
Container Runtime Security
User Guide

January 3, 2022
Verity Confidential

Copyright 2020-2022 by Qualys, Inc. All Rights Reserved.

Qualys and the Qualys logo are registered trademarks of Qualys, Inc. All other trademarks
are the property of their respective owners.

Qualys, Inc.
919 E Hillsdale Blvd
4th Floor
Foster City, CA 94404
1 (650) 801 6100

Verity Confidential

Table of Contents

About this Guide ...4
About Qualys ... 4
Qualys Support .. 4

About Container Runtime Security .. 5
CRS Architecture ... 5
CRS Deployment Workflow .. 10

Deploy the Instrumenter Service ...12
Option 1: Run instrumenter using docker CLI based command 12
Option 2: Run docker compose file .. 14
Option 3: Run kubernetes instrumenter.yml ... 14
After the Instrumenter service has been deployed ... 16
Troubleshooting the Instrumenter service ... 16

Instrument Container Images with Qualys Instrumentation17
Instrument images from the UI ... 17
Instrument images using CLI mode .. 18
View details for instrumented container .. 20

Configure and Apply Policies ...21
About Policies ... 21
About Configurations .. 22
Create new policies ... 23
Manage your policies .. 27
Set policy enforcement ... 29
Apply policy to instrumented image ... 29

Configure Instrumentation ..31
Select the LogMode .. 31
Run containers from instrumented image ... 32
View details for instrumented container image .. 32
Enable Additional Daemon logging (Optional) ... 33

View Your Events..35
Drill-down into event details ... 35
View event details on dashboard ... 36

Appendix A - System Calls ...37

4

About this Guide
About Qualys

About this Guide
Welcome to Qualys Container Runtime Security (CRS). CRS provides runtime behavior
visibility & enforcement capabilities for running containers. We’ll help you get started.

About Qualys
Qualys, Inc. (NASDAQ: QLYS) is a pioneer and leading provider of cloud-based security and
compliance solutions. The Qualys Cloud Platform and its integrated apps help businesses
simplify security operations and lower the cost of compliance by delivering critical
security intelligence on demand and automating the full spectrum of auditing,
compliance and protection for IT systems and web applications.

Founded in 1999, Qualys has established strategic partnerships with leading managed
service providers and consulting organizations including Accenture, BT, Cognizant
Technology Solutions, Deutsche Telekom, Fujitsu, HCL, HP Enterprise, IBM, Infosys, NTT,
Optiv, SecureWorks, Tata Communications, Verizon and Wipro. The company is also
founding member of the Cloud Security Alliance (CSA). For more information, please visit
www.qualys.com

Qualys Support
Qualys is committed to providing you with the most thorough support. Through online
documentation, telephone help, and direct email support, Qualys ensures that your
questions will be answered in the fastest time possible. We support you 7 days a week,
24 hours a day. Access online support information at www.qualys.com/support/.

https://cloudsecurityalliance.org/
http://www.qualys.com/support/
www.qualys.com

About Container Runtime Security
CRS Architecture
About Container Runtime Security
Container Runtime Security (CRS) provides runtime behavior visibility & enforcement
capabilities for running containers. This allows customers to address various use cases for
running containers around security best practice enforcement, file access monitoring,
network access control.

CRS requires instrumentation of container images with the Qualys Container Runtime
Instrumentation, which injects probes into the container image. Customers can configure
instrumented images, containers with granular policies which govern container behavior,
visibility. Based on these runtime enforcement policies - runtime events, telemetry can be
viewed obtained from the backend via UI, API.

CRS is currently supported for Linux OS based containers only.

CRS Architecture
The diagram below provides a recommended container security workflow leveraging
Qualys Container Security (Scanning + Container Runtime Security).

The workflow for Container Runtime Security starts with instrumentation of the target
container image. Qualys provides a customer premise Instrumenter that can be leveraged
in a customer environment to instrument application containers with Qualys’ security
probes. It can be run locally in CLI mode or it can be provisioned as an always running
microservice backend.

Our instrumentation approach layers in an enhanced version of the glibc linux library
which provides container behavior visibility and enforcement. Application containers
spun up from instrumented application container images register with the Qualys Cloud
Platform and obtain runtime policies. These runtime policies and the Qualys
instrumentation autonomously drive container behavior visibility & enforcement.
5

About Container Runtime Security
CRS Architecture
CRS Instrumentation
Protecting containers with Qualys CRS requires instrumentation of a container image with
the Qualys Instrumentation. You have 2 options for instrumenting container images -
instrument images on your local host using CLI mode, or run our Instrumenter service in
the backend to instrument images that have been scanned by a registry scan job.

Instrumentation using CLI mode - This approach is used for instrumenting individual
images on your local host. You’ll run the instrumenter.sh script with CLI mode enabled
(CLI mode is enabled by default) and identify the image to instrument. The image must be
present locally where you’re running the CLI command. You can optionally specify the
runtime policy to apply to the instrumented image. When you instrument an image using
this method, we’ll immediately add in our solution and create the instrumented image
(appended with -layered) at the same location. One command will instrument one image
only, and then it will exit as soon as instrumentation is done.

Instrumentation using the Instrumenter service - This approach is used for
instrumenting images that have been scanned by a registry scan job (registry sensor). The
Instrumenter service is a lightweight microservice that runs in the customer premise. The
Instrumenter service is packaged and distributed to customers as a container image. This
instrumenter container is meant to be run on a container host. It requires connectivity
back to the Qualys backend. The backend federates instrumentation requests to this
microservice. Once an image is submitted for instrumentation (via UI, API), the
instrumenter inspects the image, injects the Qualys instrumentation, and provides as
output a new “instrumented” version of the image. This new image is then uploaded back
to the destination container registry with “-layered” appended to the tag. This workflow is
coupled tightly with a registry.

Requirements

The Instrumenter service requires the following:

1) Docker engine/server and a DOCKER_HOST socket connection

2) Docker V2 registry:

Public registries: Docker Hub

Private registries: v2-private registry: JFrog Artifactory (secure: auth + https)

Compatibility
- The Instrumenter service is able to request Qualys Container Security user credentials
from Vault secret engine types: kv-v1 and kv-v2. Although supported, it is not
recommended to pass credentials in plain text, unencrypted to the Instrumenter service.
More details further in this document.

- The Instrumenter container requires a Docker engine greater than 1.12.

Limitations
Please note the following limitations:

- Only certain container images are supported for instrumentation (see details below)
6

About Container Runtime Security
CRS Architecture
- Multiple Instrumenters per subscription are supported. Currently there is no visibility of
Instrumenters via the UI or API.

- One Instrumenter service per docker engine/server host is supported

- Instrumentation jobs are delivered to any authenticated Instrumenter when using the
Instrumenter service to instrument images

Images supported for instrumentation

Instrumentation is supported for container images with certain glibc versions. The table
below shows the top images supported per operating system.

