
CIS 121: Data Structures
and Algorithms

Course Lecture Notes

Steven Bursztyn, Rajiv Gandhi, and John Geyer ∗

Draft of: August 31, 2021

University of Pennsylvania

∗ see acknowledgments on next page

Goal

There is no one book that covers everything that we want to cover in CIS 121. The goal of these notes is for
students to find all course lecture material in one place, and in one uniform format.

Acknowledgments

These lecture notes were compiled by Steven Bursztyn, Rajiv Gandhi, and John Geyer for CIS 121 at the
University of Pennsylvania during the Spring 2019 and Spring 2020 semesters.

These lecture notes are a work in progress, and we appreciate the students and TAs who have helped make
small edits.

Some chapters include attributions to other courses or textbooks from which we adapted our lecture notes,
with some parts copied directly.

We also gratefully acknowledge the many others who made their course materials freely available online.

Disclaimer

These notes are designed to be a supplement to the lecture. They may or may not cover all the material
discussed in the lecture (and vice versa).

Material varies from semester to semester, and this book may contain more information than what will be
covered in lecture (i.e., material you may not be responsible for knowing). Please refer to the course website
for assigned readings.

Errata

If you find any mistakes, please email the professor(s) and Head TAs so we can fix them.

Feedback

If you believe a certain topic is explained poorly, or could use additional examples or explanations, please
reach out to the course staff. As mentioned, this is a work in progress and we would love to do what we can to
make this resource as helpful as possible.

Table of Contents

Table of Contents iii

1 Review of Terms, Proofs, and Probability 1
1.1 Review of Proofs and Proof Techniques . 1

Induction . 2
1.2 Graphs . 3

Trees . 4
Eulerian and Hamiltonian Graphs . 5

1.3 Probability . 6
1.4 Linearity of Expectation . 8
1.5 Probability Distributions . 9

The Geometric Distribution . 10
Binomial Distributions . 11
Examples . 13

2 Gale-Shapley Stable Matching 15
2.1 Background and Intuition . 15
2.2 Formulating the Problem . 15
2.3 Examples . 17
2.4 Designing an Algorithm . 18
2.5 Runtime of the GS Algorithm . 19
2.6 Correctness of the GS Algorithm . 19
2.7 Extensions . 21

3 Greatest Common Divisor 24
3.1 Definitions . 24
3.2 Calculating the GCD . 24
3.3 Correctness of Euclid’s Algorithm . 26
3.4 Runtime of Euclid’s Algorithm . 27

4 Insertion Sort 29
4.1 Insertion Sort . 29
4.2 Correctness of Insertion Sort . 30
4.3 Running Time of Insertion Sort . 30

5 Running Time and Growth Functions 32
5.1 Measuring Running Time of Algorithms . 32
5.2 RAM Model of Computation . 32
5.3 Average Case and Worst Case . 32

5.4 Order of Growth . 33
Definitions of Asymptotic Notations – O,Ω,Θ, o, ω . 33

5.5 Properties of Asymptotic Growth Functions . 37

6 Analyzing Runtime of Code Snippets 38

7 Divide & Conquer and Recurrence Relations 41
7.1 Computing Powers of Two . 41
7.2 Linear Search and Binary Search . 43
7.3 MergeSort . 43
7.4 More Recurrence Practice . 46
7.5 Simplified Master Theorem . 48

8 Quicksort 49
8.1 Deterministic Quicksort . 49
8.2 Randomized Quicksort . 50

9 Counting Inversions 52
9.1 Introduction and Problem Description . 52
9.2 Designing an Algorithm . 53
9.3 Runtime . 55

10 Selection Problem 56
10.1 Introduction to Problem . 56
10.2 Selection in Worst-Case Linear Time . 56

11 Closest Pair 59
11.1 Closest Pair . 59
11.2 Divide and Conquer Algorithm . 60
11.3 Closest Pair Between the Sets . 61

12 Integer Multiplication 63
12.1 Introduction and Problem Statement . 63
12.2 Designing the Algorithm . 63
12.3 Runtime . 65

13 Stacks and Queues 66
13.1 The Stack ADT . 66
13.2 Queues . 69

14 Binary Heaps and Heapsort 70
14.1 Definitions and Implementation . 70
14.2 Maintaining the Heap Property . 71
14.3 Building a Heap . 72

Correctness . 73

Runtime . 73
14.4 Heapsort . 75
14.5 Priority Queues . 75

15 Huffman Coding 79
15.1 From Text to Bits . 79
15.2 Variable-Length Encoding Schemes . 79

Prefix Codes . 80
Optimal Prefix Codes . 80

15.3 Huffman Encoding . 81
Binary Trees and Prefix Codes . 81
Huffman’s Algorithm . 84
Designing the Algorithm . 85
Correctness of Huffman’s Algorithm . 86
Running Time . 87

15.4 Extensions . 88

16 Graph Traversals: BFS and DFS 90
16.1 Graphs and Graph Representations . 90

Graph Representations . 90
16.2 Connectivity . 91
16.3 Breadth-First Search (BFS) . 91

BFS Properties . 93
Runtime of BFS . 94

16.4 Depth-First Search (DFS) . 94
Runtime of DFS . 96
DFS Properties and Extensions . 97
Classifying Edges . 99

17 Application of BFS: Bipartiteness 101
17.1 Definitions and Properties . 101
17.2 Algorithm . 101
17.3 Analysis . 101

18 DAGs and Topological Sorting 103
18.1 DAGs . 103
18.2 Topological Sorting . 103
18.3 Kahn’s Algorithm . 104
18.4 Tarjan’s Algorithm . 106

19 Strongly Connected Components 107
19.1 Introduction and Definitions . 107
19.2 Kosaraju’s Algorithm . 109

Proof of Correctness . 109

20 Shortest Path 112
20.1 The Shortest Path Problem . 112
20.2 Dijkstra’s Algorithm . 112

Analyzing the Algorithm . 113
Implementation and Running Time . 115

20.3 Shortest Path in DAGs . 115

21 Minimum Spanning Trees 118
21.1 Introduction and Background . 118
21.2 MST Algorithms . 119

Prim’s Algorithm . 119
Kruskal’s Algorithm . 120
Reverse-Delete . 121

21.3 Correctness of Prim’s, Kruskal’s, and Reverse-Delete . 122
Prim’s Algorithm: Correctness . 124
Kruskal’s Algorithm: Correctness . 124
Reverse-Delete Algorithm: Correctness . 124

21.4 Eliminating the Assumption that All Edge Weights are Distinct 124

22 Union Find 126
22.1 Introduction . 126
22.2 Union by Rank . 126
22.3 Path Compression . 129

23 Hashing 132
23.1 Direct-Address Tables . 132
23.2 Hash Tables . 133

Collision Resolution by Chaining . 134
Analysis of Hashing with Chaining . 134

23.3 Hash Functions . 136
What makes a good hash function? . 136
Interpreting Keys as Natural Numbers . 136
The Division Method . 137
The Multiplication Method . 137

23.4 Open Addressing . 137
Linear Probing . 138
Quadratic Probing . 139
Double Hashing . 139
Analysis of Open-Address Hashing . 140

24 Tries 142
24.1 Introduction . 142
24.2 Standard Tries . 142
24.3 Compressed Tries . 144

24.4 Suffix Tries . 146
Saving Space . 147
Construction . 147
Using a Suffix Trie . 147

25 Balanced BSTs: AVL Trees 148
25.1 Review: Binary Search Tree . 148
25.2 Definition of an AVL Tree . 148
25.3 Update Operations: Insertion and Deletion . 150

Insertion . 150
Deletion . 153

Advanced Topics 155

26 Skip Lists 156
26.1 Skip Lists . 156
26.2 Analysis . 158

27 Bloom Filters 162
27.1 Bloom Filters . 162

28 Balanced BSTs: Red-Black Trees 164
28.1 Properties of Red-Black Trees . 164

29 Minimum Cut 166
29.1 The Minimum Cut Problem . 166
29.2 A Randomized Approach . 166
29.3 Probabilistic Analysis . 167

30 2-SAT 169
30.1 Introduction to the 2-SAT Problem . 169
30.2 Randomized 2-SAT Algorithm . 169
30.3 Probabilistic Analysis . 170

Appendix 173

A Common Running Times 174

Review of Terms, Proofs, and Probability 1
1.1 Review of Proofs and Proof Techniques

The unique factorization theorem states that every positive number can be uniquely represented as a product
of primes. More formally, it can be stated as follows.

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p1, p2, . . . , pk,
and positive integers e1, e2, . . . , ek such that

n = pe11 p
e2
2 p

e3
3 · · · pekk

and any other expression of n as a product of primes is identical to this except, perhaps, for the
order in which the factors are written.

Example. Prove that
√

2 is irrational using the unique factorization theorem.

Solution. Assume for the purpose of contradiction that
√

2 is rational. Then there are numbers a and b
(b 6= 0) such that √

2 =
a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2

Let S(m) be the sum of the number of times each prime factor occurs in the unique factorization of m. Note
that S(a2) and S(b2) is even. Why? Because the number of times that each prime factor appears in the prime
factorization of a2 and b2 is exactly twice the number of times that it appears in the prime factorization of a
and b. Then, S(2b2) must be odd. This is a contradiction as S(a2) is even and the prime factorization of a
positive integer is unique.

Example. Prove or disprove that the sum of two irrational numbers is irrational.

Solution. The above statement is false. Consider the two irrational numbers,
√

2 and −
√

2. Their sum is
0 = 0/1, a rational number.

Example. Show that there exist irrational numbers x and y such that xy is rational.

Solution. We know that
√

2 is an irrational number. Consider
√

2
√
2
.

Case I:
√

2
√
2
is rational.

In this case we are done by setting x = y =
√

2.

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 2

Case II:
√

2
√
2
is irrational.

In this case, let x =
√

2
√
2
and let y =

√
2. Then, xy =

(√
2
√
2
)√2

= (
√

2)2 = 2, which is an integer and

hence rational.

Induction

Induction is a proof technique that relies on the following logic: If I have a statement P (n) such that the
statement is true for n = 1, i.e. P (n) = true, and I know that whenever P (k) is true for any k ≥ 1, then
P (k + 1) is also true, then the statement must be true for all integers n ≥ 1. The typical intuitive examples of
induction are:

I Suppose I have a line of dominoes. If I know I can knock down the first domino, and I know that if the
k-th domino falls, it will knock over the k + 1-th domino, then all the dominoes will fall.

I Suppose I have a ladder. If I know that I can get on the ladder, and I know that for each step of the
ladder it is possible to get to the next step, then I can climb the whole ladder.

There are plenty of other examples. In general, an inductive proof of a claim P consists of proving that a
base case (BC) holds (usually P (0) or P (1)), making an induction hypothesis (IH) that assumes that
P (k) is true for some value k that is greater than or equal to the base case, and lastly an induction step
(IS) which uses the IH to prove that P (k + 1) holds. Please note that induction can only be used to prove
properties about integers–you can’t use induction to prove statements about real numbers.

Example. Prove via induction that
n∑
i=1

i = n(n+1)
2 .

Solution. We proceed via induction on n.

Base Case: The base case occurs when n = 1.
1∑
i=1

i = 1 and 1(1+1)
2 = 1, and so the claim holds in the base

case.

Induction Hypothesis: Assume that for some integer k ≥ 1 we have that
k∑
i=1

i = k(k+1)
2 .

Induction Step: We must show that
k+1∑
i=1

i = (k+1)(k+2)
2 . Indeed:

k+1∑
i=1

i = (k + 1) +

k∑
i=1

i

= (k + 1) +
k(k + 1)

2
(by the induction hypothesis)

=
2(k + 1)

2
+
k(k + 1)

2

=
2(k + 1) + k(k + 1)

2

=
(k + 1)(k + 2)

2

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 3

Note how we used the induction hypothesis in the induction step. If you find yourself doing a proof by
induction without invoking the induction hypothesis, you are probably doing it incorrectly (or induction is not
necessary).

Example. Prove using induction that, for any positive integer n, if x1, x2, . . . , xn are n distinct real numbers,
then no matter how the parenthesis are inserted into their product, the number of multiplications used to
compute the product is n− 1.

Solution. Let P (n) be the property that “If x1, x2, . . . , xn are n distinct real numbers, then no matter how
the parentheses are inserted into their product, the number of multiplications used to compute the product is
n− 1”.

Base Case: P (1) is true, since x1 is computed using 0 multiplications.

Induction Hypothesis: Assume that P (j) is true for all j such that 1 ≤ j ≤ k.

Induction Step: We want to prove P (k + 1). Consider the product of k + 1 distinct factors, x1, x2, . . . , xk+1.
When parentheses are inserted in order to compute the product of factors, some multiplication must be the final
one. Consider the two terms, of this final multiplication. Each one is a product of at most k factors. Suppose
the first and the second term in the final multiplication contain fk and sk factors. Clearly, 1 ≤ fk, sk ≤ k.
Thus, by induction hypothesis, the number of multiplications to obtain the first term of the final multiplication
is fk − 1 and the number of multiplications to obtain the second term of the final multiplication is sk − 1. It
follows that the number of multiplications to compute the product of x1, x2, . . . , xk, xk+1 is

(fk − 1) + (sk − 1) + 1 = fk + sk − 1 = k + 1− 1 = k

1.2 Graphs

A graph G = (V,E) is a set of vertices (also called nodes) V together with a set of edges E ⊆ V × V ,
where V × V denotes the cartesian product of V with itself. We denote an edge from u to v as (u, v). A graph
can be undirected, in which case we consider the edges (u, v) and (v, u) to be the same edge, or it can be
directed, in which case we distinguish (u, v) from (v, u). In CIS 121, we don’t worry about so-called “self-loops”,
i.e. edges of the form (v, v). The degree of a vertex v, denoted deg(v) is the number of edges incident on it
(for directed graphs, we distinguish between in-degree and out-degree).

A path from u to v is a sequence u = v0, v1, ..., vn = v such that (vi, vi+1) ∈ E for all 0 ≤ i < n. The
length of a path is the number of edges in the path. A simple path is a path containing distinct vertices,
i.e. for all i 6= j, vi 6= vj .

A cycle is a sequence u = v0, v1, ..., vn = u, essentially a path with the same start and end point. Graphs
that contain cycles are called cyclic while graphs that don’t contain cycles are called acyclic.

A connected graph is an undirected graph such that for any two vertices u and v, there is a path from u

to v. A strongly connected graph extends this definition to directed graphs: for any two vertices u and v,
there is a path from u to v and a path from v to u. A (strongly) connected component of a graph G is a
subgraph of G that is (strongly) connected and maximal, i.e., it is (strongly) connected and not contained in
any larger (strongly) connected component.

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 4

Trees

A tree is an undirected, connected acyclic graph. Some special defining properties of trees are given below:

I A tree with n nodes is connected and has exactly n− 1 edges
I For any vertices u and v in a tree T , there is a unique path from u to v
I Tree’s are minimially connected: that is, a tree T is connected, but the removal of any edge from T will

disconnect it
I A tree is acyclic, but adding any edge to the tree will create a cycle.

Any of the above can be used as the definition of a tree. A vertex with degree 1 is called a leaf. A forest is
an acyclic, undirected graph. A forest is just the union of one or more trees.

A binary tree is a tree such that every vertex has degree at most 3. Usually we consider the tree to be
rooted at some root vertex r. The height of a binary tree is the number of edges in the longest path from
the root node to a leaf. Also, instead of considering the neighbors of vertices in a binary tree, we normally
call them the left/right children. The ancestors, descendants, and parents of nodes in a binary tree are
defined exactly how you think they should be.

Example. Prove that every graph G with n vertices and m edges has at least n−m connected components.

Solution. We prove the claim via induction on m.

Base Case: m = 0. When there are no edges in G, there are trivially n connected components—one for each
vertex.

Induction Hypothesis: Assume that for a given graph G with n vertices and k edges (where k is a non-negative
integer), there are at least n− k connected components.

Induction Step: Given a graph G with n vertices and k + 1 edges, we want to show that G has at least
n− (k + 1) connected components.

We first construct a subgraph of G with n vertices and k edges, G′, by removing an arbitrary but particular
edge {u, v}. By IH, G′ has at least n− k connected components. We then add back edge {u, v}, and consider
two cases with respect to our vertices u and v.

Case I: u and v belong to the same connected component in G′.
In this case, we find that adding back {u, v} does not alter the connected components in the graph, and thus
G has at least n− k > n− (k + 1) connected components.

Case II: u and v do not belong to the same connected component in G′.
First let, Cu and Cv be the connected components for u and v respectively. We find that adding back {u, v}
will result in Cu and Cv combining (while all other connected components remain unchanged), and thus reduce
the number of connected components by exactly 1. Thus, G has at least n− k − 1 = n− (k + 1) connected
components.

In either case we find that the number of connected components in G is at least n− (k + 1), completing our
induction step and our proof.

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 5

Example. Prove that every connected graph with n vertices has at least n− 1 edges.

Solution. We will prove the contrapositive, i.e., a graph G with m ≤ n− 2 edges is disconnected. From the
result of the previous problem, we know that the number of components of G is at least

n−m ≥ n− (n− 2) = 2

which means that G is disconnected. This proves the claim.

One could also have proved the above claim directly by observing that a connected graph has exactly one
connected component. Hence, 1 ≥ n−m. Rearranging the terms gives us m ≥ n− 1.

Example. Prove that every tree with at least two vertices has at least two leaves and deleting a leaf from
an n-vertex tree produces a tree with n− 1 vertices.

Solution. A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a
maximal non-trivial path (a path that is not contained in a longer path) has no neighbors other than its only
neighbor on the path. Hence, the endpoints of such a path are leaves.

Let v be a leaf of a tree T and let T ′ = T − v. A vertex of degree 1 belongs to no path connecting two vertices
other than v. Hence, for any two vertices u,w ∈ V (T ′), every path from u to w in T is also in T ′. Hence T ′

is connected. Since deleting a vertex cannot create a cycle, T ′ is also acyclic. Thus, T ′ is a tree with n− 1

vertices.

Example. Prove that if G is a tree on n vertices then G is connected and has n− 1 edges.

Solution. We can prove this by induction on n. The property is clearly true for n = 1 as G has 0 edges.
Assume that any tree with k vertices, for some k ≥ 1, has k − 1 edges. We want to prove that a tree G with
k + 1 vertices has k edges. Let v be a leaf in G, which we know exists as G is a tree with at least two vertices.
Thus G′ = G − {v} is connected. By induction hypothesis, G′ has k − 1 edges. Since deg(v) = 1, G has k
edges.

Eulerian and Hamiltonian Graphs

An Eulerian circuit is a closed walk in which each edge appears exactly once. A graph is Eulerian if it contains
an Eulerian circuit. A Hamiltonian circuit is a closed walk in which each vertex appears exactly once. A graph
is Hamiltonian if it contains a Hamiltonian circuit.

To determine whether a graph is Hamiltonian or not is significantly harder than determining whether a graph
is Eulerian or not. In this class we study the characterization of Eulerian graphs.

Example. If δ(G) ≥ 2 then G contains a cycle.

Solution. Let P be a longest path (actually, any maximal path suffices) in G and let u be an endpoint
of P . Since P cannot be extended, every neighbor of u is a vertex in P . Since deg(u) ≥ 2, u has a neighbor
v ∈ P via an edge that is not in P . The edge {u, v} completes the cycle with the portion of P from v to u.

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 6

Example. Prove that a connected graph G is Eulerian iff every vertex in G has even degree.

Solution. Necessity: To prove that “if G is Eulerian then every vertex in G has even degree”. Let C denote
the Eulerian circuit in G. Each passage of C through a vertex uses two incident edges and the first edge is
paired with the last at the first vertex. Hence every vertex has even degree.

Sufficiency: To prove that “if every vertex in G has even degree then G is Eulerian”. We will prove this using
induction on the number of edges, m.

Base Case: m = 0. In this case G has only one vertex and that itself forms a Eulerian circuit.

Induction Hypothesis: Assume that the property holds for any graph G with n vertices and j edges, for all j
such that n− 1 ≤ j ≤ k.

Induction Step: We want to prove that the property holds when G has n vertices and k + 1 edges. Since G
has at least one edge and because G is connected and every vertex of G has even degree, δ(G) ≥ 2. From the
result of the previous problem, G contains a cycle, say C. Let G′ be the graph obtained from G by removing
the edges in E(C). Since C has either 0 or 2 edges at every vertex of G, each vertex in G′ also has even
degree. However, G′ may not be connected. By induction hypothesis, each connected component of G′ has an
Eulerian circuit. We can now construct an Eulerian circuit of G as follows. Traverse C, but when a component
of G′ is entered for the first time, we detour along the Eulerian circuit of that component. The circuit ends at
the vertex where we began the detour. When we complete the traversal of C, we have completed an Eulerian
circuit of G.

