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Abstract 
In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces 
the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for 
a reasonable cross-sectional area. The height of the surge tank is then designed using this high 
water level mark generated by the completely closed penstock valve. Using a conical surge tank 
with a non-constant cross-sectional area can resolve the problems of space and height. When ad-
dressing issues in designing open surge tanks, key parameters are usually calculated by using 
complex equations, which may become cumbersome when multiple iterations are required. A 
more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper 
presents and describes the equations used to design open conical surge tanks. Secondly, it intro-
duces user-friendly charts that can be used in the design of cylindrical and conical open surge 
tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also 
presented to illustrate the use of these design charts. The case study’s results show that key pa-
rameters obtained via successive approximation method required 26 iterations or complex calcu-
lations, whereas these values can be obtained by simple reading of the proposed chart. The use of 
charts to help surge tanks designing, in the case of preliminary designs, can save time and increase 
design efficiency, while reducing calculation errors. 
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1. Introduction 
A water hammer is defined as a pressure surge or wave caused when a fluid in motion is suddenly forced to stop 
or change directions. Water hammers usually occur when the flow of water into a turbine or pump decreases ra-
pidly due to a sudden drop in the pressure head, or when a valve is suddenly closed at an end of a pipeline sys-
tem. This creates a pressure wave that propagates through the pipe: this phenomenon in the pipe is called a 
penstock. In order to remedy such a situation, a surge tank can be connected to the piping system which (de-
pending on the number of tanks, arrangement, and the nature of the restriction between the surge tank and the 
piping system) can take several forms and configurations. Besides the simple cylindrical surge tank, other types 
are adopted: conical surge tank, surge tank with internal bell-mouthed spillway, differential surge tank, etc. [1]. 
The design of open surge tank requires the solving of first-order, non-homogeneous, linear differential equations. 
This process will lead to an implicit equation for the determination of key parameters of a surge tank and the 
penstock. The solution will be found either by using an equation solver or by trial and error. 

For preliminary designs, practicing engineers are usually overwhelmed with all the details of pipeline or canal 
systems. They need the general framework to build the surge tank in hydroelectric power plants projects. Sim-
plified charts may help to facilitate identification of key parameters and variations. 

Basically, the origin of the theory of water hammer goes back to the contributions of Menabrea [2], who pub-
lished a short note on the calculation of water pressures [3]. However, by its mathematical rigor and significant 
theories, the papers of Michaud [4] and [5], Allievi [6], [7] and [8], Schnyder [9] and Jaeger [10] are the source 
of inspiration for all studies on water hammer. The use of surge tanks in hydropower systems and their problems 
with stability were reviewed by Lescovich [11], Roche [12] and Chaudhry [13] (with extensive bibliography on 
this subject, where significant theories are found in Jaeger [14] [15]). 

Guinot [16] focuses on theoretical and practical implementation of Godunov approach to simulate the water 
hammer with steady friction, which induces a non-hyperbolic source term. But for transient flow in a constant 
diameter pipe, the friction factor which is the sum of the quasi-steady part and unsteady part, is developed in the 
model by Brunone et al. [17], and modified by Bergant et al. [18]. 

Research by Chaudhry et al. [19], Finnemore et al. [20] and Moghaddam [21] provided analytical implicit 
equations for analysing and designing a simple surge tank. These equations yielded cylindrical surge tank di-
mensions that were solved either numerically or by trial and error. However, using these equations required long 
computational times. 

Chaudhry et al. [22] investigated the stability of water level oscillations inside a closed surge tank during 
transient conditions. The result of this investigation led them to obtain stability diagrams which helped to indi-
cate the demarcation of stable, unstable and incompatible regions within a closed surge tank. Though significant 
contributions dating back to the 1950’s had helped designers to better understand the behaviours of a surge tank, 
no diagrams were ever developed for reference purposes in the designing of cylindrical and conical surge tanks. 

