

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANISATION

REGIONAL PROGRAMME FOR POLLUTION CONTROL IN THE TANNING INDUSTRY IN SOUTH EAST ASIA

US/RAS/92/120-MODEL CETPs

September 2001

COMMON EFFLUENT TREATMENT PLANT PALLAVARAM, CHENNAI, INDIA

Prepared by

A. Sahasranaman, K. V. Emmanuel Regional Programme Office

Project Manager

Jakov Buljan, SIDO, UNIDO, Vienna

TABLE OF CONTENTS

LIST OF SYMBOLS & ABBREVIATIONS	iii
1. INTRODUCTION	1
1.1. General information	1
2. FEATURES OF THE CETP	1
3. PROJECT PLANNING & EXECUTION	2
3.1. Design	2
3.2. Finance	
3.3. Implementation	
3.4. Management3.5. Recovery of operational cost	
4. PROCESS FLOW	
4.1. Pre-treatment in tanneries	
4.2. Treatment process	4
5. CETP UNITS AND SPECIFICATIONS	5
6. OPERATIONAL FEATURES	6
6.1. Operational parameters	6
6.2. Laboratory	
6.3. Analyses done in the laboratory	
6.4. Manpower 6.5. Monitoring	
7. EFFLUENT CHARACTERISTICS BEFORE & AFTER TREATMENT	
7. EFFLUERT CHARACTERISTICS DEFORE & AFTER TREATMENT	0
8. COST OF TREATMENT	9
9. UNIDO ASSISTANCE	9
10. CLRI/NEERI INTERVENTIONS	10
11. UNIDO's ASSESSMENT	10

Annexures

List & address of suppliers of equipment	11
Dwg. 1 : Pre-treatment units	12
Dwg. 2: Collection & conveyance network	13
Dwg. 3: Layout plan of the CETP	14
Dwg. 4: Process flow diagram of the CETP	15

LIST OF SYMBOLS & ABBREVIATIONS

BOD_5		Biochemical oxygen demand, 5 days
BoD ₅	:	Board of directors
CETP	:	Common effluent treatment plant
CMDA	:	
	:	Chennai Metropolitan Development Authority
COD	:	Chemical oxygen demand
CO_2	:	Carbon dioxide
$^{\circ}C$:	Centimetre
÷	:	Degree Celsius
DS	:	Dry solids
d	:	Day
dia/Ø	:	Diameter
FB	:	Free board
F/M	:	Food to micro organism ratio
h	:	hour(s)
HRT	:	Hydraulic retention time
HDPE	:	High density poly ethylene
INR	:	Indian Rupees
kg	:	Kilogram(s)
kŴ	:	Kilowatt(s)
1	:	Litre(s)
m^3	:	Cubic meter (1000 litres)
mg/l	:	Milligrams per litre
min	:	Minutes
MLSS	:	Mixed liquor suspended solids
MLVSS	:	Mixed liquor volatile suspended solids
ND	:	Not detected
no	:	Number
RPM	:	Revolutions per minute
pН	:	Negative logarithm of hydrogen ion concentration
SWD		Side water depth
SDB		Sludge drying beds
US \$:	US Dollar(s)
TDS	:	Total dissolved solids
TNPCB	:	Tamil Nadu Pollution Control Board
t	:	Tonne (1000 kg)
TEFC	:	Totally enclosed fan cooled
	:	•
W	•	Watts

Rate of exchange: 1 US = INR 46.80

1. INTRODUCTION

Pallavaram, now a part of the CMDA and less than 3 kilometers south of Chennai airport, has a cluster of 150 tanneries. Though it was away from residential areas when the tanneries came up nearly a century ago, now it has become a part of the city with a substantial population residing there. Density of population is quite high and land is scarce. Accordingly designing and creating a CETP for tanneries in this location was an absolute need and a challenge.

