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ABSTRACT
Similarity search applications with a large amount of text
and image data demands an efficient and effective solution.
One useful strategy is to represent the examples in databases
as compact binary codes through semantic hashing, which
has attracted much attention due to its fast query/search
speed and drastically reduced storage requirement. All of
the current semantic hashing methods only deal with the
case when each example is represented by one type of fea-
tures. However, examples are often described from several
different information sources in many real world applica-
tions. For example, the characteristics of a webpage can be
derived from both its content part and its associated links.

To address the problem of learning good hashing codes in
this scenario, we propose a novel research problem – Com-
posite Hashing with Multiple Information Sources (CHMIS).
The focus of the new research problem is to design an al-
gorithm for incorporating the features from different infor-
mation sources into the binary hashing codes efficiently and
effectively. In particular, we propose an algorithm CHMIS-
AW (CHMIS with Adjusted Weights) for learning the codes.
The proposed algorithm integrates information from several
different sources into the binary hashing codes by adjust-
ing the weights on each individual source for maximizing
the coding performance, and enables fast conversion from
query examples to their binary hashing codes. Experimen-
tal results on five different datasets demonstrate the superior
performance of the proposed method against several other
state-of-the-art semantic hashing techniques.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; I.2.6 [Artificial
Intelligence]: Learning
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1. INTRODUCTION
The explosive growth of the internet has generated a huge

amount of data such as documents, images and videos. As
the data sizes increase, the density of similar objects in the
data space also increases. Therefore, nearest neighbor meth-
ods for similarity search applications tend to be more reliable
than before. However, two key problems for using nearest
neighbor search in large datasets are: (1) Storage challenge.
How to store the training data efficiently? (2) Retrieval chal-
lenge. How to retrieve the desired data efficiently and ef-
fectively? It is clear that the traditional methods, such as
TF-IDF for document representations [34, 35], which com-
pare word count vectors, are difficult to be directly used for
large datasets, since they need to save the original examples
and the computational cost of dealing with floating/integer
features is often too high.

A clever way of solving these two challenges is through se-
mantic hashing [17, 33, 47]. By using semantic hashing algo-
rithms, each example in the database is re-represented by a
compact binary code, which preserves its semantic meanings
in the original feature space. These hashing methods also
provide a way to efficiently transform query examples into
the corresponding hashing codes. Then, the retrieving pro-
cess can be simply done by selecting examples within a small
Hamming distance of the codes for the query example. This
method addresses the two challenges in the following ways:
(1) By mapping examples in the database to a low dimen-
sional binary space, it is much more efficient in terms of the
storage cost, compared with saving the original examples.
(2) The retrieval speed is fast, since an efficient scheme for
mapping the query examples to their hashing codes is pro-
vided, and the similarity computation can be simply done
by using bit XOR operation and counting the number of ‘0’
bits in the low dimensional space. This process is very fast,
and nowadays even an ordinary laptop is capable of doing
millions of Hamming distance computation in a short time.

Previous semantic hashing methods are successful in ad-
dressing the two challenges. However, they do not address
the case when examples are described from several differ-
ent sources. Actually, in many real-world applications, it is



often true that examples are derived from several different
sources, and therefore are represented by multiple sets of fea-
tures. For example, in web mining applications, each web-
page has disparate descriptions, textual content, in-bound
and out-bound links, etc. In image retrieval, each picture
can be described by different kinds of features, such as the
SIFT features [27], RGB features, texture features, etc. Dif-
ferent sets of features could have different statistical proper-
ties. Therefore, designing a hashing algorithm for examples
from multiple information sources is necessary. The main
challenge for this task is how to incorporate different sets of
features together into one set of binary hashing codes.

To address this task, we propose a novel research prob-
lem: Composite Hashing with Multiple Information Sources
(CHMIS). The basic objective of CHMIS is to design some
efficient and effective hashing algorithms that can encode
the examples described from several different information
sources. An intuitive way of designing a CHMIS method
is to simply concatenate the features from several different
sources, treat them as if they were from one information
source, and apply the previous hashing method to these ex-
amples. However, by doing so, the different statistical prop-
erties from different individual sources may be lost. This
paper proposes an elegant method – CHMIS-AW (CHMIS
with Adjusted Weights) to intelligently integrate informa-
tion from different sources. In particular, CHMIS-AW is
an iterative method which preserves the semantic similari-
ties between training examples, and ensures the consistency
between the hashing codes and the corresponding hashing
functions designed for different information sources. Fur-
thermore, the importance of each individual source is rep-
resented as a convex combination coefficient and can be au-
tomatically learned through a joint optimization procedure.
Our experiments on five real world datasets with different
information sources show that the proposed method outper-
forms state-of-the-art methods substantially.

2. RELATED WORK
Efficiency is a critical issue for many information retrieval

applications with a large number of text documents, images
or videos. For traditional ad-hoc text search with relatively
short user queries, different types of structures and opera-
tions of inverted indexing have been proposed [13, 39, 48,
54]. Distributed indexing [2, 3] has also been explored when
there is sufficient computing resource. On the other side,
similarity search with documents, images, or other entities
are typically represented as feature vectors in a space of
more than thousands of dimensions [25, 28], which demands
different solutions especially when only limited computing
resource is available.