The impact of the presence of a surge tank on a pipeline system was added to the research by Kim [23] 
through the application of a Genetic Algorithm (GA) into the Impulse Response method platform, which derived 
the impedance functions for pipeline systems equipped with a surge tank. In his quest to secure a set of global 
optimum parameter values for a surge tank (such as location along the pipeline, the length of the connector, and 
the diameters required for the connector and the surge tank), Kim utilized four different objective functions and 
2500 iterations with identical GA input parameters. However, to solve an example of a simple case application, 
Kim required 1250 iterations before obtaining the global optimum parameter values. 

Ramadan et al. [24] investigated the effects of different key parameters on surge tank designs, such as the 
friction losses coefficient, surge tank cross-sectional area on the water surface, oscillations tank, and total dis-
charge. The design analysis was tested under steady conditions. Unfortunately, their study is considered restric-
tive as their model does not allow for surge tank analysis or design in steady hydraulic system conditions, with 
initial input data other than those provided in their study. 

All of these contributions require sophisticated resolution models and a long processing time. This paper 
bridges the gap between the design concept and the detailed design phase on surge tanks by providing user- 
friendly diagrams for the design of cylindrical and conical open surge tanks. 

2. Methodology 
This paper focuses on analytical approach to the unsteady flow of incompressible fluid in pipes. The non-con- 
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stant cross-sectional area of surge tanks induces the first-order non-homogeneous differential equation with 
variable coefficients of water hammer. Firstly, the governing equations are derived; secondly charts for analysis 
and design of cylindrical and conical open surge tanks are given; and finally, one case study is presented and a 
comparative study between the successive approximation method and the resolution by the charts is done. 

3. Governing Equations 
Figure 1 presents sketches that define a surge tank analysis in three different flow scenarios: steady flow condi-
tions, transient flow conditions, and conditions at the end of a time interval (after the closing of the valve). 

3.1. First-Order Non-Homogeneous Differential Equation ODE with Variable Coefficients 
In steady flow conditions, the difference Z0 in water level between the static level of the reservoir and the surge 
tank (measured negatively downward from the static water level) is equal to the sum of the head loss due to ve-
locity head, friction, and any minor losses in the pipe as represented by Equation (1). 
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Definition sketch for surge tank analysis. (a) Steady condition (initially); (b) 
The conditions in a time interval before the total closures of the valve; (c) The condi-
tions at the end of the time interval.                                           



A. Seck, M. Fuamba 
 

 
1245 

2
0

0 2
VZ K

g
− =                                          (1) 

where 

1fLK k
D

= + +∑                                      (2) 

Transient flow conditions occur at a time interval prior to total valve closure and are characterized by Equa-
tion (3), where dZ/dt represents the flow velocity through the surge tank when the valve is completely closed. 

2 d d
2 d d
V L V ZZ K

g g Z t
− = +                                 (3) 

The conditions at the end of time interval are characterized by the continuity as in Equation (4). 
d
d S

Z AV
t A
=                                            (4) 

where, 

( )2 2
0 0

π
12S S S S SA D D D D= + +                             (5) 

And 
0 2S SD D mZ= +                                       (6) 

As a result, Equation (5) becomes 

( )2 2 2
0 0

π 4 6 3
12S S SA m Z mD Z D= + +                             (7) 

Substituting Equation (7) into Equation (4), and rearranging Equation (3) gives the first-order non-homoge- 
neous differential equation with variable coefficients, where the non-constants coefficients b and c are continu-
ous functions of Z. 

X bX cZ′ + =                                         (8) 
where, 

2 2 , an, d 4X V b KC c gC= = = −                              (9) 
With 

22
0

2
0

2 3 1
2 42 3

S

S

D mC Z
DLD

  
 = + +     

                           (10) 

3.2. Solution of ODE 
The solution of Equation (8) is the sum of a particular solution and the general solution of the associated homo-
geneous equation 0X bX′ + = . 