1.1. General information

Total number of tanneries	158
Number of tanneries operating now	152
Number of tanneries processing raw hides/skins to semi	9
finished stage	
Number of tanneries processing raw hides to finished leather	143
Raw material processed	Buffalo & cow calf hides, goat
	& sheep skins
Total production capacity of tanneries, as per design of CETP	55,000 kg/day
Current production in the cluster	47,000 kg/day
Number of tanneries doing chrome tanning	9
Number of tanneries processing wet blue leather	12
Number of tanneries processing vegetable tanned leather	131
Approximate ratio of effluent from raw tanning: finishing	10:90
effluent	
Designed flow rate to the CETP	$3000 \text{ m}^{3}/\text{day}$
Current flow rate to the CETP	$2600 \text{ m}^3/\text{day}$
Commissioning date of the CETP	February 1995
Total area covered by the CETP	0.8 hectares
Total length of effluent conveyance pipeline	23 km
Number of pumping stations	7
Total project cost in Indian rupees	83 million

2. FEATURES OF THE CETP

The CETP was the second to be commissioned for treatment of tannery effluent in Tamil Nadu, India. With the technical assistance of UNIDO, the CETP registered many innovative features such as:

- Mechanically cleaned screen for removal of solids
- Ejector aerators in equalization tanks
- Diffused aeration system
- **Belt press filter for sludge dewatering**

The CETP was designed to provide for all important units (such as equalization tank, clariflocculator, aeration tank, clarifier) in two parallel sets so that one half of the CETP only could be operated when it received a lower volume of effluent.

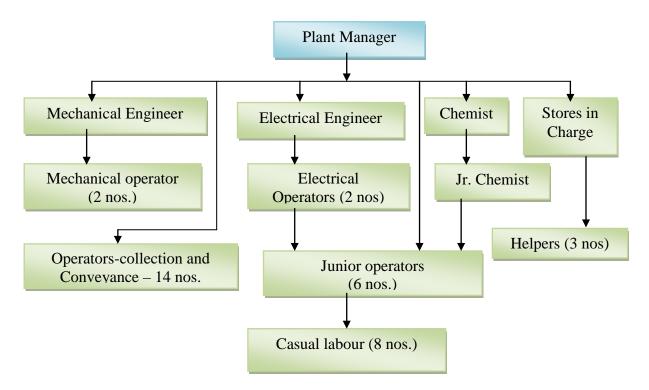
3. PROJECT PLANNING & EXECUTION

3.1. Design

The basic design of the project was done by Enkem Engineers, Chennai. It was later modified by the UNIDO subcontractor, M/s. TEH-PROJEKT, Croatia, in consultation with the main contractor selected for turnkey implementation of the project, UEM India Private Ltd., New Delhi.

3.2. Finance

The CETP was given a total subsidy of INR 10 million by the state and the central governments. The tanners contributed INR 10 million and an amount of INR 46 million was taken as loan from Industrial Development Bank of India. UNIDO had contributed hardware worth INR 11 million.


3.3. Implementation

The project was implemented by a company formed by the tanners of the Pallavaram area by name Pallavaram Tanners Industrial Effluent Treatment Co. Ltd. (PTIET) and UNIDO made available the services of a Project Officer for its implementation.

M/s. UEM India P. Ltd., New Delhi undertook the construction of the CETP on turnkey basis and implementation of collection & conveyance system was undertaken by the PTIET employing a local contractor. Tamil Nadu Pollution Control Board was the counterpart of UNIDO and took the overall responsibility for monitoring the implementation of the project.

3.4. Management

The management of the CETP is done by a BoD headed by a Chairman, who is assisted by a Managing Director. The administrative head of the CETP is a qualified engineer. The organigram of the CETP as at present is as follows:

3.5. Recovery of operational cost

The cost of operation and maintenance of the plant, repayment of loan with interest and other expenditures relating to the plant are covered by monthly contributions made by the tanner members according to their respective production capacity.

Two types of charges are being collected. The fixed cost, which covers loan repayment, salary of staff and regular maintenance expenditure etc., is charged based on the installed capacity of the tannery @ INR 3,500 per drum per month. Additionally, a variable charge, based on actual production, is charged which varies from INR 5,000 - INR 15,000 per month per tannery.

At present, the average collection from individual tanners is in the range of INR 8,500 to INR 29,000 depending on the actual production.

For unforeseen expenses or new investments, special contributions are collected from the members, pro-rata.