The traditional similarity search is conducted based on
these feature vectors by space partitioning index structures,
like TF-IDF methods [34, 35], KD-tree, or data partitioning
index structures, say R-tree [12]. However, when the dimen-
sionality of feature space is too high, traditional similarity
search may fail to work efficiently [46]. Semantic hashing
[33] is used in the case when the requirement for the ex-
actness of the final results is not high, and the similarity
search in the original high dimensional space is not afford-
able. More precisely, semantic hashing methods try to rep-
resent the whole datasets by using a fixed small number of
binary bits so that the queries can be answered in a short
time (virtually constant time) [41], with some extent of pre-

cision being guaranteed. Such hashing based fast similarity
search can be considered as a way to embed high dimensional
feature vectors into a Hamming space, while preserving the
semantic similarity relationship between examples as much
as possible. This is different from traditional dimensionality
reduction methods, such as Principal Component Analysis
(PCA) and Latent Semantic Analysis (LSI) [15, 20]. Hash-
ing methods map original features to low dimensional binary
codes, which enables the efficient search in Hamming space.

One of the most well known hashing methods is Locality-
Sensitive Hashing (LSH) [1, 14]. It uses random linear pro-
jections to map close examples to similar codes. It has
already been proved that the Hamming distance between
different examples will asymptotically approach their Eu-
clidean distance in the original feature space, with the in-
crease of the hashing bits. Some LSH based methods are
also used for near optimal duplicate detection. For example,
min-Hash function [8–10] assigns numbers to each example,
and, for two documents, the probability of being assigned
the same number equals the ratio of the intersection and
union of their word representations.

Besides LSH, some machine learning methods can be adap-
ted to solve the hashing problem. The traditional dimen-
sionality reduction methods can be adapted to solve the
hashing problem via a simple thresholding [33, 45]. For ex-
ample, PCA Hashing [26, 45] computes K-bit hashing codes
by projecting each example to the K principal components
of the training set, and then binarizing the coefficients, by
setting each bit to 1 if it exceeds the median value seen
for the training set, and −1 otherwise. In [33], the authors
use stacked Restricted Boltzman Machine (RBM) [18, 19]
to generate compact binary hashing codes, which can be
considered as binarlized LSI. Later, in [51], the authors fur-
ther improve this method. Some traditional classification
algorithms can also be adapted. For example, in [4, 37],
the authors adapted Adaboost [31] to the hashing method.
More precisely, they consider the similar pairs of examples
as positive examples, and otherwise negative. Then, a set of
classifiers are trained by AdaBoost, the output of all of these
weak learners are considered as the binary hashing codes.
In [43, 44], the authors solve the problem of semi-supervised
semantic hashing. In the following two sections, we mainly
discuss two state-of-the-art hashing methods that most re-
lated to the proposed method – Spectral Hashing [47] and
Self Taught Hashing [52], which have been shown to outper-
form several other types of hashing methods.

2.1 Spectral Hashing (SH)
As a recently proposed method, Spectral Hashing (SH)

[47] was proposed to design compact binary codes for search.
This method can be considered as an extension of spectral
clustering [49]. Its concrete formulation is as follows:

min
∑
i,j

Sij‖yi − yj‖2

s.t. yi ∈ {−1, 1}K ,
∑

i

yi = 0,
1

n

∑
i

yiy
T
i = I, (1)

where, Sij is the similarity measure between the example i
and example j, yi is the hashing code for the i-th example,
K is the number of bits. The basic motivation of this for-
mulation is to preserve the original similarity relationship
between examples in the Hamming space. However, solving



this above problem is NP hard. After relaxing the discrete
constraints to continuous, it can be solved using traditional
spectral analysis. Then, the optimal hashing code can be
simply obtained by binarizing the solution of the relaxed
optimization problem. Moreover, this formulation can be
generalized to enable the effective computation for out of
sample examples/queries, as introduced in [47].

SH tries to keep the similarity relationships, which are de-
fined in the original feature space, between examples in the
hashing codes. However, it is hard to find a good similarity
measure which can consider the consistency of the different
sources. Actually, some previous works demonstrate an im-
provement for considering the consistency in multiple source
problems [32, 40, 50], in which the authors designed a clas-
sifier on each view, and require the outputs from different
views should be consistent and not deviate too much.

2.2 Self Taught Hashing (STH)
Self Taught Hashing (STH) [52] can be considered as an

extension to SH. To obtain the hashing codes for the train-
ing set and the hashing function for efficiently mapping the
query examples, STH uses two steps, an unsupervised step
and a supervised step. In the unsupervised step, the authors
construct a k-nearest-neighbor graph for the given dataset,
embed the examples into a K (K is still the number of bits)
dimensional space through spectral analysis, and obtain the
binary codes for each example through thresholding. In the
supervised step, K SVM classifiers are trained based on the
training examples, and their binary hashing codes learned
from the previous step are used as labels. The hashing codes
for the query example can then be obtained through a classi-
fication problem and thresholding by using the K classifiers.

