
Computer Architecture
Lecture 2: Memory Hierarchy

Design (Chapter 2, Appendix B)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Since 1980, CPU has outpaced DRAM…

In
tro

d
u
c
tio

n

2

Gap grew 50% per
year

CPU

60% per yr

2X in 1.5 yrs

DRAM

9% per yr

2X in 10 yrs

Single processor

performance

Introduction

• Programmers want unlimited amounts of memory with low latency

• Fast memory technology is more expensive per bit than slower
memory

• Solution: organize memory system into a hierarchy

– Entire addressable memory space available in largest, slowest memory

– Incrementally smaller and faster memories, each containing a subset of
the memory below it, proceed in steps up toward the processor

• Temporal and spatial locality insures that nearly all references can
be found in smaller memories

– Gives the allusion of a large, fast memory being presented to the
processor

• Cache: a safe place for hiding or storing things.

In
tro

d
u
c
tio

n

3

Memory Hierarchy
• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

4

O
n

-C
h

ip

C
ach

e

R
eg

isters

Control

Datapath

Secondary

Storage

(FLASH)

Processor

Main

Memory

(DRAM)
Second

Level

Cache

(SRAM)

Inclusion property

Memory Hierarchy Examples

5

Memory Hierarchy Design

• Memory hierarchy design becomes more crucial with recent
multicore processors:

– Aggregate peak bandwidth grows with # cores:

• Intel Core i7 6700 can generate two data references per core per clock

• Four cores and 3.2 GHz clock

– 25.6 billion 64-bit data references/s + 12.8 billion 128-bit instruction
references/s = 409.6 GB/s!

• DRAM bandwidth is approximately 8% of this (34.1 GB/s)

• Memory hierarchy for multicore processors?

– More than optimizing AMAT (average memory access time)

– Interconnection network

– Coherent problem

– Power issue

In
tro

d
u
c
tio

n

6

Possible Multi-core Architecture (1/2)

7

• Symmetric multiprocessors (SMP)

Uniform access time from

any one processor to the

shared memory

Possible Multi-core Architecture (2/2)

CPU

Local memory hierarchy

(optimal fixed size)

Processing Node

CPU

Local memory hierarchy

(optimal fixed size)

Processing Node

CPU

Local memory hierarchy

(optimal fixed size)

CPU

Local memory hierarchy

(optimal fixed size)

CPU

Local memory hierarchy

(optimal fixed size)

CPU

Local memory hierarchy

(optimal fixed size)

Processing Node

Interconnection

network
8

• Distributed shared-memory multiprocessors (DSM)

Memory Hierarchy Basics

• When a word is not found in the cache, a miss occurs:
– Fetch word from lower level in hierarchy, requiring a

higher latency reference

– Lower level may be another cache or the main memory

– Also fetch the other words contained within the block
• Multiple words per block

• Takes advantage of spatial locality

– Place block into cache in any location within its set,
determined by address

• A set is a group of blocks

• (block address) MOD (number of sets in a cache)

In
tro

d
u
c
tio

n

9

Hit and Miss
• Hit: data appears in some block in the upper level (e.g.: Block X)

– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the lower level
(Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

10

Cache Performance Formulas

11

missmisshitacc TfTT
(Average memory access time) =

(Hit time) + (Miss rate)×(Miss penalty)

• The times Tacc, Thit, and T+miss can be all either:

– Real time (e.g., nanoseconds)

– Or, number of clock cycles

• In contexts where cycle time is known to be a constant

• Important:

– T+miss means the extra (not total) time for a miss

• in addition to Thit, which is incurred by all accesses

CPU Cache
Lower levels

of hierarchy

Hit time

Miss penalty

Measuring Cache Performance

• Components of CPU time

– Program execution cycles

• Includes cache hit time

– Memory stall cycles

• Mainly from cache misses

• More accurate cache misses:

12

Cache Performance Example

• Given
– Cache miss rate = 1%
– Miss penalty = 50 cycles
– Base CPI (ideal cache) = 1
– Load & stores are 50% of instructions

• Ideal case

• Real case

• Performance ratio

13

Four Questions for Memory Hierarchy

• Consider any level in a memory hierarchy.
– Remember a block is the unit of data transfer.

• Between the given level, and the levels below it

• The level design is described by four behaviors:
– Block Placement:

• Where can a block be placed in the upper level?

– Block Identification:

• How is a block found if it is in the upper level?

– Block Replacement:

• Which block should be replaced on a miss?

– Write Strategy:

• What happens on a write?

