76)

The characteristic equation of the plant matrix is

det(A − λI) = λ2 + 3λ + 2 = 0 (6.77)
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whose roots are λ = −1, −2.

The eigenvectors of A are thus determined from

(A − λ1I)u1 = 0

which gives

u11
+ u12

= 0

whence

u1 = [1 − 1]T

Similarly,

(A − λ2I)u2 = 0

gives

2u21
+ u22

= 0

whence

u2 = [1 − 2]T

The modal matrix of A and its inverse are then

P =

(

1 1
−1 −2

)

and P−1 =

(

2 1
−1 −1

)

(6.78)

The characteristic variables are thus

v = P−1x =

(

2 1
−1 −1

)(

x1

x2

)

=

(

2x1 + x2

−x1 − x2

)

(6.79)

and

PAP−1 =

(

λ1 0
0 λ2

)

=

(

−1 0
0 −2

)

(6.80)

and

P−1B =

(

2 1
−1 −1

)

=

(

0
1

)

=

(

1
−1

)

(6.81)

The canonical form of the equations describing the system can thus be written

v̇ =

(

−1 0
0 −2

)

v +

(

1
−1

)

η(t) (6.82)

Both modes are thus seen to be controllable.

Alternatively, since

AB =

(

0 1
−2 −3

)(

0
1

)

=

(

1
−3

)

(6.83)

the controllability matrix is

V = [B AB] =

(

0 1
1 −3

)

(6.84)

The determinant of the controllability matrix det(V) = −1, is non-zero, so its rank must be 2, and
the system is again seen to be controllable.
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Note that if the control matrix is changed to

B =

(

−1
1

)

(6.85)

then

P−1B =

(

2 1
−1 −1

)

=

(

−1
1

)

=

(

−1
0

)

(6.86)

and the second mode is seen to be uncontrollable. Equivalently, since we now have

AB =

(

0 1
−2 −3

)(

−1
1

)

=

(

1
−1

)

(6.87)

the controllability matrix becomes

V = [B AB] =

(

−1 1
1 −1

)

(6.88)

The determinant of the controllability matrix det(V) = 0, is now zero, so its rank must be less than
2, and the modified system is again seen to be uncontrollable.

6.4.2 Observability

The mathematical dual of controllability is observability, which is defined according to:

Definition: A system is observable at time t0 if the output history y(t) in the time
interval [t0, tf ] is sufficient to determine x(t0).

It can be shown, by a process analogous to that of the preceding section, that, for linear, time-
invariant systems, observability is guaranteed when the rank of the observability matrix

U =





















C

CA

CA2

·
·
·

CAn−1





















(6.89)

is equal to n. Note that if the output vector y has q elements, the observability matrix will have
q · n rows and n columns.

6.4.3 Controllability, Observability, and Matlab

Once the plant matrix A, the control matrix B, and the output matrix C have been defined, the
Matlab function

V = ctrb(A,B)
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determines the controllability matrix V, and the Matlab function

U = obsv(A,C)

determines the observability matrix U. The rank of either of these matrices can then be determined
using the Matlab function rank.

6.5 State Feedback Design

A feedback control system can be designed within the state-variable framework to provide a specific
eigenvalue structure for the closed-loop plant matrix. Consider the system

ẋ = Ax + Bη

y = Cx
(6.90)

It can be shown that, if the system is controllable it is possible to define a linear control law to
achieve any desired closed-loop eigenvalue structure. For a single-input system, a linear control law
is given by

η = −kTx + η′ (6.91)

where η′ is the control input in the absence of feedback, and k is a vector of feedback gains. The
block diagram of this system is illustrated in Fig. 6.3.

Introducing the control law into the state equation system gives

ẋ = Ax + B
[

η′ − kTx
]

=
[

A− BkT
]

x + Bη′

= A∗x + Bη′

(6.92)

where the plant matrix describing the behavior of the closed-loop system

A∗ = A − BkT (6.93)

is called the augmented matrix for the system.

For cases in which the plant matrix A of the system has undesirable eigenvalues, the augmented
matrix A∗ can be made to have more desirable eigenvalues by proper choice of the elements of
the feedback gain vector k. Note that the effect of state-variable feedback can be interpreted as
modifying the plant matrix of the system; i.e., the effect of the feedback can be interpreted as
effectively changing the properties of the system – the aerodynamic stability derivatives – to achieve
more desirable response characteristics.

+ −

ηη ’ x y

C

k

x = Ax + B η
.

T

Figure 6.3: Block diagram for system with state-variable feedback.
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Example: State Feedback Design

Given the system

ẋ = Ax + Bη

y = Cx
(6.94)

with

A =

(

−3 8
0 0

)

, B =

(

0
4

)

, C =
(

1 0
)

(6.95)

we wish to use state-variable feedback to provide closed-loop response having

ωn = 25 sec−1 and ζ = 0.707 (6.96)

Note that the characteristic equation of the original plant matrix is

det(A − λI) = (−3 − λ)(−λ) = λ2 + 3λ = λ(λ + 3) = 0 (6.97)

so the original system has one neutrally stable eigenvalue.

First, the controllability of the system is verified. For this system the controllability matrix is

V = [B AB] =

(

0 32
4 0

)

(6.98)

so, det(V) = −128, whence V has full rank so the system is controllable. The general form of the
augmented matrix is

A∗ = A− BkT =

(

−3 8
0 0

)

−
(

0
4

)

(

k1 k2

)

=

(

−3 8
−4k1 −4k2

)

(6.99)

The characteristic equation of the augmented matrix A∗ is then

det(A∗ − λI) = (−3 − λ)(−4k2 − λ) + 32k1 = λ2 + (3 + 4k2)λ + 32k1 + 12k2 = 0 (6.100)

Since the desired system response corresponds to the characteristic equation

λ2 + 2ζωnλ + ω2
n = 0

λ2 + 2(0.707)(25)λ + (25)2 = 0 = λ2 + 35.35λ + 625
(6.101)

a comparison of Eqs. (6.100) and (6.101) shows that we must choose the elements of the gain vector
such that

3 + 4k2 = 35.35

32k1 + 12k2 = 625

or

k2 =
35.35− 3

4
= 8.09

k1 =
625 − 12(8.09)

32
= 16.5

(6.102)

The response of the original system and the closed-loop response are compared in Fig. 6.4 for two
different initial perturbations. Figure 6.4(a) illustrates the response when the neutrally stable mode
is not excited. Figure 6.4(b) illustrates the response when the neutrally stable mode is excited; in
this case the original system never returns to the original equilibrium state. But, in both cases
the closed-loop system returns quickly, with minimal overshoot, to the original equilibrium state.
Note, however, that significant excitation of x2 is required in the latter case, even for the first initial
condition.
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Figure 6.4: Response of linear, second-order system, showing effect of state variable feedback. Orig-
inal system has λ1 = −3.0, λ2 = 0.0. Modified system has ωn = 25 sec−1 and ζ = 0.707. (a)
x(0) = [1.0 0.0]T ; (b) x(0) = [1.0 0.1]T .