Compared with SH, when dealing with query examples,
STH does not assume that data are uniformly distributed in
a hyper-rectangle, which is restrictive. The maximum mar-
gin principle enables a good generalization ability. However,
it still cannot avoid the same consistency problem of the sim-
ilarity measures for different sources as in SH. Different from
their method, the method proposed in this paper combines
both the unsupervised and supervised steps for intelligently
integrating features from multiple sources.

3. PROBLEM STATEMENT
In CHMIS, we are given a set of n training examples from

M information sources, represented as: {x(i)
1 ,x

(i)
2 , . . . ,x

(i)
n } ∈

Rdi×1, i ∈ {1, 2, . . . , M}, where di is the dimensionality of
the i-th information source. The main objective of CHMIS is
to find the optimal K binary hashing bits Y ∈ {−1, 1}K×n

for these training examples, as well as a hashing function
f(•) that deals with the query (out-of-sample) examples.
The coding optimization criterion is to identify neighbors of
the query examples in the training set accurately in a short
time. For convenience, throughout this paper, the hashing
codes for the i-th training example, i.e., the i-th column of
Y, is denoted as yi. The hashing codes for the p-th hashing
bit, which is the p-th row of Y, is denoted as Yp.

4. COMPOSITE HASHING WITH MULTI-
PLE INFORMATION SOURCES WITH AD-
JUSTED WEIGHTS

From the previous presentation, we can see that CHMIS
is an important research problem. To solve it, this pa-

per presents a novel optimization formulation – CHMIS-AW
(CHMIS with Adjusted Weights).

The main objective of CHMIS-AW is to obtain hashing
codes for training examples and to learn the hashing function
simultaneously by preserving the similarity relationships be-
tween training examples in the original feature space, and
generating a consistent hashing function from different in-
formation sources. In particular, the objective function of
CHMIS-AW is composed of two parts: The first part is a
similarity preservation term, which tries to preserve the sim-
ilarity relationship in the original feature space using the
learned hashing codes. The second part ensures the con-
sistency between the learned hashing codes and the corre-
sponding hashing function designed on multiple sources. In
the following, we will first introduce how to construct the
two parts respectively. Then the joint optimization problem
and the corresponding optimization strategy will be pro-
vided. Finally, we will discuss the distinctions of the pro-
posed method and some related ones.

4.1 Similarity Preservation
One of the key goals in most state-of-the-art hashing meth-

ods, such as [33, 47], is to seek for compact binary codes so
that the Hamming distance between codewords correlates
with semantic similarity. This indicates that similar data
points should be mapped to similar codes within a short
Hamming distance. In SH, the authors demonstrated that
the problem of finding such an optimal set of codes is closely
related to the graph partition methods. They proposed to
achieve the goal by using the spectral method.

Different from the previous hashing problems, in CHMIS-
AW, we need to deal with multiple information sources. To
measure the similarity between examples represented by the
binary hashing codes, one natural way is to measure the
similarity quantity on each individual source and sum them
together as follows:

M∑
t=1

n∑
i,j=1

S
(t)
ij ‖yi − yj‖2. (2)

Here, S
(t)
n×n is the affinity matrix defined on the t-th source.

To meet the similarity preservation criterion, we seek to min-
imize this quantity, because it incurs a heavy penalty if two
similar examples are mapped far away on the information
source.

There are many different ways of defining the affinity ma-
trix S(t). In [47], the author used the global similarity struc-
ture of all document pairs, while in [52], the local similarity
structure, i.e., k-nearest-neighborhood, is used. In this pa-
per, we use the local similarity, due to its nice property
in many data mining and information retrieval applications
[28]. In particular, the corresponding weights are computed
by Gaussian functions, i.e.,

S
(t)
ij =





e
−
‖x(t)

i
−x

(t)
j
‖2

δ2
ij if x

(t)
i ∈ Nk(x

(t)
j ) orx

(t)
j ∈ Nk(x

(t)
i )

0 otherwise

.

The variance δij is determined automatically by local scaling
[49], and Nk(x) represents the set of k-nearest-neighbors of
the example x.

By introducing a diagonal n×n matrix D(t) for each indi-

vidual source, whose entries are given by D
(t)
ii =

∑n
j=1 S

(t)
ij ,



Eq.(2) can be rewritten as:

tr

(
YT

M∑
t=1

(D(t) − S(t))Y

)
= tr

(
YT

M∑
t=1

L(t)Y

)
, (3)

where L(t) is the graph Laplacian [11] defined on the t-th
source, and tr(•) is the trace function. Furthermore, similar
to [52], we can replace the graph Laplacian with the normal-
ized graph laplacian due to its superior performance [11, 38]
indicated by:

L̃(t) = (D(t))−
1
2 L(t)(D(t))−

1
2 . (4)

Then the objective function that needs to be minimized
turns to:

Ω(Y) = tr

(
YT

M∑
t=1

L̃(t)Y

)
. (5)

By minimizing this term, the similarity between different
examples can be preserved in the learned hashing codes.