Solving by integration and isolating X leads to a family of solutions associated to the homogeneous equation: 
22

3 20
2

0 0

4exp
9

S

S S

KD m mX Z Z Z
D DLD

λ
     = − + +  

     
                      (11) 

This general solution (Equation (11)) contains a constant of integration λ, which denotes any real number. 
One particularity of homogeneous linear differential equations is that X = 0 represent a solution called the trivial 
solution. However, solutions of interest for this paper fall under the category of non-trivial solutions. Particular 
solution by variation of parameters is used [25]. This particular solution is expressed in the following terms: 

3 2X Z Z Zα β γ δ= + + +                                  (12) 

where, 
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Finally, the general solution of the non-homogeneous equation is obtained: 
22
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2
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4exp
9
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D DLD

α β γ δ λ
     = + + + + − + +  

     
            (17) 

Or, since X = V2, the general equation relating the velocity V in the pipe to the water surface level Z in the 
conical surge tank is: 

22
2 3 2 3 20

2
0 0

4exp
9

S

S S

KD m mV Z Z Z Z Z Z
D DLD

α β γ δ λ
     = + + + + − + +  

     
            (18) 

The unknown constant of integration λ is eliminated with the initial conditions (Equation (1): when V = V0 
then Z = Z0) and the final conditions (when V = 0 then Z = Zmax). 

3.3. Solving ODE with Initial-Value and Final-Value Constraints 
• For initial conditions, substituting these into Equation (18) and rearranging gives: 
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• For final conditions, substituting these into Equation (18) and rearranging gives: 
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Finally, dividing Equation (25) by Equation (19) gives: 

( ) ( ) ( )

3 2
max max max

2 3 2
0 0 0 0 0 0 0 0

22
3 3 2 20
max 0 max 0 max 02

0 0

4exp
9

m m m m

S

S S

Z Z Z
V Z Z Z

KD m mZ Z Z Z Z Z
D DLD

α β γ δ
α β γ δ

− − − −
− − − −

     = − − + − + −  
     

          (31) 

Multiplying the numerator and denominator of the left-hand side of Equation (31) by K produces a result that 
leads to an implicit equation for all parameters Z0, V0, Zmax, K, L, DS0, m and DS: 
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However, solving Equation (32) for Z0, V0, Zmax, K, L, DS0, m or DS requires an equation solver or manual trial 
and error. 

Another method is to first find Zmax = Zm for M = 0 (corresponding to a cylindrical or simple surge tank) using 
Equation (44) and then find mZ ′  with M ≠ 0 (corresponding to the conical surge tank) using Equation (45). 

11 exp
2m m
WZ Y Z

Y g
    = − − +   

    
                                (44) 

( )
( ) ( )

0
02

0 0

3

2 1 2 2m

m
m

m

Z Z
Z Z

M Z Z M Z Z

−
′ = +

′ ′ − + + − + 
                   (45) 

Equations (32), (44) and (45) are based on four parameters Y, W, M and Zmax. 
From Equations (44) one can show that: 

mZ Y<                                         (46) 

4. Charts 
The charts, which are presented in Figures 2-11, relate maximum level of the water surface in the surge tank  
 

 
Figure 2. Graph of Zmax vs. W for M = 0.                                                                        
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Figure 3. Graph of Zmax vs. W for M = 0.001.                                                                     
 

 
Figure 4. Graph of Zmax vs. W for M = 0.01.                                                                       
 
and parameters Y and W for fully developed flow. These charts represent the solutions of the Equations (32), (44) 
and (45) for values of M ranging from 0 to 0.3 and for values of Y lower than 40 meters. 
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Figure 5. Graph of Zmax vs. W for M = 0.02.                                                                   

 

 
Figure 6. Graph of Zmax vs. W for M = 0.03.                                                                     

5. Case Study 
5.1. Application Examples 
All case study problems have been derived from Finnemore et al. [20]. This reference is well known and well 
respected in the civil engineering field. 
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Figure 7. Graph of Zmax vs. W for M = 0.04.                                                                     
 

