
Improving
Resiliency of
Distributed
Applications
Using a
Validation &
Verification
Platform

For enterprises, having a
platform and tooling for applying
chaos, or inducing disruptions
to validate and verify distributed
applications, is an effective way
for avoiding breaches of SLAs
and ensuring robust uptime.

Cognizant 20-20 Insights | September 2017

COGNIZANT 20-20 INSIGHTS

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 2

Executive Summary

In current times, many modern applications are

distributed in nature. It is commonplace to see

various software components of the application –

e.g., user interface, integration, data storage and

application services – deployed in multiple physical

servers/virtual machines/containers. These repos-

itories are often available in the cloud, including

public, private or a hybrid connection to the enter-

prise data center.

Architects can pick and choose from the com-

pute units, storage units and other platform

services into deployment architecture to run

applications. However, applications deployed

in such distributed environments that main-

tain SLAs become an architectural challenge.

Actually, the following assumptions may not be

applicable, leading to a breach of SLAs in the

production environment:

• The network is reliable and secure.

• Latency is nil.

• The network is homogeneous.

• Network bandwidth is infinite.

• Cloud infrastructure is 100% available.

Ensuring the application is available and is resil-

ient in the face of events – such as a failure in

compute and dependent services – requires

efforts that are different and more involved

than the traditional ones required for private

data centers. In a way, the distributed-environ-

ment issues mentioned above are considered

the new “normal.” Hence, dealing with these

issues entails deployment planning, design

effort, platform support and validating the

application’s behavior during various events.

For example, the application may provide a

product list from its cache when the product

database is unavailable for some reason.

One very effective approach is to enlist the

help of a validation and verification system

(sometimes popularly termed a “chaos plat-

form”). Such a system allows architects (with

knowledge of the application architecture and

deployment environment) to create plans to

stress and disrupt application components and

carefully monitor system behaviors.

The enterprise application on which validation is

to be performed can be termed the “victim appli-

cation” (see Figure 1); such an application may

have multiple components and services, where

executing such validation is important. The

Validation Platform Overview

Victim Application

V
al

id
at

in
g

A
ge

nt
s

Trust Boundary

Components

Validation Platform
(Schedules,

Dashboards,
Hypotheses, etc.)

Figure 1

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 3

application may be deployed in any data center,

including the cloud. In a secured enterprise envi-

ronment, the validation platform can deploy

agents within trusted boundaries, accept com-

mands from the platform and send statistics to it.

A validation and verification system can typically

consider the following elements:

• Understanding the SLAs expected from the

victim application (see Figure 2).

• Formulating a hypothesis that automatically

puts stress on various system components.

• Executing the plans on the selected deploy-

ment environment (e.g., production, staging,

QA, etc.).

• Carefully monitoring the results of the exe-

cution and using the knowledge to improve

the deployment architecture and, if required,

recalibrating the SLAs.

This white paper elaborates the challenges in

validating a typical distributed deployment archi-

tecture and its enterprise context, and offers an

approach to mitigating such problems by using a

platform to institutionalize the process.

Steps in Verification & Validation Process

Hypothesis to Validate Resilience

Analysis of the System Behavior

Deployment Architecture

Service Level Agreements Environment Selection & Setup

Improvements

Execution

Branch Office

Data Center

DMZ

BIG-IP
Local Traffic

Manager
Virtual Edition

Local Mode
Desktop

Zero Client

Active
Directory

Internet

BIG-IP
Local Traffic Manager
+ Access Policy Manager

BIG-IP
Global Traffic

Manager

VMware
View Pod 1

VMware
View Pod 2

View

VSphere

View

VSphere

VDI VDI VDI

VDI VDI VDI VDI VDI VDI

VDI VDI VDI

DTLS

D
T

L
S

Security Server

Connecting Server Connecting Server

BIG-IP
Edge
Chart

Figure 2

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 4

FACTORS ADVERSELY IMPACT-
ING APPLICATION AVAILABILITY

Because failure cannot be avoided in the case of

distributed applications, such applications should

be prepared to handle and survive failure situa-

tions. In other words, these applications should

become more resilient
1
 to failure. The applica-

tions should be designed and verified to be able

to handle unexpected situations without the

user’s knowledge or with a graceful degradation

of service. To do that, the focus should be on min-

imizing the mean time to repair (MTTR).
2
 Some

of the events that can lead to compromised avail-

ability and reliability include the following:

• Server overload: A local overload in one

cluster may lead to its servers crashing; in

response, the load balancing controller sends

requests to other clusters, thereby overload-

ing their servers and leading to a service-wide

overload failure.

