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Classical approaches to learn classifiers for structured objects (e.g., images, sequences) use generative

models in a standard Bayesian framework. To exploit the state-of-the-art performance of discriminative

learning, while also taking advantage of generative models of the data, generative embeddings have

been recently proposed as a way of building hybrid discriminative/generative approaches. A generative

space into a fixed dimensional space, adequate for discriminative classifier learning. Generative

embeddings have been shown to often outperform the classifiers obtained directly from the generative

models upon which they are built.

Using a generative embedding for classification involves two main steps: (i) defining and learning a

generative model and using it to build the embedding; (ii) discriminatively learning a (maybe kernel)

classifier with the embedded data. The literature on generative embeddings is essentially focused on step (i),

usually taking some standard off-the-shelf tool for step (ii). Here, we adopt a different approach, by focusing

also on the discriminative learning step. In particular, we exploit the probabilistic nature of generative

embeddings, by using kernels defined on probability measures; in particular we investigate the use of a

recent family of non-extensive information theoretic kernels on the top of different generative embeddings.

We show, in different medical applications that the approach yields state-of-the-art performance.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Most approaches to the statistical learning of classifiers belong
to one of two classical paradigms: generative and discriminative

[1,2], also known in the statistics literature as sampling and
diagnostic, respectively [3]. Generative approaches are based on
probabilistic class models and a priori class probabilities, learnt
from training data and combined via Bayes law to yield posterior
probabilities. Discriminative learning methods aim at learning
class boundaries or posterior class probabilities directly from
data, without relying on intermediate generative class models.

In the past decade, several hybrid generative–discriminative
approaches have been proposed with the goal of combining the best
of both paradigms [4,5]. These approaches can loosely be divided into
three groups: blending methods, iterative methods, and staged
methods. In a few words, blending methods (e.g. [5,6]) try to optimize
ll rights reserved.

go).
a single objective function that contains different terms coming from
the generative and discriminative model. Iterative methods (e.g.
[7–9]) are algorithms involving a generative and a discriminative
model that are trained in an iterative process, each influencing the
other. Finally, in staged methods [4,10–12], the models are trained in
separate procedures, but one of the models – usually the discrimi-
native one – is trained on features provided by the first. This later
family is currently the most frequently applied and studied, and it
includes the class of methods known as generative embeddings (or
score spaces), where the basic idea is to exploit a generative model to
map the objects to be classified into a feature space. This is
particularly suited for non-vectorial data (strings/sequences, trees,
images), as it maps objects of possibly different dimensions (e.g.,
strings of different lengths) into a fixed dimension space.

The seminal work on generative embeddings is [4], where the
so-called Fisher score was introduced. In that work, the features of
a given object are the derivatives of the log-likelihood function
under the assumed generative model, with respect to the model
parameters, computed at that object. Other examples of genera-
tive embeddings can be found in [10–12].
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Typically, the feature vectors resulting from the generative
embedding are used to feed some kernel-based classifier, such as a
support vector machine (SVM) with standard linear or radial basis
function (RBF) kernels. In this paper, we follow an alternative route:
instead of relying on standard kernels, we investigate the use of a
recently introduced family of information theoretic (IT) kernels [13].
The main idea is that the IT kernels we can exploit the probabilistic
nature of the generative embeddings, improving even more the
classification results of the hybrid approaches. In particular we
investigate a particular class of IT kernels, based on a non-
extensive generalization of the classical Shannon information theory,
and defined on unnormalized or normalized (i.e., probability) mea-
sures. In [13], they were successfully used in text categorization
tasks, based on multinomial text representations (e.g., bags-of-words,
character n-grams). Here, the idea is to consider the points of the
generative embedding as multinomial probability distributions, thus
valid arguments for the information theoretic kernels.

We illustrate the performance of combining different genera-
tive embeddings with the IT kernels on different medical applica-
tions: colon cancer detection on gene expression data,
schizophrenia detection on brain MRI images, and renal cell
cancer classification on tissue microarray data. Following recent
work, we adopt the so-called pLSA (probabilistic latent semantic

analysis) as a generative model, the usefulness of which has been
recently shown in different applications [11,14–16]. The experi-
mental results reported in this paper testify for the adequacy and
state-of-the-art performance of the combination of IT kernels
with generative embeddings.

Summarizing, the main contributions of the paper are:
�
 The investigation of the use of a novel class of information
theoretic (IT) kernels [13] as a similarity measure between
objects in a generative embedding space.

�
 A thorough investigation of different generative embedding

(GE) schemes, some of them being very recent. Such a large
and extensive comparison, involving eight different generative
embeddings, was missing from the literature.