Want to know if your image is supported? Use the following script to check:
https://github.com/Qualys/qualys_crs_instrumenter/blob/master/check_if_image_instru
mentable.sh

OS version libc/glibc version Docker Name: Tag Docker Image SHA (Repo Digest)

Alpine

3.13.5 musl-1.2.2-r0 alpine:3.13.5 alpine@sha256:1d30d1ba3cb9096206
7e9b29491fbd56997979d54376f23f014
48b5c5cd8b462

3.12.7 musl-1.1.24-r10 alpine:3.12.7 alpine@sha256:de25c7fc6c4f3a27c7f0
c2dff454e4671823a34d88abd533f210
848d527e0fbb

3.12.1 musl-1.1.24-r9.apk alpine:3.12.1 alpine@sha256:c0e9560cda118f9ec63
ddefb4a173a2b2a0347082d7dff7dc14
272e7841a5b5a

3.11 musl-1.1.24-r3 alpine:3.11 alpine@sha256:6cf3d8abc08cf3792d5
90152d7a4628ec827621f55b1d315038
3f5f39335d6eb

3.10.5 musl-1.1.22-r3 alpine:3.10 alpine@sha256:f0e9534a598e5013209
57059cb2a23774b4d4072e37c7b2cf7e
95b241f019e35

3.9.4 musl-1.1.20-r4 alpine:3.9.4 alpine@sha256:7746df395af22f04212
cd25a92c1d6dbc5a06a0ca9579a229ef
43008d4d1302a

3.9.2 musl-1.1.20-r3 alpine:3.9.2 alpine@sha256:644fcb1a676b5165371
437feaa922943aaf7afcfa8bfee4472f68
60aad1ef2a0

3.9 musl-1.1.20-r5 alpine:3.9 alpine@sha256:414e0518bb9228d35e
4cd5165567fb91d26c6a214e9c95899e
1e056fcd349011

Amazon Linux

2 glibc-2.26-
33.amzn2.0.2.x86_64

amazonlinux:2.0.20
191217.0

amazonlinux@sha256:58d05c596a29f
2cfb81543dddd01ca5613bc33e2a65a5
567dc875d50e7225f9c
7

https://github.com/Qualys/qualys_crs_instrumenter/blob/master/check_if_image_instrumentable.sh

About Container Runtime Security
CRS Architecture
2 glibc-2.26-
33.amzn2.0.1.x86_64

amazonlinux:2.0.20
191016.0

amazonlinux@sha256:5aa0460abffaf
c6a76590f0070e1b243a93b7bbe7c803
5f98c1dee2f9b46f44c

Centos

8 glibc-2.28-
72.el8.x86_64

centos:8.1.1911 centos@sha256:fe8d824220415eed54
77b63addf40fb06c3b049404242b3198
2106ac204f6700

7 glibc-2.17-
323.el7_9.x86_64

centos:7 centos@sha256:0f4ec88e21daf75124b
8a9e5ca03c37a5e937e0e108a255d890
492430789b60e

7 glibc-2.17-
307.el7.1.x86_64

centos:centos7 centos@sha256:19a79828ca2e505eae
e0ff38c2f3fd9901f4826737295157cc52
12b7a372cd2b

7 glibc-2.17-
292.el7.x86_64

centos:7.7.1908 centos@sha256:50752af5182c6cd551
8e3e91d48f7ff0cba93d5d760a67ac140
e2d63c4dd9efc

Debian

10 2.28-10 debian:10 debian@sha256:e2fe52e17d649812bd
dcac07faf16f33542129a59b2c1c59b39
a436754b7f146

9 (stretch) glibc_2.24-
11+deb9u4

debian:9.13 debian@sha256:26d14aa81aa59de744
d6ec9509000341f3f8e0160d78f3659f1
d25a2b252d28e

9 (stretch) glibc_2.24-
11+deb9u3

debian:9.4 debian@sha256:6ee341d1cf3da8e6ea
059f8bc3af9940613c4287205cd71d7c
6f9e1718fdcb9b

9 (stretch) glibc_2.24-
11+deb9u1

debian:9.1 debian@sha256:5fafd38cdee6c7e6b97
356092b97389faa0aa069595f1c3cc33
44428b5fd2339

Ubuntu

bionic-
20201119

2.27-3ubuntu1.3 ubuntu:bionic-
20201119

ubuntu@sha256:fd25e706f3dea2a5ff7
05dbc3353cf37f08307798f3e360a13e9
385840f73fb3

bionic-
20200807

2.27-3ubuntu1.2 ubuntu:bionic-
20200807

ubuntu@sha256:05a58ded9a2c79259
8e8f4aa8ffe300318eac6f294bf4f49a7a
bae7544918592

18.04 glibcVersion:libc6_2.
27-3ubuntu1.4

ubuntu:18.04 ubuntu@sha256:7bd7a9ca99f868bf69
c4b6212f64f2af8e243f97ba13abb3e64
1e03a7ceb59e8

Google Distroless Images

gcr.io/distro
less/java:11

N/A gcr.io/distroless/jav
a:11

gcr.io/distroless/java@sha256:97c7ea
e86c65819664fcb7f36e8dee54bbbbc0
9c2cb6b448cbee06e1b42df81b

OS version libc/glibc version Docker Name: Tag Docker Image SHA (Repo Digest)
8

About Container Runtime Security
CRS Architecture
In-Container Instrumentation
The Qualys instrumentation consists of glibc based hooks to intercept system calls being
made. CRS policies, configurations for in-container instrumentation are obtained from the
Qualys Cloud backend. The CRS policies are translated into syscall firewall rules and the
in-container instrumentation provides visibility into and enforces container behavior. CRS
policy events and CRS telemetry is regularly sent back to the Qualys backend where it can
be viewed by API, UI.

Qualys Backend
The Qualys backend manages the end-to-end workflow of CRS. From instrumenting
images to managing the policy workflow to viewing CRS telemetry and policy hits.

gcr.io/distro
less/java:8

N/A gcr.io/distroless/jav
a:8

gcr.io/distroless/java@sha256:34c359
8d83f0dba27820323044ebe79e63ad4f
137b405676da75a3905a408adf

gcr.io/distro
less/java:8-
debug

N/A gcr.io/distroless/jav
a:8-debug

gcr.io/distroless/java@sha256:966248
9f8d67e17ad371537a7b76c70c2e54ba
64681b174003692e3a0200e9a5

OS version libc/glibc version Docker Name: Tag Docker Image SHA (Repo Digest)
9

About Container Runtime Security
CRS Deployment Workflow
CRS Deployment Workflow
Here’s a look at the deployment workflow for Container Runtime Security.

Step 1: Instrument container images with Qualys instrumentation
You have 2 options for instrumenting images - you can instrument any image on your
local host using CLI mode (see 1a), or you can run our Instrumenter service in the backend
to instrument images that have been scanned by a registry scan job (see 1b). Choose the
approach you want to take and follow the steps.

1a) Instrument image using CLI mode
Instrument an image on your local host. We’ll immediately add in our runtime security
solution and create the instrumented image (appended with -layered) at the same
location. One command will instrument one image only, and then it will exit as soon as
the instrumentation is done. Tip - If you have a runtime policy ready to go, you can
immediately apply the policy to the instrumented image when running the CLI command.