14

Q1: Where can a block be placed in a Cache?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. mapping = (Block address) MOD (Number of sets in a cache)
– Direct mapping = (Block address) MOD (Number of blocks in a cache)

15

Q2: How Is a Block Found If It Is in the Cache?

• Index is used to lookup candidates

– Index identifies the set in cache

– Fully associative cache has no index field

• Tag is used to identify actual copy

– If no candidates match, then declare cache miss

• Block offset is used to select data within a block

– Block is minimum quantum of caching

• Larger block size has distinct hardware advantages:

– It exploits fast burst transfers from DRAM/over wide busses

• Disadvantages of larger block size?

– Fewer blocks more conflicts. Can waste bandwidth

Block
offset

Block Address

Tag Index

Set/block Select

Data Select

16

Check and identify

:

0x50

Valid Bit

:

Cache Tag

Byte 32

0

1

2

3

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00

Cache Index

0431

Cache Tag Byte Select

9

Ex: 0x01

17

Direct-Mapped Cache Architecture

18

Tags Block frames

Address

Decode & Row Select

?Compare Tags

Hit

Tag Frm# Off.

Data Word

Mux

select

Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache Index

0431

Cache Tag Byte Select

8

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block
19

Fully Associative Cache

• Fully Associative: Every block can hold any line
– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04

Cache Tag (27 bits long) Byte Select

31

=

=

=

=

=

Ex: 0x01

20

Q3: Which Block Should be Replaced on a
Cache Miss?

• Easy for direct-mapped cache
– Only one block frame is checked for a hit, and only that block can be replaced.

(There is no choice !!)

• Fully associative or set associative cache
– Radom

• Easy, but how well does it work?

– Least recently used (LRU)
• Relying on the locality property

• Appealing, but hard to implement for high associativity

– First in, first out (FIFO)
• This approximates LRU by determining the oldest block.

21These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000 benchmarks.

Q4: What Happens on a Write?

• Processors traditionally wait for reads to complete but need not
wait for writes

• Writes usually take longer than reads

– Modifying a block cannot begin until the tag is checked to see if the
address is a hit.

• Two strategies for writing to cache

– Write-through

• Immediately update lower levels of hierarchy.

– Write-back

• Only update lower levels of hierarchy when an updated (or dirty) block is
replaced.

• A dirty bit is commonly used.

– Both strategies can use write buffer to make writes asynchronous

22

Write Buffers

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower

Level

Memory

Holds data awaiting write-through to

lower level memory

A. So CPU doesn’t stall

Q. Why a buffer, why not just

one register ?
A. Bursts of writes are

common.

Q. Are Read After Write (RAW)

hazards an issue for write

buffer?

A. Yes! Drain buffer before next

read, or check write buffers for

match on reads

23

What happens on a write?

Write-Through Write-Back

Policy

Data written to cache

block

also written to lower-

level memory

Write data only to
the cache

Update lower level
when a block falls
out of the cache

Debug Easy Hard

Do read misses
produce writes? No Yes

Do repeated
writes make it to

lower level?
Yes No

Additional option -- let writes to an un-cached address

allocate a new cache line (“write-allocate”).
24

Q: What should happen on a write miss?

• Two options on a write miss:
– Write allocate

• Write misses act like read misses

• Allocate on miss: fetch the block (then overwrite it)

– No-write allocate

• Do not fetch the block, but update the portion of the block in the low-
level memory.

• Blocks stay out of the cache until the program tries to read the blocks
(Since programs often write a whole block before reading it, e.g.
initialization).

• Write-through caches often use no-write allocate.

• Write-back caches often use write allocate.

Example

• A fully associative write-back cache that starts empty. Following is a
sequence of five memory operations (the address is in square brackets):

Write Mem[100];

Write Mem[100];

Read Mem[200];

Write Mem[200];

Write Mem[100].

• For no-write allocate (four misses and one hit)

– The address 100 is not in the cache, so the first two writes will result in misses.

– Address 200 is also not in the cache, so the read is also a miss.

– The subsequent write to address 200 is a hit.

– The last write to 100 is still a miss.

• For write allocate (two misses and three hits)

– the first accesses to 100 and 200 are misses, and the rest are hits.

26

More on Cache Performance Metrics

• Can split access time into instructions & data:
Avg. mem. acc. time (AMAT) =

(% instruction accesses) × (inst. mem. access time) +
(% data accesses) × (data mem. access time)

• Another formula from execution time:
CPU time = (CPU execution clock cycles + Memory stall clock cycles) ×

cycle time

– Useful for exploring ISA changes

• Can break stalls into reads and writes:
Memory stall cycles =

(Reads × read miss rate × read miss penalty) +
(Writes × write miss rate × write miss penalty)

27

Cache Performance Example

• Which has the lower miss rate: a 16 KiB instruction cache with a 16 KiB data cache
or a 32 KiB unified cache?