4. PROCESS FLOW

4.1. Pre-treatment in tanneries

4.1.1. Chrome segregation

Out of the nine tanneries processing raw hides & skins, only seven were processing raw hides / skins during the project design. As these were all small-scale units, it was decided to have a common chrome recovery unit (CRU) for these tanneries. Accordingly a common chrome recovery unit was installed in Arafath Leathers by UNIDO based on the design of Central Leather Research Institute (CLRI), Chennai.

The tanneries connected to the CRU made arrangement within their premises for segregation of chrome liquor and collecting it in a chrome collection tank of 3 m x 3 m x 1.5 m.

4.1.2. Pre-treatment of effluent other than chrome liquor

The pre-treatment unit in each tannery consists of a grit chamber of size $1.5 \text{ m x } 1.0 \text{$

4.1.3. Collection & conveyance system

Effluent from pre-treatment units is admitted into the manhole of the main collection line [HDPE pipes, diameter varying from 110 to 200 mm) that extends to a collection well by gravity. There are seven collection wells constructed in various locations of the tannery cluster. Each collection well is equipped with one coarse screen and two submersible pumps of varying capacity (from 11 kW to 45 kW). The effluent is pumped from the collection wells to the CETP. Details of pre-treatment is given in Dwg. 2 in Annex 2.

4.2. Treatment process

The seven collection wells receive effluent from 142 tanneries, which is pumped to the receiving sump. Eight tanneries discharge effluent directly into the receiving sump by gravity. The effluent collected in the receiving sump is pumped through a mechanically cleaned screen (Konica model, Italprogetti make) shown in figure 1.

Fig 1. Mechanical Screen

Fig 2. : Ejector aerator in the equalization tank

The effluent then is passed through a grit chamber and collected in two numbers equalization tanks of provided with submerged ejector The ejector aerators. aerators homogenize the effluent, besides oxidizing sulphides present in the raw effluent.

A view of the ejector aerator is given in figure 2.

The equalized effluent is then pumped to the flash mixer where alum, lime and polyelectrolyte slurry are added.

The effluent thereafter enters two clariflocculators where the chemical sludge settles in the bottom. The physico-chemical treatment removes approximately 25-30% of BOD, 35-45% of COD and almost all chromium. The overflow from the clariflocculators is admitted into two aeration tanks provided with fine bubble diffused aeration system which comprises of 1,200 tubular membrane diffusers (Aertec make) the air supply for which is provided by 5 positive displacement blowers (Roots make). The biological treatment removes 90-95% of BOD and 85-90% of COD. The overflow from the aeration tanks with active biological solids is admitted into two secondary clarifiers. The settled sludge in the clarifiers is pumped back to the aeration tank to maintain the bacteriological population. Some quantity of sludge is wasted by diversion to the sludge thickener. The overflow from the clarifiers is the treated effluent and it is discharged into the Adyar river through a pressure pipeline. A part of the treated effluent is filtered using pressure sand filter and used for process applications in the CETP.

The sludge settled in the primary clariflocculator is taken to a sludge well and then pumped to a sludge thickener. The thickened sludge is dewatered in a belt press filter (Italprogetti make) and a portion of the sludge is dewatered in sludge drying beds. The dewatered sludge is disposed of in a sludge dumping site. The system is regularly operating for the past over six years.