Instrument images using CLI mode

1b) Instrument image using the Instrumenter service
To use the Instrumenter service, you’ll need to complete the following steps:

Build image, Push image to registry, and Scan with registry sensor
You’ll build the image and push it to the registry. Then scan each image you want to
instrument with the registry sensor. This is required for using the Instrumenter service.

Deploy the Instrumenter service in your environment

The Instrumenter service will be used to pull down the unprotected image, package our
solution into it, and then push it back to the registry as a protected image.

Deploy the Instrumenter Service

Instrument container image from the UI

When using the Instrumenter service, you’ll kick off instrumentation from the UI. Identify
the image you want to instrument on the Images list, and choose the Instrument option.
The UI sends an instrumentation job to the deployed Instrumenter. We’ll package in our
solution, and push the protected image back to the registry. Once you have the protected
image, you can run the image in your runtime environment as a running container.

Instrument images from the UI

Step 2: Configure policies and instrumentation
Create policies, and assign a policy to an instrumented image. You’ll also want to set the
policy enforcement level (determines whether policy rules are enforced) and select the log
mode (determines which policy hits get logged).

Configure and Apply Policies
10

About Container Runtime Security
CRS Deployment Workflow
Set policy enforcement

Apply policy to instrumented image

Configure Instrumentation

Step 3: Run container from instrumented image
When ready, you can spawn containers from the instrumented image. The policy applied
to the instrumented image gets enforced on the container and activities are logged as per
the selected log mode.

Run containers from instrumented image

Step 4: View your events
Runtime events will be listed on the Events tab. Here you can search events and drill-down
into event details.

View Your Events

View event details on dashboard
11

Deploy the Instrumenter Service
Option 1: Run instrumenter using docker CLI based command
Deploy the Instrumenter Service
You can run the Instrumenter service using any of these options:

Option 1: Run instrumenter using docker CLI based command

Option 2: Run docker compose file

Option 3: Run kubernetes instrumenter.yml

Option 1: Run instrumenter using docker CLI based command
This option lets you run the instrumenter in CLI mode (the default) for instrumenting
images locally or in Daemon mode to use the instrumenter microservice to instrument
images from the registry. You can run the instrumenter with or without a vault.

Prerequisites

- Request access to the Docker Hub private repo for qualys/crs-cli-instrumenter. To
request access, reach out to Qualys Support from qualys.com/support and be sure to
include your Docker Hub ID in your message.

- Run docker login with the provided Docker Hub ID on the instance where you will run
instrumenter.sh in CLI mode.

Using CLI mode

1) Pull the docker CLI files from github. You can download them from
https://github.com/Qualys/qualys_crs_instrumenter

2) Edit instrumenter.sh to configure specific details for proxy and vault usage. See File
parameters for guidance on inputs.

3) Run the docker CLI script.

By default, the script will run in CLI mode and for this mode you must specify the
endpoint and image. Policy ID is optional. Use this command to run the script:

sh instrumenter.sh --endpoint
<qualys_username>:<qualys_password>@<api_gateway_url>/crs/v1.2
--image <image> [--policyid <policy id>]

To use the instrumenter microservice to instrument images from the registry, you must
run the script in Daemon mode. Specify --daemon-mode and specify the endpoint. In this
case, you do not specify the image or policy. Use this command to run the script:

sh instrumenter.sh --endpoint
<qualys_username>:<qualys_password>@<api_gateway_url>/crs/v1.2
--daemon-mode
12

https://github.com/Qualys/qualys_crs_instrumenter
https://www.qualys.com/support/

Deploy the Instrumenter Service
Option 1: Run instrumenter using docker CLI based command
Usage Examples

Default Example - CLI mode:
./instrumenter.sh --endpoint <endpoint> --image <image> [--
policyid <policy id>]

Default Example - Daemon mode:

./instrumenter.sh --endpoint <endpoint> --daemon-mode

Vault Example - CLI mode:

./instrumenter.sh --endpoint <endpoint> --vault-token <token>
--vault-engine <engine version> [--vault-base64] --vault-path
<vault-path> --vault-address <vault-address> --image <image> [--
policyid <policy id>]

Vault Example - Daemon mode:
./instrumenter.sh --endpoint <endpoint> --vault-token <token>
--vault-engine <engine version> [--vault-base64] --vault-path
<vault-path> --vault-address <vault-address> --daemon-mode

Proxy Example - CLI mode:

./instrumenter.sh --endpoint <endpoint> --proxy <proxy> --image
<image> [--policyid <policy id>]

Proxy Example - Daemon mode:

./instrumenter.sh --endpoint <endpoint> --proxy <proxy> --daemon-
mode

Where:

<endpoint> is in the format of username:password@url if you are not using a vault. Only
url is needed when you are using a vault.

<image> is the image Id (e.g. “6d9ae1a5c970”) or repository name:tag (e.g.
“library/centos:centos72” or “java:latest”) for the container image you want to instrument
using CLI mode. The image must be present locally where you’re running the CLI
command.

<policy id> is the policy Id (e.g. “5fd20b4321dabf0001fdc464”) for the policy you want to
immediately apply to the image being instrumented using CLI mode.
13

Deploy the Instrumenter Service
Option 2: Run docker compose file
Option 2: Run docker compose file
This option is for using the instrumenter microservice to instrument images from the
registry. Passing QUALYS_GATEWAY_ENDPOINT is required.

QUALYS_GATEWAY_ENDPOINT="<qualys_username>:<qualys_password>@<api_
gateway_url>/crs/v1.2" docker-compose up

Note: Use this command at the directory level where the docker compose file is present.

Please edit the fields in the docker compose file and remove # to uncomment and declare
the constant you would like to use. See File parameters for guidance.

LI_MQURL: qas://${QUALYS_GATEWAY_ENDPOINT} # set the username
password and qualys endpoint for instrumenter in env or directly to
this file

VAULT CONFIG (Change these settings if you have your own vault)
LI_VAULT_SECRET_ENGINE: "kv-v2"
LI_VAULT_DATA_VALUES_BASE64: "false"
LI_VAULTPATH: "${USER_VAULT_PATH}"
LI_VAULT_TOKEN: "${VAULT_TOKEN}"
LI_VAULT_ADDRESS: "http://vault:8200"

PROXY SETTINGS (Uncomment and fill required values for proxy)
LI_ALLOWHTTPPROXY: true
https_proxy: http://squid:3128
LI_MQSKIPVERIFYTLS: true

Option 3: Run kubernetes instrumenter.yml
This option is for using the instrumenter microservice to instrument images from the
registry.

Edit the required field QUALYS_GATEWAY_ENDPOINT in the kubernetes file. Replace
QUALYS_GATEWAY_ENDPOINT with the following:

<qualys_username>:<qualys_password>@<api_gateway_url>/crs/v1.2

Edit the vault and proxy fields, as required. See File parameters for guidance.