– Assume write-through caches with a write buffer and ignore stalls due to the write buffer.
– Assuming 36% of the instructions are data transfer instructions.

• Unified cache:
– (43.3/(1000(1+0.36))) = 0.0318

• Separate I&D caches:
– Instruction miss rate: 3.82/1000 = 0.004;
– Data miss rate: (40.9/(1000*0.36)) = 0.114;
– Overall miss rate:

28

Miss per 1000 instructions for instruction, data, and unified caches of different sizes.

1000 360
0.004 0.114 0.0326

1000 360 1000 360

A 32 KiB unified cache has a slightly lower effective miss rate than two 16 KiB caches.

More examples can be found in the textbook (Appendix B) !!

Sources of Cache Misses

• Compulsory (cold-start miss, or first-reference miss):

– “Cold” fact of life: not a whole lot you can do about it

– Note: If you are going to run “billions” of instruction, compulsory Misses are
insignificant

• Capacity:

– Cache cannot contain all blocks access by the program

• Conflict (collision miss):

– Multiple memory locations mapped to the same cache location

– Increase associativity may be useful

• Coherence (Invalidation): other process (e.g., I/O) updates memory

– Cache coherence protocol (will be discussed later).

29

Six Basic Cache Optimizations

• Six basics for reducing the miss rate, the miss penalty, and the
hit time:
– Larger block size to reduce miss rate

• Reduces compulsory misses
• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

– Higher associativity to reduce miss rate
• Reduces conflict misses
• Increases hit time, increases power consumption

– Multilevel caches to reduce miss penalty
• Reduces overall memory access time

– Giving priority to read misses over writes
• Reduces miss penalty

– Avoiding address translation in cache indexing
• Reduces hit time

30

AMAT = Hit time + Miss rate ×Miss penalty

1. Larger Block Size

• Larger block size no. of blocks

• Obvious advantages: reduce compulsory misses
– Reason is due to spatial locality

• Obvious disadvantage
– Higher miss penalty: larger block takes longer to move

– May increase conflict misses and capacity miss if cache is small

• Don’t let increase in miss penalty outweigh the decrease in miss rate

31

2. Large Caches

• Cache sizemiss rate; hit time

• Help with both conflict and capacity misses

• May need longer hit time AND/OR higher cost
and power

• Popular in off-chip caches

32

3. Higher Associativity

• 2: 1 Cache rule of thumb on miss rate
– 2-way set associative of size N/2 is about the same as a

direct mapped cache of size N (held for cache size < 128
KiB)

• Higher associativity reduces conflict miss
– 8-way set associative is for practical purposes as effective

in reducing misses for these sized caches as fully
associative.

• Greater associativity comes at the cost of increased hit
time

33

4. Multi-Level Caches

• 2-level caches example

– AMATL1 = Hit-timeL1 + Miss-rateL1 Miss-penaltyL1

– AMATL2 = Hit-timeL1 + Miss-rateL1 (Hit-timeL2 + Miss-
rateL2 Miss-penaltyL2)

• Probably the best miss-penalty reduction method
• Definitions:

– Local miss rate: misses in this cache divided by the total number of
memory accesses to this cache (Miss-rate-L2)

– Global miss rate: misses in this cache divided by the total number of
memory accesses generated by CPU (Miss-rate-L1 x Miss-rate-L2)

– Global Miss Rate is what matters

34

Multi-Level Caches (Cont.)

• Advantages:
– Capacity misses in L1 end up with a significant penalty reduction
– Conflict misses in L1 similarly get supplied by L2

• Holding size of 1st level cache constant:
– Decreases miss penalty of 1st-level cache.
– Or, increases average global hit time a bit:

• hit time-L1 + miss rate-L1 x hit time-L2

– but decreases global miss rate

• Holding total cache size constant:
– Global miss rate, miss penalty about the same
– Decreases average global hit time significantly!

• New L1 much smaller than old L1

35

Miss Rate Example

• Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 misses in the second-level cache

– Miss rate for the first-level cache = 40/1000 (4%)

– Local miss rate for the second-level cache = 20/40 (50%)

– Global miss rate for the second-level cache = 20/1000 (2%)

• Assume miss-penalty-L2 is 200 CC, hit-time-L2 is 10 CC, hit-time-L1 is 1 CC, and 1.5
memory reference per instruction. What is average memory access time and
average stall cycles per instructions? Ignore writes impact.