4.2 Consistency
In Section 4.1, our focus is to find the optimal binary

hashing matrix Y that preserves the data similarities in
the original feature space. However, this is only a trans-
ductive formulation, i.e., Y cannot be generalized to query
examples directly. It is true that we can use the Nyström
method [5] to deduct the hashing codes for the query ex-
amples from the hashing codes in the training set and the
similarity matrix between the query and the training ex-
amples, but this operation is as expensive as doing exhaus-
tive nearest neighbor search. We solve this problem by first
introducing a linear hash function1, which is represented

as: f(xi) =
∑M

t=1 αt(W
(t))T x

(t)
i , where W(t) ∈ Rdt×K is

the weight vector for the classifier on the t-th source, and
α = [α1, . . . , αM ]T is a M dimensional non-negative con-
vex combination coefficient column vector that balances the
outputs from each individual source, and

∑M
t=1 αt = 1.

In this way, the output of this hashing function is a convex
combination [7] of the linear hash function outputs on each
individual source. A constraint here is that the outputs on
the training set should be as close to Y as possible, i.e., the
outputs of the hash functions from different sources should
make an “agreement” on the learned binary hashing codes.
The importance of each individual source on this agreement
is specified by the corresponding convex combination coeffi-
cient. In this way, this methodology incorporates the differ-
ent statistic properties of the different sources. The concrete
formulation for the consistency part is given as follows:

C2

n∑
i=1

‖yi −
M∑

t=1

αt(W
(t))T x

(t)
i ‖2 +

M∑
t=1

‖W(t)‖2, (6)

where, the regularization term
∑M

t=1 ‖W(t)‖2 is introduced

to avoid overfitting [42].
∑n

i=1 ‖yi −
∑M

t=1 αt(W
(t))T x

(t)
i ‖2

is a loss function, which measures the difference between the
hashing codes and the outputs of the hash functions. C2 is
a trade-off parameter, balancing the loss function and the
regularization term.

1Although [30, 43, 44, 52] use linear classifiers, as they have
claimed, the kernel methods [36] can be easily incorporated
into their formulations. So is the proposed method.

For convenience, we introduce the following concatenate
matrix:

W̃ = [(W(1))T , (W(2))T , . . . , (W(M))T ]T ;

x̃
(t)
i = [0, . . . , (x

(t)
i )T , . . . ,0]T . (7)

Here, after this concatenation, the new designed W̃ is a

(d1 + d2 + . . . + dM )×K dimensional matrix, and x̃
(t)
i is a

one-dimensional column vector with only from the (d1+d2+
. . . , +dp−1 + 1)-th to (d1 + d2 + . . . , +dp)-th elements being

nonzero. It is clear that (W(t))T x
(t)
i = W̃T x̃

(t)
i . Therefore,

Eq.(6) can be simplified as:

J(Y,W̃, α) =C2

n∑
i=1

‖yi −
M∑

t=1

αt(W̃)T x̃
(t)
i ‖2 + ‖W̃‖2

=C2‖Y −
M∑

t=1

αt(W̃)T X̃(t)‖2 + ‖W̃‖2, (8)

where X̃(t) = [x̃
(t)
1 , x̃

(t)
2 , . . . , x̃

(t)
n ].

4.3 Overall Objective
The overall objective function combines the similarity preser-

vation part given in Eq.(5) and the consistency part in Eq.(8)
as follows:

min
Y,W̃,α

T (Y,W̃, α)

s.t. Y ∈ {−1, 1}K×n,

Y1 = 0, YYT = I, αT 1 = 1, α º 0, (9)

where T (Y,W̃, α) = tr(C1Y
T ∑M

t=1 L̃(t)Y)+C2‖Y−∑M
t=1

αt(W̃)T X̃(t)‖2 + ‖W̃‖2. Here, Y1 = 0 requires each bit to
fire 50% of the time (with equal probability as positive or
negative), and the constraint YYT = I requires the bits to
be uncorrelated.

This is a hard optimization problem because of the dis-
crete constraints. We propose to relax this constraint and
drop the constraint Y1 = 0 first. However, even after the

relaxation, the objective function T (Y,W̃, α) is still non-

convex with respect to Y, W̃, α jointly, which makes it
difficult to solve.

To solve this problem, we will show the optimal solution

of W̃ has a closed form solution with respect to Y and

α. For notational convenience, we rewrite
∑M

t=1 αtX̃
(t) as

X̃α. Then, the optimal W̃ can be determined by solving the
following optimization problem:

min
W̃

C2‖Y − (W̃)T X̃α‖2 + ‖W̃‖2. (10)

This is a standard regularized least square problem [6],

and its optimal solution can be obtained by: W̃ = QY,

where Q = C2(C2X̃αX̃T
α + I)−1X̃α. Bringing this solution

back to T (Y,W̃, α), we can eliminate the optimization vari-

able W̃, and problem (9) can be rewritten as:

min
Y,α

T̃ (Y, α) (11)

s.t. YYT = I, αT 1 = 1, α º 0,



Algorithm: CHMIS-AW Training
Input:

1. A set of training examples from M information sources: {x(i)
1 ,x

(i)
2 , . . . ,x

(i)
n }, i ∈ {1, 2 . . . , M}.