�
 The application of this hybrid scheme (GEþ IT kernels) to the

medical domain. Actually it is worth to notice that we exploit
the same scheme for three very different medical applications,
which start from very different representations: 3D surfaces
(brain classification), images (renal cancer), and microarray
expression matrices (colon cancer).

The remaining sections of the paper are organized as follows. In
Section 2, the fundamental ideas of generative embeddings are
reviewed, together with the basics of the schemes here investi-
gated, while Section 3 describes the IT kernels. The proposed way of
using the IT kernels with the generative embeddings is formalized
in Section 4. Details on applications and experimental results are
reported in Section 5, and Section 6 concludes the paper.
2. Generative embeddings

Pursuing principled hybrid discriminative–generative classifier
learning methods is, arguably, one of the currently most interesting
challenges in machine learning research. The underlying motivation
is the clear complementarity of discriminative and generative
strategies: asymptotically (in the number of labeled training exam-
ples), classification error of discriminative methods is lower than for
generative ones [1]. On the other side, generative schemes are
effective with less data; furthermore, they allow for easier/simpler
handling of missing data and inclusion of prior knowledge about the
data. Among these hybrid generative–discriminative methods, the
interest in ‘‘generative embeddings’’ (also called generative score
spaces) has been increasing in recent years, as is testified by an
increasing literature on the class of methods (see, among other,
[4,11,14,17–21]).

Generative embeddings involve three key building blocks: (i) a
generative model (or a family thereof) is adopted and learned
from the data; (ii) this learned model is used to obtain a mapping
between the original object space and a fixed-dimension vector
space (usually called a score space); (iii) the objects in the training
set are mapped into the score space and used by some discrimi-
native learning technique. The key idea is the mapping of objects
of possibly different dimension into fixed-dimensional feature
vectors, using a model of how this objects are generated. This
opens the door to the use of standard discriminative techniques
(such as support vector machines or logistic regression) and has
been shown to achieve higher classification accuracy than purely
generative or discriminative approaches.

Once a generative embedding is obtained, in order to use a
kernel-based discriminative learning approach, it is necessary to
adopt a kernel that expresses similarity between pairs of points in
the score space, maybe also derived from the adopted generative
model. The most famous example of one such kernel is the Fisher

kernel [4], which is simply a Riemennian inner product, using the
inverse Fisher matrix of the generative model as the underlying
metric. In this paper, we will use kernels defined on the score
space that are independent of the generative model.

In the following subsections, we will describe the generative
embeddings used in this paper, after reviewing the pLSA gen-
erative model based on which they are built.

2.1. Probabilistic latent semantic analysis (pLSA)

Consider a set of documents D¼ fd1, . . . ,d9D9g, each containing
an arbitrary number of words, all taken from a vocabulary of
W ¼ fw1, . . . ,w9W9g; of course, without loss of generality, we may
simply refer to the documents and words by their indices, thus we
simplify the notation by writing D¼ f1, . . . ,9D9g and W ¼ f1, . . . ,
9W9g. This collection of documents is summarized in a bag-of-words
fashion (i.e., ignoring the word order) into a 9W9� 9D9 occurrence
matrix C¼ ½Cij, i¼ 1, . . . ,9W9, j¼ 1, . . . ,9D9�, where element Cij indi-
cates the number of occurrences of the i-th word in the j-th
document.

pLSA [22] is a generative mixture model for matrix C where
the presence of each word in each document is mediated by a
latent random variable, ZAZ ¼ f1, . . . ,9Z9g (known as the topic or
aspect variable). More specifically, pLSA is a mixture model for the
joint distribution of the pair of random variables DAD and
WAW, where the event ðW ¼ i,D¼ jÞ means that there is an
occurrence of the i-th word in the j-th document. pLSA expresses
the joint probability distribution PðW ¼ i,D¼ jÞ as a mixture of
distributions such that, in each component of the mixture (i.e., for
each topic), the random variables W and D are independent (i.e.,
PðW ¼ i,D¼ j9Z ¼ zÞ ¼PðW ¼ i9Z ¼ zÞPðD¼ j9Z ¼ zÞ); formally,