– AMAT = Hit-time-L1 + Miss-rate-L1 (Hit-time-L2 + Miss-rate-L2 Miss-penalty-L2) = 1 +
4% (10 + 50% 200) = 5.4 CC

– Average memory stalls per instruction = Misses-per-instruction-L1 Hit-time-L2 +
Misses-per-instructions-L2Miss-penalty-L2
= (401.5/1000) 10 + (201.5/1000) 200 = 6.6 CC

– Or (5.4 – 1.0) 1.5 = 6.6 CC

36

5. Giving Priority to Read Misses Over Writes
• In write through, write buffers complicate memory access in that they

might hold the updated value of location needed on a read miss

– RAW conflicts with main memory reads on cache misses

• Read miss waits until the write buffer empty increase read miss penalty

• Check write buffer contents on a read miss, and if no conflicts, let the
memory access continue

• Write Back?

– Read miss replacing dirty block

– Normal: Write dirty block to memory, and then do the read

– Instead, copy the dirty block to a write buffer, then do the read, and then do
the write

– CPU stall less since restarts as soon as do read

37

SW R3, 512(R0) ;cache index 0

LW R1, 1024(R0) ;cache index 0

LW R2, 512(R0) ;cache index 0 R2 = R3 ?

read priority over write

The data in R3 are placed into the write buffer.

6. Avoiding Address Translation during
Indexing of the Cache

• Virtually addressed caches

38

Address

Translation

Physical

Address Cache

Indexing

Virtual

Address

CPU

TLB

$

MEM

VA

PA

PA

Conventional

Organization

CPU

$

TLB

MEM

VA

VA

PA

Virtually Addressed Cache

Translate only on miss

Synonym (Alias) Problem

VA

Tags

$ means cache

CPU

$ TLB

MEM

VA

VA

Tags
PA

L2 $

Overlap $ access with VA

translation: requires $

index to remain invariant

across translation

Why not Virtual Cache?

• Task switch causes the same VA to refer to different PAs
– Hence, cache must be flushed

• Hugh task switch overhead

• Also creates huge compulsory miss rates for new process

• Synonyms or Alias problem causes different VAs which
map to the same PA
– Two copies of the same data in a virtual cache

• Anti-aliasing HW mechanism is required (complicated)

• SW can help

• I/O (always uses PA)
– Require mapping to VA to interact with a virtual cache

39

Concluding Remarks

40

Memory Technology

• Performance metrics
– Latency is concern of cache

– Bandwidth is concern of multiprocessors and I/O

– Access time
• Time between read request and when desired word arrives

– Cycle time
• Minimum time between unrelated requests to memory

• SRAM, a low latency memory, is used for cache

• DRAM, a high bandwidth memory with many banks, is used
for main memory

• Flash is used as an alternative to hard disks.

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

41

Memory Technology

• SRAM: static random access memory
– Requires low power to retain bit, since no refresh
– But, requires 6 transistors/bit (vs. 1 transistor/bit for DRAM)

• DRAM
– One transistor/bit
– Must be re-written after being read
– Must also be periodically refreshed

• Every ~ 8 ms
• Each row can be refreshed simultaneously

– Multiplex address lines cutting # of address pins in half:
• Upper half of address: row access strobe (RAS)
• Lower half of address: column access strobe (CAS)
• Row access strobe (RAS) first, then column access strobe (CAS)

– Memory as a 2D matrix – rows go to a buffer；subsequent CAS selects subrow

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

42

Basic DRAM Organization

• Each bank consists of a series of rows.

• The ACT (activate) command opens a bank and a row. And, loads the row
into a row buffer.

– When the row is in the buffer, it can be transferred by successive column
addresses at whatever the width of the DRAM is (typically 4, 8, or 16 bits in
DDR4) or by specifying a block transfer and the starting address.

• The Pre (precharge) commend closes the bank and row and readies it for
a new access.

43

Quest for DRAM Performance

1. Fast Page mode
– Add timing signals that allow repeated accesses to row buffer without another

row access time

– Such a buffer comes naturally, as each array will buffer 1024 to 2048 bits for each
access

2. Synchronous DRAM (SDRAM)
– Add a clock signal to DRAM interface, so that the repeated transfers would not

bear overhead to synchronize with DRAM controller

– Burst transfer mode (multiple transfers can occur without specifying a new column
address) is allowed

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the DRAM clock signal

doubling the peak data rate

– DDR2 lowers power by dropping the voltage from 2.5 to 1.8 volts + offers higher
clock rates: up to 400 MHz

– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz

– DDR4 drops to 1.2 volts, clock rate up to 1333 MHz

4. Multiple banks on each DRAM device
– Improved bandwidth, not latency

44

45

DDR DRAM name based on Peak Chip Transfers / Sec
DIMM name based on Peak DIMM MBytes / Sec

Stan-
dard

Clock Rate
(MHz)

M transfers /
second DRAM Name

Mbytes/s/
DIMM

DIMM
Name

DDR 133 266 DDR266 2128 PC2100

DDR 150 300 DDR300 2400 PC2400

DDR 200 400 DDR400 3200 PC3200

DDR2 266 533 DDR2-533 4264 PC4300

DDR2 333 667 DDR2-667 5336 PC5300

DDR2 400 800 DDR2-800 6400 PC6400

DDR3 533 1066 DDR3-1066 8528 PC8500

DDR3 666 1333 DDR3-1333 10664 PC10700

DDR3 800 1600 DDR3-1600 12800 PC12800

x 2 x 8

F
a
s
te

s
t

fo
r

s
a

le
 4

/0
6

 (
$
1

2
5

/G
B

)

DIMMs: dual inline memory modules

DDR4 1333 2666 DDR4-2666 21300 PC21300

Reducing Power Consumption in SDRAMs

• Different operating modes for saving power
– standby (or shutdown) mode, typical system mode, and fully active mode

• Lower voltage for reducing power
– Both dynamic power used in a read or write and static or standby power depend on the

operating voltage.

• Support power-down mode to disables the SDRAM, except for internal automatic
refresh.

46

Graphics Memory (GDRAMs or GSDRAMs)

• GDDR5 is graphics memory based on DDR3

– Earlier GDDRs is based on DDR2.

• Graphics memory:

– Achieve 2-5X bandwidth per DRAM vs. DDR3

• Wider interfaces (32 vs. 4, 8, or 16 bit)

• Higher clock rate
– Possible because they are attached via soldering (i.e.

connecting directly to the GPU) instead of socketed DIMM
modules on the board

47

Packaging Innovation: Stacked or
Embedded DRAMs

48

SRAM Technology

• Cache uses SRAM: Static Random Access Memory

• SRAM uses six transistors per bit to prevent the information
from being disturbed when read

 no need to refresh
– SRAM needs only minimal power to retain the charge in the standby

mode good for embedded applications

– No difference between access time and cycle time for SRAM

• Emphasize on speed and capacity
– SRAM address lines are not multiplexed

• SRAM speed is 8 to 16x that of DRAM

49

ROM and Flash

• Embedded processor memory
• Read-only memory (ROM)

– Programmed at the time of manufacture
– Only a single transistor per bit to represent 1 or 0
– Used for the embedded program and for constant
– Nonvolatile and indestructible

• Flash memory:
– One type of EEPROM (electronically erasable programmable ROM)

• NAND Flash (denser) vs. NOR Flash (faster)
• Must be erased before it is overwritten
• Nonvolatile, can use as little as zero power
• Reads at almost DRAM speeds, but writes 10 to 100 times slower

– NAND Flash:
• Reads are sequential and read an entire page (0.5 to 4 KiB)

– Long delay (~25 us) to access the first byte, but supporting at ~40 MiB/s for subsequent bytes for the rest of page
– c.f. SDRAM: 40 ns for first byte, 4.8 GB/s for subsequent bytes for the rest of row

• 2 KiB transfer: 75 us vs 500 ns for SDRAM, 150X slower
• 300 to 500X faster than magnetic disk

50

New Memory Technology

• Phase-change/Memristor memory (PCM)

– Xpoint memory, Micron (2017)

– Possibly 10X improvement in write performance and 2-3X
improvement in read performance than NAND Flash.

• Enhancing Dependability in Memory Systems
– Memory is susceptible to cosmic rays

– Soft errors: dynamic errors

• Detected and fixed by error correcting codes (ECC)

– Hard errors: permanent errors

• Use sparse rows to replace defective rows

– Chipkill: a RAID-like error recovery technique

51

10 Advanced Cache Optimizations

1. Reducing hit time

• Small and simple caches

• Way prediction

2. Increasing cache bandwidth

• Pipelined caches

• Multibanked caches

• Nonblocking caches

52

3. Reducing Miss Penalty

• Critical word first

• Merging write buffers

4. Reducing Miss Rate

• Compiler optimizations

5. Reducing miss penalty or
miss rate via parallelism

• Hardware prefetching

• Compiler prefetching

1. Small and Simple L1 Cache to Reduce Hit
Time and Power

• Critical timing path in a cache hit:

– 3-step process: addressing tag memory (using index), then comparing
tags, then selecting correct set

• Index tag memory and then compare take time

• Direct-mapped caches can overlap the tag compare with the
transmission of data

• Since there is only on choice

• Effectively reducing hit time.