- name: LI_MQURL
value: qas://{{QUALYS_GATEWAY_ENDPOINT}} # Enter the username
password of crs and qualys instrumenter pod endpoint

VAULT CONFIG Change these settings if you have your own vault
- name: LI_VAULTPATH
value: /secret/data/qgsuser # Enter path where the vault
credentials reside
14

Deploy the Instrumenter Service
Option 3: Run kubernetes instrumenter.yml
- name: LI_VAULT_ADDRESS
value: http://vault:8200 # Change if you have your own vault
- name: LI_VAULT_DATA_VALUES_BASE64
value: "false" # Change if you store base64 version of
credentials in vault
- name: LI_VAULT_SECRET_ENGINE
value: kv-v2 # Set the version of vault engine you use
- name: LI_VAULT_TOKEN
value: {{VAULT_TOKEN}} # Set the vault token that you use

proxy settings (Uncomment this if you have a proxy in your docker
host)
- name: LI_ALLOWHTTPPROXY
value: true
- name: https_proxy
value: http://proxy:3128
- name: LI_MQSKIPVERIFYTLS
value: true

Then launch instrumenter using the following command:

kubectl apply -f instrumenter.yml

File parameters
Regardless of the option you picked for deploying the Instrumenter service, there are
certain user/platform specific parameters you’ll need to provide. See the table below.

General Description
Username Your Qualys username.
Password Your Qualys password.
API Gateway URL The Qualys API Gateway URL where your Qualys account

resides. To identify your Qualys platform and get the API
URL, visit: https://www.qualys.com/platform-
identification/

Docker URL The default docker URL is:
tcp://qualys-docker-proxy.dockersock.jail:2375

Endpoint The endpoint should be formatted as:
<qualys_username>:<qualys_password>@<api_gateway_
url>/crs/v1.2

Example:

qualys_joe:abc12345@gateway.qg1.apps.qualys.com/crs/v
1.2
15

https://www.qualys.com/platform-identification/
https://www.qualys.com/platform-identification/

Deploy the Instrumenter Service
After the Instrumenter service has been deployed
After the Instrumenter service has been deployed
Check the instrumenter logs to verify the instrumenter is online and functional.

docker logs instrumenter | grep "Awaiting InstrumentRequests"

The output should print something similar to:

"[2020-05-26T21:37:52Z] DEBUG instrumenter: Awaiting
InstrumentRequests"

Troubleshooting the Instrumenter service
Credentials issues when deploying without a vault service
If you are not using a vault service, your Qualys credentials are being passed in plain text
in a URL. If you are using special characters in your password (recommended), you will
need to encode the special characters using HTML encoding.

HTML encoding site for reference: https://www.w3schools.com/tags/ref_urlencode.ASP

Logging
To view logs for the CRS instrumenter, run “docker logs instrumenter”

To view logs for the Docker socket proxy, run “docker logs proxy”

Proxy
Is Proxy/Allow Proxy Set to “true” to define proxy settings if you have a proxy in

your docker host.
Proxy Enter the proxy address. Sample: http://squid:3128
Skip TLS Set to “true” to skip TLS verification.
Vault
Engine Enter the version of vault engine. Sample: kv-v2.
Base64 Set to “false” by default. Change to “true” if you store

base64 version of credentials in the vault.
Path Enter the path where the vault credentials reside.

Sample: /secret/data/qgsuser
Token Enter the vault token that you use.
Address Enter the vault address. Sample: http://vault:8200
16

https://www.w3schools.com/tags/ref_urlencode.ASP

Instrument Container Images with Qualys Instrumentation
Instrument images from the UI
Instrument Container Images with Qualys
Instrumentation
You have two options for instrumenting images:

Instrument images from the UI

Instrument images using CLI mode

Instrument images from the UI
This option uses the Instrumenter service. Once the Instrumenter service is up and
running in your environment, you can instrument your images. Only images that have
been scanned by a registry scan job (registry sensor) will have the Instrument option in
the UI. To find the images you can instrument from the UI, go to Assets > Images and
perform a search using this search query: source: REGISTRY

You can add additional search fields to help narrow down the list further. Then, in the
search results, identify the image you want to instrument and pick Instrument from the
Quick Actions menu.
17

Instrument Container Images with Qualys Instrumentation
Instrument images using CLI mode
On the Instrument Image page, choose the source registry. You’ll notice that the
destination registry has the same value as the source registry. Click Instrument again.

What happens next?
The Instrumenter service will pull the image down, add in our solution and push the
image back to the destination registry.

Note the destination tags

Take note of the destination tag(s) assigned to the instrumented image. We take the
source tag and append -layered to create the destination tag. For example, in the example
above, you’ll see that the source tag is java01 and the destination tag is java01-layered.
You’ll be able to search for instrumented images by the destination tag.

Instrument images using CLI mode
The Instrument option in the UI lets you instrument container images that have been
scanned by a registry scan job (registry sensor). Use the CLI mode option to instrument
any image on your local host directly without the need for a registry scan. The image is
not pushed to any repository because the instrumentation happens locally. The new -
layered instrumented image will appear on the local machine and in the Container
Security UI.

How it works

When you instrument an image using CLI mode, we’ll immediately add in our solution
and create the instrumented image (appended with -layered) at the same location. One
command will instrument one image only, and then it will exit as soon as the
instrumentation is done. The instrumented image will appear in the Container Security UI
where you can view details about it.
18

Instrument Container Images with Qualys Instrumentation
Instrument images using CLI mode
Prerequisites

- Request access to the Docker Hub private repo for qualys/crs-cli-instrumenter. To
request access, reach out to Qualys Support from qualys.com/support and be sure to
include your Docker Hub ID in your message.

- Run docker login with the provided Docker Hub ID on the instance where you will run
instrumenter.sh in CLI mode.

Using CLI mode

1) Pull the docker CLI files from github. You can download them from
https://github.com/Qualys/qualys_crs_instrumenter

2) Edit instrumenter.sh to configure user specific details for proxy and vault usage.

3) Run the docker CLI script with the minimum required parameters. The script will run
with CLI mode enabled by default. Required fields are endpoint and image. Policy ID is
optional. (See Deploy the Instrumenter Service to learn about additional options.)

./instrumenter.sh --endpoint <endpoint> --image <image> [--
policyid <policy id>]

For example:

./instrumenter.sh --endpoint "qualys_joe:my-
password@gateway.qg1.apps.qualys.com/crs/v1.3" --image
"6d9ae1a5c970" [--policyid "5fd20b4321dabf0001fdc464"]

Where:

<endpoint> is in the format of username:password@url if you are not using a vault. Only
url is needed for the endpoint when you are using a vault.

<image> is the image Id (e.g. “6d9ae1a5c970”) or repository name:tag (e.g.
“library/centos:centos72”or “java:latest”) for the container image you want to instrument.
The image must be present locally where you’re running the CLI command.

<policy> is the policy Id (e.g. “5fd20b4321dabf0001fdc464”) for the policy you want to
immediately apply to the instrumented image.

Instrumented image appears in the UI

You’ll see instrumented images on the Assets > Images list. Note that for these images
there is no value shown in the Registry column since these were instrumented on the local
host using the CLI mode (not pulled from the registry). Also, these images have not been
scanned yet so there are no vulnerabilities shown.
19

https://github.com/Qualys/qualys_crs_instrumenter
https://www.qualys.com/support/

Instrument Container Images with Qualys Instrumentation
View details for instrumented container
View details for instrumented container
To find the instrumented container, go to Assets > Containers and perform a search using
this search query: isInstrumented: true

Then choose View Details from the Quick Actions menu for any container listed as a
result of your search.