Alternative Proof for the Sufficiency Condition: Let G be a graph with all degrees even and let

W = v0e0 . . . el−1vl

be the longest walk in G using no edge more than once. Since W cannot be extended all edges incident on vl
are part of W . Since all vertices in G have even degree it must be that vl = v0. Thus W is a closed walk. If
W is Eulerian then we are done. Otherwise, there must be an edge in E[G] \ E[W] that is incident on some
vertex in W . Let this edge be e = {u, vi}. Then the walk

ueviei . . . el−1vle0v0e1 . . . ei−1vi

is longer than W , a contradiction.

1.3 Probability

Example. Suppose we flip two fair coins. What is the probability that both tosses give heads given that
one of the flips results in heads? What is the probability that both tosses give heads given that the first coin
results in heads?

Solution. We consider the following events to answer the question.

A: event that both flips give heads.
B: event that one of the flips gives heads.
C: event that the first coin flip gives heads.

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 7

Let’s first calculate Pr[A|B].

Pr[A|B] =
Pr[A ∩B]

Pr[B]
=

Pr[A]

Pr[B]
=

1/4

3/4
=

1

3
.

Similarly we can calculate Pr[A|C] as follows.

Pr[A|C] =
Pr[A ∩ C]

Pr[C]
=

Pr[A]

Pr[C]
=

1/4

1/2
=

1

2
.

The above analysis also follows from the tree diagram in the figure below.

H

T

T

HH (1/4)

HT (1/4)

H

T

H
TH (1/4)

TT (1/4)

Coin 1 Coin 2 outcomes(prob)

1/2

1/2

1/2

1/2

1/2

1/2

x

x

x

event B event A&B

x

event C

x

x

event A&C

x

The Total Probability Theorem. Consider events E and F . Consider a sample point ω ∈ E. Observe that
ω belongs to either F or F . Thus, the set E is a disjoint union of two sets: E ∩ F and E ∩ F . Hence we get

Pr[E] = Pr[E ∩ F] + Pr[E ∩ F]

= Pr[F]× Pr[E|F] + Pr[F]× Pr[E|F]

In general, if A1, A2, . . . , An form a partition of the sample space and if ∀i,Pr[Ai] > 0, then for any event B
in the same probability space, we have

Pr[B] =

n∑
i=1

Pr[Ai ∩B] =

n∑
i=1

Pr[Ai]× Pr[B|Ai]

Example. A medical test for a certain condition has arrived in the market. According to the case studies,
when the test is performed on an affected person, the test comes up positive 95% of the times and yields
a “false negative” 5% of the times. When the test is performed on a person not suffering from the medical
condition the test comes up negative in 99% of the cases and yields a “false positive” in 1% of the cases. If
0.5% of the population actually have the condition, what is the probability that the person has the condition
given that the test is positive?

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 8

Solution. We will consider the following events to answer the question.

C: event that the person tested has the medical condition.
C: event that the person tested does not have the condition.
P : event that the person tested positive.

We are interested in Pr[C|P]. From the definition of conditional probability and the total probability theorem
we get

Pr[C|P] =
Pr[C ∩ P]

Pr[P]

=
Pr[C] Pr[P |C]

Pr[P ∩ C] + Pr[P ∩ C]

=
Pr[C] Pr[P |C]

Pr[C] Pr[P |C] + Pr[C] Pr[P |C]

=
0.005× 0.95

0.005× 0.95 + 0.995× 0.01
= 0.323

This result means that 32.3% of the people who are tested positive actually suffer from the condition!

1.4 Linearity of Expectation

One of the most important properties of expectation that simplifies its computation is the linearity of expectation.
By this property, the expectation of the sum of random variables equals the sum of their expectations. This is
given formally in the following theorem.

Theorem. For any finite collection of random variables X1, X2, . . . , Xn,

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

Example. Suppose that n people leave their hats at the hat check. If the hats are randomly returned what
is the expected number of people that get their own hat back?

Solution. Let X be the random variable that denotes the number of people who get their own hat back.
Let Xi, 1 ≤ i ≤ n, be the random variable that is 1 if the ith person gets his/her own hat back and 0 otherwise.
Clearly,

X = X1 +X2 +X3 + . . .+Xn

By linearity of expectation we get

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

(n− 1)!

n!
= n× 1

n
= 1

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 9

Example. The following pseudo-code computes the minimum of n distinct numbers that are stored in an
array A. What is the expected number of times that the variable min is assigned a value if the array A is a
random permutation of the n elements?

FindMin(A,n)

min← A[1]

for i← 2 to n do
if (A[i] < min) then
min = A[i]

return min

Solution. Let X be the random variable denoting the number of times that min is assigned a value. We
want to calculate E[X]. Let Xi be the random variable that is 1 if min is assigned A[i] and 0 otherwise.
Clearly,

X = X1 +X2 +X3 + · · ·+Xn

Using the linearity of expectation we get

E[X] =

n∑
i=1

E[Xi]

=

n∑
i=1

Pr[Xi = 1]

Note that Pr[Xi = 1] is the probability that A[i] contains the smallest element among the elements
A[1], A[2], . . . , A[i]. Since the smallest of these elements is equally likely to be in any of the first i loca-
tions, we have Pr[Xi = 1] = 1

i .

1.5 Probability Distributions

Tossing a coin is an experiment with exactly two outcomes: heads (“success”) with a probability of, say p, and
tails (“failure”) with a probability of 1− p. Such an experiment is called a Bernoulli trial. Let Y be a random
variable that is 1 if the experiment succeeds and is 0 otherwise. Y is called a Bernoulli or an indicator random
variable. For such a variable we have

E[Y] = p · 1 + (1− p) · 0 = p = Pr[Y = 1]

Thus for a fair coin if we consider heads as ”success” then the expected value of the corresponding indicator
random variable is 1/2.

A sequence of Bernoulli trials means that the trials are independent and each has a probability p of success.
We will study two important distributions that arise from Bernoulli trials: the geometric distribution and the
binomial distribution.

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 10

The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability p that we flip repeatedly
until it lands on heads. What is the distribution of the number of flips? This is an example of a geometric
distribution. It arises in situations where we perform a sequence of independent trials until the first success
where each trial succeeds with a probability p.

Note that the sample space Ω consists of all sequences that end in H and have exactly one H. That is

Ω = {H,TH, TTH, TTTH, TTTTH, . . .}

For any ω ∈ Ω of length i, Pr[ω] = (1− p)i−1p.

Definition. A geometric random variable X with parameter p is given by the following distribution for
i = 1, 2, . . . :

Pr[X = i] = (1− p)i−1p

We can verify that the geometric random variable admits a valid probability distribution as follows:

∞∑
i=1

(1− p)i−1p = p

∞∑
i=1

(1− p)i−1 =
p

1− p
∞∑
i=1

(1− p)i =
p

1− p ·
1− p

1− (1− p) = 1

Note that to obtain the second-last term we have used the fact that
∑∞
i=1 c

i = c
1−c , |c| < 1.

Let’s now calculate the expectation of a geometric random variable, X. We can do this in several ways. One
way is to use the definition of expectation.

E[X] =

∞∑
i=0

iPr[X = i]

=

∞∑
i=0

i(1− p)i−1p

=
p

1− p
∞∑
i=0

i(1− p)i

=

(
p

1− p

)(
1− p

(1− (1− p))2
) (

∵
∞∑
i=0

kxk =
x

(1− x)2
, for |x| < 1.

)

=

(
p

1− p

)(
1− p
p2

)
=

1

p

Another way to compute the expectation is to note that X is a random variable that takes on non-negative
values. From a theorem proved in last class we know that if X takes on only non-negative values then

E[X] =

∞∑
i=1

Pr[X ≥ i]

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 11

Using this result we can calculate the expectation of the geometric random variable X. For the geometric
random variable X with parameter p,

Pr[X ≥ i] =

∞∑
j=i

(1− p)j−1p = (1− p)i−1p
∞∑
j=0

(1− p)j = (1− p)i−1p× 1

1− (1− p) = (1− p)i−1

Therefore

E[X] =

∞∑
i=1

Pr[X ≥ i] =

∞∑
i=1

(1− p)i−1 =
1

1− p
∞∑
i=1

(1− p)i =
1

1− p ·
1− p

1− (1− p) =
1

p

Binomial Distributions

Consider an experiment in which we perform a sequence of n coin flips in which the probability of obtaining
heads is p. How many flips result in heads?

If X denotes the number of heads that appear then

Pr[X = j] =

(
n

j

)
pj(1− p)n−j

Definition. A binomial random variable X with parameters n and p is defined by the following probability
distribution on j = 0, 1, 2, . . . , n:

Pr[X = j] =

(
n

j

)
pj(1− p)n−j

We can verify that the above is a valid probability distribution using the binomial theorem as follows

n∑
j=0

(
n

j

)
pj(1− p)n−j = (p+ (1− p))n = 1

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 12

What is the expectation of a binomial random variable X? We can calculate E[X] is two ways. We first
calculate it directly from the definition.

E[X] =

n∑
j=0

j

(
n

j

)
pj(1− p)n−j

=

n∑
j=0

j
n!

j!(n− j)!p
j(1− p)n−j

=

n∑
j=1

j
n!

j!(n− j)!p
j(1− p)n−j

=

n∑
j=1

n!

(j − 1)!(n− j)!p
j(1− p)n−j

= np

n∑
j=1

(n− 1)!

(j − 1)!((n− 1)− (j − 1))!
pj−1(1− p)(n−1)−(j−1)

= np

n−1∑
k=0

(n− 1)!

k!((n− 1)− k)!
pk(1− p)(n−1)−k

= np

n−1∑
k=0

(
n− 1

k

)
pk(1− p)(n−1)−k

= np

The last equation follows from the binomial expansion of (p+ (1− p))n−1.

We can obtain the result in a much simpler way by using the linearity of expectation. Let Xi, 1 ≤ i ≤ n be the
indicator random variable that is 1 if the ith flip results in heads and is 0 otherwise. We have X =

∑n
i=1Xi.

By the lineartity of expectation we have

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

p = np

What is the variance of the binomial random variable X? Since X =
∑n
i=1Xi, and X1, X2, . . . , Xn are

independent we have

Var[X] =

n∑
i=1

Var[Xi]

=

n∑
i=1

E[X2
i]−E[Xi]

2

=

n∑
i=1

(p− p2)

= np(1− p)

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 13

Examples

Example. Consider a sequence of n tosses of a fair coin. Define a “run” to be a sequence of consecutive tosses
that all produce the same result (i.e. heads or tails). For example, if n = 7, then the sequence of outcomes

H H H T T H T

has four runs, namely (H H H H), (T T), (H) , and (T). Given a sequence of n tosses of a fair coin, what is
the expected number of runs you will see?

Solution. Let X be the random variable denoting the number of runs we see. We wish to compute E[X].
Define the indicator random variables

Xi =

{
1 there is a run beginning at index i

0 otherwise

Note that X1 = 1 since the first outcome always begins a new run. Moreover, we see that

X = X1 + ...+Xn =

n∑
i=1

Xi

and so by the linearity of expectation,

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

Recall that for an indicator random variable Y , E[Y] = 1 · P (Y = 1) + 0 · P (Y = 0) = P (Y = 1), hence for
each i, we have

E[Xi] = P (Xi = 1)

Now a run begins at index i whenever the i− 1-th outcome and the i-th outcome are different. For i > 1, this
occurs with probability 1

2 . Hence

E[Xi] =

{
1 i = 1
1
2 i > 1

Thus

E[X] =

n∑
i=1

E[Xi] = 1 +

n∑
i=2

E[Xi] = 1 +

n∑
i=2

1

2
= 1 +

n− 1

2
=
n+ 1

2

Example. Find the expected length of an arbitrary run.

Solution. Let X be the length of an arbitrary run. The run can either be a run of heads or a run of tails.
We thus condition on this case: let Y be the random variable that is 1 if the run is a run of heads and 0 if it
is a run of tails. Then P (Y = 1) = P (Y = 0) = 1

2 . Computing the expectation of X by conditioning on Y
gives:

E[X] = E[X|Y = 1]P (Y = 1) + E[X|Y = 0]P (Y = 0)

Given that Y = 1, i.e. that the run is a run of heads, X is a geometric random variable with parameter p = 1
2 ,

since finding the length of the run starting with a head is equivalent to finding the number of coin tosses
we make until seeing the first tail. Hence E[X|Y = 1] = 2, since the expected value of a geometric random

CIS 121 – Draft of August 31, 2021 1 Review of Terms, Proofs, and Probability 14

variable with parameter p is 1
p . Symmetrically, given that Y = 0, X is also a geometric random variable with

parameter p = 1
2 . Hence E[X|Y = 0] = 2 as well. This gives:

E[X] = 2 · 1

2
+ 2 · 1

2
= 2

Note that because of the symmetry, we could have assumed WLOG that the run started with heads and
proceeded from there. However, in the case of a biased coin, we don’t have symmetry and thus conditioning is
the way to go.

Example. We are trying to collect n different coupons that can be obtained by buying cereal boxes. The
objective is to collect at least one coupon of each of the n types. Assume that each cereal box contains exactly
one coupon and any of the n coupons is equally likely to occur. How many cereal boxes do we expect to buy
to collect at least one coupon of each type?

Solution. Let the random variable X denote the number of cereal boxes bought until we have at least
one coupon of each type. We want to compute E[X]. Let Xi be the random variable denoting the number of
boxes bought to get the ith new coupon. Clearly,

X = X1 +X2 +X3 + . . .+Xn

Using the linearity of expectation we have

E[X] = E[X1] + E[X2] + E[X3] + . . .+ E[Xn]

What is the distribution of random variable Xi? Observe that the probability of obtaining the ith new coupon
is given by

pi =
n− (i− 1)

n
=
n− i+ 1

n

Thus the random variable Xi, 1 ≤ i ≤ n is a geometric random variable with parameter pi.

E[Xi] =
1

pi
=

n

n− i+ 1

Applying linearity of expectation, we get

E[X] =
n

n
+

n

n− 1
+

n

n− 1
+ · · ·+ n

2
+
n

1
= n

n∑
i=1

1

i

The summation
∑n
i=1

1
i is known as the harmonic number H(n) and H(n) = lnn + c, for some constant

c < 1.

Hence the expected number of boxes needed to collect n coupons is about nH(n) < n(lnn+ 1).

Gale-Shapley Stable Matching 2
2.1 Background and Intuition

Many problems in the real world involve pairing up two groups of people or things in such a way that everyone
is “happy.” For example, one may consider matching applicants to open job positions, performers to gigs,
patients to hospital beds, and so on. What does it mean for everyone to be happy? Consider the following
scenario: you and your friend are using career services to apply to internships at companies A and B. You
really want to work for A, but your friend wants to work for B. On the other hand, both company A and B
think you would be a much better employee than your friend.

Unfortunately, due to some logistical mix-up at the career services center, you are matched with company B
and your friend is matched with company A. Clearly, you are unhappy, as is company A. We call this situation
an instability. It is unstable in the sense that there’s nothing stopping company A from firing your friend and
offering you the job. You would of course accept (since company A was your top choice), but now your friend
has no job, and company B has no employee. Moreover, it is not immediately clear that just forcing company
B to hire your friend solves the problem: what if multiple companies/applicants are involved? The situation
could spiral out of control.

One of the basic problems with the above process is that it is not self-enforcing: if people are allowed to act in
their self-interest, then it risks breaking down.

As another example, suppose that career services instead matched you with A and your friend with B. In this
case, you and your friend are happy, as is company A. Unfortunately, company B is unhappy. However, in this
case there is no risk of spiraling out of control: company B may try to reach out to you to make you an offer,
but you are happy where you are. In this case, the matching is stable.

Gale and Shapley studied scenarios like these and asked the following question: Given a set of preferences
among employers and applicants, is it possible to assign applicants to employers so that for every employer E
and every applicant A who is not scheduled to work for E, at least one of the following is true:

(1) E prefers every one of its accepted applicants to A
(2) A prefers her current situation over working for employer E

If this holds, the outcome is stable. That is, individual self-interest will prevent any applicant/employer deal
from being made behind the scenes.

2.2 Formulating the Problem

In first analyzing this question, we will make some simplifications. The employer/applicant scenario has some
significant asymmetries. For example:

I Employers typically look for multiple applicants, while applicants seek only a single employer
I Each applicant may not apply to every company
I The number of employers or company may differ

These notes were adapted from Kleinberg and Tardos’ Algorithm Design

CIS 121 TAs developed an online tool for you to explore and visualize the Gale-Shapley algorithm: gale-shapley.com

http://www.gale-shapley.com

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 16

We will make the following assumptions: each of n applicants applies to each of n companies, and each company
wants a single applicant. Gale and Shapley rephrased the problem in terms of a so-called stable marriage:
each of n men and n women will be paired up for marriage.

Formally:

Consider a set M = {m1, ...,mn} of n men and a set W = {w1, ..., wn} of n women. Let M ×W denote the
set of all possible ordered pairs of the form (m,w) where m ∈M and w ∈W .

Definition. A matching S is a subset of ordered pairs in M ×W such that each member of M and each
member of W appears in at most one pair in S.

A matching S′ is called a perfect matching if it is a matching and has the property that each member of
M and each member of W appears in exactly one pair of S′.

Intuitively, a perfect matching corresponds to a way of pairing off the men and the women in such a way
that everyone ends up married to somebody of the opposite gender, and nobody is married to more than one
person. There is neither singlehood nor polygamy.

Now we can add the notion of preferences to this setting.

Definition. Each man m ∈M ranks all the women. There are no ties allowed. We say that m prefers w
to w′ if m ranks w higher than w′. We will refer to the ordered ranking of m as his preference list.

Each woman, analogously, ranks all the men.

Note: There are no ties allowed in any man or woman’s preference lists. As we go through the remainder of
the analysis, you should think about which statements require this constraint and which do not.

Now that we’ve formulated the problem, how do we express the problem we faced in the introduction in this
new notation? Using the motivating example as guidance, we should be worried about the following situation:
there are two pairs, (m,w) and (m′, w′) in S such that m prefers w′ to w and w′ prefers m to m′. In this case,
there is nothing to stop m and w′ from abandoning their current partners and heading off together: this set of
marriages is not self-enforcing.

Definition. Using the notation above, the pair (m,w′) is called an instability with respect to the matching
S. That is, (m,w′) does not belong to S, but each of m and w′ prefers the other to their partner in S.

Definition. A matching S is stable if:

1. it is perfect
2. there are no instabilities with respect to S

Our goal, then, is to find a stable matching. Two questions immediately spring to mind:

1. Does there exist a stable matching for every set of preference lists?
2. Given a set of preference lists, can we efficiently construct a stable matching if there is one?

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 17

m′

m

w′

w

Figure 2.1: Perfect matching S with instability (m,w′)

2.3 Examples

To illustrate the definitions from the previous section, consider the following two very simple instances of the
stable matching problem:

First, suppose we have a set of two men, M = {m,m′} and a set of two women W = {w,w′}. The preference
lists are as follows:

m prefers w to w′

m′ prefers w to w′

w prefers m to m′

w′ prefers m to m′

Intuitively, this case represents complete agreement: the men agree on the order of the women and the women
agree on the order of the men. There is a unique stable matching in this case, consisting of the pairs (m,w)

and (m′, w′). The other perfect matching, consisting of the pairs (m′, w) and (m,w′) is NOT stable: the pair
(m,w) would form an instability with respect to this matching.

Here’s a more interesting example: suppose the preferences are:

m prefers w to w′

m′ prefers w′ to w
w prefers m′ to m
w′ prefers m to m′

In this case, the two men’s preferences mesh perfectly with each other (they rank different women first), and
the two women’s preferences likewise mesh perfectly with each other. However, the men’s preferences clash
completely with the women’s preferences.

In this second example, there are two different stable matchings. The matching consisting of the pair (m,w)

and (m′, w′) is stable because both men are as happy as possible and so neither would leave their matched
partner. But the matching consisting of the pairs (m′, w) and (m,w′) is also stable, for the complementary
reason that both women are as happy as possible. This is an important point to remember: it is possible for
an instance to have more than one stable matching

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 18

2.4 Designing an Algorithm

We still have two questions to answer, namely is there always a stable matching and how do we find one
if/when it exists? The following provides the answer:

Proposition 1. Given a set of n men and a set of n women, there exists a stable matching for every set
of preference lists among the men and women.