• Lower associativity reduces power because fewer cache lines are
accessed

• Limited size for the L1 cache

– Fast clock rate and low power consumption

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

53

Access Time/Energy vs. Cache Size and
Associativity

54

These data come from the CACTI model 6.5 by Tarjan et al. (2005).

CACTI is a program to estimate the access time and energy consumption of alternative cache structures on CMOS

microprocessors.

2. Way Prediction to Reduce Hit Time
• How to combine fast hit time of direct mapped cache and have the lower conflict

misses of 2-way SA cache?

• Way prediction: keep extra bits in cache to predict the “way” within the set, of next
cache access.

– Multiplexor is set early to select desired block, only 1 tag comparison performed that clock
cycle in parallel with reading the cache data

– Miss check the other blocks for matches in next clock cycle

• First used on MIPS R10000 in mid-90s and, was used in several ARM processors now.

• Accuracy: >90% for two-way；>80% for four-way；I-cache is better than D-cache.

• Can extend to predict block as well: way selection, but adds significant time on a way
misprediction.

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

55

Hit Time

Way-Miss Hit Time Miss Penalty

3. Increasing Bandwidth by Pipeline Access
and Multibanked Caches

• These optimizations are the dual to the superpipelined and superscalar
processors to increasing instruction throughput.

– Pipelining L1 allows a higher clock cycle
• Pentium: 1 cycle；Pentium Pro – Pentium III: 2 cycles；Pentium 4 – Core i7: 4 cycles.

– Deeply pipelining leads to a greater penalty on control hazard
• A high performance branch prediction scheme is necessary.

– Organize cache as independent banks to support simultaneous accesses (rather
than a single monolithic block)

• Cortex-A8 supports 1-4 banks for L2； Core i7 supports 4 banks for L1 and 8 banks for L2

– Banking works best when accesses naturally spread themselves across banks
• Sequential interleaving access

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

56

Mapping of addresses to

banks affects behavior of

memory system

4. Nonblocking Caches to Increase
Bandwidth

• Non-blocking cache or lockup-free cache allow data cache to continue to
supply cache hits during a miss for out-of-order superscalar processor.

– This requires multiple memory banks

– The “hit under miss” reduces the effective miss penalty by working during miss
vs. ignoring CPU requests

– The “hit under multiple miss” or “miss under miss” may further lower the
effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller.

57
SPECCPU2006 @ Intel i7

5. Critical Word First and Early Restart to
Reduce Miss Penalty

• Do not wait for full block to be loaded before restarting processor

– Critical word First – Request the missed word first and let the processor

continue execution while filling the rest of the words in the block. (Also called

wrapped fetch)

– Early restart – Fetch the words within the block in normal order, but as soon as

the requested word arrives, send it to the processor and let the processor

continue execution

• Benefits of critical word first and early restart depend on

– Block size: generally useful only in large blocks

– Likelihood of another access to the portion of the block that has not yet been

fetched

• E.g., the next reference is the sequential word, so not clear if benefit

58

6. Merging Write Buffer to Reduce Miss
Penalty
• If buffer contains modified blocks, the addresses can be checked to see if address of

new data matches the address of a valid write buffer entry. If so, new data are
combined with that entry and update the write buffer.

• Might reduce stalls due to full write buffer

• Do not apply to I/O addresses

59

No write merging

With write merging

7. Compiler Optimizations to Reduce Miss
Rate

• The hardware designer’s favorite solution (without any hardware changes)

– Profiling to look at conflicts (using tools they developed), and reorder

procedures so as to reduce conflict misses in memory

• For data access

– Loop Fusion: Improve spatial locality by combining 2 independent loops that

have same looping and some variables overlap

– Loop Interchange: Improve spatial locality by swapping nested loops to access

data stored in memory in sequential order

– Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.

going down whole columns or rows

• Instead of accessing entire rows or columns, subdivide matrices into blocks

• Requires more memory accesses but improves locality of accesses

60

Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve spatial locality

61

Perform different

computations on the

common data in two loops

 fuse the two loops

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

 Sequential accesses instead of striding access through memory every 100
words; improved spatial locality

62

Assume x is a two-dimensional array of size [5000,100] stored in row-major order,
i.e., x[i,j] and x[i,j+1] are adjacent.

Blocking Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

63

Snapshot of x, y, z when N=6, i=1

64

Before….

Blocking Example

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

};

• B called Blocking Factor

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too?