Go to the Events tab to view Standard and Behavior logs (pick the type of logs you want to
view from the Filter by menu). You can use the details you find here to configure policies.

The system call number is shown in the CALL column. Please refer to Appendix A -
System Calls to look up any system call number.
20

Configure and Apply Policies
About Policies
Configure and Apply Policies
Create runtime policies with the rules you want to enforce, and then assign policies to
instrumented images. Apply a policy to an instrumented image in order to enforce certain
behavioral restrictions and secure the container spawned from the image.

About Policies
A runtime policy contains one or more rules of different types along with the mode the
policy operates on, the default action for various rule types, whether to enable or disable
the behavioral learning mode and more. New policies can be created from scratch or by
auto-generating a behavioral profile policy from a running container (see Behavioral
Learning). When defining a policy, you can change the default action for each rule type.

The core technology behind most policy rules is the idea of a “function-level” (syscall)
firewall; a policy rule can specify whether a program should or should not be able to
execute a particular function (syscall), given a specific set of arguments. Each rule
specifies a program that the rule matches, along with a rule type, whether the rule is
enabled or disabled, and then the arguments that are required for that type of rule.

Policy rule types
There are three basic policy rule types: network, file, and application (syscall/function).

Network rules

A network rule at first glance can provide “standard” firewall capabilities – allowing or
denying inbound or outbound IP connectivity between the container and a given IP
address and port to block lateral or external communication. The network rule has these
types: Network Outbound and Network Inbound.

File rules

File rules control what files can be accessed by a specific program.The file rule has these
types: Read and Write.

Application rules

Application rules are in a way a superset of the other rule types. With application rules,
one can directly specify the system call that should be filtered. With the other types,
Container Runtime Security (CRS) translates the rule to the appropriate one or more
system calls. For example, a file rule to deny a file translates to syscall 0 (sys_read) and 2
(sys_open).The application rule has one type: Syscall. See Appendix A - System Calls.
21

Configure and Apply Policies
About Configurations
Behavioral Learning
Note: This feature is available via the CRS API for advanced users. Please refer to the
Qualys Container Runtime Security API Guide for complete details.

Container Runtime Security can automatically learn the behavior of the application in
your environment by recording the activities being performed in the container. It captures
all the network communication whether it is lateral or external, all the files read by any
programs, program/processes and the system calls called in the container to create a
baseline security policy template that can be a new policy or merged with the existing
policy applied to the container.

Customers can start with enabling behavioral learning for their images in the test
environment to understand the basic expected behavior of the container and how it
differs from the build image. You can use CRS to create a policy template based on the
learned behavior and get alerted if any violations occur.

Note: Behavioral logging, logging mode and policy mode can be changed for a specific
container.

About Configurations
Configurations can be applied only to images with instrumentation in them (via UI). When
you apply a configuration to the container image, all the containers spawned from that
image are secured and adhere to your configuration. A change to the configuration
assigned to the image will be applied to all the running containers.

You can also apply a specific configuration to containers directly in the absence of an
image assigned policy (only via API). .

Configuration via UI consists of two objects – Policy and LogMode. More parameters are
available via the API. Once a configuration is created, it can be assigned to images and
containers via the API. From the UI it’s only possible to update the policy and logmode for
a given instrumented image (source:INSTRUMENTATION).

Image Container

Config Application Applied via UI
General; applies to all
containers spawned by the
instrumented image

Applied via API
Specific; applies to the
specific containers only

Config Usage Day to Day Operational usage Troubleshooting, Incident
Response, Forensic
22

https://www.qualys.com/docs/qualys-container-runtime-security-api-guide.pdf

Configure and Apply Policies
Create new policies
Configuration components
Configuration components (via UI) include: Policy and LogMode.

Policy

The policy is a component that contains one or more rules of different types along with
the mode the policy operates on, the default action for various rule types, whether to
enable or disable the behavioral learning mode and more.

LogMode

You can choose from the following LogMode options to determine which policy hit events
should be logged:

None - No events get logged.

PolicyMonitor - Only policy hit events with Monitor action.

PolicyDeny - Only policy hit events with Deny action.

PolicyMonitorDeny - Only policy hit events with Monitor or Deny action.

PolicyAllow - Only policy hit events with Allow action.

PolicyAll - Only policy hit events with Monitor, Deny or Allow action.

Behavior - Only detailed behavioral events.

All - Includes events that match PolicyAll plus events that match Behavior.

See Configure Instrumentation to learn how to choose the LogMode for an image.

Create new policies
Define runtime policies with rules for monitoring and securing running containers.

Go to Configurations > Runtime Policies, and then click the New Policy button.

Basic Details
Under Basic Details, you’ll provide a policy name and description, and choose a policy
enforcement mode (Active, Inactive, Permissive). The option you pick determines whether
or not the policy rules will be enforced on the containers that are spawned from the
image. The policy is enforced only when Active is selected. When Permissive is selected,
the events are reported but actions are not enforced. Note that you can change this at any
time after the policy is saved. See Set policy enforcement to learn more.
23

Configure and Apply Policies
Create new policies
Next, choose default actions for Network, File and Application rule types. This is the
default action that will be taken unless there is a policy rule that overwrites this action.

For example, you can choose Allow as the default action for Network rules to allow all
inbound and outbound traffic to/from the instrumented container and then set up
specific Network rules to deny traffic to a particular IP address and port.

For Application rules, the default action only applies to rules with an Execution system
call selected.

Scroll down further to define a list of system calls that you want to ignore for the policy.
Add one or more system calls from the drop-down list. When a system call is ignored, no
new events will be created for the system call even if it matches one of the policy rules.
This will save you from having to modify all the rules that include a particular system call
you want to ignore.
24

Configure and Apply Policies
Create new policies
If you want to start getting events for an ignored system call in the future, simply edit the
policy to remove the system call from the ignored system calls list. You’ll be able to
remove individual system calls or clear the entire list.

Rules
Go to the Rules tab to add policy rules. You can add as many rules as you like. Simply click
the Add Rule button for Network Rule, File Rule or Application Rule. See Rule Types below
to understand the parameters you’ll set for each rule type.

For each new rule, give the rule a name, choose the rule type, set a rule action, and choose
whether the rule is enabled or disabled. When you’re done, click Add Rule to save it to
your policy. Optionally, click Save and Add another to save the rule and create another
rule of the same type.

When you’re done adding rules, click Save. Your new policy will appear on the Runtime
Policies list where you can manage it.
25

Configure and Apply Policies
Create new policies
Rule Types
Here’s a look at the types of rules you can add to your policies and the parameters you’ll
need to provide for each rule type. For Network and File rules, we watch particular system
calls by default. For Application rules, you’ll pick the system call the rule applies to.

Rule
Category

Rule
Type

Default
System Call

Rule
Parameters

Description

Network Network
Outbound

sys_connect IP Address &
Port

Allow, deny or monitor outbound
traffic. The IP & port refers to the
destination IP and port to which the
process in the instrumented
container is either to be allowed,
blocked or monitored. When port is
left blank, it acts as a wildcard (*).