 
Figure 8. Graph of Zmax vs. W for M = 0.05.                                                                       
 
• Problem 1 (Figure 1(a)): A 42-in diameter steel pipe MN 3600 ft long (flush inlet, ƒ = 0.017) supplies water 

to a small power plant. The discharge (Q) = 200 cfs, the entrance loss coefficient ke = 0.5, JN = 100 ft, and  



A. Seck, M. Fuamba 
 

 
1252 

 
Figure 9. Graph of Zmax vs. W for M = 0.1.                                                                           
 

 
Figure 10. Graph of Zmax vs. W for M = 0.2.                                                                   
 

the elevations of J and the valve N are respectively 130 ft and 145 ft below the reservoir water surface. To 
protect against an instantaneous valve closure, what height would be required for a simple 6.5 ft diameter  
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Figure 11. Graph of Zmax vs. W for M = 0.3.                                                                        
 

surge tank in order for it to not overflow? In the surge tank only, neglect the velocity head, minor losses, 
fluid friction, and inertial effects. 

• Problem 2: Recalculate Problem 1 using the same parameters, while also neglecting velocity head and minor 
losses in the pipeline.  

• Problem 3: Recalculate Problem 1 using a surge tank diameter of 10 ft.  
• Problem 4: Using the data found in Problem 1, calculate the diameter of the surge tank that will require a 

tank height of 165 ft to prevent surge overflow.  
• Problem 5: Using the parameters in Problem 2, calculate the diameter of surge tank that produce a surge re-

quiring a tank height of 165 ft. 
Problems above have been solved by using two (2) methods: successive approximation and using the charts 

presented in this paper. The aim of this exercise is to evaluate the precision and speed of applying our charting 
solutions versus using the successive approximation method. 

5.2. Solutions Using Charts versus by Successive Approximation Method 
• Problem 1: 

Using charts: 
Original data: Q = 200 cfs = 5.663 m3/s; ƒ = 0.017; ke = 0.5; m = 0 (simple surge tank); D = 42 in = 1.067 m; 

Ds0 = 6.5 ft = 1.981 m; L = MJ = 3600 – 100 = 3500 ft = 1066.8 m; V0 = 4Q/(πD2) = 6.34 m/s; 
The elevation of J is 130 ft = 39.62 m. 
Using the equations listed below, the following values can be derived: 
From Equation (2): K = 18.5  
From Equation (6): Ds = 1.981 m 
From Equation (41): W = 743.6 m2/s2 

From Equation (42): Y = 16.72 m 
From Equation (43): M = 0 
And from Equation (46): 16.72 mmZ <  
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So by plotting values M, W and Y on Figure 2, one finds that: Zmax = 16.00 m; 
Height of surge tank = 39.62 + 16.00 = 55.62 m 
Finnemore et al. [20], by using successive approximation method, found Zmax = 16.05 m and the height of 

surge tank = 55.68 m after 6 iterations. 
• Problem 2: 

Using charts: 
By neglecting the velocity head and minor losses in the pipeline, K = 17 
Using the equations listed below, the following values are derived: 
From Equation (41): W = 683.3 m2/s2 

From Equation (42): Y = 18.21 m 
From Equation (46): 18.21 mmZ <  
So, again, by plotting values M, W and Y on Figure 2, one finds that: Zmax = 17.25 m;  
Height of surge tank = 39.62 + 17.25 = 56.87 m 
Finnemore et al. [20], by using successive approximation method, found Zmax = 17.16 m and height of the 

surge tank = 56.78 m after 7 iterations. 
• Problem 3: 

Using charts: 
From Problem 1, for a surge tank diameter DS0 = 10 ft = 3.048 m, the following values were derived: 
From Equation (41): W = 743.6 m2/s2 