• Resource hogging: Running out of a resource

can result in higher latency, elevated error

rates or the substitution of lower-quality/

stale results. Depending on what server

resource becomes exhausted and how the

server is built, resource exhaustion can

render the server less efficient or cause it to

crash, prompting the load balancer to distrib-

ute the resource problems to other servers.

When this happens, the rate of successfully

handled requests can drop and possibly send

the cluster/service into a cascaded failure

state. Some reasons for this happening are

as follows:

 » CPU: Thread starvation, long queue, too

many in-flight requests, timeouts at client.

 » Memory: Increased rate of garbage col-

lection, cache miss, too many in-flight

requests.

 » Threads: Too many, frequent switches,

starvation.

 » File descriptors: Running out of file

descriptors.

 » Disk capacity: Exceeding the limit.

• Cascading failures: Resource exhaustion

can lead to server crashes. Once a couple

of servers crash on overload, the load on

the remaining servers increases, causing

them to crash as well. The problem tends

to snowball, and soon all the servers begin

to crash It is often difficult to escape this

scenario because as soon as servers come

back online they are bombarded with an

extremely high rate of requests and fail

almost immediately.

• Network unavailability or unacceptable

latency, leading to SLA breach of the con-

nected elements.

Because failure cannot be avoided in the case
of distributed applications, such applications
should be prepared to handle and survive
failure situations. In other words, these
applications should become more resilient.

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 5

• Dependency on third-party services, leading

to either unavailability of dependent services

or serving data of degraded quality.

• Data center availability: It is not rare for a

data center belonging to a region to go off in

the cloud. In that scenario, the services can

be unavailable, jeopardizing the entire appli-

cation’s availability.

• Microservices: In applications based on micro-

service architecture, there are hundreds of

interconnected microservices, often developed

using different technology stacks. Having a

number of different components in the system

requires different approaches to keep it up and

running, compared to a monolith.

CHAIN IS WEAKER THAN THE
WEAKEST LINK

As mentioned above, improving application

availability and reliability is often about striking

the right balance between component design

and the utilization of the underlying platform/

infrastructural capabilities. Popular design pat-

terns – e.g., transient fault handling and circuit

breakers – along with platform capabilities pro-

vided by popular cloud vendors such as AWS,

Azure, Bluemix, etc. can be utilized to improve

application availability.
3

Here are some representative examples:

• Durable queues and asynchronous communi-

cations result in applications that are loosely

coupled, thereby raising the chances that one

failure will not result in cascaded failures.

• Availability sets ensure that should a planned

or unplanned maintenance event or failure

occur, at least one VM instance will be avail-

able for use.

• By placing all “web tier” applications into a

single availability set, it becomes straightfor-

ward to reboot or upgrade the entire tier at

one time.

• Workloads can be placed on geographically

separate data centers, and advanced routing

mechanisms – e.g., Azure Traffic Manager or

AWS Route 53 – can be used to switch oper-

ations from the primary data center to the

backup in the event of a catastrophic failure

in the primary center.

Improving application availability
and reliability is often about
striking the right balance
between component design and
the utilization of the underlying
platform/infrastructural capabilities.

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 6

No single component can guarantee 100%

uptime (and even the most expensive hardware

eventually fails), which leads to the conclusion

that applications have to be architected in such

a way that individual components can fail with-

out affecting the availability of the entire system.

Implementation of such applications will demand

adhering to some best practices, such as isolation

(isolating parts of the system, bulkhead imple-

mentation), stateless (avoiding storing states),

idempotency (loose coupling between partic-

ipating components), self-containment (loose

coupling between deployment units), circuit

breakers (isolating dysfunctional downstream

systems), avoiding single points of failure, etc. In

effect, overall applications have to be stronger

than the weakest links.