Network Network
Inbound

sys_accept,
sys_accept4

IP Address &
Port

Allow, deny or monitor inbound
traffic. The IP refers to the source IP
from where the request is made to
the instrumented container. Port
refers to the bind port or container
port. When port is left blank, it acts
as a wildcard (*).

File Read sys_open Program & File Allow, deny or monitor read access
to a particular file by a particular
program

File Write sys_write Program & File Allow, deny or monitor write access
to a particular file by a particular
program

Application Syscall user selected
system call

Program,
Argument 1,
Argument 2,
Argument 3

This is an advanced rule type. You
must be familiar with the selected
system call to know the arguments,
if any, that must be defined for the
system call.

Note that a rule with an Execution
syscall only applies to the parent
program defined in the rule and not
child programs spun up from the
parent program. In other words, the
child program may be allowed to
execute a file that the parent
program is prevented from
executing.

Use * to prevent all programs from
executing a certain file.
26

Configure and Apply Policies
Manage your policies
Using the API?
You can also create and update policies using the Container Runtime Security API. Once
saved, your policies will appear in the Container Security UI.

When using the API, you have the option to auto-generate a policy based on what’s been
observed for your instrumented container. You’ll use the following API endpoint to build a
policy based on a container’s behavior:

/csapi/v1.2/runtime/containers/{containerSha}/template

Please refer to the Qualys Container Runtime Security API Guide for complete details on
API endpoints, input parameters and samples.

Manage your policies
You can view, update and delete policies from the Runtime Policies list. You can also
change the policy enforcement mode.

Go to Configurations > Runtime Policies to get started. You'll see a list of the saved
policies in your account. Choose an option from the Quick Actions menu.

View Details
Select View Details for any policy in the list to see more details about the policy. You'll see
basic details like policy name, description and creation date, plus default actions for the
different rule types. You’ll also see the rules that make up the policy.

Activate, Deactivate, Permissive
Choose one of these options to change the enforcement mode for the policy: Activate,
Deactivate, Permissive. See Set policy enforcement to learn about these options.
27

https://www.qualys.com/docs/qualys-container-runtime-security-api-guide.pdf

Configure and Apply Policies
Manage your policies
Edit Policy
Choose Edit from the Quick Actions menu to make changes to a policy. You can make
changes to any of the policy settings and policy rules. On the Rules tab, expand a rule type
to see all the rules for that type. Edit and delete individual rules, and add new rules. Click
Save when you’re done making changes to the policy.

Delete Policy
Choose Delete from the Quick Actions menu for the policy you want to remove. Note that
you can only delete policies that are not associated with instrumented images/containers.
You’ll see an Error if the policy is associated with an image/container. In this case, you
must disassociate the policy and then try again.

Tip - To find instrumented images/containers, go to Assets > Images or Assets >
Containers and use the following query.

Search query:
isInstrumented:true
28

Configure and Apply Policies
Set policy enforcement
Set policy enforcement
We provide three policy enforcement options, which determine whether or not the policy
rules will be enforced on the containers that are spawned from the image. When testing
new policies, we recommend you set the policy to Permissive mode, which allows you to
see the rule hits without actually enforcing the rules.

Identify a policy in the list and choose from these policy enforcement options on the Quick
Actions menu:

Activate - Activate the policy on all images that have the policy applied. The policy gets
enforced on all containers spawned from that image.

Deactivate - Deactivate the policy on all images/containers where its been applied. This
may be needed if you are troubleshooting an issue and want to stop policy enforcement.

Permissive - Put the policy in permissive mode. When in permissive mode, the rules in the
policy will not be enforced but all activity is logged for rule hits. This is recommended
when starting out with a new policy so you can get an idea of the rule hits which will allow
you to go back and fine tune the policy to make sure it's working as you expected.

Apply policy to instrumented image
Apply a security policy to an instrumented image to enforce certain behavioral
restrictions and secure the container spawned from that image. The first thing you’ll want
to do is find your instrumented image.

Go to Assets > Images and perform a search using this search query:
source: INSTRUMENTATION.

Then choose Configure Policies to select the policy you want to apply to the image.
29

Configure and Apply Policies
Apply policy to instrumented image
You’ll see a list of policies defined in your subscription. Select the policy you want to
assign to the image. You can choose only one policy. Then click Apply.
30

Configure Instrumentation
Select the LogMode
Configure Instrumentation
Once a policy is applied to an image you can choose a LogMode to determine what is
logged in a container for policy hits (rule matches) and behavior.

Select the LogMode
Go to Assets > Images and perform a search using this search query:
source: INSTRUMENTATION.

Then choose Configure Instrumentation from the Quick Actions menu of an
instrumented image to select the LogMode.

Choose an option from the LogMode menu, and then click Apply. Your selection will
determine which policy hits get logged in the container security UI.
31

Configure Instrumentation
Run containers from instrumented image
Run containers from instrumented image
You can now spawn a container from the instrumented image.

docker run -itd -e LI_MQURL=https://<cmsqagpublic VIP>/crs/v1.2 -e
LI_MQSKIPVERIFYTLS=true <your registry/repo:tag>

The policy applied to the instrumented image gets enforced on the container and
activities are logged as per the selected log mode.

Proxy Settings

You’ll need to provide proxy details if the instrumented container is running behind a
proxy to allow the CRS instrumenter to talk to the Qualys backend. The instrumented
container can be launched with any of following proxy environment variables. If multiple
proxy environment variables are used, then they will be honored in the order shown
below.

-e LI_HTTPS_PROXY=<proxy>
-e LI_HTTP_PROXY=<proxy>
-e HTTPS_PROXY=<proxy>
-e HTTP_PROXY=<proxy>

The following example uses the LI_HTTPS_PROXY environment variable:

docker run -itd -e LI_MQURL=https://<cmsqagpublic VIP>/crs/v1.2 -e
LI_MQSKIPVERIFYTLS=true -e LI_HTTPS_PROXY=<proxy> <your
registry/repo:tag>

View details for instrumented container image
Go to Assets > Containers and perform a search using this search query:
isInstrumented: true

Then choose View Details from the Quick Actions menu for any container listed.
32

Configure Instrumentation
Enable Additional Daemon logging (Optional)
The Runtime Profile tab shows the resources that are tracked to gather trace information.
It shows the files that are being read on the container, programs being run, ports accessed,
and IP address information.

The Events tab shows a log of when each resource being tracked is accessed, and whether
the access was allowed, monitored or denied depending on the applied policy. You can use
the filter option to view standard logs or behavior logs. Standard logs show policy hits.
Behavior logs show system calls. The system call number is shown in the CALL column.
Please refer to Appendix A - System Calls to look up any system call number.

Tip - Use the details you find here to create new runtime policies.