6.5.1 Single Input State Variable Control

When the control variable is a single scalar, the feedback gains are uniquely determined by the
locations of the roots of the characteristic equation of the augmented matrix. In this case, the
algorithm of Bass & Gura (see, e.g., [3]) can be used to determine the elements of the gain vector.

We describe the procedure for the system described by

ẋ = Ax + Bη (6.103)

with the control law

η = −kTx + η′ (6.104)

It is desirable to have the plant matrix in the (first) companion form,

A =

















−a1 −a2 −a3 · · · −an−1 −an

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 1 0

















(6.105)

where it is clear from direct calculation of the determinant of A − λI that the elements ai are the
coefficients of the characteristic equation

λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ + an = 0 (6.106)

of the plant matrix A. Note that the homogeneous equations corresponding to the plant matrix of
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Eq. (6.105) are of the form

ẋ1 =−a1x1−a2x2−a3x3− · · ·−an−1xn−1−anxn

ẋ2 = x1

ẋ3 = x2 (6.107)

ẋ4 = x3

· · ·
ẋn = xn−1

so the system is equivalent to the single higher-order equation

dny

dtn
+ a1

dn−1y

dtn−1
+ a2

dn−2y

dtn−2
+ · · · + an−1

dy

dt
+ any = f(t) (6.108)

where y = xn. Thus, when the equations are in companion form, the control matrix takes the special
form

B = [1 0 0 · · · 0]
T

(6.109)

Now, as we have seen, when the control law of Eq. (6.104) is substituted into the Eqs. (6.103), the
equations take the form

ẋ = A∗x + Bη′ (6.110)

where

A∗ = A − BkT (6.111)

is the augmented matrix. Because of the special form of the control matrix when the equations are
in companion form, the augmented matrix takes the form

A∗ =





















−a1 − k1 −a2 − k2 −a3 − k3 · · · −an−1 − kn−1 −an − kn

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 0 0
0 0 0 · · · 1 0





















(6.112)

The characteristic equation of the augmented matrix can thus be computed directly as

λn + (a1 + k1)λn−1 + (a2 + k2)λn−2 + · · · (an−1 + kn−1)λ + (an + kn) = 0 (6.113)

Now, once the desired eigenvalues λ̄i have been established, the characteristic equation of the desired
augmented matrix can also be computed directly from

(

λ − λ̄1

) (

λ − λ̄2

) (

λ − λ̄3

)

· · ·
(

λ − λ̄n

)

= 0

λn + ā1λ
n−1 + ā2λ

n−2 + ā3λ
n−3 + · · · + ān−1λ + ān = 0 (6.114)

and the desired gains are determined by equating the coefficients in Eqs. (6.113) and (6.114):

ai + ki = āi , for i = 1, 2, . . . , n

or

ki = āi − ai , for i = 1, 2, . . . , n (6.115)



6.5. STATE FEEDBACK DESIGN 123

Transformation to Companion Form

In order to use the results of the preceding section for a general system, we need to be able to
transform an arbitrary plant matrix A to its (first) companion form

Ā =

















−a1 −a2 −a3 · · · −an−1 −an

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 1 0

















(6.116)

That is, it is necessary to find the matrix T such that

Ā = TAT−1 (6.117)

where Ā has the desired form illustrated in Eq. (6.116). It is convenient to represent the needed
matrix as the product of two simpler matrices

T = RS (6.118)

so that

Ā = RSAS−1R−1 (6.119)

where the intermediate transformation

Ã = SAS−1 (6.120)

takes the matrix to the (second) companion form

Ã =

















0 0 0 · · · 0 −an

0 1 0 · · · 0 −an−1

0 0 1 · · · 0 −an−2

0 0 0 · · · 0 −an−3

· · ·
0 0 0 · · · 1 −a1

















(6.121)

We first show that the intermediate transformation

Ã = SAS−1 (6.122)

is achieved when S is chosen to be the inverse of the controllability matrix V, defined in Eq. (6.74).
Thus, we must show that

S−1Ã = AS−1 (6.123)

or

VÃ = AV (6.124)

For a single-input system, the controllability matrix takes the form

V =
[

b Ab A2b · · · An−1b
]

(6.125)
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where b is an n-vector and, for Ã in the (second) companion form, we have

VÃ =
[

b Ab A2b · · · An−1b
]





















0 0 0 · · · 0 −an

1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2

0 0 1 · · · 0 −an−3

· · ·
0 0 0 · · · 0 −a2

0 0 0 · · · 1 −a1





















=
[

Ab A2b A3b · · · − anb − an−1Ab · · · − a1A
n−1b

]

(6.126)

The Cayley-Hamilton Theorem can be used to express the final column in the above matrix as

(

−anI− an−1A − an−2A
2 − · · · − a1A

n−1
)

b = Anb (6.127)

Thus,

VÃ = A
[

b Ab A2b · · · An−1b
]

= AV (6.128)

as was to be shown.

For the final transformation, we require

Ā = RÃR−1 (6.129)

to have the desired form, or

R−1Ā = ÃR−1 (6.130)

The required matrix R−1 has the form

R−1 =

















1 a1 a2 a3 · · · an−2 an−1

0 1 a1 a2 · · · an−3 an−2

0 0 1 a1 · · · an−4 an−3

0 0 0 1 · · · an−5 an−4

· · ·
0 0 0 0 · · · 0 1

















= W (6.131)

which can be verified by noting that

R−1Ā =

















1 a1 a2 a3 · · · an−2 an−1

0 1 a1 a2 · · · an−3 an−2

0 0 1 a1 · · · an−4 an−3

0 0 0 1 · · · an−5 an−4

· · ·
0 0 0 0 · · · 0 1

































−a1 −a2 −a3 · · · −an−1 −an

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 1 0

















=





















0 0 0 · · · 0 −an

1 a1 a2 · · · an−2 0
0 1 a1 · · · an−3 0
0 0 1 · · · an−4 0

· · ·
0 0 0 · · · a1 0
0 0 0 · · · 1 0





















(6.132)
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while

ÃR−1 =





















0 0 0 · · · 0 −an

1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2

0 0 1 · · · 0 −an−3

· · ·
0 0 0 · · · 0 −a2

0 0 0 · · · 1 −a1





































1 a1 a2 a3 · · · an−2 an−1

0 1 a1 a2 · · · an−3 an−2

0 0 1 a1 · · · an−4 an−3

0 0 0 1 · · · an−5 an−4

· · ·
0 0 0 0 · · · 0 1

















=





















0 0 0 · · · 0 −an

1 a1 a2 · · · an−2 0
0 1 a1 · · · an−3 0
0 0 1 · · · an−4 0

· · ·
0 0 0 · · · a1 0
0 0 0 · · · 1 0





















= R−1Ā

(6.133)

as was to be shown.