PðW ¼ i,D¼ jÞ ¼
X9Z9
z ¼ 1

PðZ ¼ zÞPðW ¼ i9Z ¼ zÞPðD¼ j9Z ¼ zÞ: ð1Þ

This model is parameterized by a set of 1þ29Z9 multinomial distri-
butions: the distribution of the latent topic variable fPðZ ¼ 1Þ, . . . ,
PðZ ¼ 9Z9Þg; the distributions of words fPðW ¼ 19Z ¼ zÞ, . . . ,
PðW ¼ 9W99Z ¼ zÞg for each zAf1, . . . ,9Z9g; the distributions of
documents fPðD¼ 19Z ¼ zÞ, . . . ,PðD¼ 9D99 Z ¼ zÞg for each
zAf1, . . . ,9Z9g. Let us write these parameters compactly in a vector
p¼ ½p1, . . . ,p9Z9�, where pz �PðZ ¼ zÞ and a pair of matrices Q and R,
where Qzw �PðW ¼w9Z ¼ zÞ and Rzd �PðD¼ d9Z ¼ zÞ. Of course,
both Q and R are stochastic matrices: QzwZ0, RzwZ0,P9W9

w ¼ 1 Qzw ¼ 1, and
P9D9

d ¼ 1 Rzd ¼ 1.
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Given a set of N independent samples fðwn,dnÞAW �D, n¼

1, . . . ,Ng from this generative model, the log-likelihood function
(from which the parameters p, Q, and R are to be estimated) can
be easily shown to be

Lðp,Q ,RÞ ¼
X9W9

w ¼ 1

X9D9
d ¼ 1

Cwd logðPðW ¼w,D¼ dÞÞ, ð2Þ

Lðp,Q ,RÞ ¼
X9W9

w ¼ 1

X9D9
d ¼ 1

Cwd log
X9Z9
z ¼ 1

pzQzwRzd

0@ 1A, ð3Þ

where Cwd is the number of times the pair (w, d) occurs in the set of
observations, that is, the number of times that the w-th word
occurs in the d-th document (as defined above). This shows that
matrix C contains the sufficient statistics to estimate the para-
meters of the pLSA model. Of course, maximizing (3) w.r.t. p, Q, and
R cannot be done in closed form, but can naturally be addressed via
the EM algorithm [22].

It is important to note that the (multinomial) random variable
D takes values in the list of documents in the training set. For this
reason, pLSA is not a full generative model of documents in the
sense that it has no way to assign a probability to a previously
unseen document.

In possession of estimates of the model parameters, bp, bQ , andbR , it is possible to estimate quantities such as the probability that
a given topic is present in a given document

PðZ ¼ z9D¼ dÞ ¼
bRzdbpzP9Z9

s ¼ 1
bRsdbps

: ð4Þ

2.2. pLSA-based generative embeddings

Generative embeddings can be divided into two families:
those based on the generative model parameters and those based
on hidden variables of those models. The former class derives the
features by using differential operations with respect to the
model parameters, while the latter derive feature maps using
the log-likelihood function of the model, focusing on the random
variables rather than on the parameters.

2.2.1. Parameter-based generative embeddings

In this subsection, we review three of the best-known gen-
erative embeddings based on the generative model parameters

The Fisher score (FS) was the first example of generative embed-
ding [4], and it consists of using as feature vector the
tangent vector of the data log likelihood with respect to
the model parameters. In the case of the pLSA model
[23], each document dAf1, . . . ,9D9g is mapped into the
gradient of its log-probability w.r.t. the model para-
meters, which we collect into a vector h� ðp,Q ,RÞ. The
log-probability of a document dAf1, . . . ,9D9g, denoted as
l(d), is obtained by marginalization,

lðdiÞ ¼ log PðD¼ dÞ ¼ log
X9W9

w ¼ 1

PðW ¼w,D¼ dÞ

¼ log
X9W9

w ¼ 1

X9Z9
z ¼ 1

pzQzwRzd: ð5Þ

The pLSA-based Fisher score maps each document d into a
vector of dimension containing the derivatives of l(d) w.r.t.
to the elements of h. In this score space, we define the
kernel simply as the Euclidean inner space. Alternatively
(although we do not consider that choice here), the kernel
could be defined as the Riemennian inner product, using
the inverse Fisher matrix as the metric [4].

The TOP kernel (where TOP is an acronym for Tangent Of Posterior
log-odds [17]) was designed for two-class problems and
is based on the gradient of the posterior log-odds ratio.
Formally, given parameter estimates of two pLSA gen-
erative models for the two classes, hð�1Þ and hðþ1Þ, a
given document d is mapped into the gradient of the
posterior log-odds ratio log PðC ¼ þ19d,hÞ�log PðC ¼

�19d,hÞ w.r.t. h¼ ðhð�1Þ,hðþ1Þ
Þ. Finally, the TOP kernel is

defined simply as the Euclidean inner product in the
resulting vector space.