2. Parameters: Similarity Preservation parameter C1, and Consistency trade-off parameter C2, as in Eq.(9).

Output: The hashing code for training examples Y, hashing function weight vector W̃, convex combination
coefficient α and median vector m
Initialization:
1. Initialize αi = 1

M
(i = 1, . . . , M)

2. Construct X̃(t), t = 1, . . . , M as in Eq.(7)

3. Construct the normalized graph Laplacians L̃(t), t = 1, . . . , M on each individual view as in Eq.(4).
Repeat

4. Calculate X̃α =
∑M

t=1 αtX̃
(t)

5. Calculate Q = C2(C2X̃αX̃T
α + I)−1X̃α

6. Calculate the matrix H(α) as in Eq.(12)
7. Solve the K eigenvectors Y = {v1,v2, . . . ,vK} corresponding to the smallest K eigenvalues of H(α)

8. Solve W̃, W̃ = QY
9. Compute α by solving problem (13)
Until Convergence
Training Hashing Code Generation:
For p = 1:K
10. Get the median value for the p-th code by mp = median(Yp)
11. Generating the p-th hashing code by Yp = (Yp > mp)
End For

Table 1: Algorithm: CHMIS-AW Training

where,

T̃ (Y, α) =tr

(
YT (C1

M∑
t=1

L̃(t) + C2(I−QT X̃α (12)

− X̃T
αQ + QT X̃αX̃T

αQ) + QT Q)Y
)

=tr
(
YT H(α)Y

)
.

Here, H(α) is a positive semi-definite matrix, which is re-
lated to α and is introduced to simplify the formulation. I
is an identity matrix.

The problem (11) is still non-convex, since α and Y are
still coupled together. Fortunately, the problem is convex
with respect to either of them, with the other one fixed,
and therefore can be solved by alternative optimization with
guaranteed convergence. In particular, after initializing α,
the optimization problem can be solved by doing the follow-
ing two steps iteratively, until convergence:

1. Fix α, optimize:

min
Y

YT H(α)Y, s.t. YYT = I

The solution of this optimization is given by Y =
[v1,v2, . . . ,vK ]T , whose columns are the K eigenvec-
tors corresponding to the smallest eigenvalues of H(α).

Then we calculate W̃ = QY.

2. Fix Y, optimize:

min
α

‖Y −Oα‖2, s.t. αT 1 = 1, α º 0 (13)

where O = [o(1),o(2), . . . ,o(M)], and o(t) = (W̃)T X̃(t).
The combination coefficient α can be solved efficiently
by quadratic programming algorithms [7].

After obtaining the optimal Y, we can get the optimal hash-
ing code for the training set by thresholding Y. More specif-
ically, for Yp, which is the p-th row of Y, if the j-th element
Yp

j is larger than the specified threshold, Yp
j = +1, other-

wise Yp
j = −1.

Then, a natural question would be: how to pick these
thresholds? In [45], the authors pointed out that a good
semantic hashing should also maximize the entropy to en-
sure efficiency. Using maximum entropy principle, a binary
bit that gives balanced partitioning of the whole dataset al-
ways provides maximum information. Therefore, we set the
threshold for binarising Yp, p ∈ {1, 2 . . . , K} to be the me-
dian value of vp, p ∈ {1, 2 . . . , K} (The median value for Yp

will be denoted as mp thereafter). Still, after binarising,
since different eigenvectors are mutually orthogonal, the dif-
ferent bits Yp will also be uncorrelated. In this way, the
binary code achieves the best utilisation of the hash table
and the contraint Y1 = 0 in Eq.(9) can also be satisfied.

After getting the hashing code for the training set, the
hashing code for the query example q can be computed by

first computing the hashing function f(q) =
∑M

t=1 αt(W̃)T q̃(t),

where, q̃(t) is derived from q(t), using exactly the same way

as we derive x̃
(t)
i from x

(t)
i in Eq.(7). Then, the correspond-

ing binary hashing code can be obtained through threshold-
ing the hashing function output, i.e., the j-th hashing code
for q equals +1, if f(q)j > mj and otherwise −1.

4.4 The Whole Algorithm
The training process of the proposed method is described

in Table 1. The procedure of deriving hashing codes for
query examples is summarized in Table 2. For hashing
encoding, the training process is always conducted offline.
Therefore, our focus of efficiency is on the prediction pro-
cess. Since this process only involves some dot products



Algorithm: CHMIS-AW Predicting
Input:

1. A query example q.
2. Hashing function weight vector W̃,
3. Convex combination coefficient α,
4. Median vector m.

Output:
The binary hashing code h ∈ {−1, 1}K×1 for q
Initialization:

1. Construct q̃(t) similar to Eq.(7)
For t = 1:M

2. Calculate the regression output by o(t) = (W̃)T q̃(t)

End For
3. Calculate the balanced output by h = f(q) = Oα,

where O = [o(1),o(2), . . . ,o(M)]
For p = 1:K
4. if hp > mp, hp = +1, and otherwise hp = −1
End For

Table 2: Algorithm: CHMIS-AW Predicting

and aggregations between two vectors, which can be done in
O(s) time. Here, s is the average sparsity for features from
the M sources.