Now, we have seen for the system in companion form

ż = Āz + B̄η (6.134)

subject to the control law

η = −k̄T z + η′ (6.135)

the roots of the augmented matrix are driven to those of the characteristic equation

λn + ā1λ
n−1 + ā2λ

n−2 + · · · + ān−1λ + ā0 = 0 (6.136)

by the gain vector having elements

k̄i = āi − ai (6.137)

where ai are the coefficients of the characteristic equation of the original (open-loop) plant matrix.

The system of Eqs.(6.134) in companion form can be related back to the original system by intro-
ducing the transformation

z = Tx (6.138)

to give

Tẋ = TAT−1Tx + B̄η (6.139)

or

ẋ = Ax + T−1B̄η (6.140)

The control law then transforms as

η = −kT x = −kTT−1z = −k̄T z (6.141)

whence

kT T−1 = k̄T (6.142)

or

k = TT k̄ (6.143)
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Finally, since
T = RS = W−1V−1 = (VW)

−1
(6.144)

we can write

k =
[

(VW)
−1
]T

k̄ (6.145)

where the matrices V and W are defined in Eqs. (6.125) and (6.131), respectively. Equation (6.145),
known as the Bass-Gura formula, gives the gain matrix for the original state space (in which the plant
matrix is A), in terms of the coefficients of the desired characteristic equation, given by Eq. (6.137).

Example of Single-Variable Feedback Control

We here present an example of single-variable feedback control used to stabilize the Dutch Roll
mode of the Boeing 747 aircraft in powered approach at sea level. We saw in an earlier chapter that
the Dutch Roll mode for this flight condition was very lightly damped, so we will use state-variable
feedback to increase the damping ratio of this mode to ζ = 0.30, while keeping the undamped natural
frequency of the mode, and the times to damp to half amplitude of the rolling and spiral modes,
unchanged.

For the Boeing 747 powered approach condition (at M = 0.25, standard sea-level conditions), the
relevant vehicle parameters are

W = 564, 032 lbf b = 195.7 ft u0 = 279.1 ft/sec

Ix = 14.3 × 106 slug ft2, Iz = 45.3 × 106 slug ft2, Ixz = −2.23 × 106 slug ft2 (6.146)

and the relevant aerodynamic derivatives are

Cyβ = −.96 Cyp = 0.0 Cyr = 0.0 Cyδr
= 0.175 Cyδa

= 0

Clβ = −.221 Clp = −.45 Clr = 0.101 Clδr
= 0.007 Clδa

= 0.0461 (6.147)

Cnβ = 0.15 Cnp = −.121 Cnr = −.30 Cnδr
= −.109 Cnδa

= 0.0064

These values correspond to the following dimensional stability derivatives

Yv = −0.0999, Yp = 0.0, Yr = 0.0 Yδr
= 5.083 Yδa

= 0.0

Lv = −0.0055, Lp = −1.0994, Lr = 0.2468 Lδr
= 0.0488 Lδa

= 0.3212 (6.148)

Nv = 0.0012, Np = −.0933, Nr = −.2314 Nδr
= −.2398 Nδa

= 0.0141

and the dimensionless product of inertia factors

ix = −.156, iz = −.0492 (6.149)

Using these values, the plant matrix is found to be

A =









−0.0999 0.0000 0.1153 −1.0000
−1.6038 −1.0932 0.0 0.2850

0.0 1.0 0.0 0.0
0.4089 −.0395 0.0 −.2454









(6.150)

when the state vector is defined as4

x =
(

β p φ r
)T

(6.151)

4Note that this is the form introduced in Chapter 5 in which the sideslip velocity has been normalized by the
equilibrium flight speed.



6.5. STATE FEEDBACK DESIGN 127

(i.e., is based on sideslip angle rather than sideslip velocity).

The roots of the characteristic equation are found to be the same as those in Chapter 5 of the class
notes:

λDR = −.08066± ı 0.7433

λroll = −1.2308

λspiral = −.04641

(6.152)

The undamped natural frequency and damping ratio of the Dutch Roll mode are thus

ωnDR
= 0.7477 sec−1 and ζDR = 0.1079 (6.153)

The times to damp to half amplitude for the rolling and spiral modes are seen to be

t1/2
roll

= 0.56 sec and t1/2
spiral

= 14.93 sec (6.154)

respectively.

We now determine the gains required, using rudder control only, to increase the damping ratio of
the Dutch Roll mode to ζ = 0.30, while keeping the other modal properties fixed.

The original plant matrix is the same as that in Eq. (6.150), and its characteristic equation is given
by

λ4 + 1.4385λ3 + 0.8222λ2 + 0.7232λ + 0.0319 = 0 (6.155)

The characteristic equation of the desired system is

(λ − λroll)(λ − λspiral)(λ
2 + 2ζωnλ + ω2

n)DR = 0

(λ + 1.2308)(λ + 0.04641)(λ2 + 2ζωnλ + ω2
n) = 0

(λ2 + 1.2772λ + 0.05712)(λ2 + 2(0.30)(0.7477)λ + (0.7477)2) = 0

(λ2 + 1.2772λ + 0.05712)(λ2 + 0.4486λ + 0.5591) = 0

λ4 + 1.7258λ3 + 1.1891λ2 + 0.7396λ + 0.0319 = 0

(6.156)

and by construction the roots will be the same as for the original system, except the damping ratio
for the Dutch Roll mode will be increased to

ζ = 0.30

Comparing the coefficients in the characteristic Eqs. (6.155) and (6.156), the gain vector in the
companion form space is seen to be

k̄ = [1.7258 1.1891 0.7396 0.0319]T − [1.4385 0.8222 0.7232 0.0319]T

= [0.2873 0.3669 0.0164 0.0000]T
(6.157)

The control matrix, assuming rudder-only control, is

B = [0.0182 0.0868 0.0 − .2440]T (6.158)

and the gain vector in the original state vector space required to achieve the desired augmented
matrix is

k =
[

(VW)
−1
]T

k̄ = [0.1383 0.0943 0.1250 − 1.1333]T (6.159)
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Figure 6.5: Boeing 747 aircraft in powered approach at standard sea level conditions and M = 0.25;
response to 5 degree (0.08727 radian) perturbation in sideslip. (a) Original open-loop response; (b)
Closed loop response with Dutch Roll damping ratio changed to ζ = 0.30 using rudder state-variable
feedback.

where

V = [B AB A2B A3B] (6.160)

is the controllability matrix and

W =









1 a1 a2 a3

0 1 a1 a2

0 0 1 a1

0 0 0 1









(6.161)

where the element ai is the coefficient of λ4−i in the characteristic equation of the original system.