The log-likelihood ratio (LLR) embedding [20] is similar to the
Fisher score, except that it uses one generative model
per class, rather than a single model. Formally, for a
C-class problem, the LLR embedding maps a given
document d into the concatenation of the gradients of
log Pðd9hð1ÞÞ, . . . ,log Pðd9hðCÞÞ, w.r.t. the respective para-
meters. Consequently, the dimensionality of the LLR
embedding is C times larger than that of the Fisher
embedding.

2.2.2. Latent-variable-based embeddings

These methods, arising from considerations in [14], derive
generative feature mappings from the log-likelihood, using the
hidden variables of the model, rather than on its parameters.

The free energy score space (FESS) is based on the observation that
the free energy bound on the complete log-likelihood
decomposes into a sum of terms [14]; the mapping of a
given document is the vector containing the terms in
this decomposition. The details of the free energy bound
and the resulting embedding (the FESS) are too long to
include here, so the reader is referred to [14].

The posterior divergence (PD) embedding is a modification of the
FESS embedding [19] which also takes into account how
much each sample affects the model. Details on the
pLSA-based PD embedding and on its relationship with
FESS case can be found in [19].

The mixture of topics (MT) embedding simply maps a given
document d into the 9Z9-dimensional vector containing
the conditional probabilities PðZ ¼ 19D¼ dÞ, . . . ,PðZ ¼
9Z99D¼ dÞ. Recall that these probabilities (given the
parameter estimates) are computed according to (4).

2.2.3. Some remarks

Recently, pLSA has been used, not only for text problems, but
in several other application areas, including computer vision,
bioinformatics (gene expression data), and medical image analy-
sis [11,24,25]. In imaging problems, the idea is use pLSA to model
the co-occurrence of image features (visual words) [11,25].

One obvious question that arises when using pLSA models is the
selection of the number of topics 9Z9. In all our application, we have
estimated this number by using the well-known Bayesian informa-

tion criterion (BIC) [26], which penalizes the likelihood with a term
that depends on number of model parameters. In the pLSA model,
the number of free parameters is 9Z9�1þ9Z9ð9 D9þ9W9�2Þ. Thus,
the number of topics is chosen as the minimizer w.r.t. 9Z9 of the
penalized log-likelihood

�
X9W9

w ¼ 1

X9D9
d ¼ 1

Cwd log
X9Z9
z ¼ 1

pzQzwRzd

0@ 1A
þ½9Z9�1þ9Z9ð9D9þ9W9�2Þ� logð

ffiffiffiffi
N
p
Þ:
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In our experiments, we consider two versions of the FESS and
MT embeddings. In the first version, we train one pLSA model per
class and concatenate the resulting feature vectorss (we will refer
these as FESS-1 and MT-1); in the second version, we train a pLSA
model for the whole data, ignoring the class label (we will refer
these as FESS-2 and MT-2). In summary, we will consider eight
different generative embeddings: MT-1, MT-2, FESS-1, FESS-2,
LLR, FS, TOP, and PD.
3. Information theoretic kernels

Kernels on probability measures have been shown very
effective in classification problems involving text, images, and
other types of data [13,27,28]. Given two probability measures
p1 and p2, representing two objects, several information theoretic
kernels (ITKs) can be defined [13]. The Jensen–Shannon kernel is
defined as

kJS
ðp1,p2Þ ¼ lnð2Þ�JSðp1,p2Þ, ð6Þ

with JSðp1,p2Þ being the Jensen–Shannon divergence

JSðp1,p2Þ ¼H
p1þp2

2

� �
�

Hðp1ÞþHðp2Þ

2
, ð7Þ

where H(p) is the usual Shannon entropy. The Jensen–Tsallis (JT)
kernel is given by

kJT
q ðp1,p2Þ ¼ lnqð2Þ�Tqðp1,p2Þ, ð8Þ

where lnqðxÞ ¼ ðx1�q�1Þ=ð1�qÞ is the q-logarithm,

Tqðp1,p2Þ ¼ Sq
p1þp2

2

� �
�

Sqðp1ÞþSqðp2Þ

2q ð9Þ

is the Jensen–Tsallis q-difference, and Sq(r) is the Tsallis non-
extensive entropy, defined, for a multinomial distribution
r¼ ðr1, . . . ,rLÞ as

Sqðr1, . . . ,rLÞ ¼
1

q�1
1�

XL

i ¼ 1

rq
i

 !
:

In [13], versions of these kernels applicable to unnormalized
measures were also defined. Let m1 ¼o1p1 and m2 ¼o2p2 be two
unnormalized measures, where p1 and p2 are the normalized
counterparts (probability measures), and o1 and o2 arbitrary
positive real numbers (weights). The weighted JT kernel (version A)
is given by

kA
q ðm1,m2Þ ¼ SqðpÞ�Tp

q ðp1,p2Þ, ð10Þ

where p¼ ðp1,p2Þ ¼ ðo1=ðo1þo2Þ,o2=ðo1þo2ÞÞ and

Tp
q ðp1,p2Þ ¼ Sqðp1p1þp2p2Þ�ðp

q
1Sqðp1Þþp

q
2Sqðp2ÞÞ:

The weighted JT kernel (version B) is defined as

kB
qðm1,m2Þ ¼ ðSqðpÞ�Tp

q ðp1,p2ÞÞðo1þo2Þ
q: ð11Þ
1 This data was collected in the context of the SIMBAD project, which is an

European FET project dealing with similarity-based approaches to pattern recog-

nition; see http://simbad-fp7.eu/.
4. Proposed approach

The approach herein proposed consists in defining a kernel
between two observed objects x and x0 as the composition of the
score function with one of the JT kernels presented above.
Formally,

kðx,x0Þ ¼ ki
qðfYðxÞ,fYðx

0ÞÞ, ð12Þ

where iAfJT,A,Bg indexes one of the Jensen–Tsallis kernels (8),
(10), or (11), and fY is one of the generative embeddings defined
in Section 2.
We consider two types of kernel-based classifiers: K-NN and
SVM. Recall that positive definiteness is a key condition for the
applicability of a kernel in SVM learning. It was shown in [13] that
kA

q is a positive definite kernel for qA ½0,1�, while kB
q is a positive

definite kernel for qA ½0,2�. Standard results from kernel theory
[29, Proposition 3.22] guarantee that the kernel k defined in (12)
inherits the positive definiteness of ki

q, thus can be safely used in
SVM learning algorithms.
5. Experimental evaluation

We have applied the proposed approach to three (binary)
classification problems in the medical domain, which will be
described in detail below: binary classification of brain MRI
images into schizophrenia/non-schizophrenia; cancer detection
in tissue microarray (TMA) images; colon cancer detection in gene
expression microarray data.

All the accuracies are computed using the averaged hold out
cross validation (30 repetitions). The standard errors of means, in all
runs, were all less than 0.0252, 0.0032 and 0.0179, for the Brain
Classification Task, the Renal Cancer Classification task and the
Colon Cancer Classification task, respectively. The value of para-
meter q of the IT kernels is estimated using 5-fold cross-validation
on the training set. Since results were similar, we omit the weighted
JT kernel (version B): we will refer to weighted JT kernel (version A)
as W-Jen–Tsal. As classifiers, we use support vector machines (SVM),
with the well-known parameter C adjusted by 5-fold cross-valida-
tion on the training set, as well as the K-nearest neighbors classifier,
with K¼1, i.e., the nearest neighbor (NN) rule.

Many comparisons have been carried out, in order to highlight
the specific contribution of every part of the hybrid approach. In
particular, we compared the proposed pipeline with the results
obtained in the original space with standard kernels (linear and
radial basis function – RBF – kernels), in the generative embedding
space with the standard kernels, and in the original space with IT
kernels. All the details are presented in the results subsection.

5.1. Application details

We will now describe the three applications in more detail. In
particular, we will describe how the pLSA model is used in each
problem, that is, what is the meaning of terms ‘‘words’’ and
‘‘documents’’ in each particular type of data. The datasets used in
the experiments are summarized in Table 1.

5.1.1. Classification of brain MRI

In the first application, the goal is to analyze MRI brain scans in
order to distinguish between normal subjects and subjects affected
by schizophrenia (see Fig. 1). We adopt an approach based on a
region of interest (ROI) [30], where the idea is to focus on a region of
the brain considered informative for the task at hand. In particular,
our analysis focuses on the left thalamus, whose abnormal activity
has been already correlated with schizophrenia [31]. The pLSA
model is used as proposed in [25]: local 3D brain shape features are
computed from the MRI data; the ‘‘visual words’’ are obtained by
quantization of the features; histograms of visual words in each
subject (i.e., each ‘‘document’’, in the pLSA language) finally lead to
the counting matrix C from which the pLSA model is learned.

In our experiments the data set consists of MRI data of 30
healthy and 30 schizophrenic subjects.1 The visual features were
extracted using the so-called heat kernel signature (HKS) [32],

http://simbad-fp7.eu/
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which is able to encode simultaneously the contribution of local
features for a fixed set of scales into a single shape descriptor [33].
The dictionary of words was obtained by quantizing all the
features into 100 bins.