VERIFICATION & VALIDATION:
BACKGROUND

As we can see, it is important to constantly and

continuously validate whether a distributed

application is really able to withstand and recover

from various types of failures in its running envi-

ronment. A proven approach toward this is to

apply principles of chaos engineering, which has

already been done by organizations like Netflix.
4

Netflix has successfully applied advanced princi-

ples of chaos to constantly verify the resilience

of its applications in a production environment,

and it has been successful in running web-scale

enterprise applications.

The principles of chaos engineering, when applied

on a distributed application, are as follows:

• Build a hypothesis around steady state behav-

ior.

• Simulate real-world events.

• Run experiments in production/staging/QA,

etc.

• Apply automated tool-based failure simu-

lation, which involves randomness and all

possible combinations of failure such as CPU

utilization nearing 100% along with network

loss, or memory utilization nearing 100% with

disk full, or some components of the target

application not being available.

• Automate experiments to run continuously:

Preferably, putting such validations in the

DevOps pipeline followed by strong monitor-

ing and metrics collection of the application

under chaos, so that a quick restoration

from an undesired state can be triggered if

required.

Enterprise Context

Netflix’s scale and its velocity of releasing new

features, its presence and its global distribution

pose unique problems that led to the creation of

the Chaos Monkey tool. However, this concept is

equally applicable to the enterprise. Elements

that are unique to enterprises are:

• Controlled environment: Enterprise IT ser-

vices want to minimize the number of support

scenarios that are intermittent or difficult

to trace. They would like to identify system

vulnerabilities early on to take corrective

No single component can guarantee 100%
uptime (and even the most expensive
hardware eventually fails), which leads to
the conclusion that applications have to be
architected in such a way that individual
components can fail without affecting the
availability of the entire system.

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 7

measures. They also want to be able to control

when and how many instances, and on which

environments, the verification and validation

for availability need to run. The metrics col-

lected from the execution should be reported,

or in some cases fed to the monitoring system

– e.g., System Center Operations Manager,

Kibana, AppDynamics, etc.

• Repeatability: Enterprise IT would like to

carefully plan the execution of chaos, and

schedule it specifically to include/exclude

enterprise workload schedules (e.g., not run-

ning chaos during data-feed time windows),

execute it over and over again, and possibly

integrate with their DevOps pipeline. They

also want to configure the plan when new

services or instances get added to the appli-

cation’s current deployment topology.

• Secured: Enterprise IT wants to administer

which instances/services are chosen for chaos

execution and the credentials/keys used to

run the execution. They will need to isolate

the instances that have exclusive access to

the victim application to execute chaos. Most

important, they will want to store the key files

required to access the instances in their own

safe custody.

• Customizable and extensible: Changing

business needs may prompt an enterprise

to introduce new dependencies such as in

deployment. They may prompt the enter-

prise to completely shift to AWS cloud from

the data center, shift some select work-

loads to cloud, introduce Linux or Windows

instances, etc. In cloud, the enterprise may

want to target chaos execution on IaaS or

PaaS. Modern PaaS offerings from providers

such as Azure provide system development

kits (SDKs) specifically for this purpose. The

enterprise might want to apply validation and

verification encompassing all these scenarios.

• Coverage: Enterprises that own the appli-

cations will want to execute chaos in an

orchestrated, planned way – rather than exe-

cute random chaos – on components that are

aware of application flows, and tune/repeat

the process to ensure coverage of the most

vulnerable components.

Enterprises can target a platform
with the capability to create
hypotheses, import scripts and
components, and verify credentials –
and then use them to create
schedules to automate the resiliency
check.

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 8

VERIFICATION & VALIDATION:
A PROPOSED METHOD

Encompassing the concepts of the preceding

sections, enterprises can target a platform with

the capability to create hypotheses, import

scripts and components, and verify creden-

tials – and then use them to create schedules to

automate the resiliency check. It can also aug-

ment the existing release management to ensure

resiliency of the deployed application. Hypothe-

sis formulation is a key activity in this proposed

solution.
5
 The core building blocks around such

platforms could be as shown in Figure 3.