The augmented plant matrix for the closed-loop system is

A∗ =









−0.1024 −.0017 0.1130 −.9794
−1.6158 −1.1014 −.0109 0.3834

0.0 1.0 0.0 0.0
0.4427 −.0165 0.0305 −.5220









(6.162)

Comparing the augmented plant matrix of Eq. (6.162) with that for the original (open-loop) system
in Eq. (6.150), we see that by far the largest change is in the a4,4 element, indicating that the
effective value of yaw damping has more than doubled. We saw from our approximate analysis that
yaw damping had a stabilizing effect on both, the spiral and Dutch Roll modes.

The response of the closed-loop system to a 5 degree perturbation in sideslip angle is compared to
that of the original open-loop system in Fig. 6.5. The Dutch Roll response of the closed-loop system
is seen, as expected, to be much more heavily damped than that of the original system.

We next determine the gains required, using aileron control only, to increase the damping ratio of the
Dutch Roll mode to ζ = 0.30, while keeping the other modal parameters unchanged. The original
plant matrix, its characteristic equation, and the characteristic equation of the desired system are
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Figure 6.6: Boeing 747 aircraft in powered approach at standard sea level conditions and M = 0.25;
response to 5 degree (0.08727 radian) perturbation in sideslip. (a) Original open-loop response; (b)
Closed loop response with Dutch Roll damping ratio changed to ζ = 0.30 using aileron state-variable
feedback.

all the same as in the previous exercise, so the gain matrix for the companion form system is also
unchanged. The control matrix, however, is now that for aileron-only control, and is given by

B = [0.0000 0.3215 0.0000 − .0017]T (6.163)

The gain vector in the original state vector space required to achieve the desired augmented matrix
is then

k =
[

(VW)−1
]T

k̄ = [−3.5417 0.8715 0.6746 − 4.0504]T (6.164)

The response of the closed-loop system to a 5 degree perturbation in sideslip angle is compared
with that of the original system in Fig. 6.6. As for the case of rudder-only control, the closed-loop
response is seen to be much more heavily damped than that of the open-loop system.

The augmented plant matrix for the closed-loop system in this case is

A∗ =









−0.0999 0.0000 0.1153 −1.0000
−0.4651 −1.3734 −.2169 1.5873

0.0 1.0 0.0 0.0
0.4027 −.0380 .0012 −.2525









(6.165)

Comparing this plant matrix with that for the original (open-loop) system in Eq. (6.150), we see
that by far the largest changes are in the a2,1 and a2,4 elements. The effective dihedral effect has
been reduced to less than 30% of its original value, while the effective roll-due-to-yaw rate has been
increased by more than a factor of five. Thus, it seems that the control algorithm has stabilized the
Dutch Roll mode by reducing the effective dihedral effect; then, in order to not increase the spiral
mode stability it has effectively increased the (positive) roll-due-to-yaw rate derivative.
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6.5.2 Multiple Input-Output Systems

For multiple input-output systems having p controls, the feedback control law has the form

η = −Kx + η′ (6.166)

where K is the p × n gain matrix . Thus, there are now p × n gains to be specified, but there are
still only n eigenvalues to be specified.

This additional flexibility can be used to configure the control system in a more optimal way if the
control engineer understands the system well enough to make intelligent choices for how to allocate
the gains. But, even for the single-input system, it is not always clear what is the best placement
for the eigenvalues of the augmented matrix. Clearly, more stability is desirable for the less stable
modes, but too much stability can result in a system that requires great effort from the pilot to
achieve required maneuvers. Equations (6.137) and (6.145) indicate that more control effort will be
required as the roots of the augmented matrix are moved further and further to the left of those of
the original plant matrix. Also, it is generally important that the closed-loop frequency response not
be increased too much to avoid exciting modes that have not been modeled, such as those arising
from structural deformation due to aeroelasticity.

6.6 Optimal Control

As has been seen in the previous sections, use of the Bass-Gura procedure often is difficult, or results
in sub-optimal performance for a variety of reasons. These include:

1. The best choice of desired placement for the eigenvalues of the augmented matrix is not always
obvious;

2. Particular eigenvalue placement may require more control input than it available; this can
result in saturation of the control action, which introduces non-linearity and can even result
in instability;

3. For multiple input-output systems, we need to develop strategies for deciding on how to allocate
the gains among the n × p elements, since we have only n eigenvalues to place;

4. The process may not be controllable; i.e., if the rank of the controllability matrix V is less
than n, the method fails since Eq. (6.145) requires determination of the inverse of V.

All these points argue for a control design strategy that, in some sense, optimizes the gain matrix
for stabilizing a given system. This is the goal of what has come to be called optimal control .

6.6.1 Formulation of Linear, Quadratic, Optimal Control

The optimal control of the linear system

ẋ = Ax + Bη(t) (6.167)
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is defined as the control vector η(t) that drives the state from a specified initial state x(t) to a
desired final state xd(tf ) such that a specified performance index

J =

∫ tf

t

g(x(τ), η(τ), τ) dτ (6.168)

is minimized. For quadratic optimal control, the performance index is specified in the form

g = xT Qx + ηTRη (6.169)

where Q and R are symmetric, positive-definite matrices, and the performance index becomes

J =

∫ tf

t

(

xT Qx + ηT Rη
)

dτ (6.170)

If the control law is assumed to be linear, i.e., of the form

η = −Kx + η′ (6.171)

then the determination of the gain matrix K that minimizes J is called the linear quadratic regulator
(LQR) problem. For this control law the closed-loop response of the system to a perturbation is
given by

ẋ = [A− BK]x = A∗x (6.172)

where
A∗ = A − BK (6.173)

is the augmented plant matrix.