Enable Additional Daemon logging (Optional)
After you’ve successfully instrumented an image, if you need to enable logging for
troubleshooting the daemon you have two options. Option 1 covers spawning a container
from the instrumented image with specific logging config environment variables. Option 2
is to edit the daemon.toml file in an already instantiated container and provide the
logging config, then restarting the daemon process. The logging config will enable
additional daemon log levels.
33

Configure Instrumentation
Enable Additional Daemon logging (Optional)
Log levels

The following log levels are supported. Please note that log levels have a certain hierarchy
as listed below. When you choose a log level, all levels below it are also included. For
example, a level of "trace" includes all other levels since it’s at the top of the hierarchy. A
level of "error" includes fatal and panic but not warn, info, debug or trace.

Log levels:
- trace
-- debug
--- info
---- warn
----- error
------ fatal
------- panic

How to enable daemon logging
You can enable daemon logging using either of the options described below.

Option 1: Use environment variables

Use LI_LOGLEVEL to specify the log level you want, and LI_DAEMONLOG to specify the log
file and path where the daemon should write logs. Run the following command:

docker run -itd -e LI_MQSKIPVERIFYTLS=true -e LI_LOGLEVEL="<log-
level>" -e LI_DAEMONLOG="<path/filename>" <repo:tag>

Example:

docker run -itd -e LI_MQSKIPVERIFYTLS=true -e LI_LOGLEVEL="debug"
-e LI_DAEMONLOG="/tmp/daemonlogs_new" my-repo:my-tag

Option 2: Edit the toml file

Go to /etc/layint and edit the daemon.toml configuration file. Append the following config
options to specify the log level and file path:

logLevel = "<log-level>"
daemonLog = "<path/filename>"

Example:

logLevel = "debug"
daemonLog = "/tmp/daemonlogs_new"

Note: You will need to restart the daemon process for this change to take effect.
Note: A valid directory path must be present inside the container.
34

View Your Events
Drill-down into event details
View Your Events
Runtime events will be listed on the Events tab. Here you can search events and drill-
down into event details. Use options on the left side bar to quickly find events by the
action taken (Allowed, Monitored, Denied) and the event type (Behavior, Standard).

Use the search field above the list to find events by event details like the container SHA
the event is associated with, system call, process, and more.

Drill-down into event details
You can choose from the following Quick Action options for any event in the list:

View Details - Select this option to get event details like the process, system call, file
name and action.

View Container Details - Select this option to see container details, including events,
runtime profile, container information, associations and vulnerabilities.
35

View Your Events
View event details on dashboard
View event details on dashboard
Go to Dashboard and you’ll see widgets with info about events like the number of events
by action, event type and system call name. You’ll also see the number of images that
have been successfully instrumented and the number of images currently queued for
instrumentation.

Here’s a sample dashboard. Check out the dashboard in your own account to see all
widgets.
36

Appendix A - System Calls
Appendix A - System Calls
See the table below for supported system calls in numerical order along with the system
call names and required arguments, if available. You can use this information when
configuring runtime policies with rules targeting specific system calls.