65

The Age of Accesses to x, y, z when B=3

66

After…. the smaller number of elements are accessed

• Prefetching relies on having extra memory bandwidth that can be used without
penalty

• Instruction Prefetching

– Typically, CPU fetches 2 blocks on a miss: the requested block and the next consecutive
block.

– Requested block is placed in instruction cache when it returns, and prefetched block is
placed into instruction stream buffer

• Data Prefetching

– Similar to instruction perfecting approach. Pentium 4 can prefetch data into L2 cache
from up to 8 streams from 8 different 4 KB pages

8. Hardware Prefetching of Instructions & Data
to Reduce Miss Penalty or Miss Rate by

1.16

1.45

1.18 1.20 1.21 1.26 1.29 1.32
1.40

1.49

1.97

1.00

1.20

1.40

1.60

1.80

2.00

2.20

ga
p

m
cf

fa
m

3d

w
upw

is
e

ga
lg
el

fa
ce

re
c

sw
im

ap
pl
u

lu
ca

s

m
gr

id

eq
ua

keP
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

SPECint2000 SPECfp2000 67
SPEC2000 @Intel Pentium 4

9. Compiler-Controlled Prefetching to Reduce
Miss Penalty or Miss Rate

• Prefetch instruction is inserted (in compiler time) before data is needed

• Nonfaulting (or nonbinding) prefetch: prefetch doesn’t cause an exception

• Data Prefetch

– Register prefetch: load data into register (HP PA-RISC loads)

– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

– Special prefetching instructions cannot cause faults; a form of speculative

execution

• Issuing prefetch Instructions takes time

– Is cost of prefetch issues < savings in reduced misses? (see Example p 112-113).

– Higher superscalar reduces difficulty of issue bandwidth

– Combine with software pipelining and loop unrolling

68

10. Using HBM to Extend the Memory Hierarchy

• HBM (high bandwidth memory) packaging:

– In-package DRAMs L4 cache: from 128 MiB to 1 GiB and mores

• Large DRAM-based cache suffers from an issue of “where do the

tags reside?”

– Smaller blocks require substantial tag storage

– Larger blocks are potentially inefficient

• Fragmentation problem

• More conflict and consistency misses

• L-H cache (proposed by Loh and Hill in 2011)

• Alloy cache (proposed by Qureshi and Loh in 2012)

69

LH-Cache vs. Alloy Cache

• Long hit time for two accesses to L4 DRAM cache (one for the tags and
one for the data itself)

• Two solutions of preventing from two DRAM accesses:

– LH-Cache
• Place the tags and the data in the same row in the HBM SDRAM.

– One can access the tag first. If it is a hit, then use a column access to choose the correct word.

– Hit requires a CAS

• Each SDRAM row is a block index

• Each row contains set of tags and 29 data segments

– Alloy cache
• Mold the tag and data together and use a direct mapped cache structure

• Unfortunately, in both schemes, misses require two full DRAM accesses:

– one to get the initial tag and a follow-on access to the main memory

70

Cache Optimization Summary

71

Virtual Memory ?

• The limits of physical addressing

– All programs share one physical address space

– Machine language programs must be aware of the machine
organization

– No way to prevent a program from accessing any machine resource

• Recall: many processes use only a small portion of address space

• Virtual memory divides physical memory into blocks (called page or
segment) and allocates them to different processes

• With virtual memory, the processor produces virtual address that
are translated by a combination of HW and SW to physical
addresses (called memory mapping or address translation).

72

Virtual Memory: Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

User programs run in an standardized

virtual address space

Address Translation hardware

managed by the operating system (OS)

maps virtual address to physical memory

“Physical Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

Hardware supports “modern” OS features:

Protection, Translation, Sharing 73

Virtual Memory

74

Mapping by a

page table

Virtual Memory (cont.)

• Permits applications to grow bigger than main memory size

• Helps with multiple process management

– Each process gets its own chunk of memory

– Permits protection of 1 process’ chunks from another

– Mapping of multiple chunks onto shared physical memory

– Mapping also facilitates relocation (a program can run in any memory location,
and can be moved during execution)

– Application and CPU run in virtual space (logical memory, 0 – max)

– Mapping onto physical space is invisible to the application

• Cache vs. virtual memory

– Block becomes a page or segment

– Miss becomes a page or address fault

75

3 Advantages of VM

• Translation:
– Program can be given consistent view of memory, even though physical memory is

scrambled
– Makes multithreading reasonable (now used a lot!)
– Only the most important part of program (“Working Set”) must be in physical

memory.
– Contiguous structures (like stacks) use only as much physical memory as necessary

yet still grow later.
• Protection:

– Different threads (or processes) protected from each other.
– Different pages can be given special behavior