We usually are interested in cases for which the matrices A, B, and K are independent of time,
but the development here is easier if we allow the augmented matrix A∗ to vary with time. In this
case, we cannot express the solution to Eq. (6.172) in terms of a matrix exponential, but we can still
express it in terms of the general state transition matrix Φ∗ as

x(τ) = Φ∗(τ, t)x(t) (6.174)

Equation (6.174) simply implies that the state of the system at any time τ depends linearly on the
state at any other time t. When the control law of Eq. (6.171) is substituted into the performance
index of Eq. (6.170) and Eq. (6.174) is used to express the evolution of the state variable, the quantity
to be minimized becomes

J =

∫ tf

t

xT (τ)
[

Q + KTRK
]

x(τ) dτ

=

∫ tf

t

xT (t)Φ∗T (τ, t)
[

Q + KT RK
]

Φ∗(τ, t)x(t) dτ

= xT (t)

(∫ tf

t

Φ∗T (τ, t)
[

Q + KT RK
]

Φ∗(τ, t) dτ

)

x(t)

(6.175)

or
J = xT (t)Sx(t) (6.176)

where

S(t, tf ) =

∫ tf

t

Φ∗T (τ, t)
[

Q + KTRK
]

Φ∗(τ, t) dτ (6.177)
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Note that, by its construction, the matrix S is symmetric, since the weighting matrices Q and R

are both symmetric.

The simple appearance of Eq. (6.176) belies the complexity of determining S from Eq. (6.177). In
fact, if we had to use the latter equation to determine the matrix S, we would face an almost hopeless
task. Our expression of the solution in terms of the general state transition matrix seems to have
resulted in a simple expression for the integral we wish to minimize, but it is almost impossible to
develop a useful expression for the state transition matrix, itself, in general. Instead, in order to find
the gain matrix K that minimizes J , it is convenient to find a differential equation that the matrix
S satisfies. To this end, we note that since

J =

∫ tf

t

xT (τ)Lx(τ) dt (6.178)

where
L = Q + KT RK (6.179)

we can write
dJ

dt
= − xT (τ)Lx(τ)

∣

∣

τ=t
= −xT (t)Lx(t) (6.180)

But, from differentiating Eq. (6.176), we have

dJ

dt
= ẋT (t)S(t, tf )x(t) + xT (t)Ṡ(t, tf )x(t) + xT (t)S(t, tf )ẋ(t) (6.181)

and, substituting the closed-loop differential equation, Eq. (6.172), for ẋ gives

dJ

dt
= xT (t)

[

A∗T
S(t, tf ) + Ṡ(t, tf ) + S(t, tf )A∗(t)

]

x(t) (6.182)

Thus, we have two expressions for the derivative dJ/ dt: Eqs. (6.180) and (6.182). Both are quadratic
forms in the initial state x(t), which must be arbitrary. The only way that two quadratic forms in
x can be equal for any choice of x is if the underlying matrices are equal; thus, we must have

−L = A∗T
S + Ṡ + SA∗

or
−Ṡ = SA∗ + A∗T

S + L (6.183)

Equation (6.183) is a first-order differential equation for the matrix S, so it requires a single initial
condition to completely specify its solution. We can use Eq. (6.177), evaluated at t = tf to give the
required condition

S(tf , tf ) = 0 (6.184)

Once a gain matrix K has been chosen to close the loop, the corresponding performance of the
system is given by Eq. (6.176), where S(t, tf ) is the solution of Eq. (6.183), which can be written in
terms of the original plant and gain matrices as

−Ṡ = S (A − BK) +
(

AT − KTBT
)

S + Q + KT RK (6.185)

Our task, then, is to find the gain matrix K that makes the solution to Eq. (6.185) as small as
possible – in the sense that the quadratic forms (Eq. (6.176)) associated with the matrix S are
minimized. That is, we want to find the matrix Ŝ for which

Ĵ = xT Ŝx < xTSx (6.186)
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for any arbitrary initial state x(t) and every matrix S 6= Ŝ.

We will proceed by assuming that such an optimum exists, and use the calculus of variations to find
it. The minimizing matrix Ŝ must, of course, satisfy Eq. (6.185)

− ˙̂
S = Ŝ

(

A− BK̂
)

+
(

AT − K̂TBT
)

Ŝ + Q + K̂TRK̂ (6.187)

and any non-optimum gain matrix, and its corresponding matrix S, can be expressed as

S = Ŝ + N

K = K̂ + Z
(6.188)

Substituting this form into Eq. (6.185) and subtracting Eq. (6.187) gives

−Ṅ = NA∗ + A∗
T

N +
(

K̂TR − ŜB
)

Z + ZT
(

RK̂− BT Ŝ
)

+ ZT RZ (6.189)

where

A∗ = A − BK = A − B
(

K̂ + Z
)

(6.190)

Note that Eq. (6.189) has exactly the same form as Eq. (6.183) with

L =
(

K̂TR − ŜB
)

Z + ZT
(

RK̂− BT Ŝ
)

+ ZT RZ (6.191)

so its solution must be of the form of Eq. (6.177)

N(t, tf ) =

∫ tf

t

Φ∗T (τ, t)LΦ∗(τ, t) dτ (6.192)

Now, if Ĵ is a minimum, then we must have

xT Ŝx ≤ xT
(

Ŝ + N
)

x = xT Ŝx + xT Nx (6.193)

and this equation requires that the quadratic form xTNx be positive definite (or, at least, positive
semi-definite). But, if Z is sufficiently small, the linear terms in Z (and ZT ) in Eq. (6.191) will
dominate the quadratic terms in ZT RZ, and we could easily find values of Z that would make L,
and hence N, negative definite. Thus, the linear terms in Eq. (6.191) must be absent altogether .
That is, for the gain matrix K̂ to be optimum, we must have

K̂T R − ŜB = 0 = RK̂− BT Ŝ (6.194)

or, assuming that the weighting matrix R is not singular,

K̂ = R−1BT Ŝ (6.195)

Equation (6.195) gives the optimum gain matrix K̂, once the matrix Ŝ has been determined. When
this equation is substituted back into Eq. (6.187) we have

− ˙̂
S = ŜA + AT Ŝ − ŜBR−1BT Ŝ + Q (6.196)
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This equation, one of the most famous in modern control theory, is called the matrix Riccati equation,
consistent with the mathematical nomenclature that identifies an equation with a quadratic non-
linearity as a Riccati equation. The solution to this equation gives the matrix Ŝ which, when
substituted into Eq. (6.195), gives the optimum gain matrix K̂.

Because of the quadratic nonlinearity in the Riccati equation, it is necessary, except in a few very
special cases, to solve it numerically. Since the matrix Ŝ is symmetric, Eq. (6.196) represents
n(n + 1)/2 coupled, first-order equations. Since the “initial” condition is

Ŝ(tf , tf ) = 0 (6.197)

the equation must be integrated backward in time, since we are interested in Ŝ(t, tf ) for t < tf .