The elements of a validation platform can be put

together as follows:

• A web interface can be used to set up the

hypothesis that is stored as metadata; it also

contains schedules, credentials and scope

data.

Participating Elements of Verification & Validation Platform

Elements Details

VALIDATION PLATFORM

Dashboard A dashboard to monitor and control the execution of the hy-
pothesis by communicating with the appliance/agent.

Hypothesis & Topology Designer Topology builder workbench that lets a designer create an
application topology visually that represents the victim appli-
cation, design the chaos plan and select target instances end
points to execute chaos. It offers a set of plans consisting of
target instances, scripts, schedules and credentials that are ap-
plied to instances and services to cause planned and controlled
disruptions to measure application behavior.

Topology Metadata The data store to hold metadata (e.g., JSON) created by the
Hypothesis Builder workbench.

Agent/Appliance A set of agents that act as a conduit between the victim appli-
cation instances and controller services that initiate chaos via
orchestrator and scripts.

Controller Set of APIs that takes command and returns results to the
dashboard by communicating with the agent/appliance, and can
also be used in “headless” mode devoid of any UI.

MONITORING SOLUTION • Not part of the platform, but any monitoring tool such as

AppDynamics, DynaTrace, Kibana, Nagios or provider-spe-

cific CloudWatch. These can be used to monitor the statistics

of events while chaos is applied.

• Custom scripts that can collect data from instances and var-

ious logs to give a clear picture about the details of failures

in validations, if any.

VICTIM APPLICATION LOB application where chaos is applied. This will typically be in-
stances, service end points in a data center or cloud platforms
such as AWS Azure.

LOAD GENERATOR Standard load generating tools like Visual Studio Test Manager
or LoadRunner that execute recorded test scenarios.

Figure 3

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 9

• An appliance sits at the deployment environ-

ment responsible for orchestrating validation

scripts; it also communicates with the control-

ler for reporting.

• The appliances/agents are secured with key

files and SSH for IaaS, user credentials for

PaaS.

• Controller acts as a channel for executing

commands and metrics collection.

The validations can run multiple iterations to find

faults and cluster for the specified period of time.

A scenario fails when the platform hits a single

failure in cluster validation. As an example, con-

sider a hypothesis that is set to run for one hour

with three concurrent faults. The test will induce

three faults and then validate the cluster health.

The test will iterate through the previous step

till the cluster becomes unhealthy or one hour

passes. If the cluster becomes unhealthy in any

iteration – i.e., it does not stabilize within a con-

figured time – the test will fail. This indicates that

something has gone wrong and needs further

investigation.

BENEFITS OF AUTOMATED
RESILIENCY VALIDATION

Detecting the breach of SLAs in any environment,

including production, is always a tricky affair and

can lead to wasted hours and end-user dissatis-

faction. We recommend a resilience validation

platform based on the principles described in

this paper. Such a platform has the advantages

of being applied to many application topologies

in the enterprise, using reusable hypotheses

that can be run over and over again based on

the enterprise workload. The platform is suitable

for enterprise scenarios with a focus on security.

The enterprise will have options to use its own

monitoring tool and custom scripts to track the

impact of hypothesis execution. The platform can

have its own AppStore capability from where the

agents to be deployed to enterprise instances

can be downloaded. The greatest benefit of this

could be utilizing the insights retrieved from the

execution into making better resilient architec-

ture that adheres to SLAs.

Cognizant 20-20 Insights

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 10

FOOTNOTES

1 Application resiliency means the power to return to the original state after deviations, due to some influencing factors; these

factors ultimately lead to application availability and reliability. Reliability means the application is able to serve end users or

systems, with acceptable SLAs.

2 Availability (A) = MTBF / (MTBF + MTTR), A = Ax . Ay when components are connected in series, A = 1 – (1 – Ax)2 when compo-

nents are connected in parallel.

3 Azure compute service comes with a 99.95% SLA; Azure SQL Database has a 99.9% SLA; and Azure Storage has a 99.90%

SLA. Without any additional work, your application is by default guaranteed no more than 108 minutes of downtime in a

month (out of 43,200 minutes).