We will prove this claim by giving an algorithm that takes the preference lists and constructs a stable matching.
This will answer both of the above questions simultaneously.

Before constructing the algorithm, let’s summarize the basic ideas that are relevant to the problem:

I Initially, everyone is unmarried. Suppose an unmarried man m chooses the woman w who ranks highest
on his preference list and proposes to her. Can we declare immediately that (m,w) will be one of the
pairs in our final stable matching? Not necessarily: at some point in the future, a man m′ whom w

prefers more than m may propose to her. On the other hand, it may be dangerous for w to reject m
right away: she may never receive a proposal from someone she ranks as highly as m. So a natural idea
would be to have the pair (m,w) enter into an intermediate state—engagement.

I Suppose we are now at a state in which some men and women are free—not engaged—and some are
engaged. The next step could look like this: An arbitrary man m chooses the highest-ranked woman w to
whom he has not yet proposed, and he proposes to her. If w is also free, then m and w become engaged.
Otherwise, w is already engaged to some other man m′. In this case, she determines which of m or m′

ranks higher on her preference list: this man becomes engaged to w and the other man becomes free.
I Finally, the algorithm will terminate when no one is free. At this moment, all engagements are declared

final, and the resulting perfect matching is returned.

Here’s a more concise description of the Gale-Shapley Algorithm:

Gale-Shapley Algorithm for Stable Matching

Input: A set of n men, M , a set of n women, W , and the associated preference lists

Output: A stable matching

Initially all m ∈M and w ∈W are free

While there is a free man m who hasn ’t proposed to every woman
Choose such a man m

Let w be the highest ranked woman in m’s preference list
to whom he has not yet proposed

If w is free then
(m,w) become engaged

Else w is currently engaged to m′

If w prefers m′ to m then
m remains free

Else w prefers m to m′

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 19

(m,w) become engaged
m′ becomes free

Return the set S of engaged pairs

2.5 Runtime of the GS Algorithm

Before proving the correctness of the algorithm, we first prove its runtime. That is, we will answer the question:
how many iterations are needed for the algorithm to terminate?

Proposition 2. The GS algorithm terminates after at most n2 iterations of the while loop

Proof. A useful strategy for upper-bounding the running time of an algorithm is to find a measure of progress.
That is, we want to find a precise way of saying that each step taken by the algorithm brings it closer to
termination.

In the GS algorithm, each iteration consists of some man proposing (for the only time) to a woman he has
never proposed to before. So if we let P(t) denote the set of pairs (m,w) such that m has proposed to w by
the end of iteration t, we see that for all t, the size of P(t+ 1) is strictly greater than the size of P(t). But
there are only n2 possible pairs of men and women in total, so that value of P(·) can increase at most n2

times over the course of the algorithm. Thus there can be at most n2 iterations.

An important note about the above algorithm: there are many quantities that would not have worked well as
a progress measure for the GS algorithm, since they need not strictly increase in each iteration. For example,
the number of free individuals could remain constant from one iteration to the next, as could the number of
engaged pairs. Thus these quantities could not be used directly in giving an upper bound on the maximum
possible number of iterations, in the style of the above proof.

2.6 Correctness of the GS Algorithm

While we showed above that the GS algorithm terminates, it is not obvious at all that this algorithm returns
a stable matching, or even a perfect matching. We will prove through a series of intermediate facts that it
does indeed return a stable matching.

Consider the view of a woman w during the execution of the GS algorithm. For a while, no one has proposed
to her, and she is free. Then a man m may propose to her, and she becomes engaged. As time goes on, she
may receive additional proposals, accepting those that increase the rank of her partner. Hence:

Lemma 1. w remains engaged from the point at which she receives her first proposal. The sequence of
partners to which she is engaged gets better and better (in terms of her preference list)

The view of a man m during the execution of the algorithm is very different. He is free until he proposes to
the highest ranked woman on his list. At this point, he may or may not become engaged. As time goes on, he
may alternate between being free and being engaged, however it is easy to see that:

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 20

Lemma 2. The sequence of women to whom m proposes gets worse and worse (in terms of his preference
list)

Now, let us establish that the set S returned at the termination of the algorithm is in fact a perfect matching.
Why is this not immediately obvious? Essentially, we have to show that no man can “fall off” the end of his
preference list. That is, the only way for the while loop to exit is for there to be no free man. In this case, the
set of engaged couple would indeed be a perfect matching. The following lemma and its proof establish this
claim.

Lemma 3. If m is free at some point in the execution of the algorithm, then there is a woman to whom
he has not yet proposed

Proof. Seeking contradiction, suppose there comes a point when m is free but has already proposed to every
woman. By Lemma 1, each of the n women is engaged at this point in time. Since the set of engaged pairs
forms a matching, there must also be n engaged men at this point in time. But there are only n men in total,
and m is not engaged, so this is a contradiction.

Lemma 4. The set S returned at termination is a perfect matching

Proof. The set of engaged pairs always forms a matching. Let us suppose for the sake of contradiction that
the algorithm terminates with a free man m. At termination, it must be the case that m has already proposed
to every woman, for otherwise the while loop would not have exited. But this contradicts Lemma 3, which
says that there cannot be a free man who has proposed to every woman.

Now we have the tools to prove the main property of the algorithm, namely that it results in a stable
matching.

Proposition 3. Consider an execution of the GS algorithm that returns a set of pairs S. The set S is a
stable matching.

Proof. We know by Lemma 4 that S is a perfect matching. Thus, it suffices to show S has no instabilities.
Seeking contradiction, suppose we had the following instability: there are two pairs (m,w) and (m′, w′) in S
such that

I m prefers w′ to w and
I w′ prefers m to m′

In the execution of the algorithm that produced S, the last proposal of m was, by definition, to w. Now we
ask: Did m propose to w′ at some earlier point in this execution? If he didn’t, then w must occur higher than
w′ on m’s preference list, contradicting out assumption that m prefers w′ to w. If he did, then he was rejected
by w′ in favor of some other man m′′ whom w′ prefers to m. m′ is the final partner of w′, so either m′′ = m′

or by Lemma 1, w′ prefers her final partner m′ to m′′. Either way, this contradicts our assumption that w′

prefers m to m′.

It follows that S is a stable matching.

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 21

2.7 Extensions

Now that we’ve shown the GS algorithm constructs a stable matching, we can now consider some further
questions about the behavior of the GS algorithm and its relation to the properties of different stable
matchings.

To begin, recall that we saw an example earlier in which there could be multiple stable matchings. The
preference lists in this example were as follows:

m prefers w to w′

m′ prefers w′ to w
w prefers m′ to m
w′ prefers m to m′

Now, in any execution of the GS algorithm, m will become engaged to w, m′ will become engaged to w′

(perhaps in the other order), and things will stop there. Thus the other stable matching, consisting of the
pairs (m′, w) and (m,w′) is not attainable from an execution of the GS algorithm in which the men propose.
On the other hand, it would be reached if we ran a version of the algorithm in which the women propose.
You can imagine that in larger examples (i.e. with n > 2), it is possible to have an even larger collection of
possible stable matchings, many of them not achievable by the GS algorithm.

This example shows a certain “unfairness” in the GS algorithm favoring men. If the men’s preferences mesh
perfectly (they all list different women as their first choice), then in all runs of the GS algorithm, all men end
up matched with their first choice, independent of the preferences of the women. If the women’s preferences
clash completely with the men’s preferences (as was the case in this example), then the resulting stable
matching is as bad as possible for the women. So this simple set of preferences lists compactly summarizes a
world in which someone is destined to end up unhappy: woman are unhappy if men propose, and men are
unhappy if woman propose.

Let’s now see if we can generalize this notion of “unfairness”.

Note that the above example illustrates that the GS algorithm is actually underspecified: as long as there
is a free man, we are allowed to choose any free man to make the next proposal. Different choices specify
different executions of the algorithm. This is why, to be careful, we stated in Proposition 3 to “Consider an
execution of the GS algorithm that returns a set of pairs S” rather than “Consider the set S returned by the
GS algorithm.”

This raises a natural question: Do all executions of the GS algorithm yield the same matching? It turns out,
the answer is “Yes.”

All Executions Yield the Same Matching

It turns out that the easiest and most informative way to prove this claim is the uniquely characterize the
matching that is obtained from the GS algorithm and then show that all executions result in the matching
with this characterization.

First, let us introduce some relevant definitions:

Definition. A woman w is a valid partner of a man m if there is a stable matching that contains the
pair (m,w).

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 22

A woman w is the best valid partner of a man m, denoted best(m), if w is a valid partner of m and no
woman whom m ranks higher than w is a valid partner of his.

Define the set
S∗ = {(m, best(m)) | m ∈M}

That is, the set where each man is paired with his best valid partner. We have the following result:

Proposition 4. Every execution of the GS algorithm results in the set S∗.

Before proving this, let’s appreciate this statement. First of all, it is not obvious at all that S∗ is even a
matching, much less a stable matching. After all, why couldn’t two men have the same best valid partner?
Second, the result shows that the GS algorithm gives the best possible outcome for every man simultaneously:
there is no stable matching in which any of the men could have hoped to do better. Lastly, it answers the
question above by showing that the order of proposals in the GS algorithm has absolutely no effect on the
final outcome.

Despite all this, the proof is not so difficult:

Proof. Seeking contradiction, suppose that some execution ε of the GS algorithm results in a matching S in
which some man is paired with a woman who is not his best valid partner. Since men propose in decreasing
order of preference, this means that some man is rejected by a valid partner during the execution ε of the
algorithm. So consider the first moment during the execution ε in which some man, say m, is rejected by a
valid partner w. Again, since men propose in decreasing order of preference, and since this is the first time
such a rejection has occurred, it must be that w is m’s best valid partner, i.e. w = best(m).

The rejection of m by w may have happened either because m proposed and was turned down in favor of w’s
existing partner, or because w broke her engagement to m in favor of a better proposal. But either way, at
this moment, w forms or continues an engagement with a man m′ whom she prefers to m.

Since w is a valid partner of m, there exists some stable matching S′ containing the pair (m,w). Now we ask:
Who is m′ paired with in the matching S′? Suppose it is a woman w′ 6= w.

Since the rejection of m by w was the first rejection of a man by a valid partner in the execution ε, it must be
that m′ had not been rejected by any valid partner at the point in ε when he became engaged to w. Since he
proposed in decreasing order of preference, and since w′ is clearly a valid partner of m′, it must be that m′

prefers w to w′. But we have already seen that w prefers m′ to m, for in execution ε she rejected m in favor
of m′. Since (m′, w) /∈ S′, it follows that (m′, w) is an instability in S′.

This contradicts our claim that S′ is stable, and hence contradicts our initial assumption.

So for the men, the GS algorithm is ideal. Unfortunately the same cannot be said for the women.

Definition. m is a valid partner of a woman w if there is a stable matching that contains the pair (m,w).

m is the worst valid partner of w, denoted worst(w), if m is a valid partner of w and no man whom w

ranks lower than m is a valid partner of hers.

CIS 121 – Draft of August 31, 2021 2 Gale-Shapley Stable Matching 23

Proposition 5. In the stable matching S∗, each woman is paired with her worst valid partner. That is,

S∗ = {(m, best(m) | m ∈M} = {(worst(w), w) | w ∈W}

Proof. Seeking contradiction, suppose there were a pair (m,w) in S∗ such that m is not the worst valid partner
of w. Then there is a stable matching S′ in which w is paired with a man m′ whom she likes less than m. In
S′, m is paired with a woman w′ 6= w. Since w is the best valid partner of m, and w′ is a valid partner of m,
we see that m prefers w to w′.

But from this it follows that (m,w) is an instability in S′, contradicting the claim that S′ is stable, and hence
contradicting our initial assumption.

Thus, we find that the simple example above, in which the men’s preferences clashed with the women’s, hinted
at a very general phenomenon: for any input, the side that does the proposing in the GS algorithm ends up
with the best possible stable matching (from their perspective), while the side that does not do the proposing
correspondingly ends up with the worst possible stable matching.

Note: The above analysis was performed under the assumption that there were no ties in any of the
preference lists, and that the number of men and women were equal. What parts of the analysis would
change if these assumptions didn’t hold?

Greatest Common Divisor 3
3.1 Definitions

We first begin by introducing some intuitive definitions:

Definition. Let a, b ∈ Z. We call an integer d a common divisor of a and b provided d | a and d | b.

For example, the common divisors of 24 and 30 are −6,−3,−2,−1, 1, 2, 3, and 6.

Definition. Let a, b ∈ Z. We call an integer d the greatest common divisor of a and b provided

(1) d is a common divisor of a and b AND
(2) if d′ is any common divisor of a and b, then d′ ≤ d

We generally denote the greatest common divisor of a and b as gcd(a, b).

Going back to the example above, we have gcd(24, 30) = 6. Note also that gcd(−24,−30) = 6. If two numbers
have a gcd, then it is unique. This justifies the use of the phrase “the greatest common divisor.”

3.2 Calculating the GCD

A naive way to compute the GCD of two numbers is to simply list all of their common factors and choose the
largest. This brute force solution gives rise to the following algorithm:

1. Let a and b be two positive integers
2. For every positive integer k from 1 to min(a, b), see whether k | a and k | b. If so, save that number k in

a list l
3. Return the largest number in the list l as gcd(a, b).

While this algorithm certainly works, its runtime is abysmal. Even for moderately large numbers (for example,
a = 34902 and b = 34299883), the algorithm needs to perform many, many divisions.

A faster and more clever algorithm for finding the GCD of two numbers a and b was first described in Euclid’s
Elements over 2000 years ago. Not only is it extremely fast, but it is also easy to implement as a computer
program.

The central idea behind the algorithm is based on the following proposition:

Proposition 1. Let a and b be positive integers and let c = a mod b. Then

gcd(a, b) = gcd(b, c)

In other words, for positive integers a and b, we have

gcd(a, b) = gcd(b, a mod b)

These notes were adapted from Scheinerman’s Mathematics: A Discrete Introduction

CIS 121 – Draft of August 31, 2021 3 Greatest Common Divisor 25

Proof. As above, let a and b be positive integers and let c = a mod b. This means that a = qb + c where
0 ≤ c < b. Let d = gcd(a, b) and e = gcd(b, c). We must show that d = e. To do this, we will prove that d ≤ e
and e ≤ d.

First we will show that d ≤ e. Since d = gcd(a, b), we know that d | a and d | b. Hence, since c = a− qb we
must have d | c. Thus d is a common divisor of b and c. Since e is the greatest common divisor of b and c, we
have d ≤ e.

Now, we will show that e ≤ d. Since e = gcd(b, c) we know e | b and e | c. Since a = qb+ c, we must have that
e | a as well. Since e | a and e | b, e is a common divisor of a and b. However, since d is the greatest common
divisor of a and b, this tells us that e ≤ d.

We have shown that d ≤ e and e ≤ d, and hence d = e. That is, gcd(a, b) = gcd(b, c).

To illustrate how the above proposition enables us to calculate GCDs efficiently, we compute gcd(689, 234).
The brute force algorithm described earlier would have us try all possible common divisors from 1 to 234 and
select the largest, requiring hundreds of divisions!

Instead, we can use the above proposition to make life easier. Let a = 689 and b = 234. Performing one
division, we see that c = 689 mod 234 = 221. The proposition tells us that to find gcd(689, 234), it is sufficient
to find gcd(234, 221). Let’s record this step:

689 mod 234 = 221 ⇒ gcd(689, 234) = gcd(234, 221)

Now all we have to do is calculate gcd(234, 221). Using the same idea now with a = 234 and b = 221, we have
c = 234 mod 221 = 13. Note that so far we have only performed two divisions. Let’s record this step:

234 mod 221 = 13 ⇒ gcd(234, 221) = gcd(221, 13)

Now the problem is reduced to gcd(221, 13). Note that the numbers are significantly smaller than the original
689 and 234. To complete the computation, we perform a third and final division to find that 221 mod 13 = 0,
i.e. 13 | 221. This tells us that the greatest common divisor of 13 and 221 is 13. Recording this final step
gives:

221 mod 13 = 0 ⇒ gcd(221, 13) = 13

We are finished! After only three divisions, we have found that

gcd(689, 234) = gcd(234, 221) = gcd(221, 13) = 13

The steps we just performed are precisely the Euclidean algorithm. Here is a formal, general description:

Euclid’s Algorithm for Greatest Common Divisor

Input: Positive integers a and b

Output: gcd(a, b)

(1) Let c = a mod b

(2) If c = 0, return b
(3) Otherwise (c 6= 0), calculate and return gcd(b, c)

Let’s see how the algorithm works for a0 = 63 and b0 = 75.

CIS 121 – Draft of August 31, 2021 3 Greatest Common Divisor 26

I The first step calculates c0 = a0 mod b0 = 63 mod 75 = 63

I Next, since c0 6= 0, we now compute gcd(b0, c0) = gcd(75, 63).
I Now we restart the process with a1 = 75 and b1 = 63. We find c1 = 75 mod 63 = 12. Since 12 6= 0, we

now compute gcd(b1, c1) = gcd(63, 12)

I We restart again with a2 = 63, b2 = 12. We find c2 = 63 mod 12 = 3. Since 3 6= 0, we now compute
gcd(b2, c2) = gcd(12, 3)

I With a3 = 12 and b3 = 3, we find c3 = 12 mod 3 = 0. Hence we return b3 = 3 and we are finished.

Here is an overview of the calculation in chart form:

a b c

63 75 63
75 63 12
63 12 3
12 3 0

Note how the answer is found using only four divisions.

Another way to visualize the computation is by using a list. The first two entries are a and b. Now we extend
the list by computing the mod of the last two entries of the list. When we reach 0 we stop. The next-to-last
entry of the list is the GCD of a and b. In this example, this process would look like:

63 75

63 75 63

63 75 63 12

63 75 63 12 3

63 75 63 12 3 0

and so we would return 3, just as before.

3.3 Correctness of Euclid’s Algorithm

To prove the correctness of Euclid’s algorithm, we will use the “smallest-counterexample” method. This is
a proof technique closely related to induction and sometimes useful for proving the correctness of recursive
algorithms. It works by assuming the algorithm fails on some input, then considering the smallest such
input, then proving that, in fact, there must be some smaller input for which the algorithm failed, giving a
contradiction.

Proposition 2. Euclid’s algorithm as described above correctly computes gcd(a, b) for any positive
integers a and b.

Proof. Suppose for the sake of contradiction that Euclid’s algorithm failed to correctly compute the GCD. Let
a and b be two positive integers for which the algorithm failed, and let them be such that a+ b is as small as
possible.

It may be the case that a < b. If this is so, then the first pass of Euclid’s algorithm will simply interchange
the values of a and b (as we saw above when computing gcd(63, 75)), since if a < b, then a mod b = a and so
gcd(b, a mod b) = gcd(b, a).

CIS 121 – Draft of August 31, 2021 3 Greatest Common Divisor 27

Hence, WLOG we may assume a ≥ b.

The first step of the algorithm is to compute c = a mod b. In the case that c = 0, a mod b = 0 which implies
b | a. Since b > 0 by assumption, b is clearly the largest divisor of b. Since b | a, b is the GCD of a and b. Since
the algorithm returns b in this case, the algorithm returns the correct result. Thus it must be the case that
c 6= 0.

Recall, we may write a = qb+ c where 0 < c < b (the inequality is strict since we now know c 6= 0). We also
have assumed WLOG that b ≤ a. Hence,

c < b

+ b ≤ a
⇒ b+ c < a+ b

Thus, b and c are positive integers with b+ c < a+ b.

Now, if the algorithm correctly computed gcd(b, c), then Proposition 1 would imply that the algorithm would’ve
also correctly computed gcd(a, b), which we know isn’t the case by our assumption. Hence the algorithm must
have incorrectly computed gcd(b, c). But since b + c < a + b, this means the algorithm failed on a pair of
integers with sum smaller than a+ b, contradicting our assumption.

Hence, Euclid’s algorithm always returns the greatest common divisor of the positive integers it is given.

3.4 Runtime of Euclid’s Algorithm

How fast is Euclid’s algorithm? That is, how many divisions do we have to perform? It turns out that after
two rounds of Euclid’s algorithm, the integers with which we are working have decreased by at least 50%. The
following proposition is the main tool needed to prove this assertion:

Proposition 3. Let a, b ∈ Z with a ≥ b > 0. Let c = a mod b. Then c < a
2 .

Proof. We consider two cases: (1) a < 2b and (2) a ≥ 2b.