4.5 Discussions
The CHMIS problem is related to the traditional multi-

view learning [16, 21, 24, 40, 50, 53]. The basic motivation
for many previous multi-view learning methods [16, 24, 40,
50] is to design a classifier on each view/source, and requires
that the soft labels on these views/sources to be consistent
and should not deviate too much. These methods are mainly
designed for classification problems. However, in CHMIS, we
need to learn two things from the training data, i.e., (1) the
hashing codes for the training data, (2) a hashing function
that enables efficient mappings of query examples. CHMIS
is an unsupervised problem, in which we can consider the
hashing codes as unknown labels. Therefore, the traditional
multi-view learning methods cannot directly be applied to
solve CHMIS.

In CHMIS-AW, we learn both the hashing codes and the
hashing functions together in one formulation. They are
both considered as optimization objectives in this formula-
tion, so that the solution can be tuned to the best point
between good hashing codes that preserves the similarities
between examples in the original feature space and a per-
fect hashing function that approximates hashing codes for
queries efficiently, since both of them are vital for efficient
and effective retrieval. In contrast, in STH, the hashing
codes and hashing functions are optimized in two different
steps, which may cause a disconnection between them.

5. EXPERIMENTS
In this section, we will show the effectiveness of the pro-

posed method through an extensive set of experiments2.

5.1 Dataset

1. Cora [29] dataset consists of the abstracts and refer-
ences of around 34,000 computer science papers. Part

2The code and data can be found on the author’s homepage.

of them are categorized into several subfields, such
as Data Structure (DS), Hardware and Architecture
(HA), Machine Learning (ML), Operation Systems (OS)
and Programming Language (PL). We randomly choose
OS among them to do comparison experiments. There
are 4 topics in this dataset. The tf-idf (normalized
term frequency and log inverse document frequency)
features of the content part of these webpages are used
as the first information source, and the link informa-
tion is used as the second one. We randomly select
1122 examples as training examples, and another 124
example as testing examples/queries.

2. Reuters (Reuters21578)3 is a collection of docu-
ments that appeared on Reuters newswire in 1987. As
the name suggests, it contains 21578 documents, with
135 categories. In our experiments, examples corre-
sponding to the top 10 categories are kept, and the
documents with more than one of the 10 categories
are discarded. There are 7757 documents left. We use
the original tf-idf content information, processed by
PCA, as one information source, and the hidden top-
ics information obtained from Probabilistic Latent Se-
mantic Analysis (PLSA)4 of the binary word features
as another one. 6982 examples are used as training
examples, while 775 for testing.

3. ReutersV1 (Reuters-Volume I): It is an archive
of over 800, 000 manually categorized newswire stories
[23]. There are in total 126 topics in it. A subset
of ReutersV1 is used. In experiments, we choose ex-
amples from ten categories of them. The documents
with more than one category are discarded. There
are in total 26161 examples left. 13081 examples are
randomly selected as the training examples, while the
remaining 13080 examples are used as testing exam-
ples. Similar to the Reuters (Reuters21578) dataset,
we use the tf-idf features as one information source,
and the dimensionality reduction results obtained from
the PLSA of the binary word features as another in-
formation source.

4. WebKB5 consists of about 7000 webpages, collected
from four universities, and is divided into 7 categories.
We use content and link information as the two in-
formation sources of this dataset, where tf-idf features
are used for the content part. 90% examples (6195)
are randomly selected as training examples, while the
remaining (688) examples are used for testing.

5. Healthcare dataset contains the information of 14199
diabetic patients over 1 year. The label of each pa-
tient indicates the patient has diabetes or not. We
use the CCS hierarchy diagnosis code (where all the
codes directly related to diabetic diagnosis have been
discarded), CPT procedure code, and NDC drug code
information as three different views of patient features

3http://daviddlewis.com/resources/textcollections/reuters2
1578/.
4Actually, PLSA [20] can be considered as a dimensionality
reduction method, which maps the documents into some
fixed number of hidden topics. The topic distribution for
each document can be used as low dimensional features.
5CMU world wide knowledge base (WebKB) project. Avail-
able at http://www.cs.cmu.edu/ WebKB/.