4 Netflix pioneered the concept of Chaos Monkey, a tool that randomly disables production instances to make sure the appli-

cation can survive this common type of failure without any customer impact. Chaos Monkey is best run in the middle of a

business day, in a carefully monitored environment with engineers standing by to address any problems.

5 An example of the hypothesis could be: “To establish that overall workload is handled in the system with X% success with

Y% degradation (e.g., only 50% of read operations returns HTTP 200 OK with less than 7 secs.) despite the database engine

process, and then the web server process in the application server is killed.”

REFERENCES

• http://techblog.netflix.com/2014/09/introducing-chaos-engineering.html

• http://techcrunch.com/2012/07/30/netflix-open-sources-chaos-monkey-a-tool-designed-to-cause-failure-so-you-can-make-a-

stronger-cloud/

• http://www.ibm.com/developerworks/library/a-devops4/

• https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-controlled-chaos

http://techblog.netflix.com/2014/09/introducing-chaos-engineering.html
http://techcrunch.com/2012/07/30/netflix-open-sources-chaos-monkey-a-tool-designed-to-cause-failure-
http://techcrunch.com/2012/07/30/netflix-open-sources-chaos-monkey-a-tool-designed-to-cause-failure-
http://www.ibm.com/developerworks/library/a-devops4/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-controlled-chaos

Cognizant 20-20 Insights

Improving Resiliency of Distributed Applications Using a Validation & Verification Platform | 11

Sandip
Bandyopadhyay
Principal Architect, Cognizant
Technology Solutions

Moinak
Bhattacharya
Chief Architect, Cognizant
Technology Solutions

Sandip Bandyopadhyay is a Principal Architect within Cognizant Technology Solutions,

with more than 18 years of experience implementing applications in Java, AWS and

various open source platforms such as node.js. Currently, he leads a team focusing on

tools and assets development around microservices. Sandip holds a master’s degree

in physics from Calcutta University. He can be reached at Sandip.Bandyopadhyay@

cognizant.com | LinkedIn: www.linkedin.com/in/sandip-bandyopadhyay-880971/.

Moinak Bhattacharya is a Chief Architect within Cognizant Technology Solutions, with

over 19 years of experience implementing applications and platforms in .net-based

technologies, AWS, Azure and various open source environments around javascript.

Currently, he leads a team focusing on tools and assets development around SaaS,

microservices and cloud. Moinak holds a master’s degree in computer applications

from NIT Rourkela. He can be reached at Moinak.Bhattacharya@cognizant.com |

LinkedIn: www.linkedin.com/in/moinak-bhattacharya-17730588/.

ABOUT THE AUTHORS

mailto:Sandip.Bandyopadhyay%40cognizant.com?subject=
mailto:Sandip.Bandyopadhyay%40cognizant.com?subject=
https://www.linkedin.com/in/sandip-bandyopadhyay-880971/
mailto:Moinak.Bhattacharya%40cognizant.com?subject=
https://www.linkedin.com/in/moinak-bhattacharya-17730588/

World Headquarters

500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277

European Headquarters

1 Kingdom Street
Paddington Central
London W2 6BD England
Phone: +44 (0) 20 7297 7600
Fax: +44 (0) 20 7121 0102

India Operations Headquarters

#5/535 Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060

© Copyright 2017, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic, mechanical,
photocopying, recording, or otherwise, without the express written permission from Cognizant. The information contained herein is subject to change without notice. All other trademarks
mentioned herein are the property of their respective owners.

TL Codex 2743

ABOUT COGNIZANT

Cognizant (NASDAQ-100: CTSH) is one of the world’s leading professional services companies, transforming clients’ business, operating and
technology models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innova-
tive and efficient businesses. Headquartered in the U.S., Cognizant is ranked 205 on the Fortune 500 and is consistently listed among the
most admired companies in the world. Learn how Cognizant helps clients lead with digital at www.cognizant.com or follow us @Cognizant.

http://www.cognizant.com
https://twitter.com/Cognizant