When the control interval [t, tf ] is finite, the gain matrix K will generally be time-dependent, even
when the matrices A, B, Q, and R are all constant. But, suppose the control interval is infinite, so
that we want to find the gain matrix K̂ that minimizes the performance index

J∞ =

∫

∞

t

(

xT Qx + ηT Rη
)

dτ (6.198)

In this case, integration of Eq. (6.196) backward in time will either grow without limit or converge

to a constant matrix S̄. If it converges to a limit, the derivative ˙̂
S must tend to zero, and S̄ must

satisfy the algebraic equation

0 = S̄A + AT S̄ − S̄BR−1BT S̄ + Q (6.199)

and the optimum gain in the steady state is given by

K̄ = R−1BT S̄ (6.200)

The single quadratic matrix Eq. (6.199) represents n(n + 1)/2 coupled scalar, quadratic equations,
so we expect there will be n(n + 1) different (symmetric) solutions. The nature of these solutions
is, as one might expect, connected with issues of controllability and observability – and a treatment
of these issues is beyond the scope of our treatment here. But, for most design applications, it is
enough to know that

1. If the system is asymptotically stable; or

2. If the system defined by (A, B) is controllable, and the system defined by (A, C), where the
weighting matrix Q = CTC, is observable,

then the algebraic Riccati equation has an unique positive definite solution S̄ that minimizes J∞

when the control law

η = −K̄x = −R−1BT S̄x (6.201)

is used.5

5It should be understood that there are still n(n + 1) symmetric solutions; the assertion here is that, of these
multiple solutions, one, and only one, is positive definite.
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Figure 6.7: Inverted pendulum affected by gravity g and control torque T .

6.6.2 Example of Linear, Quadratic, Optimal Control

We consider here the application of linear, quadratic optimal control to an example that is simple
enough that we can carry our the analysis in closed form, illustrating the concepts of the preceding
section. We consider using optimal control to stabilize an inverted pendulum. The equation of
motion for an inverted pendulum near its (unstable) equilibrium point, as illustrated in Fig. 6.7 is

mL2θ̈ = mgL sin θ + T = mgLθ + T (6.202)

where m is the mass of the pendulum, L is the pendulum length, g is the acceleration of gravity,
and T is the externally-applied (control) torque; the second form of the right-hand side assumes the
angle θ is small.

If we introduce the angular velocity ω = θ̇ as a second state variable, Eq. (6.202) can be written in
the standard state variable form

d

dt

(

θ
ω

)

=

(

0 1
γ 0

)(

θ
ω

)

+

(

0
1

)

τ (6.203)

where γ = g/L and τ = T/(mL2) are reduced gravity and input torque variables.

Now, we seek the control law that minimizes the performance index

J∞ =

∫

∞

t

(

θ2 +
τ2

c2

)

dt′ (6.204)

where c is a parameter that determines the relative weighting of control input and angular deviation
in the penalty function. It is clear that this performance index corresponds to

Q =

(

1 0
0 0

)

and R =
1

c2
(6.205)

If we define the elements of the matrix S̄ to be

S̄ =

(

s1 s2

s2 s3

)

(6.206)

then the optimum gain matrix is

K̄ = R−1BT S̄ = c2
[

0 1
]

(

s1 s2

s2 s3

)

=
[

c2s2 c2s3

]

(6.207)
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which is seen to be independent of the element s1.

The terms needed for the algebraic Riccati equation

0 = S̄A + AT S̄ − S̄BR−1BT S̄ + Q (6.208)

are

S̄A =

(

s1 s2

s2 s3

)(

0 1
γ 0

)

=

(

s2γ s1

s3γ s2

)

(6.209)

AT S̄ =

(

0 γ
1 0

)(

s1 s2

s2 s3

)

=

(

s2γ s3γ
s1 s2

)

(6.210)

and

S̄BR−1BT S̄ =

(

s1 s2

s2 s3

)(

0
1

)

c2
[

0 1
]

(

s1 s2

s2 s3

)

= c2

(

s2
2 s2s3

s2s3 s2
3

)

(6.211)

Thus, the Riccati equation is

0 =

(

s2γ s1

s3γ s2

)

+

(

s2γ s3γ
s1 s2

)

− c2

(

s2
2 s2s3

s2s3 s2
3

)

+

(

1 0
0 0

)

(6.212)

which is equivalent to the three scalar equations

0 = 2s2γ − c2s2
2 + 1

0 = s1 + s3γ − c2s2s3

0 = 2s2 − c2s2
3

(6.213)

These equations are simple enough that we can solve them in closed form. The first of Eqs. (6.213)
gives

s2 =
γ ±

√

γ2 + c2

c2
(6.214)

and the third of Eqs. (6.213) gives

s3 = ±1

c

√
2s2 (6.215)

Since the elements of S̄ must be real, s2 must be positive (or s3 would be complex). Thus, we must
choose the positive root in Eq. (6.203). Further, the second of Eqs. (6.213) gives

s1 = c2s2s3 − γs3 = s3

√

γ2 + c2 (6.216)

Thus, elements s1 and s3 have the same sign which, for S̄ to be positive definite, must be positive.
Thus,

s2 =
γ +

√

γ2 + c2

c2

s3 =
1

c

√
2s2 =

√
2

c2

[

γ +
√

γ2 + c2
]1/2

(6.217)

represents the unique solution for the corresponding elements for which S̄ is positive definite.

Thus, the gain matrix is seen to be

K =
[

c2s2 c2s3

]

=

[

γ +
√

γ2 + c2
√

2
[

γ +
√

γ2 + c2
]1/2

]

(6.218)
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Figure 6.8: Locus of roots of characteristic equation of augmented plant matrix for inverted pen-
dulum. Axes are scaled to give roots in units of γ. Open symbols represent roots at values of
c/γ = 0, 1, 10, 100, 1000, with real root corresponding to c/γ = 0. Cyan lines represent asymptotes
of root positions in the limit of large c/γ.

The augmented matrix is then given by

A∗ = A − BK̄ =

(

0 1

−
√

γ2 + c2 −
√

2
[

γ +
√

γ2 + c2
]1/2

)

(6.219)

and its characteristic equation is

λ2 +
√

2
[

γ +
√

γ2 + c2
]1/2

λ +
√

γ2 + c2 = 0 (6.220)

which has roots

λ =

√
2

2

[

−√
γ + γ̄ ± ı

√
γ̄ − γ

]

(6.221)

where we have introduced
γ̄ =

√

γ2 + c2 (6.222)

The locus of these roots is plotted in Fig. 6.8 as the weighting factor c is varied over the range
0 < c < 103.