Cora Reuters ReutersV1 WebKB Healthcare
Combined S1 S2 Combined S1 S2 Combined S1 S2 Combined S1 S2 Combined

CHMIS-AW 0.978 N/A N/A 0.910 N/A N/A 0.796 N/A N/A 0.993 N/A N/A 0.991

SH 0.957 0.514 0.329 0.902 0.883 0.820 0.778 0.752 0.718 0.612 0.779 0.584 0.877
STH 0.977 0.976 0.976 0.841 0.847 0.818 0.536 0.529 0.513 0.718 0.849 0.702 0.960

PCAH 0.959 0.861 0.634 0.881 0.862 0.793 0.701 0.674 0.642 0.652 0.809 0.595 0.801
LSH 0.961 0.901 0.718 0.892 0.846 0.820 0.790 0.677 0.620 0.867 0.853 0.647 0.832

Table 3: Precision for examples within Hamming distance 2, with 32 hashing bits. S1: Source 1, S2: Source2.

Cora Reuters ReutersV1 WebKB Healthcare
Combined S1 S2 Combined S1 S2 Combined S1 S2 Combined S1 S2 Combined

CHMIS-AW 0.495 N/A N/A 0.831 N/A N/A 0.717 N/A N/A 0.478 N/A N/A 0.795

SH 0.447 0.468 0.364 0.742 0.723 0.681 0.698 0.653 0.635 0.544 0.537 0.504 0.791
STH 0.468 0.475 0.461 0.784 0.751 0.720 0.554 0.530 0.523 0.407 0.456 0.404 0.766

PCAH 0.431 0.408 0.417 0.769 0.738 0.694 0.569 0.548 0.519 0.553 0.538 0.500 0.761
LSH 0.335 0.327 0.340 0.693 0.629 0.652 0.462 0.350 0.384 0.357 0.340 0.373 0.752

Table 4: Precision for the top 100 examples, with 32 hashing bits. S1: Source 1, S2: Source2.

to test our proposed algorithm. In particular, we used
the information of 12780 patients as training set, while
that of the remaining 1419 patients as testing.

5.2 Evaluation Metric
For each dataset, we use each document in the testing set

as a query example to retrieve documents in the training set.
We use two different metrics: the precision for the top 100
retrieved documents6, and the precision for the documents
within the Hamming distance 2. Here, precision is defined
as follows:

precision =
the number of retrieved relevant documents

the number of all retrieved documents
.

Throughout this paper, the relevant documents denote the
ones with the same topics/labels as the query examples7.
The averaged precision over all queries are recorded. As
claimed in [22], once the number of bits is sufficiently high
(e.g. 64), one would expect that distances with a Hamming
distance less than or equal to two would correspond to near-
est neighbors in the original data embedding.

For Reuters and healthcare dataset, we further report the
precision-recall curves, where the recall rate is defined as:

recall =
the number of retrieved relevant documents

the number of all relevant documents
.

To draw the precision-recall curves, for each query exam-
ple, we vary the number of retrieved documents from 0 to
the number of all training examples, while fixing the num-
ber of hashing bits. The final results are the averaged results
over all of the testing examples.

5.3 Comparison Methods
The proposed method CHMIS-AW is compared with four

different algorithms on these datasets, i.e., Self Taught Hash-
ing (STH), Spectral Hashing (SH), PCA Hashing (PCAH),
and Latent Semantic Hashing (LSH).

These four comparison methods cannot be directly used
for the multiple information sources. So, when conducting
these comparison experiments, we first concatenate the fea-
tures on different sources, use them as a single set of features
and then apply the comparison algorithms. The parameters
C1 and C2 in CHMIS-AW are tuned by 5-fold cross valida-
tion on the training set through the grid {0.5, 2, 4, 8, 16, 32, 128}.
6If there are ties in the desired Hamming distance, some
examples are randomly picked.
7Please note that the labels are only used for evaluation
purpose, but not for training.

When constructing the graph laplacians for both CHMIS-
AW and STH, the number of nearest neighbors is fixed to
be 7 for all experiments. For LSH, we randomly select pro-
jections from a Gaussian distribution with zero-mean and
identity covariance to construct the hash tables.

5.4 Results and Discussions
First of all, we evaluate the performances of different algo-

rithms by varying the number of hashing bits in {8, 16, 32, 64,
128}. The precision for the top 100 retrieved examples with
different number of hashing bits is reported in Fig.1. And
the precision for examples within hamming distance 2 is re-
ported in Fig.2. From these comparison results, we can see
CHMIS-AW shows the best performance among five hash-
ing methods in most of the cases with information from
different sources. CHMIS-AW also outperforms the other
hashing methods in most cases when they use information
from one specific source. In Fig.1(d), the precision of the
proposed method is lower than that of SH and PCAH. How-
ever, from the perspective of precision within hamming dis-
tance 2, as shown in Fig.2(d), it gives the best performance.
So, we can conclude that, in WebKB, CHMIS-AW achieves
the best performance in retrieving the several most rele-
vant examples, although probably not the top 100. The
good performance of the CHMIS-AW is mainly because: (1)
CHMIS-AW integrates the different information sources to-
gether more naturally; (2) CHMIS-AW learns the hashing
codes and hashing functions in one formulation, which ef-
fectively avoid the noise that can be caused in a two step’s
method as in STH.