5.1.2. Renal cancer classification via tissue microarray

In the second application, the aim is to analyze tissue micro-
array (TMA) images in order to identify whether a given renal cell
nucleus is malignant or benign. For this purpose, TMA are
obtained and the images are normalized and segmented for
nuclei; finally the true labels are assigned by a pool of patholo-
gists (see Fig. 2). To build the ‘‘visual words’’, features are
extracted from the segmented nuclei (as in [34]) and then
quantized into 168 bins. In particular, we used the pyramid

histograms of oriented gradients (PHOG, see [35] for details)
computed over a 2-level pyramid of patches.

In our experiments, we use a set of three patients (more details
can be found in [34]) from which 474 nuclei (i.e., ‘‘documents’’, in
pLSA terms) were segmented; 321 (67%) benign and 153 (33%)
malignant.

5.1.3. Colon cancer classification from gene expression microarray

data

In the third application, the goal is to analyze gene expression
microarray data in order to distinguish between healthy people
and people affected by colon cancer. The starting point is a
microarray gene expression matrix, where the element at position
(i, j) represents the expression level of the ith gene in the jth
subject/sample. Topic models (of which pLSA is an instance) have
been recently and successfully applied in this context (see, e.g.,
[24,36]). Actually, it is possible to establish an analogy between a
word-document pair and a gene-sample pair; it seems reasonable
to interpret samples as documents and genes as words. In this
way, the gene expression levels in a sample may interpreted as
the word counts in a document. Consequently, we can simply take
a gene expression matrix and (of course, after a preprocessing
step, for example, to remove possibly negative numbers [24])
interpret it as a count matrix C from which a pLSA model can be
estimated.
Table 1
Summary of the applications and the corresponding numbers of ‘‘words’’ and

‘‘documents’’.

Problem # Classes # Documents # Words

Brain MRI classification 2 60 100

Renal cancer classification 2 474 168

Colon cancer classification 2 62 500

Fig. 1. Two MRI slices. Left: 3D morphological im
The experiments were carried out on the dataset from [37],
which is composed of 40 colon tumor cases and 22 normal colon
tissue samples, each characterized by the expression level of 2000
genes. As is common in gene expression microarray data analysis,
a beneficial effect may be obtained by selecting a sub-group of
genes, using prior knowledge that genes varying little across
samples are less likely to be informative. Hence, we decided to
perform the experiments by retaining the top 500 genes ranked
by decreasing variance, as in [36].

5.2. Results and discussion

In this section, the obtained results are displayed. In order to
highlight the different specific aspects of proposed experimental
evaluation, the obtained results are organized in different tables:
1.
ag
In Table 2 the performances of the different IT kernels on the
different generative embeddings are displayed. This represents
the proposed approach, the table showing the performances of
the different variants (different IT kernels, different generative
embeddings).
2.
 In Table 3 we compare the performances of the IT kernels with
respect to the standard kernels on the different generative
embeddings. In particular we compared the best IT kernel (as
obtained from the previous tables) with RBF and linear kernels.
For every entry, we show the best classifier result (among NN
and SVM). The s parameter of RBF kernels has been adjusted
by 5-fold cross-validation on the training set. This table aims
at showing the contribution of the IT kernels in the proposed
hybrid approach.
3.
 In Table 4 we compare the performances of the IT kernels on
the generative embeddings with the same IT kernels in the
original spaces. In particular we show best GE result for every
IT kernel. This table aims at showing the contribution of the
generative embedding step in the proposed hybrid approach.
4.
 Finally, in Table 5 we extract a summary of all methods: we
displayed results obtained on the original space with standard
kernels (linear and RBF kernels), on original space with IT
kernels, on generative embedding space with standard kernels,
and on generative embedding spaces with IT kernels. For every
configuration we displayed the best result.

In all tables, ‘‘lin’’, ‘‘RBF’’, ‘‘JS’’, ‘‘JT’’, ‘‘WJT’’ represent the different
kernels: linear, RBF, Jensen–Shannon, Jensen–Tsallis, and Weighted
Jensen Tsallis, respectively, as described in Section 3. ‘‘NN’’ and
‘‘SVM’’ are the nearest neighbor and SVM classifiers, respectively.
Finally, the acronyms of the generative embeddings follow the
notation described in Section 2.2: ‘‘MT-2’’ is the mixture topics
embedding for a single pLSA, ‘‘MT-1’’ is the posterior topic mixture
ing. Right: diffusion weighting imaging.



Fig. 2. Top: one quadrant (1500�1500 pixels) of a TMA spot image. Bottom: a

pathologist exhaustively labeled all cell nuclei and classified them into malignant

(black) and benign (red). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)

Table 2
Accuracy rates of the different IT kernels over the different generative embeddings

for the three applications (see the main text for details): (a) the brain MRI,

(b) renal cancer, (c) colon cancer.