• (Read Only, Invisible to user programs, etc).
– Kernel data protected from User programs
– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)

76

Virtual Memory

• Protection via virtual memory
– Keeps processes in their own memory space

• Role of architecture:
– Provide user mode and supervisor mode

– Protect certain aspects of CPU state

– Provide mechanisms for switching between user mode and
supervisor mode

– Provide mechanisms to limit memory accesses

– Provide TLB to translate addresses

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

77

Page Tables Encode Virtual Address Spaces

A machine usually

supports

pages of a few

sizes

(MIPS R4000):

Physical

Memory Space

A valid page table entry codes physical memory

“frame” address for the page

A virtual address space

is divided into blocks

of memory called pages
frame

frame

frame

frame

A page table is indexed by a

virtual address

virtual

address

Page Table

OS

manages

the page

table for

each ASID

78

Physical

Memory Space

• Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory cache for disk

Details of Page Table

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access

Rights
PA

V page no. offset
12

table located
in physical
memory

P page no. offset

12

Physical Address

frame

frame

frame

frame

virtual

address

Page Table

79

Page Table Entry (PTE)?

• What is in a Page Table Entry (or PTE)?
– Pointer to next-level page table or to actual page

– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)

– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)

W: Writeable

U: User accessible

PWT: Page write transparent: external cache write-through

PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently

D: Dirty (PTE only): page has been modified recently

L: L=14MB page (directory only).
Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS)

0 L D A

PC
D

PW
T U W P

01234567811-931-12

80

Cache vs. Virtual Memory

• Replacement
– Cache miss handled by hardware

– Page fault usually handled by OS

• Addresses
– Virtual memory space is determined by the address size of the CPU

– Cache space is independent of the CPU address size

• Lower level memory
– For caches - the main memory is not shared by something else

– For virtual memory - most of the disk contains the file system
• File system addressed differently - usually in I/O space

• Virtual memory lower level is usually called SWAP space

81

The same 4 questions for Virtual
Memory

• Block Placement
– Choice: lower miss rates and complex placement or vice versa

• Miss penalty is huge, so choose low miss rate place anywhere
• Similar to fully associative cache model

• Block Identification - both use additional data structure
– Fixed size pages - use a page table
– Variable sized segments - segment table

• Block Replacement -- LRU is the best
– However true LRU is a bit complex – so use approximation

• Page table contains a use tag, and on access the use tag is set
• OS checks them every so often - records what it sees in a data structure - then clears

them all
• On a miss the OS decides who has been used the least and replace that one

• Write Strategy -- always write back
– Due to the access time to the disk, write through is silly
– Use a dirty bit to only write back pages that have been modified

82

Techniques for Fast Address
Translation

• Page table is kept in main memory (kernel memory)
– Each process has a page table

• Every data/instruction access requires two memory accesses
– One for the page table and one for the data/instruction

– Can be solved by the use of a special fast-lookup hardware cache
called associative registers or translation look-aside buffers (TLBs)

• If locality applies then cache the recent translation
– TLB = translation look-aside buffer

– TLB entry: virtual page no, physical page no, protection bit, use bit,
dirty bit

83

• Translation Look-Aside Buffers (TLB)
– Cache on translations

– Fully Associative, Set Associative, or Direct Mapped

• TLBs are:
– Small – typically not more than 128 – 256 entries

– Fully Associative

Translation Look-Aside Buffers

CPU TLB Cache
Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

missTranslation
with a TLB

84

V=0 pages either

reside on disk or

have not yet been

allocated.

OS handles V=0

“Page fault”

Physical and virtual

pages must be the

same size!

The TLB Caches Page Table Entries

TLB

Page Table

2

0

1

3

virtual address

page off

2

frame page

2
50

physical address

page off

TLB caches

page table

entries.
for ASID

Physical

frame

address

85

Caching Applied to Address Translation

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

86

Virtual Machines

• Supports isolation and security

• Sharing a computer among many unrelated users

• Enabled by raw speed of processors, making the overhead
more acceptable

• Allows different ISAs and operating systems to be presented
to user programs
– “System Virtual Machines”

– SVM software is called “virtual machine monitor” or “hypervisor”

– Individual virtual machines run under the monitor are called “guest
VMs”

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

87

Impact of VMs on Virtual Memory

• Each guest OS maintains its own set of page tables
– VMM adds a level of memory between physical and virtual

memory called “real memory”

– VMM maintains shadow page table that maps guest virtual
addresses to physical addresses

• Requires VMM to detect guest’s changes to its own page table

• Occurs naturally if accessing the page table pointer is a privileged
operation

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

88

