Elements of Architectural Structures:
Form, Behavior, and Design
Dr. Anne Nichols
Spring 2014 twenty one

concrete construction: materials \& beams

Concrete Beams

Elements of Architectural Structures
ARC 614
S2009abn

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
- design for maximum stresses
- limit state design
- service loads x load factors
- concrete holds no tension
- failure criteria is yield of reinforcement

- failure capacity x reduction factor
- factored loads < reduced capacity
- concrete strength $=f_{c}^{\prime}$

Concrete

- low strength to weight ratio
- relatively inexpensive
- Portland cement
- aggregate
- water
- hydration
- fire resistant
- creep \& shrink

S2007abn

Reinforcement

- deformed steel bars (rebar)
- Grade 40, $F_{y}=40 \mathrm{ksi}$
- Grade 60, $F_{y}=60 \mathrm{ksi}$ - most common
- Grade 75, $F_{y}=75 \mathrm{ksi}$
- US customary in \# of $1 / 8^{\prime \prime} \phi$

- longitudinally placed
- bottom
- top for compression reinforcement
- spliced, hooked, terminated...

Transformation of Material

- n is the ratio of E's

$$
n=\frac{E_{2}}{E_{1}}
$$

- effectively widens a material to get same stress distribution

Behavior of Composite Members

- plane sections remain plane
- stress distribution changes

$f_{1}=E_{1} \varepsilon=-\frac{E_{1} y}{\rho} \quad f_{2}=E_{2} \varepsilon=-\frac{E_{2} y}{\rho}$
Concrete Beams
Lecture 21
Elements of Architectural Structures
ARCH 614

Stresses in Composite Section

- with a section transformed to one material, new I

$$
\begin{gathered}
n=\frac{E_{2}}{E_{1}}=\frac{E_{\text {steel }}}{E_{\text {concrete }}} \\
f_{c}=-\frac{M y}{I_{\text {transformed }}} \\
f_{s}=-\frac{M y n}{I_{\text {transformed }}}
\end{gathered}
$$

- stresses in that material are determined as usual
- stresses in the other material need to be adjusted by n

Reinforced Concrete - stress/strain

Location of n.a.

- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

$$
b x \cdot \frac{x}{2}-n A_{s}(d-x)=0
$$

ARCH 614

Reinforced Concrete Analysis

- for stress calculations
- steel is transformed to concrete
- concrete is in compression above n.a. and represented by an equivalent stress block
- concrete takes no tension
- steel takes tension
- force ductile failure

Concrete Beams 10
Lecture 21

ARCH 614

S2007abn

T sections

- n.a. equation is different if n.a. below flange

$$
b_{f} h_{f}\left(x-h_{f} / 2\right)+\left(x-h_{f}\right) b_{w} \frac{\left(x-h_{f}\right)}{2}-n A_{s}(d-x)=0
$$

ACI Load Combinations*

- 1.4D
- $1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
- $1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(1.0 L$ or $0.5 W)$
- $1.2 D+1.0 W+1.0 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
- $1.2 D+1.0 E+1.0 L+0.2 S$
- $0.9 D+1.0 W$
- $0.9 D+1.0 E$
*can also use old ACl factors

Concrete Beams 13 Lecture 21

Elements of Architectural Structures
S2007abn

Reinforced Concrete Design

- stress distribution in bending

Wang \& Salmon, Chapter 3
Concrete Beams 14 Elements of Architectural Structures
Lecture 21
ARCH 614

Equilibrium

- $T=C$
- $M_{n}=T(d-a / 2)$
$-d=$ depth to the steel n.a.
- with A_{s}

$$
\begin{aligned}
& -a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime b}} \\
& -M_{u} \leq \phi M_{n} \quad \phi=0.9 \text { for flexure } \\
& -M_{u}=\phi T(d-a / 2)=\phi A_{s} f_{y}(d-a / 2)
\end{aligned}
$$

Over and Under-reinforcement

- over-reinforced
- steel won't yield
- under-reinforced
- steel will yield
- reinforcement ratio

- $\rho=\frac{A_{s}}{b d}$
- use as a design estimate to find A_{s}, b, d
$-\max \rho$ is found with $\varepsilon_{\text {steel }} \geq 0.004$ (not $\rho_{\text {bal }}$)
Concrete Beams 17 Lecture 21

A_{s} for a Given Section (cont)

- chart method
- Wang \& Salmon Fig. 3.8.1 R_{n} vs. ρ

1. calculate $R_{n}=\frac{M_{n}}{b d^{2}}$
2. find curve for f_{c}^{\prime} and f_{y} to get ρ
3. calculate A_{s} and a

- simplify by setting $h=1.1 d$

A_{s} for a Given Section

- several methods
- guess a and iterate

1. guess a (less than n.a.)
2. $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
3. solve for a from $M_{u}=\phi A_{s} f_{y}(d-a / 2)$

$$
a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)
$$

4. repeat from 2. until a from 3. matches a in 2.

Concrete Beams 18
Lecture 21

Elements of Architectural Structures
ARCH 614

S2007abn

Reinforcement

- min for crack control
- required

$$
A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}(b d)
$$

- not less than

$$
A_{s}=\frac{200}{f_{y}}(b d)
$$

- $A_{s-m a x}$: $a=\beta_{1}(0.375 d)$
- typical cover
- 1.5 in, 3 in with soil
- bar spacing

Concrete Beams 20
Lecture 21

Approximate Depths