Case (1) a < 2b.
We know that 2b > a > 0 and a ≥ b > 0, so we have a > 0 and a − b ≥ 0 but a − 2b < 0. Hence the
quotient when a is divided by b is 1. So the remainder in a divided by b is c = a − b. Now rewriting
a < 2b as b > a

2 , we have
c = a− b < a− a

2
=
a

2

which is exactly what we wanted.

Case (2) a ≥ 2b, which can be rewritten b ≤ a
2

The remainder, upon division of a by b is strictly less than b (this is always true when a and b are
positive integers). Hence c < b and so we have

c < b ≤ a

2

In both cases, we found c < a
2

CIS 121 – Draft of August 31, 2021 3 Greatest Common Divisor 28

Now, recall we may assume that we start Euclid’s algorithm with a ≥ b; if not, then the first pass will reverse a
and b, and from then on, the numbers come in decreasing order. That is, if the numbers produced by Euclid’s
algorithm are listed as

(a, b, c, d, e, f, . . . , 0)

then assuming a ≥ b, we have
a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ · · · ≥ 0

By Proposition 3, the numbers c and d are less than half as large as a and b, respectively. Similarly, the
numbers e and f are less than half as large as c and d, respectively, and thus less than one-fourth of a and b
respectively. Hence:

Every two steps of Euclid’s algorithm decreases the integers with which we are working to less than half their
current values

If we begin with (a, b), then after two steps, the numbers are less than
(
1
2a,

1
2b
)
, and four steps later, less than(

1
4a,

1
4b
)
and six steps later, less than

(
1
8a,

1
8b
)
, and so on. In general, after 2t passes of Euclid’s algorithm,

the numbers are less than (2−ta, 2−tb).

Euclid’s algorithm stops when the second number reaches 0. Since the numbers in Euclid’s algorithm are
integers, this is the same as when the second number is less than 1. That is, the second number reaches 0 as
soon as

2−tb ≤ 1

Taking logs of both sides tells us that t ≥ log2 b. Thus, after at most 2 log2 b passes, the algorithm has
completed its work. The algorithm is thus O(log b).

For a concrete example, how many divisions would Euclid’s algorithm perform if a and b were huge numbers
(say 1000 digits each)? If b ≈ 101000, then the number of steps performed is bounded by

2 lg
(
101000

)
= 2000 lg 10 ≈ 2000× 3.4 = 6800

Compare this with the naive brute-force algorithm.

Insertion Sort 4
4.1 Insertion Sort

The problem of sorting is defined as:

I Input: n integers in array A[1..n]

I Output: A sorted in increasing order

Here we present Insertion-Sort, which is an efficient algorithm for sorting a small number of elements.
Insertion sort works the way many people sort a hand of playing cards. We start with an empty left hand and
the cards face down on the table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare it with each of the cards
already in the hand, from right to left. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

We present our pseudocode for Insertion-Sort, which takes as a parameter an array A[1..n] containing a
sequence of length n that is to be sorted. Note that in the code, n = A.length. The algorithm sorts the input
numbers in place. That is, it rearranges the numbers within the array A, with at most a constant number of
them stored outside the array at any time. The input array A contains the sorted output sequence when the
Insertion-Sort procedure is finished.

Insertion-Sort(A):
for j ← 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1..j − 1]

i = j − 1

while i > 0 and A[i] > key

A[i+ 1] = A[i]

i = i− 1

A[i+ 1] = key18 Chapter 2 Getting Started

1 2 3 4 5 6
5 2 4 6 1 3(a)

1 2 3 4 5 6
2 5 4 6 1 3(b)

1 2 3 4 5 6
2 4 5 6 1 3(c)

1 2 3 4 5 6
2 4 5 6 1 3(d)

1 2 3 4 5 6
2 4 5 61 3(e)

1 2 3 4 5 6
2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A D h5; 2; 4; 6; 1; 3i. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from AŒj !, which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT.A/

1 for j D 2 to A: length
2 key D AŒj !
3 // Insert AŒj ! into the sorted sequence AŒ1 : : j ! 1!.
4 i D j ! 1
5 while i > 0 and AŒi ! > key
6 AŒi C 1! D AŒi !
7 i D i ! 1
8 AŒi C 1! D key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for A D h5; 2; 4; 6; 1; 3i. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j , the subarray consisting
of elements AŒ1 : : j ! 1! constitutes the currently sorted hand, and the remaining
subarray AŒj C 1 : : n! corresponds to the pile of cards still on the table. In fact,
elements AŒ1 : : j ! 1! are the elements originally in positions 1 through j ! 1, but
now in sorted order. We state these properties of AŒ1 : : j ! 1! formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
AŒ1 : : j !1! consists of the elements originally in AŒ1 : : j !1!, but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

Figure 4.1: From CLRS, the operation of Insertion-Sort on the array A = [5, 2, 4, 6, 1, 3]. Array indices appear above the
rectangles, and values stored in the array positions appear within the rectangles. (a)-(e) The iterations of the for loop of lines
1-8. In each iteration, the black rectangle holds the key taken from A[j], which is compared with the values in shaded rectangles
to its left in the test of line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

These notes were adapted from CLRS Chapter 2

CIS 121 – Draft of August 31, 2021 4 Insertion Sort 30

Now, we must ask ourselves two questions: does this algorithm work, and does it have good performance?

4.2 Correctness of Insertion Sort

Once you figure out what Insertion-Sort is doing, you may think that it’s “obviously” correct. However,
if you didn’t know what it was doing and just got the above code, maybe this wouldn’t be so obvious.
Additionally, for algorithms that we’ll study in the future, it won’t always be obvious that it works, and so
we’ll have to prove it. To warm us up for those proofs, let’s carefully go through a proof of correctness of
Insertion-Sort.

We’ll prove the correctness of Insertion-Sort formally using a loop invariant:

At the start of each iteration of the for loop of lines 1-8, the subarray A[1..j − 1] consists of the
elements originally in A[1..j − 1], but in sorted order.

To use loop invariants, we must show three things:

1. Initialization: It is true prior to the first iteration of the loop.
2. Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration
3. Termination: When the loop terminates, the invariant gives us a useful property that helps show that

the algorithm is correct.

Note that this is basically mathematical induction: the initialization is the base case, and the maintenance
is the inductive step).

In the case of insertion sort, we have:

Initialization: Before the first iteration (which is when j = 2), the subarray A[1..j − 1] is just the first
element of the array, A[1]. This subarray is sorted, and consists of the elements that were originally in
A[1..1].

Maintenance: Suppose A[1..j − 1] is sorted. Informally, the body of the for loop works by moving A[j − 1],
A[j − 2], A[j − 3] and so on by one position to the right until it finds the proper position for A[j]

(lines 4-7), at which point it inserts the value of A[j] (line 8). The subarray A[1..j] then consists of the
elements originally in A[1..j], but in sorted order. Incrementing j for the next iteration of the for loop
then preserves the loop invariant.

Termination: The condition causing the for loop to terminate is that j > n. Because each loop iteration
increases j by 1, we must have j = n+ 1 at that time. By the initialization and maintenance steps, we
have shown that the subarray A[1..n + 1 − 1] = A[1..n] consists of the elements originally in A[1..n],
but in sorted order. Observing that the subarray A[1..n] is the entire array, we conclude that the entire
array is sorted. Hence, the algorithm is correct.

4.3 Running Time of Insertion Sort

The running time of an algorithm on a particular input is the number of primitive operations or “steps”
executed. We assume that a constant amount of time is required to execute each line of our pseudocode. One
line may take a different amount of time than another line, but we shall assume that each execution of the ith

line takes time ci, where ci is a constant.

CIS 121 – Draft of August 31, 2021 4 Insertion Sort 31
26 Chapter 2 Getting Started

INSERTION-SORT.A/ cost times
1 for j D 2 to A: length c1 n
2 key D AŒj ! c2 n ! 1
3 // Insert AŒj ! into the sorted

sequence AŒ1 : : j ! 1!. 0 n ! 1
4 i D j ! 1 c4 n ! 1
5 while i > 0 and AŒi ! > key c5

Pn
j D2 tj

6 AŒi C 1! D AŒi ! c6

Pn
j D2.tj ! 1/

7 i D i ! 1 c7

Pn
j D2.tj ! 1/

8 AŒi C 1! D key c8 n ! 1

The running time of the algorithm is the sum of running times for each state-
ment executed; a statement that takes ci steps to execute and executes n times will
contribute cin to the total running time.6 To compute T .n/, the running time of
INSERTION-SORT on an input of n values, we sum the products of the cost and
times columns, obtaining

T .n/ D c1nC c2.n ! 1/C c4.n ! 1/C c5

nX

j D2

tj C c6

nX

j D2

.tj ! 1/

C c7

nX

j D2

.tj ! 1/C c8.n ! 1/ :

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best
case occurs if the array is already sorted. For each j D 2; 3; : : : ; n, we then find
that AŒi ! " key in line 5 when i has its initial value of j ! 1. Thus tj D 1 for
j D 2; 3; : : : ; n, and the best-case running time is
T .n/ D c1nC c2.n ! 1/C c4.n ! 1/C c5.n ! 1/C c8.n ! 1/

D .c1 C c2 C c4 C c5 C c8/n ! .c2 C c4 C c5 C c8/ :

We can express this running time as anC b for constants a and b that depend on
the statement costs ci ; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element AŒj ! with each element in the entire
sorted subarray AŒ1 : : j ! 1!, and so tj D j for j D 2; 3; : : : ; n. Noting that

6This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily reference mn distinct
words of memory.

The running time of the algorithm is the sum of running times for each statement executed; a statement that
takes ci steps to execute and executes n times will contribute cin to the total running time.

To compute T (n), the running time of Insertion-Sort on an input of n values, we sum the products of
the cost and times columns. Let tj represent the number of times the while loop test is executed on the jth

iteration of the for loop.

T (n) = c1n+ c2(n− 1) + c4(n− 1) + c5

n∑
j=2

tj + +c6

n∑
j=2

(tj − 1) + c7

n∑
j=2

(tj − 1) + c8(n− 1)

So if I asked you how long an algorithm takes to run, you’d probably say, “it depends on the input you give it.”
In this class we mostly consider the “worst-case running time”, which is the longest running time for any input
of size n.

For insertion sort, what are the worst and best case inputs? The best case input is a sorted array, because you
never have to move elements, and the worst case input is a reverse sorted array (i.e., decreasing order).

In the best case, tj = 1 for all j, and thus we can rewrite T (n) as:

T (n) = (c1 + c2 + c4 + c5 + c8)n− (c2 + c4 + c5 + c8)

We can express this running time as an+ b for constants a and b that depend on the statement costs ci; it is
thus a linear function of n.

In the worst case, we must compare each element A[j] with each element in the entire sorted subarray
A[1..j − 1], so tj = j for all j. Substituting in

∑n
j=2 j = n(n+1)

2 − 1 and
∑n
j=2(j − 1) = n(n−1)

2 , we can rewrite
T (n) as:

T (n) =
(c5

2
+
c6
2

+
c7
2

)
n2 +

(
c1 + c2 + c4 +

c5
2
− c6

2
− c7

2
+ c8

)
n− (c2 + c4 + c5 + c8)

We can express this worst-case running time as an2 + bn+ c for constants a, b, and c that again depend on
the statement costs ci; it is thus a quadratic function of n.

Running Time and Growth Functions 5
5.1 Measuring Running Time of Algorithms

One way to measure the running time of an algorithm is to implement it and then study its running time by
executing it on various inputs. This approach has the following limitations.

I It is necessary to implement and execute an algorithm to study its running time experimentally.
I Experiments can be done only on a limited set of inputs and may not be indicative of the running time

on other inputs that were not included in the experiment.
I It is difficult to compare the efficiency of two algorithms unless they are implemented and executed in

the same software and hardware environments.

Analyzing algorithms analytically does not require that the algorithms be implemented, takes into account all
possible inputs, and allows us to compare the efficiency of two algorithms independent of the hardware and
software environment.

5.2 RAM Model of Computation

The model of computation that we use to analyze algorithms is called the Random Access Machine(RAM). In
this model of computation we assume that high-level operations that are independent of the programming
language used take 1 time step. Such high-level operations include the following: performing arithmetic
operations, comparing two numbers, assigning a value to a variable, calling a function, returning from a
function, and indexing into an array. Note that actually, each of the above high-level operations take a few
primitive low-level instructions whose execution time depends on the hardware and software environment, but
this is bounded by a constant.

Note that in this model we assume that each memory access takes exactly one time step and we have unlimited
memory. The model does not take into account whether an item is in the cache or on the disk.

While some of the above assumptions do not hold on a real computer, the assumptions are made to simplify the
mathematical analysis of algorithms. Despite being simple, RAM captures the essential behavior of computers
and is an excellent model for understanding how an algorithm will perform on a real computer.

5.3 Average Case and Worst Case

As we saw in class (Insertion Sort), an algorithm works faster on some inputs than others. How should we
express the running time of an algorithm? Let T (n) denote the running time (number of high-level steps) of
algorithm on an input of size n. Note that there are 2n input instances with n bits. Below are three possibilities
of inputs that we will consider.

I A typical input: The problem with considering a typical input is that different applications will have
very different typical inputs.

I Average Case: Average case analysis is challenging. It requires us to define a probability distribution
on the set of inputs, which is a difficult task.

CIS 121 – Draft of August 31, 2021 5 Running Time and Growth Functions 33

I Worst Case: In this measure we consider the input on which the algorithm performs the slowest. When
we say that T (n) is the worst case running time of an algorithm we mean that the algorithm takes no
more than T (n) steps for any input of size n. In other words, it is an upper bound on the running time
of the algorithm for any input. This measure is a nice clean mathematical definition and is easiest to
analyze.

5.4 Order of Growth

To simplify our analysis we will ignore the lower-order terms in the function T (n) and the multiplicative
constants in front. That is, it is the rate of growth or the order of growth that will be of interest to us. We
also ignore the function for small values of n and focus on the asymptotic behavior as n becomes very large.
Some reasons are as follows.

I The multiplicative constants depends on how fast the machine is and the precise definition of an
operation.

I Counting every operation that the algorithm takes is tedious and more work than it is worth.
I It is much more significant whether the time complexity is T (n) = n2 or n3 than whether it is T (n) = 2n2

or T (n) = 3n2.

Definitions of Asymptotic Notations – O,Ω,Θ, o, ω

Note: the limit definition only applies if the limit lim
n→∞

f(n)
g(n) exists.

If f(n) is in O(g(n)) (pronounced “big-oh of g of n”), g(n) is an asymptotic upper bound for f(n).

Definition. O-notation

f(n) ∈ O(g(n)) if there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

f(n) ∈ O(g(n)) if lim
n→∞

f(n)
g(n) = 0 or a constant.

If f(n) is in Ω(g(n)) (pronounced “omega of g of n”), g(n) is an asymptotic lower bound for f(n).

Definition. Ω-notation

f(n) ∈ Ω(g(n)) if there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0.

f(n) ∈ Ω(g(n)) if lim
n→∞

f(n)
g(n) =∞ or a constant.

If f(n) is Θ(g(n)), g(n) is an asymptotically tight bound for f(n).

Definition. Θ-notation

f(n) ∈ Θ(g(n)) if there exist positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for
all n ≥ n0.

Thus, we can say that f(n) ∈ Θ(g(n)) if and only if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

f(n) ∈ Θ(g(n)) if lim
n→∞

f(n)
g(n) = a nonzero constant.

CIS 121 – Draft of August 31, 2021 5 Running Time and Growth Functions 34
3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

Figure 5.1: From CLRS, graphic examples of the O,Ω and Θ notations. In each part, the value of n0 shown is the minimum
possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write
f(n) = Θ(g(n)) if there exist positive constants n0, c1, and c2 such that at and to the right of n0, the value of f(n) always lies
between c1g(n) and c2g(n) inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f(n) = O(g(n)) if there are positive constants n0 and c such that at and to the right of n0, the value of f(n) always lies on or
below cg(n). (c) Ω-notation gives a lower bound for a function to within a constant factor. We write f(n) = Ω(g(n)) if there are
positive constants n0 and c such that at and to the right of n0, the value of f(n) always lies on or above cg(n).

If f(n) is in o(g(n)) (pronounced “little-oh of g of n”), g(n) is an upper bound that is not asymptotically
tight for f(n).

Definition. o-notation

f(n) ∈ o(g(n)) if for any positive constant c > 0, there exists a positive constant n0 > 0 such that
0 ≤ f(n) < cg(n) for all n ≥ n0.

f(n) ∈ o(g(n)) if lim
n→∞

f(n)
g(n) = 0.

If f(n) is in ω(g(n)) (pronounced “little-omega of g of n”), g(n) is a lower bound that is not asymptotically
tight for f(n) .

Definition. ω-notation

f(n) ∈ ω(g(n)) if for any positive constant c > 0, there exists a positive constant n0 > 0 such that
0 ≤ cg(n) < f(n) for all n ≥ n0.

f(n) ∈ ω(g(n)) if lim
n→∞

f(n)
g(n) =∞.

Note: the limit definition only applies if the limit lim
n→∞

f(n)
g(n) exists.

Example. Prove that 7n− 2 = Θ(n).

Solution. Note that 7n− 2 ≤ 14n. Thus 7n− 2 = O(n) follows by setting c = 14 and n0 = 1.

To show that 7n−2 = Ω(n), we need to show that there exists positive constants c and n0 such that 7n−2 ≥ cn,
for all n ≥ n0. This is the same as showing that for all n ≥ n0, (7− c)n ≥ 2. Setting c = 1 and n0 = 1 proves
the lower bound. Hence 7n− 2 = Θ(n).

CIS 121 – Draft of August 31, 2021 5 Running Time and Growth Functions 35

Example. Prove that 10n3 + 55n log n+ 23 = O(n3).

Solution. The left hand side is at most 88n3. Thus setting c = 88 and n0 = 1 proves the claim.

Example. Prove that 360 = O(1).

Solution. This follows because 360 ≤ 360 · 1, for all n ≥ 0.

Example. Prove that 5/n = O(1/n).

Solution. This follows because 5/n ≤ 5 · (1/n), for all n ≥ 1.

Example. Prove that n2/8− 50n = Θ(n2).

First Solution: n2/8− 50n ≤ n2. To prove the upperbound, we need to prove that

0 ≤ n2

8
− 50n ≤ c2n2,∀n ≥ n0

Setting c2 = 1 and n0 = 800 satisfies the above inequalities.

To show that n2/8− 50n = Ω(n2), we need to show that there exists positive constants c1 and n0 such that
n2/8 − 50n ≥ c1n

2, for all n ≥ n0. This is the same as showing that for all n ≥ n0, (1/8 − c1)n ≥ 50, or
equivalently (1− 8c1)n ≥ 400. Setting c1 = 1/16 and n0 = 800 proves the lower bound.

Hence setting c1 = 1/16, c2 = 1, and n0 = 800 in the definition of Θ(·) proves that n2/8− 50n = Θ(n2).

Second Solution: Note that limn→∞((n2/8− 50n)/n2) = limn→∞(n− 400)/8n = limn→∞(1− 400/n)/8 =

1/8. Thus the claim follows.

Example. Prove that lg n = O(n).

Solution. We will show using induction on n that lg n ≤ n, for all n ≥ 1.
Base Case: n = 1: the claim holds for this case as the left hand side is 0 and the right hand side is 1.

Induction Hypothesis: Assume that lg k ≤ k, for some k ≥ 1.

Induction Step: We want to show that lg(k + 1) ≤ (k + 1). We have

LHS = lg(k + 1)

≤ lg(2k)

= lg 2 + lg k

≤ 1 + k (using induction hypothesis)

CIS 121 – Draft of August 31, 2021 5 Running Time and Growth Functions 36

Example. Prove that 3n100 = O(2n).

Solution. We will show using induction on n that 3n100 ≤ 3(100100)(2n), for all n ≥ 200. That is c = 3(100100)

and n0 = 200.

Base Case: n = 200: the claim holds for this case as the left hand side is 3(100100)(2100) and the right hand
side is 3(100100)(2200).

Induction Hypothesis: Assume that 3k100 ≤ 3(100100)(2k), for some k ≥ 200.

Induction Step: We want to show that 3(k + 1)100 ≤ 3(100100)(2k+1).