5. CETP UNITS AND SPECIFICATIONS

Treatment step	Description/service	Dimension/capacity
	Plant design capacity	3000 m ³ /day
Primary treatment	:	
Coarse screening	1 no. manually cleaned screens	15 mm bar spacing
Pumping	Circular RCC receiving sump of 140	Retention time 30 min
	m ³ , 3 nos. submersible pumps, 225 kW each	Pump capacity 300 m ³ /h each
Fine screening	1 no. drum screen, Konica model,	3 mm bar spacing
~	self cleaning type	Capacity: 450 m ³ /h
Grit removal	1 no. grit removal comprises of grit settler, screw type grit conveyor and grit washer	Capacity: 450 m ³ /h, retention time 50 seconds.
Equalisation	2 nos. rectangular tank	Capacity 1,300 m ³ each, total retention time 21 h
	Aeration/mixing: 4 nos ejector type pump aerator 18.5 kW each	Specific mixing power 28.7 W/m ³
Equalised effluent pumping	3 nos. centrifugal pumps of 11.5 kW each	Capacity 125 m ³ /h each
Flocculation	Flash mixer with 1.5 kW agitator	Capacity 8 m ³
	Chemicals: alum (Al ₂ SO ₄ . 16 H ₂ O ₂), lime (Ca(OH) ₂) and anionic polyelectrolyte	Retention time 3.8 min
Primary	2 nos circular clariflocculators with	Capacity clarifier 300 m ³ ,
sedimentation	sludge scraper 12 m dia, flocculator portion 6 m dia with comb type mechanism	flocculator 42 m ³ , total retention time clarifier 4.8 h, flocculator 40 min
Biological treatmen		
Biological aeration	2 nos. rectangular tanks with diffused aeration 1,200 no. retrievable type tubular diffusers (600 in each tanks) powered by 5 (3 working + 2 standby) positive displacement type blowers of 37.3 kW each, diffuser sleeve material EPDM	Capacity 2,400 m ³ each Total retention time 1.6 days Specific mixing power 23.3 W/m ³
Sedimentation	2 nos. circular tank 12 m dia with scrapper, recycle of biological sludge: 3 nos. submersible pumps 11.5 kW each	Capacity 250 m^3 each, total retention time 4 h, pump capacity 125 m^3 /h each
Sludge treatment		
Design capacity	About 1,500-3,000 tonnes DS per year	
Sludge thickener	1 RCC circular tank 12 m dia with scrapper	Capacity 340 m ³

The layout and the process flow of the CETP is given in Dwg 3 and 4 in Annex 2.

Sludge dewatering	1 no. belt press filter Diemme make, 2	Capacity of belt press filter 450
	m cloth width, with polymer dosing,	kg DS/h
	flocculator and cake conveyor	
	6 nos. sludge drying beds	Total SDB area 960 m ²

Note: The addresses of suppliers may be seen at Annex 1. The dimensions of the CETP units can be seen in drawings at Annex 2.

6. OPERATIONAL FEATURES

6.1. Operational parameters

Operational parameter	Factors maintained at present	
Chemical dosage prior to primary clarifier	r 200-300 ppm of alum and 600 ppm of	
	lime. Anionic polyelectrolyte at the rate of	
	1 ppm.	
Nutrients	No nutrient is added at present.	
Dissolved oxygen	DO level in aeration tank-1 is 1.0 mg/l and	
	in aeration tank-2, 2.5 mg/l.	

Sludge re-circulation	Around 55%	
MLSS concentration	Aeration tank-1, 3,500 mg/l and aeration	
	tank-2, 2,200 mg/l	
Sludge wasting	Approximately 10% of the aerobic bio-	
	sludge	
Screenings removal and sludge withdrawal	The screenings are removed once in a shift.	
timing	Sludge from primary clarifier is withdrawn	
	once in two or three hours.	

Maintenance	
Oiling and greasing cycle	15 and 20 days respectively
Frequency of painting	Once a year

Power consumption	
Total connected load	440 kW
Operating load	310 kW
Capacity of diesel generating set	330 kW

6.2. Laboratory

The CETP has a laboratory, accommodated in two rooms in the first floor of the administration building.

Room No. 1 is generally used for the main analysis. The equipment available in this room are:

#	Instrument/equipment	No. of units
1.	Hot air oven	3
2.	Fume cupboard	1
3.	COD apparatus	1
4.	Distilled water still	1
5.	Electric Bunsen	2
6.	Heating mantle	3
7.	Vacuum pump	2
8.	BOD incubator	1
9.	Refrigerator.	1
10.	Glass wares & Chemicals	

Room no.2 is used as the instrumentation room. The instruments in this room are:

#	Instrument/equipment	No. of units
1.	Spectrophotometer	1
2.	pH meter	2
3.	Automatic sampler	1
4.	Dhona monopan balance.	1

6.3. Analyses done in the laboratory

Various analyses done in the laboratory are as follows:

Parameter	Raw effluent	Equalised raw	Clariflocculator	Final treated
		effluent	outlet	effluent
pН	Daily	Daily	Daily	Daliy
Suspended solids	Daily	Daily	Daily	Daily
Total suspended		Daily	Daily	Daily
solids				
Chlorides		Weekly		Weekly
Sulphides	Daily	Daily		
Sulphates		Weekly		Monthly
BOD ₅	Daily	Daily	Daily	Daily
COD	Daily	Daily	Daily	Daily
Total chromium	Daily	Daily	Daily	Daily
Phosphates		Weekly		Weekly
Ammonia		Weekly	Weekly	Weekly
nitrogen				
Nitrates				Weekly