As claimed in [33, 47], the LSH method is data-oblivious,
and may lead to inefficient codes in practice. From the re-
ported results, we can see that, LSH does not perform well
in most cases, especially under the criteria of the precision
of the top 100 examples. But for the criteria of the precision
within Hamming distance 2, LSH does well in some cases.
The similar behavior is also observed in [22]. As a spectral
based method, SH borrows the idea of spectral analysis. Its
basic motivation is reasonable. However, in CHMIS, SH can-
not find a good similarity matrix that can be consistent on
the different sources. As shown in the experimental results,
the performance of SH is worse than that of CHMIS-AW.
STH is a two step method. The first step is spectral cluster-
ing step, and the second step employs SVM. However, it still
cannot integrate the natural of multiple source problem into
the algorithm and it needs to prepare the training data in
a format for SVM, which may introduce some noise in this
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Figure 1: Precision results for the top 100 returned results. It is clear that CHMIS-AW shows the best performance

among the five hashing methods in most of the cases.

process. That’s why its performance cannot exceed that of
CHMIS-AW.

By fixing the number of bits to 32, we further report the
corresponding performances on all of the five datasets, along
with the performance on each individual source in Tables
3 and 4. It seems that, in some cases, brute force con-
catenating the features from different sources together may
not necessarily improve the hashing performance. It further
confirms that we need some more sophisticated algorithms
specifically designed for CHMIS. Since the proposed method
is specifically for CHMIS, it achieves the best performance
in most of scenarios under both of the two criteria. The
precision-recall curves with 32 hashing bits on Reuters and
healthcare datasets are reported in Fig.3(a) and Fig.3(b) re-
spectively. It is clear that among all of these comparison
methods, CHMIS-AW shows the best performance. STH
performs better than SH, PCAH and LSH. We have also
observed similar results on the other three datasets. But
due to the limit of space, they cannot be reported here.

There are two parameters in the proposed method, i.e., C1

and C2. To prove the robustness of the proposed method, we
conduct some parameter sensitivity experiments on Reuters.
For each experiment, we tune only one parameter from the
grid {0.5, 2, 4, 8, 16, 32, 128}, while holding the other one.
The results are reported in Fig. 4 and Fig. 5. It is clear from
these experimental results that the performance of the pro-
posed method are relatively stable with respect to C1 and
C2. We have also observed similar patterns of the proposed
method in the other four datasets.

The testing process of CHMIS-AW is fast, since the hash-
ing function is a linear mapping and only involves some dot
products. On an ordinary PC with Intel Core Duo CPU 2.5
GHZ and 4GB RAM, it takes about 0.0001 second per ex-

ample for prediction in all datasets, which is similar to the
comparison methods.

6. FUTURE WORKS
In this paper, in Eq.(3), we combined the graph Lapla-

cian on each individual source with equal weights. However,
a natural question would be: since we are tuning the impor-
tance on each individual source by using a balancing factor
α, can we do the same thing to combine the different graph
Laplacian with different weights? One choice is to change
the objective function in Eq.(9) to:

tr(C1Y
T

M∑
t=1

g(αt)L̃
(t)Y) + C2‖Y −

M∑
t=1

αt(W̃)T X̃(t)‖2 + ‖W̃‖2,

where g(•) : R → R is a non-decreasing function. We be-
lieve this is true. The problem is how to design a reasonable
g(•) function for this objective function. It is an intriguing
problem that needs to be solved in the future.

Besides the problem of combining graph Laplacians, an-
other future direction is to investigate how to solve the prob-
lem when some sources of features are missing for some spe-
cific examples.

7. CONCLUSIONS
To enable fast similarity retrieval, semantic hashing meth-

ods represent the examples by a small number of binary bits,
so that the storage space can be minimized, and the retrieval
speed can be accelerated. However, previous hashing meth-
ods only consider the case when each example is represented
by one type of features. There is no prior work that can in-
corporate different information sources together and learn
the corresponding hashing codes. To address this problem,
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Figure 2: Precision results for the top results within hamming distance 2. It is clear that CHMIS-AW shows the best

performance among the five hashing methods in most of the cases.

(a) (b)

Figure 3: Precision and Recall Curve on Reuters

and the healthcare dataset, with fixed bit number 32.

CHMIS-AW demonstrates its superior performance over

the other three algorithms.

this paper proposes a novel research problem as Composite
Hashing with Multiple Information Sources (CHMIS) for in-
telligently combining information from different sources into
final hashing codes. In particular, a method called CHMIS-
AW (Adjusted Weights) is proposed to achieve this goal.
CHMIS-AW is an iterative method, which optimizes the re-
laxed hashing codes and the combination coefficients alter-
natively. An extensive set of experiments clearly demon-
strates the superior performance of the proposed method
against several state-of-the-art techniques.
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Figure 4: Parameter Sensitivity for C1 and C2, with 32

hashing bits. It shows that the proposed method is rel-

atively stable with the two parameters for the precision

of the top 100 retrieved documents.
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Figure 5: Parameter Sensitivity for C1 and C2, with

32 hashing bits. The proposed method is stable with
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