Note that as c/γ becomes large, γ̄ becomes large relative to γ, so

lim
c/γ→∞

λ = −
√

γ̄√
2

(1 ± ı) (6.223)

Thus, as c becomes large, the damping ratio of the system approaches a constant value of

ζ =
1√
2

while the undamped natural frequency increases as

ωn =
√

γ̄ ≈
√

c

Large values of c correspond to a performance index in which the weighting of the control term is
small compared to that of the deviations in state variables – i.e., to a situation in which we are
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willing to spend additional energy in control to maintain very small perturbations of the state from
its equilibrium position.

On the other hand, as c becomes small, the weighting of the control term in the performance index
becomes large compared to that of the state variables. This is consistent with the fact that the gains
in Eq. (6.218)

K1 = γ +
√

γ2 + c2

K2 =
√

2
[

γ +
√

γ2 + c2
]1/2

decrease monotonically with c. In the limit c = 0, however, the gains remain finite, with

lim
c→0

K1 = 2γ

lim
c→0

K2 = 2
√

γ

since some control is necessary to stabilize this, otherwise unstable, system.

6.6.3 Linear, Quadratic, Optimal Control as a Stability Augmentation

System

We here present an example of the application of linear, quadratic optimal control to stabilize the
motion of the Boeing 747 aircraft in powered approach at M = 0.25 at standard sea level conditions.
This is the same aircraft and flight condition for which we used the Bass-Gura procedure to design
a feedback control system to stabilize the lateral/directional modes in Section. 6.5.1. In that earlier
section, we determined the gains for specific placement of the eigenvalues of the associated augmented
matrix using only one control, either rudder or ailerons, at a time.

Here, we apply linear, quadratic, optimal control to minimize the steady state performance index

J∞ =

∫

∞

t

(

xTQx +
1

c2
ηTRη

)

dτ (6.224)

where, as in the previous simple example, c is a parameter that determines the relative weights
given to control action and perturbations in the state variable in the penalty function. For lat-
eral/directional motions at this flight condition, the plant matrix is given by Eq. (6.150), while the
control matrix is the union of the two vectors given in Eqs. (6.158) and (6.163)

B =

(

0.0182 0.0868 0.0000 −.2440
0.0000 0.3215 0.0000 −.0017

)T

(6.225)

where the control vector is

η = [δr δa]
T

(6.226)

The weighting matrices in the performance index are taken to be simply

Q = I and R = I (6.227)

where Q is a 4 × 4 matrix and R is a 2 × 2 matrix.
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(a) No feedback (b) c = 0.001

Figure 6.9: Boeing 747 aircraft in powered approach at standard sea level conditions and M = 0.25;
response to unit perturbation in sideslip. (a) Original open-loop response; (b) Optimal closed loop
response with performance parameter c = 0.001.

The Matlab function
[S, L, G] = care(A,B,Q,R,T,E);

is used to solve the generalized matrix Riccati equation

ETSA + ATSE −
(

ETSB + T
)

R−1
(

BTSE + TT
)

+ Q = 0 (6.228)

which, with the additional input matrices are defined as
T = zeros(size(B));

and
E = eye(size(A));

reduces to Eq. (6.199). In addition to the solution matrix S, the Matlab function care also returns
the gain matrix

G = R−1
(

BTSE + TT
)

(6.229)

and the vector
L = eig(A - BG, E)

containing the eigenvalues of the augmented matrix.

For small values of the parameter c, the control action is weighted heavily in the performance index.
Figure 6.9 compares the open-loop response to a unit perturbation in sideslip to the closed-loop
system response for a value of c = 0.001. This value penalizes control input so heavily that the
open-loop and closed-loop responses are virtually identical. This is a quite different result from that
for the simple example of Section 6.6.2, and results from the fact that this system is stable, so the
natural (un-forced) return of the system to equilibrium is optimal when control action is heavily
penalized.

Figure 6.10 shows the closed-loop system response for values of c = 0.5, 1.0, and 2.0, respectively.
Also plotted in these figures are the time histories of control response required to stabilize the
motions, calculated as

η = −Kx (6.230)
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(a) c = 0.50 (b) c = 1.0 (c) c = 2.0

Figure 6.10: Boeing 747 aircraft in powered approach at standard sea level conditions and M = 0.25;
response to unit perturbation in sideslip illustrating effect of varying weighting parameter c. Optimal
closed-loop responses with (a) c = 0.50; (b) c = 1.0; and (c) c = 2.0. Control deflections required to
stabilize the motions are also shown.

This control response is calculated in Matlab simply by defining the matrices C and D defining
the output response as

C = -G;

and
D = zeros(2);

and then adding the output variables
y = Cx + Dη (6.231)

to the plots. It is seen in the plots that, as c is increased the motion becomes more heavily damped,
but at the cost of significantly greater control input.

The role of the parameter c can be seen more clearly if we examine the behavior of the individual
terms in the performance index J∞. Figure 6.11 plots the quadratic forms xT Qx and ηT Rη as
functions of time for the three values of c illustrated in Fig. 6.10. For greater clarity in the figure,
minus the control term is plotted. Thus, for each value of c the optimal control strategy selects the
gains that minimize the net area between the two curves. Three trends resulting from increasing c
are evident in the figure: (1) the value of J∞ – i.e., the area between the two curves – decreases;
(2) the return of the system to its equilibrium state is more rapid and heavily damped; (3) most of
the improvement happens for modest increases in the value of c, with continued increases requiring
ever larger control inputs for relatively little further improvement in response.