Parameter	Aeration tanks	Treated effluent
DO	Daily	Daily
MLSS	Daily	
MLVSS	Daily	

6.4. Manpower

Personnel	Qualification & experience	
Plant Manager	B.Tech. with 2 years experience in ETP management	
Electrical Engineer.	Graduate in mechanical engineering with 6 years experience	
Sr. Chemist	B.Sc. Chemistry with 5 years experience in effluent testing	
Chemist	B.Sc. Chemistry, 6 years experience in effluent testing	
Civil Engineer	Diploma in civil engineering with 2 years project experience	
Stores in charge	Graduate with 3 years experience in material management	

Following key technical personnel are available in the CETP:

6.5. Monitoring

Following is the list of log sheets presently maintained by the CETP:

- Pumping details
- Chemical dosage and stock
- □ Aeration details
- Complaints register
- □ Store and spare parts register
- □ Maintenance schedule

The plant manager reviews the log sheets daily and necessary instructions for modifications in operation and maintenance are given in consultation with chemists and other engineers.

7. EFFLUENT CHARACTERISTICS BEFORE & AFTER TREATMENT

(Average for the period from December 1999 to June 2001)

Parameter	Unit	Raw effluent	After chemical treatment	Final treated effluent	TNPCB norms*
pН		5.9	7.1	7.2	5.5 - 9.0
Suspended solids	mg/l	1,185	225	148	100
BOD	mg/l	1,452	1,125	132	30
COD	mg/l	4,210	2,955	890	250
Chromium	mg/l	56	13	5	2
Sulphides	mg/l	64	15	2	2
TDS	mg/l	5,150	4,810	4,822	2,100

*for discharge to inland surface waters

Note: The above values indicate the average during the period mentioned. During April-May 2001, some modifications were carried out in the CETP resulting in marked improvement in the CETP performance and the average values of COD and BOD₅ after June 2001 until September 2001 were 320 mg/l and 41 mg/l respectively.

8. COST OF TREATMENT

Cost component	Cost in INR	Cost in US\$
Power	521,622	11,146
Chemicals	122,330	2,614
Salary & labour	96,152	2,055
Repair and maintenance	341,355	7,294
Laboratory analysis	11,450	245
Sludge dewatering	85,625	1,830
Miscellaneous	26,424	565
Consents & license	2,919	62
Loan repayment	2,030,769	43,392
Other costs (R&D etc.) lumpsum	242,583	5,183
Depreciation on investment	885,833	18,927
Total	4,367,062	93,313

(Average for the period from 1 January 2000 to 30 June 2001)

Treatment cost per cubic meter of effluent: Treatment cost per kg of BOD removed: Treatment cost per kg of COD removed: Total treatment cost per square ft. of leather: INR 55.3 (US\$ 1.19) INR 41.93 (US\$ 0.90) INR 16.67 (US\$ 0.36) INR 0.7 - 0.9 (0.15 – 0.19 US cents)

(RoE: 1 US \$ = INR 46.8)

9. UNIDO ASSISTANCE

Besides giving technical assistance for the design, implementation and ongoing operation and maintenance, UNIDO assisted the CETP in obtaining certain vital equipment like the mechanical screen, diffused aeration system and belt press filter.

UNIDO assisted the CETP in development of the environmental laboratory too.

UNIDO's investment in the CETP is US\$ 280,000.

UNIDO had organized a three-week in house training program for the operating staff of the CETP during December 1997 and January 1998.

Besides this, a number of training workshops organized by UNIDO were participated by key staff members of the CETP. These also included training in occupational safety & health of workers of the CETP.