SYSCALL SYSCALL Name ARG1 ARG2 ARG3

0 sys_read filename

1 sys_write filename

2 sys_open filename

3 sys_close filename

4 sys_stat filename

5 sys_fstat filename

6 sys_lstat filename

7 sys_poll

8 sys_lseek

9 sys_mmap

10 sys_mprotect

11 sys_munmap

12 sys_brk

13 sys_rt_sigaction

14 sys_rt_sigprocmask

15 sys_rt_sigreturn

16 sys_ioctl

19 sys_readv filename

20 sys_writev filename

21 sys_access

22 sys_pipe

23 sys_select

24 sys_sched_yield

25 sys_mremap

26 sys_msync

27 sys_mincore

28 sys_madvise

29 sys_shmget

30 sys_shmat

31 sys_shmctl
37

Appendix A - System Calls
32 sys_dup

33 sys_dup2

34 sys_pause

35 sys_nanosleep

36 sys_getitimer

37 sys_alarm

38 sys_setitimer

39 sys_getpid

40 sys_sendfile

41 sys_socket domain type socket

42 sys_connect port address

43 sys_accept port address

44 sys_sendto port address

45 sys_recvfrom port address

46 sys_sendmsg

47 sys_recvmsg

48 sys_shutdown

49 sys_bind port address

50 sys_listen

51 sys_getsockname

52 sys_getpeername

53 sys_socketpair

55 sys_setsockopt

56 sys_clone

57 sys_fork

58 sys_vfork

59 sys_execve filename

60 sys_exit

61 sys_wait4

62 sys_kill

63 sys_uname

64 sys_semget

65 sys_semop

66 sys_semctl

67 sys_shmdt

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
38

Appendix A - System Calls
68 sys_msgget

69 sys_msgsnd

70 sys_msgrcv

71 sys_msgctl

72 sys_fcntl

73 sys_flock

74 sys_fsync

75 sys_fdatasync

76 sys_truncate

77 sys_ftruncate

78 sys_getdents

79 sys_getcwd

80 sys_chdir

81 sys_fchdir

82 sys_rename

83 sys_mkdir

84 sys_rmdir

85 sys_creat

86 sys_link

87 sys_unlink

88 sys_symlink

89 sys_readlink

90 sys_chmod

91 sys_fchmod

92 sys_chown

93 sys_fchown

94 sys_lchown

95 sys_umask

96 sys_gettimeofday

97 sys_getrlimit

98 sys_getrusage

99 sys_sysinfo

100 sys_times

101 sys_ptrace

102 sys_getuid

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
39

Appendix A - System Calls
103 sys_syslog

104 sys_getgid

105 sys_setuid

106 sys_setgid

107 sys_geteuid

108 sys_getegid

109 sys_setpgid

110 sys_getppid

111 sys_getpgrp

112 sys_setsid

113 sys_setreuid

114 sys_setregid

115 sys_getgroups

116 sys_setgroups

117 sys_setresuid

118 sys_getresuid

119 sys_setresgid

120 sys_getresgid

121 sys_getpgid

122 sys_setfsuid

123 sys_setfsgid

124 sys_getsid

125 sys_capget

126 sys_capset

127 sys_rt_sigpending

128 sys_rt_sigtimedwait

129 sys_rt_sigqueueinfo

130 sys_rt_sigsuspend

131 sys_sigaltstack

132 sys_utime

133 sys_mknod

134 sys_uselib

135 sys_personality

136 sys_ustat

137 sys_statfs

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
40

Appendix A - System Calls
138 sys_fstatfs

139 sys_sysfs

140 sys_getpriority

141 sys_setpriority

142 sys_sched_setparam

143 sys_sched_getparam

144 sys_sched_setscheduler

145 sys_sched_getscheduler

146 sys_sched_get_priority_max

147 sys_sched_get_priority_min

148 sys_sched_rr_get_interval

149 sys_mlock

150 sys_munlock

151 sys_mlockall

152 sys_munlockall

153 sys_vhangup

154 sys_modify_ldt

155 sys_pivot_root

156 sys_sysctl

157 sys_prctl

158 sys_arch_prctl

159 sys_adjtimex

160 sys_setrlimit

161 sys_chroot

162 sys_sync

163 sys_acct

164 sys_settimeofday

165 sys_mount

166 sys_umount2

167 sys_swapon

168 sys_swapoff

169 sys_reboot

170 sys_sethostname

171 sys_setdomainname

172 sys_iopl

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
41

Appendix A - System Calls
173 sys_ioperm

174 sys_create_module

175 sys_init_module

176 sys_delete_module

177 sys_get_kernel_syms

178 sys_query_module

179 sys_quotactl

180 sys_nfsservctl

181 sys_getpmsg

182 sys_putpmsg

183 sys_afs_syscall

184 sys_tuxcall

185 sys_security

186 sys_gettid

187 sys_readahead

188 sys_setxattr

189 sys_lsetxattr

190 sys_fsetxattr

191 sys_getxattr

192 sys_lgetxattr

193 sys_fgetxattr

194 sys_listxattr

195 sys_llistxattr

196 sys_flistxattr

197 sys_removexattr

198 sys_lremovexattr

199 sys_fremovexattr

200 sys_tkill

201 sys_time

202 sys_futex

203 sys_sched_setaffinity

204 sys_sched_getaffinity

205 sys_set_thread_area

206 sys_io_setup

207 sys_io_destroy

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
42

Appendix A - System Calls
208 sys_io_getevents

209 sys_io_submit

210 sys_io_cancel

211 sys_get_thread_area

212 sys_lookup_dcookie

213 sys_epoll_create

214 sys_epoll_ctl_old

215 sys_epoll_wait_old

216 sys_remap_file_pages

217 sys_getdents64

218 sys_set_tid_address

219 sys_restart_syscall

220 sys_semtimedop

221 sys_fadvise64

222 sys_timer_create

223 sys_timer_settime

224 sys_timer_gettime

225 sys_timer_getoverrun

226 sys_timer_delete

227 sys_clock_settime

228 sys_clock_gettime

229 sys_clock_getres

230 sys_clock_nanosleep

231 sys_exit_group

232 sys_epoll_wait

233 sys_epoll_ctl

234 sys_tgkill

235 sys_utimes

236 sys_vserver

237 sys_mbind

238 sys_set_mempolicy

239 sys_get_mempolicy

240 sys_mq_open

241 sys_mq_unlink

242 sys_mq_timedsend

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
43

Appendix A - System Calls
243 sys_mq_timedreceive

244 sys_mq_notify

245 sys_mq_getsetattr

246 syskexec_load

247 sys_waitid

248 sys_add_key

249 sys_request_key

250 sys_keyctl

251 sys_ioprio_set

252 sys_ioprio_get

253 sys_inotify_init

254 sys_inotify_add_watch

255 sys_inotify_rm_watch

256 sys_migrate_pages

257 sys_openat

258 sys_mkdirat

259 sys_mknodat

260 sys_fchownat

261 sys_futimesat

262 sys_newfstatat

263 sys_unlinkat

264 sys_renameat

265 sys_linkat

266 sys_symlinkat

267 sys_readlinkat

268 sys_fchmodat

269 sys_faccessat

270 sys_pselect6

271 sys_ppoll

272 sys_unshare

273 sys_set_robust_list

274 sys_get_robust_list

275 sys_splice

276 sys_tee

277 sys_sync_file_range

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
44

Appendix A - System Calls
278 sys_vmsplice

279 sys_move_pages

280 sys_utimensat

281 sys_epoll_pwait

282 sys_signalfd

283 sys_timerfd_create

284 sys_eventfd

285 sys_fallocate

286 sys_timerfd_settime

287 sys_timerfd_gettime

288 sys_accept4

289 sys_signalfd4

290 sys_eventfd2

291 sys_epoll_create1

292 sys_dup3

293 sys_pipe2

294 sys_inotify_init1

295 sys_preadv

296 sys_pwritev

297 sys_rt_tgsigqueueinfo

298 sys_perf_event_open

299 sys_recvmmsg

300 sys_fanotify_init

301 sys_fanotify_mark

302 sys_prlimit64

303 sys_name_to_handle_at

304 sys_open_by_handle_at

305 sys_clock_adjtime

306 sys_syncfs

307 sys_sendmmsg

308 sys_setns

309 sys_getcpu

310 sys_process_vm_readv

311 sys_process_vm_writev

312 sys_kcmp

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
45

Appendix A - System Calls
313 sys_finit_module

314 sys_sched_setattr

315 sys_sched_getattr

316 sys_renameat2

317 sys_seccomp

318 sys_getrandom

319 sys_memfd_create

320 sys_kexec_file_load

321 sys_bpf

322 stub_execveat

323 userfaultfd

324 membarrier

325 mlock2

326 copy_file_range

327 preadv2

328 pwritev2

499 li_getaddrinfo

500 li_getnameinfo

SYSCALL SYSCALL Name ARG1 ARG2 ARG3
46

	Qualys Container Runtime Security User Guide
	Table of Contents
	About this Guide
	About Qualys
	Qualys Support

	About Container Runtime Security
	CRS Architecture
	CRS Instrumentation
	Requirements
	Compatibility
	Limitations
	Images supported for instrumentation

	In-Container Instrumentation
	Qualys Backend

	CRS Deployment Workflow
	Step 1: Instrument container images with Qualys instrumentation
	1a) Instrument image using CLI mode
	1b) Instrument image using the Instrumenter service
	Build image, Push image to registry, and Scan with registry sensor
	Deploy the Instrumenter service in your environment
	Instrument container image from the UI

	Step 2: Configure policies and instrumentation
	Step 3: Run container from instrumented image
	Step 4: View your events

	Deploy the Instrumenter Service
	Option 1: Run instrumenter using docker CLI based command
	Prerequisites
	Using CLI mode
	Usage Examples
	Default Example - CLI mode:
	Default Example - Daemon mode:
	Vault Example - CLI mode:
	Vault Example - Daemon mode:
	Proxy Example - CLI mode:
	Proxy Example - Daemon mode:

	Option 2: Run docker compose file
	Option 3: Run kubernetes instrumenter.yml
	File parameters

	After the Instrumenter service has been deployed
	Troubleshooting the Instrumenter service
	Credentials issues when deploying without a vault service
	Logging

	Instrument Container Images with Qualys Instrumentation
	Instrument images from the UI
	What happens next?
	Note the destination tags

	Instrument images using CLI mode
	How it works
	Prerequisites
	Using CLI mode
	Instrumented image appears in the UI

	View details for instrumented container

	Configure and Apply Policies
	About Policies
	Policy rule types
	Network rules
	File rules
	Application rules

	Behavioral Learning

	About Configurations
	Configuration components
	Policy
	LogMode

	Create new policies
	Basic Details
	Rules
	Rule Types
	Using the API?

	Manage your policies
	View Details
	Activate, Deactivate, Permissive
	Edit Policy
	Delete Policy

	Set policy enforcement
	Apply policy to instrumented image

	Configure Instrumentation
	Select the LogMode
	Run containers from instrumented image
	Proxy Settings

	View details for instrumented container image
	Enable Additional Daemon logging (Optional)
	Log levels
	How to enable daemon logging
	Option 1: Use environment variables
	Option 2: Edit the toml file

	View Your Events
	Drill-down into event details
	View event details on dashboard

	Appendix A - System Calls