From Equation (42): Y = 7.07 m 
From Equation (46): 7.07 mmZ <  
So by plotting values M, W, and Y into Figure 2, one finds Zmax = 7.00 m; 
Height of surge tank = 39.62 + 7.00 = 46.62 m. 
Finnemore et al. [20], using trial and error, found Zmax = 7.04 m and surge tank height = 46.66 m after 4 itera-

tions. 
• Problem 4: 

Using charts: 
From Problem 1, for surge tank height = 165 ft = 50.29 m, Zmax = 50.29 – 39.62 = 10.67 m; from Equation 

(41), one obtains W = 743.6 m2/s2; 
So by plotting values M, W and Zmax onto Figure 2, one gets: Y = 10.8 m; 
And from Equation (42): 

1 22

0 2.44 ms
LDD
KY

 
= = 
 

 

Finnemore et al. [20] found DS0 = 2.46 m after 4 iterations of successive approximation method. 
• Problem 5: 

Using charts 
By neglecting the velocity head and minor losses in the pipeline, K = 17. For a surge tank height = 165 ft = 

50.29 m, Zmax = 50.29 – 39.62 = 10.67 m; one obtains W = 743.6 m2/s2 from Equation (41). 
So by plotting M, W and Zmax values onto Figure 2, one finds: Y = 10.9 m; 
And from Equation (42): 

1 22

0 2.55 ms
LDD
KY

 
= = 
 

 

Finnemore et al. [20] found DS0 = 2.56 m after 5 iterations of trial and error. 

6. Conclusion and Recommendations 
The comparative study between successive approximation method and chart resolution shows that the results are 
generally similar. The difference between both methods is less than 0.6%. The effect of imprecision in reading 
chart is the order of a few centimeters on the dimensions of surge tanks. The precision results of the reading 
chart in the case study are summarized in Table 1. 

This paper introduced and developed analytical equations that can be used to design cylindrical and conical  
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Table 1. Precision of the reading chart in the case study.                                                         

Case study Successive approximation 
iterations [20] 

Precision of the reading  
chart 

Problem 1 6 99.7% 

Problem 2 7 99.5% 

Problem 3 4 99.4% 

Problem 4 4 99.2% 

Problem 5 5 99.6% 

 
surge tanks, with accompanying charts that were based on the developed equations. A demonstration of the ef-
fectiveness of the charts was also shown in the case study using situational problems derived from Finnemore et 
al. [20]. It was shown that solutions obtained via successive approximation method required 26 iterations of 
complex calculations, while a simple reading on the chart would have sufficed in the design of a surge tank. Us-
ing the charts to help to design the surge tanks was proven to help to save time and increase efficiency, while 
reducing calculation errors. 

The design charts are not a general purpose transient analysis tool because they are not powerful enough to 
analyze sophisticated pipeline systems. While obtaining solutions for the case study problems, inertial effects 
and fluid friction in the surge tank were neglected using the Darcy-Weisbach friction factor ƒ constant assump-
tion. And then, the fluid is supposed incompressible. However, it would be interesting to study a case where the 
friction in the surge tank would be taken into consideration during the calculations of compressible fluid; this 
will determine its actual impact on the maximum height reached by the water. 
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Notation 

The following symbols are used in this paper: 
 

A Cross-sectional area of the pipe or tunnel 

As Cross-sectional area of surge tank in the water surface 

D Diameter of pipe or tunnel 

Ds Width of water surface in the surge tank 

Ds0 Diameter of the base of the surge tank 

f Darcy-Weisbach friction factor 

g Acceleration of gravity 

L Length of pipe or tunnel 

m Side slope in surge tank cross-section 

k∑  Sum of the coefficients for all minor losses in the pipe or tunnel 

t Time 

V Water velocity 

Z0 
Water level in the surge tank below reservoir level in the case of steady flow 
condition 

Z− Water level in the surge tank below reservoir level 

Z+ Water level in the surge tank above reservoir level 

Zmax Maximum level of the water surface in the surge tank 
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