10. CLRI/NEERI INTERVENTIONS

In 1997, AISHTMA (All India Skin and Hide Tanners & Merchants Association), Chennai had engaged Central Leather Research Institute (CLRI) and National Environmental Engineering Research Institute (NEERI), the two leading national organizations to study the tanneries connected to the CETPs and the CETP itself with a view to identify scope for improvement. While CLRI focused its efforts towards introduction of cleaner technologies in the tanneries connected to the CETP, NEERI gave recommendations on optimization of the CETP operation. NEERI's main recommendations relating to the CETP were:

- 1. Chrome bearing waste water should be segregated in tanneries
- 2. Modification in the inflow and outflow pipes in equalization tanks
- 3. Regular de-sludging of primary and secondary clarifiers
- 4. Maintenance of appropriate chemical dosing in primary treatment
- 5. Replacement of pumps in receiving sump
- 6. High rate transpiration system for dealing with saline effluent

The CETP has implemented all these measures except the high rate transpiration system.

The CLRI/NEERI project was completed by the end of 1997.

11. UNIDO'S ASSESSMENT

Though this CETP has been acknowledged as one of the best designed in the country for treating tannery effluent, the performance of the CETP has been not consistently good mainly due to managerial inadequacies.

The following technical measures can further improve the performance of the CETP:

- □ The treated effluent line requires modification to carry the full flow of the CETP.
- □ The aeration system requires suitable adjustments to ensure good distribution of diffused air.
- □ Proper operation and maintenance of the belt filter and procuring an additional sludge dewatering system will ensure mechanical dewatering of all sludge generated.
- **□** The instrumentation system requires necessary adjustment.
- □ Better maintenance of pre-treatment units will reduce the pollution load to the CETP, besides containing maintenance problems in the collection and conveyance system.
- Disposal of sludge in a properly designed safe landfill
- □ Better maintenance of structures of the CETP by way of proper lubrication and painting to ensure their longevity

The best designed CETP may not produce the required results if the day-to-day management is not of the required standard. The BoD of the CETP must give special attention to the managerial inadequacies, particularly relating to regular collection of dues from members, preventive maintenance according to schedule and efficient monitoring and operation of the system.

Item	Supplier	Local service person/agent
CETP turnkey	UEM India P. Ltd.,	UEM India P. Ltd.
contractor/supplier	A-2, Greater Kailash Enclave	A-2, Greater Kailash Enclave,
of all drives	Part-2, New Delhi: 110 048,	Part-2, New Delhi 110 048,
of all unves	India	India
	Tel: 91-11-6447825/6421634	Tel: 91-11-6447825/6421634
	Fax: 91-11-6214482/6431099	Fax: 91-11-6214482/6431099
Belt filter press	Italprogetti Engineering	Tanmac India
Den mer press	Via Lungarna, Pacinotti	25, Jawaharlal Nehru St.
	59A-56020, San Romano	3 rd Floor
	Pisa, Italy	Pondicherry. 605 001
	Tel: 39-571-450477	India
	Fax:39-571-450301	Tel:91-413-39429
Mechanical screen	Italprogetti Engineering	Tanmac India,
	Via Lungarna, Pacinotti	25, Jawaharlal Nehru St.
	59A-56020, San Romano	3 rd Floor
	Pisa, Italy	Pondicherry: 605 001,
	Tel: 0039-571-450477	India
	Fax: 0039-571-450301	Tel:0413-39429
Submersible	Kishor Pumps P. Ltd.	Beam Engineers
pumps	A-13/H, MIDC, Pimpri	102, Mogappair
	Pune 411 018	Chennai. 600 050
	India	India.
	Tel: 772616/3579	Tel: 91-44-6266465/6257915
Centrifugal pumps	Johnson pumps,	Fabriken Agencies P. Ltd,
	No. 3, Anthu Street,	11, 7 th Cross St, Shastri nagar,
	Santhome, Chennai 600 004	Adyar, Chennai-600 020
	India.	India
	Tel: 91-44-4933341	Tel: 91-44-4462605/4460602
	Fax: 91-44-4941176	Fax: 91-44-4461359/4913601
	e-mail: pumps@mds.ateel.com	e-mail: sridhark123@eth.net
Screw pumps	Rotomac	Rotomac
	162-B, Co-op Industrial Estate	162-B, Co-op Industrial Estate,
	Udyog Nagar	Udyog Nagar
	Kanpur. 208 022, India	Kanpur. 208 022, India
	Tel: 91-512-296039/6086	Tel: 91-512-296039/6086

Annex-1 List & address of suppliers of equipment