LHS = 3(k + 1)100

≤ 3

(
k100 + 100k99 +

(
100

2

)
k98 + · · ·+ 1

)
(using Binomial Theorem)

≤ 3
(
k100 + 100k99 + 1002k98 + · · ·+ 100100k0)

)
= 3k100

(
1 + (100/k) + (100/k)2 + (100/k)3 + · · ·+ (100/k)100

)
≤ 3(100100)(2k)

∞∑
i=0

(1/2)i (using induction hypothesis and the fact that k ≥ 200)

≤ 3(100100)(2k+1)

Another way to prove the claim is as follows. Consider limn→∞ 3n100/2n. This can be written as

lim
n→∞

2lg 3n100

/2n = lim
n→∞

2lg 3n100−n = 0.

Example. Prove that 7n− 2 is not Ω(n10).

Solution. Note that limn→∞ n10/(7n− 2) =∞ and hence 7n− 2 = o(n10). Thus it cannot be Ω(n10).

We can also prove the claim as follows using the definition of Ω. Assume for the sake of contradiction that
7n− 2 = Ω(n10). This means that for some constants c and n0, 7n− 2 ≥ cn10, for all n ≥ n0. This implies
that

7n ≥ cn10

7 ≥ cn9

This is a contraction as the left hand side is a constant and the right had side keeps growing with n. More
specifically, the right hand side becomes greater than the left hand side as soon as n >

9√
7c−1/9.

Example. Prove that n1+0.0001 is not O(n).

Solution. Assume for the sake of contradiction that n1+0.0001 = O(n). This means that for some constants
c and n0, n1+0.0001 ≤ cn, for all n ≥ n0. This is equivalent to n0.0001 ≤ c, for all n ≥ n0 This is impossible as
the left hand side grows unboundedly with n. More specifically, when n > c10

4

, the left hand side becomes
greater than c.

CIS 121 – Draft of August 31, 2021 5 Running Time and Growth Functions 37

5.5 Properties of Asymptotic Growth Functions

We now state without proof some of the properties of asymptotic growth functions.

1. If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)).
2. If f(n) = Ω(g(n)) and g(n) = Ω(h(n)) then f(n) = Ω(h(n)).
3. If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then f(n) = Θ(h(n)).
4. Suppose f and g are two functions such that for some other function h, we have f(n) = O(h(n)) and
g(n) = O(h(n)). Then f(n) + g(n) = O(h(n)).

We now state asymptotic bounds of some common functions.

1. Recall that a polynomial is a function that can be written in the form

a0 + a1n+ a2n
2 + · · ·+ adn

d for some integer constant d > 0 and ad is non-zero.

Let f be a polynomial of degree d in which the coefficient ad > 0. Then f = O(nd).
2. For every b > 1 and any real numbers x, y > 0, we have (logb n)x = O(ny). Note that (logb n)x is also

written as logxb n.
3. For every r > 1 and every d > 0, we have nd = O(rn).

Example. As a result of the above bounds we can conclude that asymptotically, 105 log38 n grows slower
than n/1010.

Example. Prove that n10 = o(2lg
3 n) and 2lg

3 n = o(2n).

Solution. Note that
2lg

3 n = (2lgn)lg
2 n = nlg

2 n.

Since we know that 10 = o(lg2 n), we conclude that

n10 = o(2lg
3 n)

Since we also know that any poly-logarithmic function in n such as lg3 n is asymptotically upper-bounded by
a polynomial function in n, we conclude that

lg3 n = O(n)

Actually, lg3 n = o(n) and hence
2lg

3 n = o(2n).

Analyzing Runtime of Code Snippets 6
Example. Consider the following code fragment.

for (i = 0; i < n; i++)
for (j = 0; j < i; j=j+10)

print (’’run time analysis’’)

Give a tight bound on the running time of this code fragment.

Solution. For each value of i, the inner loop executes i/10 times. Thus the running time of the body of the
outer loop is at most c(i/10), for some positive constant c. Hence the total running time of the code fragment
is given by

n−1∑
i=0

c

⌈
i

10

⌉
≤
n−1∑
i=0

c

(
i

10
+ 1

)
=
c(n− 1)n

20
+ cn ≤ 2cn2 = O(n2)

We will now show that
∑n−1
i=0 cd i10e = Ω(n2). Note that

n−1∑
i=0

cd i
10
e ≥

n−1∑
i=0

ci

10
= c(n− 1)n/20

We want to find positive constants c′ and n0, such that for all n ≥ n0,

c(n− 1)n

20
≥ c′n2

This is equivalent to showing that n(c− 20c′) ≥ c. This is true when c′ = c/40 and n ≥ 2. Thus, the running
time of the code fragment is Ω(n2).

Example. Consider the following code fragment.

i = n
while (i >= 10) do

i = i/3
for j = 1 to n do

print (’’Inner loop’’)

What is an upper-bound on the running time of this code fragment? Is there a matching lower-bound?

Solution. The running time of the body of the inner loop is O(1). Thus the running time of the inner loop
is at most c1n, for some positive constant c1. The body of the outer loop takes at most c2n time, for some
positive constant c2 (note that the statement i = i/3 takes O(1) time). Suppose the algorithm goes through t
iterations of the while loop. At the end of the last iteration of the while loop, the value of i is n/3t. We know
that the code fragment surely finishes when n/3t ≤ 1, solving which gives us t ≥ log3 n. This means that the
number of iterations of the while loop is at most O(log n). Thus the total running time is O(n log n).

We will now show that the running time is Ω(n log n). We will lower-bound the number of iterations of the

CIS 121 – Draft of August 31, 2021 6 Analyzing Runtime of Code Snippets 39

outer loop. Note that when the value of i is more than 10 (say, 33), the outer loop has not terminated. Solving
n/3t ≥ 33, gives us that log3 n− 3 is a lower bound on the number of iterations of the outer loop. For each
iteration of the outer loop, the inner loop runs n times. Thus the total running time is at least cn(log3 n− 3),
for some positive constant c. Note that cn(log3 n − 3) ≥ c′n log n, when c′ = c/2 and n ≥ 315. Thus the
running time is Ω(n log n).

Example. Consider the following code fragment.

for i = 0 to n do
for j = n down to 0 do

for k = 1 to j-i do
print (k)

What is an upper-bound on the running time of this algorithm? What is the lower bound?

Solution. Note that for a fixed value of i and j, the innermost loop goes through max{0, j − i} ≤ n times.
Thus the running time of the above code fragment is O(n3).

To find the lower bound on the running time, consider the values of i, such that 0 ≤ i ≤ n/4 and values of j,
such that 3n/4 ≤ j ≤ n. Note that for each of the n2/16 different combinations of i and j, the innermost loop
executes at least n/2 times. Thus the running time is at least

(n2/16)(n/2) = Ω(n3)

Example. Consider the following code fragment.

for i = 1 to n do
for j = 1 to i*i do

for k = 1 to j do
print (k)

Give a tight-bound on the running time of this algorithm? We will assume that n is a power of 2.

Solution. Note that the value of j in the second for-loop is upper bounded by n2 and the value of k in the
innermost loop is also bounded by n2. Thus the outermost for-loop iterates for n times, the second for-loop
iterates for at most n2 times, and the innermost loop iterates for at most n2 times. Thus the running time of
the code fragment is O(n5).

We will now argue that the running time of the code fragment is Ω(n5). Consider the following code fragment.

for i = n/2 to n do
for j = (n/4)*(n/4) to (n/2)*(n/2) do

for k = 1 to (n/4)*(n/4) do
print (k)

Note that the values of i, j, k in the above code fragment form a subset of the corresponding values in the
code fragment in question. Thus the running time of the new code fragment is a lower bound on the running
time of the code fragment in question. Thus the running time of the code fragment in question is at least
n/2 · 3n2/16 · n2/16 = Ω(n5).

Thus the running time of the code fragment in question is Θ(n5).

CIS 121 – Draft of August 31, 2021 6 Analyzing Runtime of Code Snippets 40

Example. Consider the following code fragment. We will assume that n is a power of 2.

for (i = 1; i <= n; i = 2*i) do
for j = 1 to i do

print (j)

Give a tight-bound on the running time of this algorithm?

Solution. Observe that for 0 ≤ k ≤ lg n, in the kth iteration of the outer loop, the value of i = 2k. Thus
the running time T (n) of the code fragment can be written as follows.

T (n) =

lgn∑
k=0

2k

= 2lgn+1 − 1

= 2n− 1

= Θ(n) (c1 = 1, c2 = 2, n0 = 1)

What is wrong with the following argument that the running time of the above code fragment is Ω(n log n)?

for (i = n/128; i<= n; i = 2*i) do
for j = 1 to n/128 do

print (j)

The outer loop runs Ω(lg n) times and the inner loop runs Ω(n) times and hence the running time is
Ω(n log n).∗

Discussion: Consider a problem X with an algorithm A.

I Algorithm A runs in time O(n2). This means that the worst case asymptotic running time of algorithm
A is upper-bounded by n2. Is this bound tight? That is, is it possible that the run-time analysis of
algorithm A is loose and that one can give a tighter upper-bound on the running time?

I Algorithm A runs in time Θ(n2). This means that the bound is tight, that is, a better (tighter) bound
on the worst case asymptotic running time for algorithm A is not possible.

I Problem X takes time O(n2). This means that there is an algorithm that solves problem X on all inputs
in time O(n2).

I Problem X takes Θ(n1.5). This means that there is an algorithm to solve problem X that takes time
O(n1.5) and no algorithm can do better.

Logarithm Facts: Below are some facts on logarithms that you may find useful.

i. loga b = 1
logb a

ii loga b = logc b
logc a

iii aloga b = b

iv bloga x = xloga b

∗Answer: the issue with the argument is that the outer loop only runs a constant number of times (8 to be specific, since
27 = 128), and therefore the outer loop runs in Ω(1) time instead of Ω(lgn), which is why it’s Θ(n), as the proof above shows.

Divide & Conquer and Recurrence Relations 7
7.1 Computing Powers of Two

Consider the problem of computing 2n for any non-negative integer n. Below are four similar looking algorithms
to solve this problem.

powerof2(n)
if n = 0

return 1
else

return 2 * powerof2(n-1)

powerof2(n)
if n = 0

return 1
else

return powerof2(n-1)+ powerof2(n-1)

powerof2(n)
if n = 0

return 1
else

tmp = powerof2(n-1)
return tmp + tmp

powerof2(n)
if n = 0

return 1
else

tmp = powerof2(floor(n/2))
if (n is even) then

return tmp * tmp
else

return 2 * tmp * tmp

The recurrence for the first and the third method is T (n) = T (n− 1) +O(1). The recurrence for the second
method is T (n) = 2T (n− 1) +O(1), and the recurrence for the last method is T (n) = T (n/2) + c (assuming
that n is a power of 2). In all cases the base case is T (0) = 1.

We will solve these recurrences. The recurrence for the first and the third method can be solved as follows.

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 42

T (n) = T (n− 1) + c

= T (n− 2) + 2c

= T (n− 3) + 3c

. . .

. . .

= T (n− k) + kc

The recursion bottoms out when n− k = 0, i.e., k = n. Thus, we get

T (n) = T (0) + kc

= 1 + nc

= Θ(n)

The recurrence for the second method can be solved as follows.

T (n) = 2T (n− 1) + c

= 22T (n− 2) + (20 + 21)c

= 23T (n− 3) + (20 + 21 + 22)c

. . .

. . .

= 2kT (n− k) + c

k−1∑
i=0

2i

The recursion bottoms out when n− k = 0, i.e., k = n. Thus, we get

T (n) = 2nT (0) + c

n−1∑
i=0

2i

= 2n + c(2n − 1)

= Θ(2n)

The recurrence for the fourth method can be solved as follows.

T (n) = T (n/2) + c

= T (n/22) + 2c

= T (n/23) + 3c

. . .

. . .

= T (n/2k) + kc

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 43

The recursion bottoms out when n/2k < 1, i.e., when k > lg n. Thus, we get

T (n) = T (0) + c(lg n+ 1)

= 1 + Θ(lg n)

= Θ(lg n)

7.2 Linear Search and Binary Search

The input is an array A of elements in any arbitrary order and a key k and the objective is to output true, if
k is in A, false, otherwise. Below is a recursive function to solve this problem.

LinearSearch (A[lo .. hi], k)
if lo > hi then

return False
else

return (A[hi] == k) or LinearSearch(A[lo..hi-1], k)

The recurrence relation to express the running time of LinearSearch is given by T (n) = T (n − 1) + c,
with the base case being T (0) = 1. We have already solved this recurrence and it yields a running time of
T (n) = Θ(n).

If the input array A is already sorted, we can do significantly better using binary search as follows.

BinarySearch (A[lo .. hi], k)
if lo > hi then

return False
else

mid = floor(lo+hi/2)
if A[mid] = k then

return True
else if A[mid] < k then

return BinarySearch(A[mid+1 .. hi], k)
else

return BinarySearch(A[lo .. mid-1], k)

The running time of this method is given the recurrence T (n) = T (n/2) + c, with the base case being T (0) = 1.
As we have seen before, this recurrence yields a running time of T (n) = Θ(log n).

7.3 MergeSort

Below is a recursive version of insertion sort that we studied a couple of lectures ago.

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 44

InsertionSort(A[lo..hi])
if lo = hi then

return A
else

A’ = InsertionSort(A[lo..hi-1])
Insert(A’, A[hi]) // insert element A[hi] into the sorted array A’

Note that the Insert function takes Θ(n) time for an input array of size n. Thus the running time of Insertion
sort is given by the following recurrence.

T (n) =

{
1, n = 1

T (n− 1) + n, n ≥ 2

It is easy to see that this recurrence yields a running time of T (n) = Θ(n2).

To motivate the idea behind the next sorting algorithm (Merge Sort), let’s rewrite InsertionSort function as
follows.

InsertionSort(A[lo..hi])
if lo = hi then

return A
else

// Merge combines two sorted arrays into one sorted array
Merge(InsertionSort(A[lo..hi-1]), InsertionSort(A[hi..hi]))

The function Merge is as follows.

Merge(A[1..p], B[1..q])
if p = 0 then

return B
if q = 0 then

return A
if A[1] <= B[1] then

return prepend(A[1], Merge(A[2..p], B[1..q]))
else

return prepend(B[1], Merge(A[1..p], B[2..q]))

Note that the running time of Merge is O(p+ q). The second recursive call to InsertionSort takes O(1) time
and hence the running time of InsertionSort still is Θ(n2).

Observe that in InsertionSort the input array A is partitioned into two arrays, one of size |A| − 1 and
another of size 1. In Merge Sort, we partition the input array of size n in two equal halves (assuming n is a
power of 2). Below is the function.

MergeSort(A[1..n])
if n = 1 then

return A
else

return Merge(MergeSort(A[1..n/2], MergeSort(A[n/2+1..n]))

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 45

The running time of MergeSort is given by the following recurrence.

T (n) =

{
1, n = 1

2T (n/2) + cn, n ≥ 2

We can also solve recurrences by guessing the overall form of the solution and then figure out the constants as
we proceed with the proof. Below are some examples.

Example. Consider the following recurrence for the MergeSort algorithm.

T (n) =

{
1, n = 1

2T (n/2) + n, n ≥ 2

Prove that T (n) = O(n lg n).

Solution. We will first prove the claim by expanding the recurrence as follows.

T (n) = 2T (n/2) + n

= 22T (n/22) + 2n

= 23T (n/23) + 3n

. . .

. . .

= 2kT (n/2k) + kn

The recursion bottoms out when n/2k = 1, i.e., k = lg n. Thus, we get

T (n) = 2lgnT (1) + n lg n

= Θ(n log n)

We will now prove that T (n) = O(n lg n) by using strong induction on n. We will show that for some constant
c, whose value we will determine later, T (n) ≤ cn lg n, for all n ≥ 2.

Induction Hypothesis: Assume that the claim is true when n = j, for all j such that 2 ≤ j ≤ k. In other words,
T (j) ≤ cj lg j.

Base Case: n = 2. The left hand side is given by T (2) = 2T (1) + 2 = 4 and the right hand side is 2c. Thus the
claim is true for the base case when c ≥ 2.

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 46

Induction Step: We want to show that for k ≥ 2, T (k + 1) ≤ c(k + 1) lg(k + 1). We have

T (k + 1) = 2T

(
k + 1

2

)
+ (k + 1)

≤ 2c

((
k + 1

2

)
lg

(
k + 1

2

))
+ (k + 1)

= c(k + 1)(lg(k + 1)− lg 2) + (k + 1)

= c(k + 1) lg(k + 1)− (c− 1)(k + 1)

≤ c(k + 1) lg(k + 1) (since c ≥ 2)

Example. Consider the following recurrence that you may want to try to solve on your own before reading
the solution.

T (n) =

{
1, n = 1

2T (n/2) + n2, n ≥ 2

Prove that T (n) = Θ(n2).

Solution. Clearly, T (n) = Ω(n2) (because of the n2 term in the recurrence). To prove that T (n) = O(n2),
we will show using strong induction that for some constant c, whose value we will determine later, T (n) ≤ cn2,
for all n ≥ 1.

Induction Hypothesis: Assume that the claim is true when n = j, for all j such that 1 ≤ j ≤ k. In other words,
T (j) ≤ cj2.

Base Case: n = 1. The claim is clearly true as the left hand side and the right hand side, both equal 1.

Induction Step: We want to show that T (k + 1) ≤ c(k + 1)2. We have

T (k + 1) = 2T

(
k + 1

2

)
+ (k + 1)2

≤ 2c

(
k + 1

2

)2

+ (k + 1)2

=
(c

2
+ 1
)

(k + 1)2

We want the right hand side to be at most cn2. This means that we want c/2 + 1 ≤ c, which holds when c ≥ 2.
Thus we have shown that T (n) ≤ 2n2, for all n ≥ 1, and hence T (n) = O(n2).

7.4 More Recurrence Practice

Example. The running time of Karatsuba’s algorithm for integer multiplication is given by the following
recurrence. Solve the recurrence. Assume that n is a power of 2.

T (n) =

{
3T (n/2) + n, n ≥ 2

1, n=1

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 47

Solution.

T (n) = 3T (n/2) + n

= 32T (n/22) + 3n/2 + n

= 33T (n/23) + (3/2)2n+ 3n/2 + n

. . .

. . .

= 3kT (n/2k) + n

k−1∑
i=0

(3/2)i

The recursion bottoms out when n/2k = 1, i.e., k = lg n. Thus, we get

T (n) = 3log2 nT (1) + n

lgn−1∑
i=0

(3/2)i

= 3log2 n + n

(
(3/2)lgn − 1

3/2− 1

)
= nlog2 3 + 2n(nlg(3/2) − 1) (log fact derived from change of base rule)

= nlog2 3 + 2n(nlg 3−lg 2) − 1)

= nlog2 3 + 2n(nlg 3−1)− 2n

= nlog2 3 + 2nlg 3 − 2n

= 3nlog2 3 − 2n

= Θ(nlg 3) (can be argued by setting c = 3 and n0 = 1)

Example. Find the running time expressed by the following recurrence. Assume that n is a power of 3.

T (n) =

{
5T (n/3) + n2, n ≥ 2

1, n=1

Solution.

T (n) = 5T (n/3) + n2

= 52T (n/32) + 5(n/3)2 + n2

= 53T (n/33) + 52(n/32)2 + 5n2/32 + n2

. . .

. . .

= 5kT (n/3k) + n2

(
1 +

5

9
+

(
5

9

)2

+ . . .+

(
5

9

)k−1)

CIS 121 – Draft of August 31, 2021 7 Divide & Conquer and Recurrence Relations 48

The recursion bottoms out when n/3k = 1, i.e., k = log3 n. Thus, we get

T (n) = 5log3 nT (1) + n2
k−1∑
i=0

(5/9)i

= 5log3 n + n2
(

(5/9)log3 n − 1

(5/9)− 1

)
= 5log5 n/ log5 3 +

9n2

4

(
1− (nlog3 5/n2)

)
= nlog3 5 +

9n2

4
− 9nlog3 5

4

=
9n2

4
− 5nlog3 5

4

= Θ(n2)

7.5 Simplified Master Theorem

Obviously, it would be nice if there existed some kind of shortcut for computing recurrences. The Simplified
Master Theorem provides this shortcut for recurrences of the following form:

Theorem 1. Let a ≥ 1, b > 1, k ≥ 0 be constants and let T (n) be a recurrence of the form

T (n) = aT
(n
b

)
+ Θ(nk)

defined for n ≥ 0. The base case T (1) can be any constant value. Then

Case 1: if a > bk, then T (n) = Θ
(
nlogb a

)
Case 2: if a = bk, then T (n) = Θ

(
nk logb n

)
Case 3: if a < bk, then T (n) = Θ

(
nk
)

The statement of the full Master Theorem and its proof will be presented in CIS 320.