Embedding JS–NN JS–SVM JT–NN JT–SVM WJT–NN WJT–SVM

(a)

TPM-1 0.542 0.596 0.503 0.627 0.584 0.643

TPM-2 0.589 0.689 0.543 0.658 0.631 0.702

FESS-1 0.569 0.500 0.500 0.369 0.584 0.500

FESS-2 0.627 0.600 0.500 0.674 0.601 0.720

LLR 0.588 0.616 0.500 0.638 0.614 0.636

FSH 0.584 0.702 0.553 0.673 0.619 0.699

TOP 0.519 0.500 0.500 0.500 0.500 0.500

PD 0.748 0.500 0.627 0.806 0.726 0.808

(b)

TPM-1 0.648 0.742 0.612 0.741 0.632 0.742

TPM-2 0.660 0.742 0.595 0.733 0.625 0.743

FESS-1 0.643 0.706 0.619 0.688 0.630 0.702

FESS-2 0.653 0.736 0.609 0.743 0.625 0.744

LLR 0.640 0.765 0.577 0.765 0.607 0.763

FSH 0.660 0.760 0.581 0.745 0.611 0.754

TOP 0.632 0.684 0.616 0.686 0.620 0.687

PD 0.987 0.986 0.425 0.984 0.652 0.986

(c)

TPM-1 0.775 0.816 0.739 0.861 0.768 0.857

TPM-2 0.774 0.862 0.772 0.868 0.800 0.878

FESS-1 0.711 0.675 0.683 0.635 0.700 0.670

FESS-2 0.744 0.822 0.717 0.826 0.726 0.830

LLR 0.713 0.778 0.676 0.755 0.688 0.774

FSH 0.777 0.862 0.773 0.856 0.800 0.875

TOP 0.705 0.669 0.672 0.676 0.692 0.674

PD 0.814 0.863 0.743 0.862 0.859 0.863

Table 3
Accuracy rates of different kernels over the different generative embeddings for

the three applications.

GE Brain MRI Renal cancer Colon cancer

Lin RBF IT Lin RBF IT Lin RBF IT

TPM-1 0.516 0.677 0.643 0.690 0.718 0.742 0.732 0.645 0.861

TPM-2 0.686 0.673 0.702 0.735 0.750 0.743 0.842 0.832 0.878

FESS-1 0.561 0.690 0.584 0.709 0.742 0.706 0.720 0.762 0.711

FESS-2 0.629 0.693 0.720 0.737 0.744 0.744 0.829 0.835 0.830

LLR 0.573 0.692 0.638 0.713 0.755 0.765 0.722 0.692 0.778

FSH 0.618 0.696 0.702 0.740 0.762 0.760 0.852 0.827 0.875

TOP 0.519 0.639 0.519 0.694 0.691 0.687 0.704 0.632 0.705

PD 0.752 0.702 0.808 0.976 0.825 0.987 0.814 0.842 0.863

Table 4
Accuracy rates of the different IT kernels over generative embedding and the

original space for the three applications.

Method Brain Renal cancer Colon cancer

Orig GE Orig GE Orig GE

JS–NN 0.602 0.748 0.640 0.987 0.758 0.814

JS–SVM 0.743 0.702 0.742 0.986 0.769 0.863

JT–NN 0.503 0.627 0.627 0.619 0.660 0.773

JT–SVM 0.706 0.806 0.736 0.984 0.842 0.868

WJT–NN 0.500 0.726 0.607 0.652 0.659 0.859

WJT–SVM 0.738 0.808 0.734 0.986 0.816 0.878
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with one pLSA per class, ‘‘FESS-2’’ is the free energy score space for a
single pLSA, while ‘‘FESS-1’’ is the FESS using one pLSA per class,
‘‘LLR’’ is the log-likelihood ratio embedding, ‘‘FS’’ is the Fisher space,
‘‘TOP’’ refers to the TOP kernel, and ‘‘PD’’ is the posterior divergence
embedding. Finally, ‘‘Orig’’ refers to the original space (namely the
space without applying the generative embedding).

The results in the tables suggest the following observations:
�
 From Table 3 we can observe that, in many cases, the use of IT
kernels with generative embeddings is moderately better than
standard kernels over the same embeddings; the difference is
quite clear in some cases. In particular, the main improvement is
obtained in the application where the dictionary is large (e.g.
colon cancer, which has 500 words). Actually this is reasonable,
these kernels have been introduced in the linguistic scenarios
[13], where the dictionary dimension is typically rather large.