Finally, we illustrate the behavior of the roots of the augmented equation as the parameter c is
increased. Figure 6.12 shows the locations of the roots in the complex plane for selected values of
c. Note that, in this range of values, all roots move to the left as c is increased until the Dutch
Roll mode becomes critically damped at a value of approximately c = 9.973, as indicated by the
joining of the roots on the real axis. With further increase in c, one of the Dutch Roll roots moves
to the right. The value of c required to achieve critical damping of the Dutch Roll mode generally
corresponds to much larger values of c than would ever be used in a practical system.
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Figure 6.11: Penalty functions in performance index for optimal control solution; Boeing 747 aircraft
in powered approach at standard sea level conditions and M = 0.25. Upper curves are xT Qx, and
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Figure 6.12: Boeing 747 aircraft in powered approach at standard sea level conditions
and M = 0.25; locus of roots of characteristic equation of augmented matrix as con-
trol weighting parameter c is increased. Symbols represent root locations for c =
0.001, 0.5, 1.0, 2.0, 5.0, 8.0, 9.0, 9.7, 9.76, 9.7727, 9.7728, 10.0; as c is increased, all roots move to the
left (except for one of the Dutch Roll roots after that mode becomes critically damped between
9.7227 < c < 9.7228).
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6.7 Review of Laplace Transforms

The Laplace transform of the function f(t), assumed identically zero for t < 0, is defined as

L [f(t)] = F (s) =

∫

∞

0

f(t)e−st dt (6.232)

The Laplace transform F (s) of the function f(t) can be shown to exist, for sufficiently large s, when
[4]:

1. The function f(t) is continuous or piecewise continuous in every finite interval t1 ≤ t ≤ T ,
where t1 > 0;

2. The function tn|f(t)| is bounded near t = 0 for some number n < 1; and

3. The function e−s0t|f(t)| is bounded for large values of t, for some number s0.

All the functions we normally deal with in stability and control problems satisfy these conditions.
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6.7.1 Laplace Transforms of Selected Functions

We here review the Laplace transforms of several important functions.

Laplace Transform of a Derivative

If F (s) is the Laplace transform of the function f(t), then the Laplace transform of the derivative
df/ dt can be determined as

L
[

df

dt

]

=

∫

∞

0

df

dt
e−st dt = fe−st

∣

∣

∞

0
+

∫

∞

0

fse−st dt = −f(0) + s

∫

∞

0

fe−st dt

= −f(0) + sF (s)

(6.233)

Heaviside Step Function

The Heaviside step function is defined as

H(t − τ) =

{

0, for t < τ

1, for t ≥ τ
(6.234)

The Laplace transform of H(t) is thus

H(s) =

∫

∞

0

e−stH(t) dt =

∫

∞

0

e−st dt = − est

s

∣

∣

∣

∣

∞

0

=
1

s
(6.235)

Dirac Delta Function

The Dirac delta function is defined by the properties

δ(t − τ) = 0 for t 6= τ
∫

∞

−∞

δ(t − τ) dt = 1
(6.236)

The Laplace transform of δ(t) is thus

δ(s) =

∫

∞

0

e−stδ(t) dt = e0 = 1 (6.237)

The function f(t) = t

The Laplace transform of f(t) = t is

F (s) =

∫

∞

0

te−st dt = − te−st

s

∣

∣

∣

∣

∞

0

+

∫

∞

0

e−st

s
dt = −e−st

s2

∣

∣

∣

∣

∞

0

=
1

s2
(6.238)
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The function f(t) = e−at

The Laplace transform of f(t) = e−at is

F (s) =

∫

∞

0

e−ate−st dt =

∫

∞

0

e−(a+s)t dt = −e−(a+s)t

a + s

∣

∣

∣

∣

∞

0

=
1

s + a
(6.239)

The Trigonometric Functions, cosωt and sin ωt

The Laplace transform of f(t) = cosωt is determined as follows. Since

∫

∞

0

cosωte−st dt = −cosωte−st

s

∣

∣

∣

∣

∞

0

− ω

∫

∞

0

sin ωt
e−st

s
dt

=
1

s
− ω

s

∫

∞

0

sinωte−st dt =
1

s
+

ω

s

[

sin ωte−st

s
− ω

∫

∞

0

cosωt
te−st

s
dt

]

=
1

s
− ω2

s2

∫

∞

0

cosωte−st dt

(6.240)

we have
(

1 +
ω2

s2

)∫

∞

0

cosωte−st dt =
1

s
(6.241)

whence

F (s) =

∫

∞

0

cosωte−st dt =
1

s
(

1 + ω2

s2

) =
s

s2 + ω2
(6.242)

Similarly, to determine the Laplace transform of f(t) = sinωt, since

∫

∞

0

sin ωte−st dt = − sinωte−st

s

∣

∣

∣

∣

∞

0

+
ω

s

∫

∞

0

cosωte−st dt

=
ω

s

∫

∞

0

cosωte−st dt =
ω

s

[

1

s
− ω

s

∫

∞

0

sin ωte−st dt

] (6.243)

we have
(

1 +
ω2

s2

)∫

∞

0

sin ωte−st dt =
ω

s2
(6.244)

whence

F (s) =

∫

∞

0

sin ωte−st dt =
ω

s2
(

1 + ω2

s2

) =
ω

s2 + ω2
(6.245)

The Attenuation Rule

Exponentially damped harmonic functions appear often in linear system dynamics, so the following
attenuation rule is useful.
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If F (s) is the Laplace transform of f(t), then the Laplace transform of e−atf(t) is

L
[

e−atf(t)
]

=

∫

∞

0

e−atf(t)e−st dt =

∫

∞

0

e−(s+a)tf(t) dt

=

∫

∞

0

e−s′tf(t) dt = F (s′) = F (s + a)

(6.246)

Thus, since Eq. (6.242) gives

L [cosωt] =
s

s2 + ω2
(6.247)

we have

L
[

e−at cosωt
]

=
s + a

(s + a)2 + ω2
(6.248)

Also, since Eq. (6.245) gives

L [sin ωt] =
ω

s2 + ω2
(6.249)

we have

L
[

e−at sin ωt
]

=
ω

(s + a)2 + ω2
(6.250)

The Convolution Integral

The convolution integral

L−1 [F (s)G(s)] =

∫ t

0

f(t − τ)g(τ) dτ (6.251)

where F (s) and G(s) are the Laplace transforms of f(t) and g(t), respectively, can be verified
formally as follows.

From the definition of the Laplace transform,

F (s)G(s) =

∫

∞

0

e−svf(v) dv

∫

∞

0

e−sug(u) du

=

∫

∞

0

∫

∞

0

e−s(v+u)f(v)g(u) dv du

=

∫

∞

0

g(u)

(∫

∞

0

e−s(v+u)f(v) dv

)

du

(6.252)

Then, with the change of variable

v + u = t (6.253)

we have
∫

∞

0

e−s(v+u)f(v) dv =

∫

∞

u

e−stf(t − u) dt (6.254)
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so

F (s)G(s) =

∫

∞

0

(∫

∞

u

e−stf(t − u)g(u) dt

)

du

=

∫

∞

0

(∫ t

0

e−stf(t − u)g(u) du

)

dt

=

∫

∞

0

e−st

(∫ t

0

f(t − u)g(u) du

)

dt = L
[∫ t

0

f(t − u)g(u) du

]

(6.255)

which was to be proved. The interchange of order of integration in this last step can be shown to be
legitimate, by appropriate limiting procedures, when the Laplace transforms of f(t) and g(t) exist.