Example. Solve the following recurrences using the Simplified Master Theorem. Assume that n is a power
of 2 or 3 and T (1) = c for some constant c.

a. T (n) = 4T (n/2) + n

b. T (n) = T (n/3) + n

c. T (n) = 9T (n/3) + n2.5

d. T (n) = 8T (n/2) + n3

Solution.

a. a = 4, b = 2, and k = 1. Thus case 1 of the Simplified Master Theorem applies and hence T (n) =

Θ(nlog2 4) = Θ(n2).
b. a = 1, b = 3, and k = 1. Thus case 3 of the Simplified Master Theorem applies and hence T (n) = Θ(n).
c. a = 9, b = 3, and k = 2.5. Thus case 3 of the Simplified Master Theorem applies and hence T (n) = Θ(n2.5).
d. a = 8, b = 2, and k = 3. Thus case 2 of the Simplified Master Theorem applies and hence T (n) =

Θ(n3 log2 n).

Quicksort 8
8.1 Deterministic Quicksort

In quicksort, we first decide on the pivot. This could be the element at any location in the input array. The
function Partition is then invoked. Partition accomplishes the following: it places the pivot in the location
that it should be in the output and places all elements that are at most the pivot to the left of the pivot and
all elements greater than the pivot to its right. Then we recurse on both parts. The pseudocode for Quicksort
is as follows.

QSort(A[lo..hi])
if hi <= lo then

return
else

pIndex = floor((lo+hi)/2) (this could have been any location)
loc = Partition(A, lo, hi, pIndex)
QSort(A[lo..loc-1])
QSort(A[loc+1..hi])

One possible implementation of the function Partition is as follows.

Partition(A, lo, hi, pIndex)
pivot = A[pIndex]
swap(A, pIndex, hi)
left = lo
right = hi-1
while left <= right do

if (A[left] <= pivot) then
left = left + 1

else
swap(A, left, right)
right = right - 1

swap(A, left, hi)
return left

The worst case running time of the algorithm is given by

T (n) =

{
1, n = 1

T (n− 1) + cn, n ≥ 2

Hence the worst case running time of QSort is Θ(n2).

An instance where the quicksort algorithm in which the pivot is always the first element in the input array
performs poorly is an array in descending order of its elements.

CIS 121 – Draft of August 31, 2021 8 Quicksort 50

8.2 Randomized Quicksort

In the randomized version of quicksort, we pick a pivot uniformly at random from all possibilities. We will now
show that the expected number of comparisons made in randomized quicksort is equal to 2n lnn+O(n) =

Θ(n log n).

Theorem 1. For any input array of size n, the expected number of comparisons made by randomized
quicksort is

2n lnn+O(n) = Θ(n log n)

Proof. Let y1, y2, ..., yn be the elements in the input array A in sorted order. Let X be the random variable
denoting the total number of pair-wise comparisons made between elements of A. Let Xi,j be the random
variable denoting the total number of times elements yi and yj are compared during the algorithm.

We make the following observations:

I Comparisons between elements in the input array are done only in the function Partition
I Two elements are compared if and only if one of them is a pivot.

Let Xk
i,j be an indicator random variable that is 1 if and only if elements yi and yj are compared in the k-th

call to Partition. Then we have:

X =

n−1∑
i=1

n∑
j=i+1

Xi,j and Xi,j =
∑
k

Xk
i,j

We will now calculate E[Xi,j]. By the linearity of expectation, we have

E[Xij] =
∑
k

E[Xk
ij] =

∑
k

Pr[Xk
ij = 1]

Let t be the iteration of the first call to Partition during which one of the elements from yi, yi+1, ..., yj is
used as the pivot (think about why such an iteration must exist). From our observations above, note that for
all times before t, yi and yj are never compared, so Xk

i,j = 0 for all k < t. If one of yi or yj is chosen as the
t-th pivot, then Xt

i,j = 1, otherwise Xt
i,j = 0 and yi and yj will be separated into different sublists and hence

will never be compared again. Hence Xk
i,j = 0 for all k > t.

Now, since there are j − i + 1 elements in the list yi, yi+1, ..., yj , and the pivot is chosen randomly, the
probability that one of yi or yj is chosen as the pivot is 2

j−i+1 . Hence:

E[Xi,j] = Pr[Xt
i,j = 1] =

2

j − i+ 1

Now we use this result and apply the linearity of expectation to get:

CIS 121 – Draft of August 31, 2021 8 Quicksort 51

E[X] =

n−1∑
i=1

n∑
j=i+1

E[Xi,j]

=

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=

n∑
k=2

2

k
(n− k + 1) (see the note below)

= (n+ 1)

n∑
k=2

2

k
− 2(n− 1)

= 2(n+ 1)

n∑
k=1

1

k
− 2(n− 1)− 2(n+ 1)

= 2(n+ 1) (lnn+ c)− 4n where 0 ≤ c < 1

= 2n lnn+O(n)

Here we have used the fact that the harmonic function, H(n) =
n∑
k=1

1
k is at most lnn+ c for some constant

0 ≤ c < 1.

Also, the third equality follows by expanding the sum as

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1
=

2

2
+

2

3
+ ...+

2

n− 2
+

2

n− 1
+

2

n

+
2

2
+

2

3
+ ...+

2

n− 2
+

2

n− 1

+
2

2
+

2

3
+ ...+

2

n− 2
...

+
2

2

and grouping the columns together.

Counting Inversions 9
9.1 Introduction and Problem Description

We will continue with our study of divide and conquer algorithms by considering how to count the number
of inversions in a list of elements. This is a problem that comes up naturally in many domains, such as
collaborative filtering and meta-search tools on the internet. A core issue in applications like these is the
problem of comparing two rankings: you rank a set of n movies, and then a collaborative filtering system
consults its database to look for other people who had “similar” rankings in order to make suggestions. But
how does one measure similarity?

Suppose you and another person rank a set of n movies, labelling them from 1 to n accordingly. A natural
way to compare your ranking with the other persons is to count the number of pairs that are “out of order.”
Formally, we will consider the following problem: We are given a sequence of n numbers, a1, ..., an, which we
assume are distinct. We want to define a measure that tells us how far this list is from being in ascending
order. The value of the measure should be 0 if a1 < a2 < ... < an and should increase as the numbers become
more scrambled, taking on the largest possible value if an < an−1 < ... < a1.

A natural way to quantify this notion is by counting the number of inversions.

Definition. Given a sequence of numbers a1, a2, ..., an, we say indices i < j form an inversion if ai > aj .
That is, if ai and aj are out of order.

As an example, consider the sequence
2, 4, 1, 3, 5

There are three inversions in this sequence: (2, 1), (4, 1), and (4, 3). A simple way to count the number of
inversions when n is small is to draw the sequence of input numbers in the order they’re provided, and below
that in ascending order. We then draw a line between each number in the top list and its copy in the lower
list. Each crossing pair of line segments corresponds to an inversion.

2 4 1 3 5

1 2 3 4 5

Figure 9.1: There are three inversions: (2, 1), (4, 1), and (4, 3).

Note how the number of inversions is a measure that smoothly interpolates between complete agreement
(when the sequence is in ascending order, then there are no inversions) and complete disagreement (if the
sequence is in descending order, then every pair forms an inversion and so there are

(
n
2

)
of them).

These notes were adapted from Kleinberg and Tardos’ Algorithm Design

CIS 121 – Draft of August 31, 2021 9 Counting Inversions 53

9.2 Designing an Algorithm

A naive way to count the number of inversions would be to simply look at every pair of numbers (ai, aj) and
determine whether they constitute an inversion. This would take O(n2) time.

As you can imagine, there is a faster way that runs in O(n log n) time. Note that since there can be a quadratic
number of inversions, such an algorithm must be able to compute the total number without every looking at
each inversion individually. The basic idea is to use a divide and conquer strategy.

Similar to the other divide and conquer algorithms we’ve seen, the first step is to divide the list into two pieces:
set m =

⌈
n
2

⌉
and consider the two lists a1, ..., am and am+1, ..., an. Then we conquer each half by recursively

counting the number of inversions in each half separately.

Now, how do we combine the results? We have the number of inversions in each half separately, so we must
find a way to count the number of inversions of the form (ai, aj) where ai and aj are in different halves. We
know that the recurrence T (n) = 2T (n/2) + O(n), T (1) = 1 has solution T (n) = O(n log n), and so this
implies that we must be able to do this part in O(n) time if we expect to find an O(n log n) solution.

Note that the first-half/second-half inversions have a nice form: they are precisely the pairs (ai, aj) where ai
is in the first half, aj is in the second half, and ai > aj .

To help with counting the number of inversions between the two halves, we will make the algorithm recursively
sort the numbers in the two halves as well. Having the recursive step do a bit more work (sorting as well as
counting inversions) will make the “combining” portion of the algorithm easier.

Thus the crucial routine in this process is Merge-and-Count. Suppose we have recursively sorted the first
and second halves of the list and counted the inversions in each. We know have two sorted lists A and B,
containing the first and second halves respectively. We want to produce a single sorted list C from their union,
while also counting the number of pairs (a, b) with a ∈ A and b ∈ B and a > b.

This is closely related to a problem we have previously encountered: namely the “combining” step in MergeSort.
There, we had two sorted lists A and B and we wanted to merge them into a single sorted list in O(n) time.
The difference here is that we want to do something extra: not only should we produce a single sorted list
from A and B, but we should also count the number of inverted pairs (a, b) where a ∈ A, b ∈ B and a > b as
we do so.

We can do this by walking through the sorted lists A and B, removing elements from the front and appending
them to the sorted list C. In a given step, we have a current pointer into each list, showing our current position.
Suppose that these pointers are currently at elements ai and bj . In one step, we compare the elements ai and
bj , remove the smaller one from its list, and append it to the end of list C.

This takes care of the merging. To count the number of inversions, note that because A and B are sorted, it is
actually very easy to keep track of the number of inversions we encounter. Every time element ai is appended
to C, no new inversions are encountered since ai is smaller than everything left in list B and it comes before
all of them. On the other hand, if bj is appended to list C, then it is smaller than all of the remaining items
in A and it comes after all of them, so we increase our count of the number of inversions by the number of
elements remaining in A. This is the crucial idea: in constant time, we have accounted for a potentially large
number of inversions.

Merge-and-Count

Input: Two sorted lists A and B

CIS 121 – Draft of August 31, 2021 9 Counting Inversions 54

Output: A sorted list containing all elements in A and B, as well as the number of inversions assuming all
elements in A precede those in B.

Merge -and -Count(A,B)
L = []
currA = 1
currB = 1
count = 0
While currA <= A.length and currB <= B.length:

a = A[currA]
b = B[currB]
if a < b then

L.append(a)
currA = currA + 1

else
L.append(b)
remaining = A.length - currA + 1
count = count + remaining
currB = currB + 1

Once one list is empty , append the remainder of the other
list to L

Return count and L

We use this Merge-and-Count routine in a recursive procedure that simultaneously sorts and counts the
number of inversions in a list L.

Sort-and-Count

Input: A list L of n distinct numbers

Output: A sorted version of L as well as the number of inversions in L.

Sort -and -Count(L)
if n = 1 then

return 0 and L

m = dn/2e
A = L[1,...,m]
B = L[m+1,...,n]
(rA, A) = Sort -and -Count(A)
(rB , B) = Sort -and -Count(B)
(r , L) = Merge -and -count(A,B)

return rA + rB + r and the sorted list L

CIS 121 – Draft of August 31, 2021 9 Counting Inversions 55

9.3 Runtime

The running time of Merge-and-Count can be bounded by the analogue of the argument we used for the
original Merge algorithm: each iteration of the while loop takes constant time, and in each iteration, we add
some element to the output that will never be seen again. Thus the number of iterations can be at most the
sum of the initial lengths of A and B, and so the total running time is O(n).

Since Merge-and-Count runs in O(n) time, the recurrence for the runtime of Sort-and-Count is

T (n) =

{
2T (n/2) +O(n) n > 1

1 otherwise

This is exactly the same recurrence as we saw in the analysis of MergeSort, so we can immediately say the
runtime of Sort-and-Count is

T (n) = O(n log n)

Selection Problem 10
10.1 Introduction to Problem

Definition. The ith order statistic of a set of n elements is the ith smallest element.

Definition. A median, informally, is the “halfway point” of the set, occurring at i = b(n+ 1)/2c∗
∗ When n is even, two medians exist. However, for simplicity, we will choose the lower median.

Here we address the problem of selecting the ith order statistic from a set of n distinct numbers. We assume
for convenience that the set contains distinct numbers, although virtually everything that we do extends to
the situation in which a set contains repeated values. The selection problem is defined as:

I Input: n integers in array A[1..n], and an integer i ∈ {1, 2, ..., n}
I Output: the ith smallest number in A

We can solve the selection problem in O(n lg n) time, since we can sort the numbers using merge sort and
then simply index the ith element in the output array. Here, we present a faster algorithm which achieves
O(n) running time in the worst case.

If we could find element e such that rank(e) = n/2 (the median) in O(n) time we could make Quicksort
run in Θ(n log n) time worst case. We could just exchange e with the last element in A in the beginning of
Partition and thus ensure that A is always partitioned in the middle.

10.2 Selection in Worst-Case Linear Time

We now examine a selection algorithm whose running time is O(n) in the worst case. The algorithm Select
finds the desired element by recursively partitioning the input array. Here, however, we guarantee a good
split upon partitioning the array. Select uses the deterministic partitioning algorithm Partition from
Quicksort, but modified to take the element to partition around as an input parameter.

The Select algorithm determines the ith smallest of an input array of n > 1 distinct elements by executing
the following steps. (If n = 1, then Select merely returns its only input value as the ith smallest.)

1. Divide the n elements of the input array into bn/5c groups of 5 elements each and at most one group
made up of the remaining n mod 5 elements.

2. Find the median of each of the dn/5e groups by first Insertion-Sorting the elements of each group (of
which there are at most 5) and then picking the median from the sorted list of group elements.

3. Use Select recursively to find the median x of the dn/5e medians found in step 2. (If there are an even
number of medians, then by our convention, x is the lower median.)

4. Partition the input array around the median-of-medians x using the modified version of Partition.
Let k be one more than the number of elements on the low side of the partition, so that x is the kth
smallest element and there are n− k elements on the high side of the partition.

5. If i = k, then return x. Otherwise, use Select recursively to find the ith smallest element on the low
side if i < k, or the (i− k)th smallest element on the high side if i > k.

These notes were adapted from CLRS Chapter 9.3

CIS 121 – Draft of August 31, 2021 10 Selection Problem 57

To analyze the running time of Select, we first determine a lower bound on the number of elements that are
greater than the partitioning element x. The figure below helps us to visualize this bookkeeping. At least half
of the medians found in step 2 are greater than or equal to the median-of-medians x (remember, we assumed
distinct elements). Thus, at least half of the dn/5e groups contribute at least 3 elements that are greater than
x, except for the one group that has fewer than 5 elements if 5 does not divide n exactly, and the one group
containing x itself. Discounting these two groups, it follows that the number of elements greater than x is at
least

3

(⌈
1

2

⌈n
5

⌉⌉
− 2

)
≥ 3n

10
− 6

Similarly, at least 3n/10− 6 elements are less than x. Thus, in the worst case, step 5 calls Select recursively
on at most 7n/10 + 6 elements.

9.3 Selection in worst-case linear time 221

x

Figure 9.1 Analysis of the algorithm SELECT. The n elements are represented by small circles,
and each group of 5 elements occupies a column. The medians of the groups are whitened, and the
median-of-medians x is labeled. (When finding the median of an even number of elements, we use
the lower median.) Arrows go from larger elements to smaller, from which we can see that 3 out
of every full group of 5 elements to the right of x are greater than x, and 3 out of every group of 5
elements to the left of x are less than x. The elements known to be greater than x appear on a shaded
background.

step 2 are greater than or equal to the median-of-medians x.1 Thus, at least half
of the dn=5e groups contribute at least 3 elements that are greater than x, except
for the one group that has fewer than 5 elements if 5 does not divide n exactly, and
the one group containing x itself. Discounting these two groups, it follows that the
number of elements greater than x is at least

3

!"
1

2

ln

5

m#
! 2

$
"

3n

10
! 6 :

Similarly, at least 3n=10 ! 6 elements are less than x. Thus, in the worst case,
step 5 calls SELECT recursively on at most 7n=10C 6 elements.

We can now develop a recurrence for the worst-case running time T .n/ of the
algorithm SELECT. Steps 1, 2, and 4 take O.n/ time. (Step 2 consists of O.n/
calls of insertion sort on sets of size O.1/.) Step 3 takes time T .dn=5e/, and step 5
takes time at most T .7n=10 C 6/, assuming that T is monotonically increasing.
We make the assumption, which seems unmotivated at first, that any input of fewer
than 140 elements requires O.1/ time; the origin of the magic constant 140 will be
clear shortly. We can therefore obtain the recurrence

1Because of our assumption that the numbers are distinct, all medians except x are either greater
than or less than x.

Figure 10.1: From CLRS, this figure helps understand the analysis of Select. The n elements are represented by small circles,
and each group of 5 elements occupies a column. The medians of the groups are whitened, and the median-of-medians x is labeled.
(When finding the median of an even number of elements, we use the lower median.) Arrows go from larger elements to smaller,
from which we can see that 3 out of every full group of 5 elements to the right of x are greater than x, and 3 out of every group
of 5 elements to the left of x are less than x. The elements known to be greater than x appear on a shaded background.

We can now develop a recurrence for the worst-case running time T (n) of the algorithm Select. Steps 1, 2,
and 4 take O(n) time. (Step 2 consists of O(n) calls of Insertion-Sort on sets of size O(n).) Step 3 takes
time T (dn/5e), and step 5 takes time at most T (7n/10 + 6), assuming that T is monotonically increasing. We
make the assumption, which seems unmotivated at first, that any input of fewer than 140 elements requires
O(1) time; the origin of the magic constant 140 will be clear shortly. We can therefore obtain the recurrence

T (n) ≤
{
O(1), if x < 140

T (dn/5e) + T (7n/10 + 6) +O(n), otherwise.

We show that the running time is linear by substitution. More specifically, we will show that T (n) ≤ cn for
some suitably large constant c and all n > 0. We begin by assuming that T (n) ≤ cn for some suitably large
constant c and all n < 140; this assumption holds if c is large enough. We also pick a constant a such that
the function described by the O(n) term above (which describes the non-recursive component of the running
time of the algorithm) is bounded above by an for all n > 0. Substituting this inductive hypothesis into the

CIS 121 – Draft of August 31, 2021 10 Selection Problem 58

right-hand side of the recurrence yields

T (n) ≤ cdn/5e+ c(7n/10 + 6) + an

≤ cn/5 + c+ 7cn/10 + 6c+ an

= 9cn/10 + 7c+ an

= cn+ (−cn/10 + 7c+ an)

which is at most cn if

0 ≥ −cn/10 + 7c+ an

c ≥ 10a(n/(n− 70)) (when n > 70)

Therefore, since we assume n ≥ 140∗, we have n/(n− 70) ≤ 2, and so choosing c ≥ 20a satisfies the equation,
showing that the worst-case running time of Select is therefore linear (i.e., runs in O(n) time).

∗ Note that there is nothing special about the constant 140; we could replace it by any integer strictly greater than 70 and then
choose c accordingly.

Closest Pair 11
11.1 Closest Pair

Today, we consider another application of divide-and-conquer, which comes from the field of computational
geometry. We are given a set P of n points in the plane, and we wish to find the closest pair of points p, q ∈ P
(see (a) in the figure below). This problem arises in a number of applications. For example, in air-traffic control,
you may want to monitor planes that come too close together, since this may indicate a possible collision.
Recall that, given two points p = (px, py) and q = (qx, qy), their (Euclidean) distance is

‖pq‖ =
√

(px − qx)2 + (py − qy)2

Clearly, this problem can be solved by brute force in O(n2) time, by computing the distance between each
pair, and returning the smallest. Today, we will present an O(n log n) time algorithm, which is based a clever
use of divide-and-conquer.