�
 It is clear from the same table that the best generative embedding

is the very recent posterior divergence (PD), which is outperformed
only in few cases by other embeddings. This is confirmed over all
applications. From a theoretical point of view, we observe this



Table 5
Summary of all possible variants for the three applications.

Task OrigþStdK GEþStdK OrigþITK GEþITK

Brain 0.770 0.752 0.743 0.808

Renal cancer 0.776 0.976 0.742 0.987

Colon cancer 0.829 0.852 0.842 0.878

Table 6
Summary of the best results and comparison with state-of-the-art methods.

Method/reference Protocol Accuracy

Brain MRI classification

GEþ ITK Hold out 0.808

[33] Leave one out 0.833

[38] Leave one out 0.883

Renal cancer classification on TMA images

GEþ ITK Hold out 0.987

[39] 10-fold CV 0.797

Colon cancer classification with gene expression microarray data

GEþ ITK Hold out 0.878

[40] 10-fold CV 0.888

[41] Leave one out 0.887

[42] Leave one out 0.935

[43] 0.7/0.3 CV 0.873
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generative embedding descriptor is very rich: like other score
spaces (FS, FESS) it takes into account how well a sample fits the
model and, like FESS, how uncertain the fitting is. Moreover it also
assesses the change in model parameters brought on by the input
sample, i.e. how much a sample affects the model. These three
measures are not simply stacked together, but they are derived
from the incremental EM algorithm which, in the E-step only
looks at one or few selected samples to update the model in each
iteration. Moreover, from the specific application scenarios, we
tried to analyze this very appealing behavior by looking at the
averaged dimensionality of the generative embedding spaces.
There are 5 embeddings for which the average dimensionality is
less than 100, for other three is more than 5000. PD has an
average dimensionality of 1000, so possibly representing a good
compromise between expressiveness and curse of dimensionality.
Another point is that PD may slightly prefer pLSA. Actually, also in
[19], the most remarkable improvement obtained with PD over
other 3 embeddings (given a proper choice of the number of
topics) was obtained with pLSA as generative model.

�
 From Table 4 we can observe that the use of a generative

embedding is almost always beneficial with respect to the original
space, when using IT kernels. In the Renal Cancer classification
task the improvement is really impressive, going from a max-
imum performance in the original space of 0.742 to 0.987. This
suggests that a generative embedding approach is really suited
when the number of documents is high, so that the generative
model can be adequately trained. (Renal cancer has 474 docu-
ments compared with 60 and 62 for the other two applications.)

�
 From Table 2 it seems that there is no significant difference

among the various IT kernels, even if it may be argued that the
weighted Jensen–Tsallis seems to have a slight advantage over the
others.

�
 From the same table, it may be seen that there is not a huge

difference between the performances of the SVM and the NN,
which confirms the goodness of the devised similarity measures.

�
 In Table 5 it can be seen that the generative embedding plus IT

kernels seems to be the best scheme in all the three applica-
tions, confirming the intuition that selecting a proper similar-
ity measure in the generative embedding space may improve
even more the performances.
�
 A summary of the best combination over the different schemes,
together with some state-of-the-art results, is reported in
Table 6. Even if the other results are obtained through a different
protocol, it is evident that the proposed approach is in line with
the results reported in the literature.

�
 A final observation is related to the behavior of the parameter

q of the Jensen–Tsallis and the Weighted Jensen Tsallis kernels,
which has been computed via cross-validation on the training
set in all experiments. What we noticed is that the chosen q

was almost always less than 1, which is in line with the results
obtained in [13]. Although we do not have, at this moment, a
formal justification for this fact, it may be due to the following
behavior of the JT (and WJT) kernels. For qo1, the maximizer
of kJT

q ðp,vÞ (or of kB
q ðp,vÞ) with respect to p is not v, but another

distribution closer to uniform. This is not the case for the
Jensen–Shannon kernel kJS, which coincides with kJT

1 , for which
the minimizer of kJS

ðp,vÞ with respect to p is precisely v. This
behavior of kJT

q plays the role of a regularizer (favoring uniform
distributions) on the multinomial.

6. Conclusions

In this paper, we have proposed to combine several generative
embeddings (some of which very recently proposed) with infor-
mation theoretical kernels, to obtain a new class of hybrid
generative/discriminative methods to learning classifiers from
data. The generative embeddings here considered are based on
pLSA (probabilistic latent semantic analysis) modelling of the
data, whereas the information theoretic kernels are based on a
non-extensive version of information theory. We have tested the
proposed approach on three medical classification problems; the
reported experimental results are competitive with other state-
of-the-art methods, showing that the proposed approach is
promising and deserves further development.
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