Before getting into the solution, it is worth pointing out a simple strategy that fails to work. If two points
are very close together, then clearly both their x-coordinates and their y-coordinates are close together. So,
how about if we sort the points based on their x-coordinates and, for each point of the set, we’ll consider just
nearby points in the list. It would seem that (subject to figuring out exactly what “nearby” means) such a
strategy might be made to work. The problem is that it could fail miserably. In particular, consider the point
set of (b) in the figure below. The points p and q are the closest points, but we can place an arbitrarily large
number of points between them in terms of their x-coordinates. We need to separate these points sufficiently
far in terms of their y-coordinates that p and q remain the closest pair. As a result, the positions of p and q
can be arbitrarily far apart in the sorted order. Of course, we can do the same with respect to the y-coordinate.
Clearly, we cannot focus on one coordinate alone∗.

q

p

(b)(a)

q

p

Fig. 105: (a) The closest pair problem and (b) why sorting on x- or y-alone doesn’t work.

the point set of Fig. 105(b). The points p and q are the closest points, but we can place an
arbitrarily large number of points between them in terms of their x-coordinates. We need to
separate these points su�ciently far in terms of their y-coordinates that p and q remain the
closest pair. As a result, the positions of p and q can be arbitrarily far apart in the sorted
order. Of course, we can do the same with respect to the y-coordinate. Clearly, we cannot
focus on one coordinate alone.16

Divide-and-Conquer Algorithm: Let us investigate how to design an O(n log n) time divide-
and-conquer approach to the problem. The input consists of a set of points P , represented,
say, as an array of n elements, where each element stores the (x, y) coordinates of the point.
(For simplicity, let’s assume there are no duplicate x-coordinates.) The output will consist of
a single number, being the closest distance. It is easy to modify the algorithm to also produce
the pair of points that achieves this distance.

For reasons that will become clear later, in order to implement the algorithm e�ciently, it will
be helpful to begin by presorting the points, both with respect to their x- and y-coordinates.
Let Px be an array of points sorted by x, and let Py be an array of points sorted by y. We
can compute these sorted arrays in O(n log n) time. Note that this initial sorting is done only
once. In particular, the recursive calls do not repeat the sorting process.

Like any divide-and-conquer algorithm, after the initial basis case, our approach involves
three basic elements: divide, conquer, and combine.

Basis: If |P | 3, then just solve the problem by brute force in O(1) time.

Divide: Otherwise, partition the points into two subarrays PL and PR based on their x-
coordinates. In particular, imagine a vertical line ` that splits the points roughly in half
(see Fig. 106). Let PL be the points to the left of ` and PR be the points to the right of
`.

16While the above example shows that sorting along any one coordinate axis may fail, there is a variant of this
strategy that can be used for computing nearest neighbors approximately. This approach is based on the observation
that if two points are close together, their projections onto a randomly oriented vector will be close, and if they are far
apart, their projections onto a randomly oriented vector will be far apart in expectation. This observation underlies
a popular nearest neighbor algorithm called locality sensitive hashing.

Closest Pair 170 CMSC 451

Figure 11.1: (a) The closest pair problem and (b) why sorting on x- or y-alone doesn’t work.

These notes were adapted from the University of Maryland’s CMSC 451 course
∗While the above example shows that sorting along any one coordinate axis may fail, there is a variant of this strategy that can
be used for computing nearest neighbors approximately. This approach is based on the observation that if two points are close
together, their projections onto a randomly oriented vector will be close, and if they are far apart, their projections onto a
randomly oriented vector will be far apart in expectation. This observation underlies a popular nearest neighbor algorithm
called locality sensitive hashing

CIS 121 – Draft of August 31, 2021 11 Closest Pair 60

11.2 Divide and Conquer Algorithm

Let us investigate how to design an O(n log n) time divide and conquer approach to the problem. The input
consists of a set of points P , represented, say, as an array of n elements, where each element stores the (x, y)

coordinates of the point. (For simplicity, let’s assume there are no duplicate x-coordinates.) The output will
consist of a single number, being the closest distance. It is easy to modify the algorithm to also produce the
pair of points that achieves this distance.

For reasons that will become clear later, in order to implement the algorithm efficiently, it will be helpful to
begin by presorting the points, both with respect to their x- and y-coordinates. Let Px be an array of points
sorted by x, and let Py be an array of points sorted by y. We can compute these sorted arrays in O(n log n)

time. Note that this initial sorting is done only once. In particular, the recursive calls do not repeat the sorting
process. Like any divide-and-conquer algorithm, after the initial base case, our approach involves three basic
elements: divide, conquer, and combine.

Base Case: If |P | < 3, then just solve the problem by brute force in O(1) time.
Divide: Otherwise, partition the points into two subarrays PL and PR based on their x-coordinates. In

particular, imagine a vertical line ` that splits the points roughly in half (see figure below). Let PL be
the points to the left of ` and PR be the points to the right of `.

In the same way that we represented P using two sorted arrays, we do the same for PL and PR. Since
we have presorted Px by x-coordinates, we can determine the median element for ` in constant time.
After this, we can partition each of arrays Px and Py in O(n) time each.

In the same way that we represented P using two sorted arrays, we do the same for PL

and PR. Since we have presorted Px by x-coordinates, we can determine the median
element for ` in constant time. After this, we can partition each of arrays Px and Py in
O(n) time each.

PL PR

�L

�R

`

q
p

�0

Fig. 106: Divide-and-conquer closest pair algorithm.

Conquer: Compute the closest pair within each of the subsets PL and PR each, by invoking
the algorithm recursively. Let �L and �R be the closest pair distances in each case (see
Fig. 106). Let � = min(�L, �R).

Combine: Note that � is not necessarily the final answer, because there may be two points
that are very close to one another but are on opposite sides of `. To complete the
algorithm, we want to determine the closest pair of points between the sets, that is, the
closest points p 2 PL and q 2 PR (see Fig. 106). Since we already have an upper bound �
on the closest pair, it su�ces to solve the following restricted problem: if the closest pair
(p, q) are within distance �, then we will return such a pair, otherwise, we may return
any pair. (This restriction is very important to the algorithm’s e�ciency.) In the next
section, we’ll show how to solve this restricted problem in O(n) time. Given the closest
such pair (p, q), let �0 = kpqk. We return min(�, �0) as the final result.

Assuming that we can solve the “Combine” step in O(n) time, it will follow that the algo-
rithm’s running time is given by the recurrence T (n) = 2T (n/2) + n, and (as in Mergesort)
the overall running time is O(n log n), as desired.

Closest Pair Between the Sets: To finish up the algorithm, we need to compute the closest
pair p and q, where p 2 PL and q 2 PR. As mentioned above, because we already know of
the existence of two points within distance � of each other, this algorithm is allowed to fail, if
there is no such pair that is closer than �. The input to our algorithm consists of the point set
P , the x-coordinate of the vertical splitting line `, and the value of � = min(�L, �R). Recall
that our goal is to do this in O(n) time.

This is where the real creativity of the algorithm enters. Observe that if such a pair of points
exists, we may assume that both points lie within distance � of `, for otherwise the resulting

Closest Pair 171 CMSC 451

Conquer: Compute the closest pair within each of the subsets PL and PR each, by invoking the algorithm
recursively. Let δL and δR be the closest pair distances in each case (see figure above). Let δ = min(δL, δR).

Combine: Note that δ is not necessarily the final answer, because there may be two points that are very
close to one another but are on opposite sides of `. To complete the algorithm, we want to determine the
closest pair of points between the sets, that is, the closest points p ∈ PL and q ∈ PR (see figure above).
Since we already have an upper bound on the closest pair, it suffices to solve the following restricted
problem: if the closest pair (p, q) are within distance δ, then we will return such a pair, otherwise, we
may return any pair. (This restriction is very important to the algorithm’s efficiency.) In the next section,
we’ll show how to solve this restricted problem in O(n) time. Given the closest such pair (p, q), let
δ′ = ‖pq‖. We return min(δ, δ′) as the final result.

Assuming we can solve the “combine” step in O(n) time, it follows that the algorithm’s running time is given
by T (n) = 2T (n/2) + n, and (as in Mergesort) the overall running time is O(n log n), as desired.

CIS 121 – Draft of August 31, 2021 11 Closest Pair 61

11.3 Closest Pair Between the Sets

To finish up the algorithm, we need to compute the closest pair p and q, where p ∈ PL and q ∈ PR. As
mentioned above, because we already know of the existence of two points within distance δ of each other, this
algorithm is allowed to fail, if there is no such pair that is closer than δ. The input to our algorithm consists
of the point set P , the x-coordinate of the vertical splitting line `, and the value of δ = min(δL, δR). Recall
that our goal is to do this in O(n) time.

This is where the real creativity of the algorithm enters. Observe that if such a pair of points exists, we may
assume that both points lie within distance δ of `, for otherwise the resulting distance would exceed δ. Let
S denote this subset of P that lies within a vertical strip of width 2 · δ centered about ` (see (a) in figure
below)∗. distance would exceed �. Let S denote this subset of P that lies within a vertical strip of

width 2� centered about ` (see Fig. 107(a)).17

PL PR

� �

`

� �

`
S

2�

�

(a) (b)

Sy

�/2

�
2

p
2 < �

si

sj

Fig. 107: Closest pair in the strip.

How do we find the closest pair within S? Sorting comes to our rescue. Let Sy = hs1, . . . , smi
denote the points of S sorted by their y-coordinates (see Fig. 107(a)). At the start of the
lecture, we asserted that considering the points that are close according to their x- or y-
coordinate alone is not su�cient. It is rather surprising, therefore, that this does work for
the set Sy.

The key observation is that if Sy contains two points that are within distance � of each other,
these two points must be within a constant number of positions of each other in the sorted
array Sy. The following lemma formalizes this observation.

Lemma: Given any two points si, sj 2 Sy, if ksisjk �, then |j � i| 7.

Proof: Suppose that ksisjk �. Since they are in S they are each within distance � of `.
Clearly, the y-coordinates of these two points can di↵er by at most �. So they must
both reside in a rectangle of width 2� and height � centered about ` (see Fig. 107(b)).
Split this rectangle into eight identical squares each of side length �/2. A square of side
length x has a diagonal of length x

p
2, and no two points within such a square can be

farther away than this. Therefore, the distance between any two points lying within one
of these eight squares is at most

�
p

2

2
=

�p
2

< �.

Since each square lies entirely on one side of `, no square can contain two or more points
of P , since otherwise, these two points would contradict the fact that � is the closest

17You might be tempted to think that we have pruned away many of the points of P , and this is the source of
e�ciency, but this is not generally true. It might very well be that every point of P lies within the strip, and so we
cannot a↵ord to apply a brute-force solution to our problem.

Closest Pair 172 CMSC 451

Figure 11.2: Closest pair in the strip.

How do we find the closest pair within S? Sorting comes to our rescue. Let Sy = 〈s1, ..., sm〉 denote the
points of S sorted by their y-coordinates (see (a) in figure above). At the start of the notes, we asserted that
considering the points that are close according to their x- or y-coordinate alone is not sufficient. It is rather
surprising, therefore, that this does work for the set Sy.

The key observation is that if Sy contains two points that are within distance δ of each other, these two points
must be within a constant number of positions of each other in the sorted array Sy. The following lemma
formalizes this observation.

Lemma 1. Given any two points si, sj ∈ Sy, if ‖sisj‖ ≤ δ, then |j − i| ≤ 7.

Proof. Suppose that ‖sisj‖ ≤ δ. Since they are in S they are each within distance δ of `. Clearly, the
y-coordinates of these two points can differ by at most δ. So they must both reside in a rectangle of width 2δ

and height δ centered about ` (see (b) in figure above). Split this rectangle into eight identical squares each
of side length δ/2. A square of side length x has a diagonal of length x

√
2, and no two points within such

∗You might be tempted to think that we have pruned away many of the points of P , and this is the source of efficiency, but
this is not generally true. It might very well be that every point of P lies within the strip, and so we cannot afford to apply a
brute-force solution to our problem.

CIS 121 – Draft of August 31, 2021 11 Closest Pair 62

a square can be farther away than this. Therefore, the distance between any two points lying within one of
these eight squares is at most

δ
√

2

2
=

δ√
2
< δ

Since each square lies entirely on one side of `, no square can contain two or more points of P , since otherwise,
these two points would contradict the fact that δ is the closest pair seen so far. Thus, there can be at most
eight points of S in this rectangle, one for each square. Therefore, |j − i| ≤ 7.

Avoiding Repeated Sorting One issue that we have not yet addressed is how to compute Sy. Recall that
we cannot afford to sort these points explicitly, because we may have n points in S, and this part of the
algorithm needs to run in O(n) time. This is where presorting comes in. Recall that the points of Py are
already sorted by y-coordinates. To compute Sy, we enumerate the points of Py, and each time we find a point
that lies within the strip, we copy it to the next position of array Sy. This runs in O(n) time, and preserves
the y-ordering of the points.

By the way, it is natural to wonder whether the value “8” in the statement of the lemma is optimal. Getting
the best possible value is likely to be a tricky geometric exercise. Our textbook proves a weaker bound of “16”.
Of course, from the perspective of asymptotic complexity, the exact constant does not matter.

closestPair(P = (Px, Py)) {
n = |P|
if (n <= 3) solve by brute force // base case
else {

Find the vertical line L through P’s median // divide
Split P into PL and PR (split Px and Py as well)
dL = closestPair(PL) // conquer
dR = closestPair(PR)
d = min(dL, dR)
for (i = 1 to n) { // create Sy

if (Py[i] is within distance d of L)
append Py[i] to Sy

}
d’ = stripClosest(Sy) // closest in strip
return min(d, d’) // overall closest

}
}

stripClosest(Sy) { // closest in strip
m = |Sy|
d’ = infinity
for (i = 1 to m) {

for (j = i+1 to min(m, i+7)) { // search neighbors
if (dist(Sy[i], Sy[j]) <= d’)

d’ = dist(Sy[i], Sy[j]) // new closest found
}

}
return d’

}

Integer Multiplication 12
12.1 Introduction and Problem Statement

The problem we consider is extremely basic: how do we multiply two integers? In elementary school, you were
taught a concrete (and fairly efficient) algorithm to multiply two n-digit numbers x and y. You first compute a
“partial product” by multiplying each digit of y separately by x, and then you add up all the partial products,
shifting where necessary.

12

×13

36

+12

156

1100

×1101

1100

0000

1100

+ 1100

10011100

Figure 12.1: The elementary school algorithm for multiplying two integers in decimal and binary representation.

Note that while in elementary school, you learned how to multiply decimal numbers, in computer science, we
care about binary numbers. Either way, the same algorithm works.

How long does this algorithm take to multiply two n bit numbers? Counting a single operation on a pair of
bits as one primitive step in the computation, it takes O(n) time to compute each partial product, and O(n)

time to combine it in with the running sum of partial products so far. Since there are n partial products, this
gives a total running time of O(n2).

In fact, there exists a faster algorithm which uses the divide and conquer strategy to achieve a much better
runtime.

12.2 Designing the Algorithm

The improved algorithm is based on a more clever way to break up the product into partial sums. Let’s assume
we are in base 2 (it doesn’t really matter) and we are given two binary numbers x and y which we want to
multiply. We start by writing x as

x = x1 · 2n/2 + x0

In other words, x1 corresponds to the n/2 higher-order bits and x0 corresponds to the n/2 lower-order bits.
Similarly, write y = y1 · 2n/2 + y0. Then we have

xy =
(
x1 · 2n/2 + x0

)(
y1 · 2n/2 + y0

)
= x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0

These notes were adapted from Kleinberg and Tardos’ Algorithm Design

CIS 121 – Draft of August 31, 2021 12 Integer Multiplication 64

Hence we have reduced the problem of solving a single n-bit instance (multiplying the two n-bit numbers x
and y) into the problem of solving four n/2-bit instances (computing the products x1y1, x1y0, x0y1, and x0y0).
So we have a first candidate for a divide-and-conquer algorithm: recursively compute the results for these
four n/2-bit instances, and then combine them using the above equation. The combining requires a constant
number of additions and shifts of O(n)-bit numbers, so it takes O(n) time. Thus the running time is given by
the recurrence

T (n) = 4T (n/2) + cn

(where we have ignored the base case for simplicity). Here c is just a constant.

Unfortunately, you can check that solving this recurrence gives us T (n) = Θ(n2), which is no better than the
elementary school algorithm!

In order to speed up our algorithm, we can try to reduce the number of recursive calls made from four to
three. In that case, we’d have T (n) = Θ(nlog2 3) = O(n1.59) which is much better than Θ(n2).

Now in order to compute the value of the expression

x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0

using only three recursive calls instead of four, we need to use a little trick. Remember, as part of our
computation, we need to compute (x1y0 + x0y1). In particular, we don’t need to explicitly compute x1y0 and
x0y1 separately: we just need their sum!

Hence consider the result of the single multiplication (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0. This
has the four products above added together, at the cost of a single recursive multiplication. If we now also
determine x1y1 and x0y0 by recursion, then we get the outermost terms explicitly, and we get the middle term
by subtracting x1y1 and x0y0 away from (x1 + x0)(y1 + y0).

This gives the full algorithm:

Fast Integer Multiplcation

Input: Two n-bit numbers x and y, where n is assumed to be a power of 2.

Output: The product xy

Recursive -Multiply(x, y)
Let x = x1 · 2n/2 + x0
Let y = y1 · 2n/2 + y0

a = x1 + x0
b = y1 + y0
c = Recursive -Multiply(a, b)
p = Recursive -Multiply(x1, y1)
q = Recursive -Multiply(x0, y0)

Return p*2n + (c - p - q)*2n/2 + q

CIS 121 – Draft of August 31, 2021 12 Integer Multiplication 65

12.3 Runtime

As stated above, the running time is T (n) = Θ
(
nlg 3

)
= O(n1.59). This comes from the following recurrence:

T (n) = 3T (n/2) + cn

where c is a constant and where we ignore the base case.

We can then solve the recurrence (ignoring the constant c) as follows:

T (n) = 3T (n/2) + n

= 3
(
3T (n/22) + n/2

)
+ n

= 32T (n/22) +
3

2
n+ n

= 32
(
3T (n/23) + n/22

)
+

3

2
n+ n

= 33T (n/23) +

(
3

2

)2

n+
3

2
n+ n

...

= 3kT (n/2k) + n ·
k−1∑
i=0

(
3

2

)i
Assuming a base case of T (1) ≤ 1, the recurrence bottoms out when n/2k = 1 ⇒ k = log2 n. Plugging this
in gives:

3kT (n/2k) + n ·
k−1∑
i=0

(
3

2

)i
= 3k + n ·

((
3
2

)k − 1
3
2 − 1

)

= 3log2 n + n ·
((

3
2

)log2 n − 1
3
2 − 1

)
= nlog2 3 + 2n ·

(
nlog2 3−1 − 1

)
= nlog2 3 + 2nlog2 3 − 2n

= 3nlog2 3 − 2n

= Θ
(
nlog2 3

)

Above we used the fact that nlogb a = alogb n.

Stacks and Queues 13
13.1 The Stack ADT

An abstract data type (ADT) is an abstraction of a data structure. It specifies the type of data stored and
different operations that can be performed on the data. It’s like a Java interface—it specifies the name and
definition of the methods, but hides their implementations.

In the stack ADT, the data can be arbitrary objects and the main operations are push and pop which allow
insertions and deletions in a last-in, first-out manner. One way to implement a stack is to use an array. Note
that an array has a fixed size, so in a fixed capacity implementation of the stack, the number of items in
the stack can be no more than the size of the array. This implies that to use the stack one must estimate
the maximum size of the stack ahead of time. To make the stack have unlimited capacity, we will adjust
dynamically the size of the array so that it is both sufficiently large to store all of the items and not so large
so as to waste an excessive amount of space. We will consider two strategies—the incremental strategy in
which the array capacity is increased by a constant amount when the stack size equals the array capacity and
the doubling strategy, in which the size of the array is doubled when the stack size equals the array capacity.
Since arrays cannot be dynamically resized, we have to create a new array of increased size and copy the
elements from the old array to the new array.

We will first analyze the incremental strategy.

push(obj)
// s: stack size
// a: array capacity
// c: initial array size and also the increment in array size
A[s] = obj
s = s + 1
if s == a then

a = a + c
copy contents of old array to the new array

An example sequence of operations is below:

CIS 121 – Draft of August 31, 2021 13 Stacks and Queues 67

Push 2

2 Push 7

2 7 Push 9

2 7 9 Push 5

2 7 9 5 Push 6

2 7 9 5 6 Push 3

2 7 9 5 6 3

Figure 13.1: A sequence of Push operations using the incremental strategy. Here c = 2.

Let c be the initial size of the array and the amount by which the array size is increased during each expansion.
Consider a sequence of n push operations. Note that after every c push operations, the array expansion
happens. The n push operations cost n. The cost of the first expansion is c+ 2c (since c elements are being
copied and we need to allocate a new array of size 2c), the cost of the second expansion is 2c + 3c (since
2c elements are being copied and we need to allocate a new array of size 3c), and so on. We can separate
these expressions into two parts: the cost of allocations and the cost of copying. The cost of allocations is
2c+ 3c+ ...+ n+ (n+ c) and the cost of copying is c+ 2c+ ...+ n.

Thus the total cost of n consecutive push operations is given by

T (n) = cost of pushes + cost of copying + cost of allocations

= n+ (c+ 2c+ ...+ n) + (2c+ 3c+ ...+ n+ c)

= n+ c(1 + 2 + ...+ n/c) + c(2 + 3 + ...+ n/c+ 1)

= n+ c ·
(
n/c(n/c+ 1)

2

)
+ c

(
(n/c+ 1)(n/c+ 2)

2
− 1

)
= Θ(n2)

since c is a constant.

We will now analyze the doubling method. The pseudocode is:

push(obj)
// s: stack size
// a: array capacity
A[s] = obj
s = s + 1
if s == a then

a = 2 * a
copy contents of old array to the new array

CIS 121 – Draft of August 31, 2021 13 Stacks and Queues 68

We will be using amortized analysis, which means that we will be finding the time-averaged cost for a sequence
of operations. In other words, the amortized runtime of an operation is the time required to perform a sequence
of operations averaged over all the operations performed. Let T (n) be the total time needed to perform a
series of n push operations. Then the amortized time of a single push operation is T (n)/n. Note that this is
different from the notion of “average case analysis”—we’re not making any assumptions about inputs begin
chosen at random, nor are we assuming any probability distribution over the input. We are just averaging
over time. Also note that the total real cost of a sequence of operations will be bounded by the total of the
amortized costs of all the operations.

Let s denote the number of objects in the stack at any given time and let a be the array capacity at any
given time. When s < a, push(obj) is a constant time operation. However, when the stack is full, i.e. when
s = a, we double the size of the array. Thus the cost of push(obj) in this case is O(s), as we have to copy s
items from the old array into the new array (the cost of allocating and freeing the array is O(s)). The worst
case cost of a push operation is O(n), and hence the cost of n push operations is O(n log n) (since there are
O(log n) expansions). Is this tight?

Push 2

2 Push 7

2 7 Push 9

2 7 9 Push 5

2 7 9 5 Push 6

2 7 9 5 6 Push 8

2 7 9 5 6 8 Push 4

2 7 9 5 6 8 4 Push 3

2 7 9 5 6 8 4 3

Figure 13.2: A sequence of Push operations using the doubling strategy.

The above analysis did NOT use amortization. Let’s see if we can get a better bound using amortized
analysis. If we start from an empty stack, what is the cost of a sequence of n push operations? As before,
the cost of the n push operations ignoring expansions is n. The cost of allocating new arrays is at most
1 + 2 + 4 + ...+ n+ 2n < 4n and the cost of copying elements is at most 1 + 2 + 4 + ...+ n/2 + n < 2n. Thus
the total cost is at most 7n = O(n). The amortized cost of an operation is 7 = O(1), even though the worst
case time complexity of a single push operation is O(n).

Another way to analyze the doubling scheme is as follows: Each element will be allocated 7 dollars. Once
the element is pushed, it uses 1 dollar. When the array needs to be doubled, only elements that have never
been moved before pay for all the elements that are being moved to the new array. Since the number of such
elements is exactly half the number of all elements in the stack, each never-been-moved element pays a cost of
6 for the move–2 for allocating space for itself and copying itself over, 2 for allocating space of one of the

CIS 121 – Draft of August 31, 2021 13 Stacks and Queues 69

elements in the first half of the stack and copying it over, and 2 for allocating two more empty slots since the
array is being doubled. Thus the total cost incurred by each element is 7, and hence T (n) ≤ 7n = O(n).

Similarly, in pop(), after removing the object from the stack, if the stack size is significantly less than the
array capacity, then we resize the array (we don’t want to waste space). More specifically, when the stack
size is equal to one-fourth of the array size, then we reduce the size of the array to half its current capacity.
After resizing, the array is still half full and can accomodate a substantial number of push and pop operations
before having to resize again. The pseudocode for the pop operations is as follows:

pop()
item = A[s]
s = s - 1
if s < a/4 then

a = a/2

Why do we only resize when the array is less than one fourth full, rather than one half full? Consider what
would happen if a malicious user pushed elements onto the stack until it resized up. Then it popped a single
element—this would trigger another resizing down. Then it pushed a single element—this would trigger another
resizing up. And so on. In this worst case, every push/pop operation would require copying elements, leading
to very bad running times. Resizing the array when it is less than one-fourth full prevents this “thrashing”
problem.

13.2 Queues

A queue is a collection of objects that is based on a first-in, first-out policy. The main operations in a Queue
ADT are enqueue(obj) and dequeue. The enqueue operation inserts an element at the end of the queue. The
dequeue operation removes and returns the element at the front of the queue. Queues can also be implemented
using expandable arrays. However, unlike a stack, in a queue we need to keep track of both the head and the
tail of the queue. The head of the queue points to the first element in the queue and the tail points to the
last element in the queue. Note that when we dequeue an element, the element is removed from the head of
the queue and when an element is enqueued, that element is inserted at the tail of the queue. When the tail
points to the end of the array, it may not mean that the array is full. This is because some elements may have
been popped off and the head of the queue may not be pointing to the beginning of the array. That is, there
may be room at the beginning of the array. To address this we use a wrap-around implementation. This way,
we expand the array only when every slot in the array contains an element, i.e., when the queue size equals
the array capacity. When copying the queue elements into the new array, we can “unwind” the queue so that
the head points to the beginning of the array.

Note that this is only one possible implementation of a queue. There are countless others, including singly- or
doubly-linked lists, circular linked lists, etc.

Binary Heaps and Heapsort 14
A heap is a type of data structure. One of the interesting things about heaps is that they allow you to find
the largest element in the heap in O(1) time. (Recall that in certain other data structures, like arrays, this
operation takes O(n) time.) Furthermore, extracting the largest element from the heap (i.e., finding and
removing it) takes O(log n) time. These properties make heaps very useful for implementing a priority queue,
which we’ll get to later. They also give rise to an O(n log n) sorting algorithm, Heapsort, which works by
repeatedly extracting the largest element until we have emptied the heap.

14.1 Definitions and Implementation

Definition. The binary heap data structure is an array object that we can view as a nearly complete
binary tree. Each node of the tree corresponds to an element of the array. The tree is completely filled on
all levels except possibly the lowest, which is filled from the left up to a point.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in the
nodes satisfy a heap property, the specifics of which depend on the kind of heap. In a max-heap, the
max-heap property is that for every node i other than the root, A[Parent(i)] ≥ A[i], that is, the value
of a node is at most the value of its parent. Thus, the largest element in a max-heap is stored at the root,
and the subtree rooted at a node contains values no larger than that contained at the node itself.

A min-heap is organized in the opposite way; the min-heap property is that for every node i other than
the root, A[Parent(i)] ≤ A[i]. The smallest element in a min-heap is at the root.

Definition. Viewing a heap as a tree, we define the height of a node in a heap to be the number of edges
on the longest simple downward path from the node to a leaf, and we define the height of the heap to be
the height of its root. Since a heap of n elements is based on a complete binary tree, its height is blg nc.

Figure 14.1: A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is
the value stored at that node. The number above a node is the corresponding index in the array. Above and below the array are
lines showing parent-child relationships; parents are always to the left of their children. The tree has height three; the node at
index 4 (with value 8) has height one.

These notes were adapted from CLRS Chapter 6 and CS 161 at Stanford University

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 71

As mentioned above, you can implement a heap as an array. This array is essentially populated by “reading
off” the numbers in the tree, from left to right and from top to bottom (i.e., level order).

The root is stored at index 1, and if a node is at index i, then:

I Parent(i): return bi/2c
I Left(i): return 2i

I Right(i): return 2i+ 1

Furthermore, for the heap array A, we store two properties: A.length, which is the number of elements in the
array, and A.heapsize, which is the number of array elements that are actually part of the heap. Even though
A is potentially filled with numbers, only the elements in A[1..A.heapsize] are actually part of the heap.

Note: The leaves of the heap are the nodes indexed by bn/2c+ 1, bn/2c+ 2, ..., n, so there are ∼ n/2 = O(n)

elements which are at the leaves.

We shall see that the basic operations on heaps run in time at most proportional to the height of the tree and
thus take O(lg n) time. The remainder of this chapter presents some basic procedures and shows how they are
used in a sorting algorithm and a priority-queue data structure.

I The Max-Heapify procedure, which runs in O(lg n) time, is the key to maintaining the max-heap
property.

I The Build-Max-Heap procedure, which runs in linear time, produces a max-heap from an unordered
input array.

I The Heapsort procedure, which runs in O(n lg n) time, sorts an array in place.
I The Max-Heap-Insert, Heap-Extract-Max, Heap-Increase-Key, Heap-Maximum procedures,

which run in O(lg n) time, allow the heap data structure to implement a priority queue.

Note: we will be discussing max-heaps in the following sections, with the understanding that the
algorithms for min-heaps are analogous.

14.2 Maintaining the Heap Property

In order to maintain the max-heap property, we call the procedure Max-Heapify. Its inputs are an array
A and an index i into the array. When it is called, Max-Heapify assumes that the binary trees rooted at
Left(i) and Right(i) are max-heaps, but that A[i] might be smaller than its children, thus violating the
max-heap property. Max-Heapify lets the value at A[i] “float down” in the max-heap so that the subtree
rooted at index i obeys the max-heap property.

Max-Heapify(A, i):
l = Left(i)

r = Right(i)

if l ≤ A.heapsize and A[l] > A[i]

largest = l

else largest = i

if r ≤ A.heapsize and A[r] > A[largest]

largest = r

if largest 6= i

exchange A[i] with A[largest]

Max-Heapify(A, largest)

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 72

The figure below illustrates how Max-Heapify works. At each step, the largest of the elements A[i], A[Left(i)],
and A[Right(i)] is determined, and its index is stored in largest. If A[i] is largest, then the subtree rooted at
node i is already a max-heap and the procedure terminates. Otherwise, one of the two children has the largest
element, and A[i] is swapped with A[largest], which causes node i and its children to satisfy the max-heap
property. The node indexed by largest, however, now has the original value A[i], and thus the subtree rooted
at largest might violate the max-heap property. Consequently, we call Max-Heapify recursively on that
subtree.

Figure 14.2: The action of Max-Heapify(A, 2), where A.heapsize = 10. (a) The initial configuration, with A[2] at node i = 2
violating the max-heap property since it is not larger than both children. The max-heap property is restored for node 2 in (b) by
exchanging A[2] with A[4], which destroys the max-heap property for node 4. The recursive call Max-Heapify(A, 4) now has
i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call Max-Heapify(A, 9) yields no
further change to the data structure.

The running time of Max-Heapify on a subtree of size n rooted at a given node i is the Θ(1) time to fix up
the relationships among the elements A[i], A[Left(i)], and A[Right(i)], plus the time to run Max-Heapify
on a subtree rooted at one of the children of node i (assuming that the recursive call occurs). The children’s
subtrees each have size at most 2n/3—the worst case occurs when the bottom level of the tree is exactly half
full—and therefore we can describe the running time of Max-Heapify by the recurrence

T (n) ≤ T (2n/3) + Θ(1)

which by the Simplified Master Theorem is T (n) = O(lg n). Alternatively, we can characterize the running
time of Max-Heapify on a node of height h as O(h).

14.3 Building a Heap

The Build-Max-Heap procedure runs Max-Heapify on all the nodes in the heap, starting at the nodes
right above the leaves and moving towards the root, to convert an array A[1..n], where n = A.length, into a

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 73

max-heap. We start at the bottom because in order to run Max-Heapify on a node, we need the subtrees of
that node to already be heaps.

Recall that the elements in the subarray A[(bn/2c+ 1)..n] are all leaves of the tree, and so each is a 1-element
heap to begin with. The procedure Build-Max-Heap goes through the remaining nodes of the tree and runs
Max-Heapify on each one.

Build-Max-Heap(A):
A.heapsize = A.length

for i = bA.length/2c downto 1
Max-Heapify(A, i)

See the figure on the next page for a worked-through example of Build-Max-Heap.

Correctness

To show why Build-Max-Heap works correctly, we use the following loop invariant: at the start of each
iteration of the for loop of lines 2–3, each node i+ 1, i+ 2, ..., n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each iteration of the loop
maintains the invariant, and that the invariant provides a useful property to show correctness when the loop
terminates.

Initialization: Prior to the first iteration of the loop, i = bn/2c. Each node bn/2c+ 1, bn/2c+ 2, ..., n is a
leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that the children of node i
are numbered higher than i. By the loop invariant, therefore, they are both roots of max-heaps. This
is precisely the condition required for the call Max-Heapify(A, i) to make node i a max-heap root.
Moreover, the Max-Heapify call preserves the property that nodes i+ 1, i+ 2, ..., n are all roots of
max-heaps. Decrementing i in the for loop update reestablishes the loop invariant for the next iteration.

Termination: At termination, i = 0. By the loop invariant, each node 1, 2, ..., n is the root of a max-heap.
In particular, node 1 is a max-heap.

Runtime

Simple Upper Bound: We can compute a simple upper bound on the running time of Build-Max-Heap
as follows. Each call to Max-Heapify costs O(lg n) time, and Build-Max-Heap makes O(n) such calls.
Thus, the running time is O(n lg n). This upper bound, though correct, is not asymptotically tight.

Tighter Upper Bound: Recall that an n-element heap has height blg nc. In addition, an n element heap
has at most dn/2h+1e nodes of any height h (this is Exercise 6.3-3 in CLRS, and we won’t solve it here, but
you can prove it by induction). The time required by Max-Heapify when called on a node of height h is
O(h), and so we can express the total cost of Build-Max-Heap as being bounded from above by

blgnc∑
h=0

⌈ n

2h+1

⌉
O(h) = O

n blgnc∑
h=0

h

2h

 ∗ = O

(
n

∞∑
h=0

h

2h

)
= O(n)

Hence, we can build a max-heap from an unordered array in O(n) time.
∗ evaluate this summation by substituting x = 1/2 into CLRS formula (A.8)

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 74

158 Chapter 6 Heapsort

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7
(a)

16

4 1 23 16 9 10 14 8 7

4

1 3

2 9 10

14 8 7
(b)

16

4

1 3

14 9 10

2 8 7
(c)

16

4

1 10

14 9 3

2 8 7
(d)

16

4

16 10

14 9 3

2 8 1
(e)

7

16

14 10

8 9 3

2 4 1
(f)

7

A

i i

ii

i

Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the bi-
nary tree it represents. The figure shows that the loop index i refers to node 5 before the call
MAX-HEAPIFY.A; i/. (b) The data structure that results. The loop index i for the next iteration
refers to node 4. (c)–(e) Subsequent iterations of the for loop in BUILD-MAX-HEAP. Observe that
whenever MAX-HEAPIFY is called on a node, the two subtrees of that node are both max-heaps.
(f) The max-heap after BUILD-MAX-HEAP finishes.

Figure 14.3: The operation of Build-Max-Heap, showing the data structure before the call to MAX-HEAPIFY in line 3 of
Build-Max-Heap. (a) A 10-element input array A and the binary tree it represents. The figure shows that the loop index i
refers to node 5 before the call Max-Heapify(A, i). (b) The data structure that results. The loop index i for the next iteration
refers to node 4. (c)–(e) Subsequent iterations of the for loop in Build-Max-Heap. Observe that whenever Max-Heapify is
called on a node, the two subtrees of that node are both max-heaps. (f) The max-heap after Build-Max-Heap finishes.

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 75

14.4 Heapsort

Heapsort is a way of sorting arrays. The Heapsort algorithm starts by using Build-Max-Heap to build a
max-heap on the input array A[1..n], where n = A.length. Since the maximum element of the array is stored
at the root A[1], we can put it into its correct final position by exchanging it with A[n]. If we now discard node
n from the heap–and we can do so by simply decrementing A.heapsize–we observe that the children of the
root remain max-heaps, but the new root element might violate the max-heap property. All we need to do to
restore the max-heap property, however, is call Max-Heapify(A, 1), which leaves a max-heap in A[1..n− 1].
The Heapsort algorithm then repeats this process for the max-heap of size n− 1 down to a heap of size 2.

Heapsort(A):
Build-Max-Heap(A)

for i = A.length downto 2
exchange A[1] with A[i]

A.heapsize = A.heapsize− 1

Max-Heapify(A, 1)

See the figure on the next page for a worked-through example of Heapsort.

14.5 Priority Queues

Earlier we said that heaps could be used to implement priority queues. A priority queue is a data structure for
maintaining a set S of elements, each with an associated value called a key. A max-priority queue supports
the following operations:

I Insert(S, x) inserts the element x into the set S.
I Maximum(S) returns the element of S with the largest key.
I Extract-Max(S) removes and returns the element with the largest key.
I Increase-Key(S, x, k) increases the value of element x’s key to the new value k, which is assumed to

be at least as large as x’s current key value.

In addition, there are min-priority queues, which support the analogous operations Minimum, Extract-Min,
and Decrease-Key.

A max-priority queue can be used to schedule jobs on a shared computer, where each job has a priority level.
Every time a job is finished, we pick the highest-priority job to run next, and we do this using Extract-Max.
Furthermore, we can add new jobs to the queue by calling Insert.

In addition, min-priority queues are useful in Dijkstra’s algorithm for finding shortest paths in graphs, which
we will see later in class.

The procedure Heap-Maximum implements the Maximum operation in Θ(1) time.

Heap-Maximum(A):
return A[1]

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 76

6.4 The heapsort algorithm 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

1 2 3 4 7 8 9 10 14 16

10

2

1 3

4 7 8 9

1614

1

2 3

4 7 8 9

161410

3

2 1

9874

10 14 16

4

2 3

9871

10 14 16

8

37

4 2 1 9

161410

7

4 3

9821

10 14 16

9

8 3

2174

161410

10

8 9

3174

16142

14

8 10

3974

1612

16

14 10

3978

142

A

i
i

i

i i

i i

i

i

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-MAX-
HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5,
showing the value of i at that time. Only lightly shaded nodes remain in the heap. (k) The resulting
sorted array A.

Figure 14.4: The operation of Heapsort. (a) The max-heap data structure just after Build-Max-Heap has built it in line 1.
(b)–(j) The max-heap just after each call of Max-Heapify in line 5, showing the value of i at that time. Only lightly shaded
nodes remain in the heap. (k) The resulting sorted array A.

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 77

The procedure Heap-Extract-Max implements the Extract-Max operation. It is similar to Heapsort,
where we swapped the first element with the last element of the array, decreased the size of the heap by 1 and
then called Max-Heapify.

Heap-Extract-Max(A):
if A.heapsize < 1

error “heap underflow”
max = A[1]

A[1] = A[A.heapsize]

A.heapsize = A.heapsize− 1

Max-Heapify(A, 1)

return max

The running time of Heap-Extract-Max is O(lg n), since it performs only a constant amount of work on
top of the O(lg n) time for Max-Heapify.

The procedure Heap-Increase-Key implements the Increase-Key operation. We increase the key of
the node, then “push” the node up through the heap until it is greater than all its children. We do this by
repeatedly swapping the node with its parent.

Heap-Increase-Key(A, i, key):
if key < A[i]

error “new key is smaller than current key”
A[i] = key

while i > 1 and A[Parent(i)] < A[i]

exchange A[i] with A[Parent(i)]

i = Parent(i)

The running time of Heap-Increase-Key on an n-element heap is O(lg n), since the path traced from the
node updated in line 3 to the root has length O(lg n). See the figure on the next page for a worked-through
example of Heap-Increase-Key.

The procedure Max-Heap-Insert implements the Insert operation. It takes as an input the key of the new
element to be inserted into max-heap A. The procedure first expands the max-heap by adding to the tree a
new leaf whose key is −∞. Then it calls Heap-Increase-Key to set the key of this new node to its correct
value and maintain the max-heap property.

Max-Heap-Insert(A, key):
A.heapsize = A.heapsize+ 1

A[A.heapsize] = −∞
Heap-Increase-Key(A,A.heapsize, key)

The running time of Max-Heap-Insert on an n-element heap is O(lg n).

In summary, a heap can support any priority-queue operation on a set of size n in O(lg n) time.

CIS 121 – Draft of August 31, 2021 14 Binary Heaps and Heapsort 78

Figure 14.5: The operation of Heap-Increase-Key. (a) The max-heap of the previous figure with a node whose index is i
heavily shaded. (b) This node has its key increased to 15. (c) After one iteration of the while loop of lines 4–6, the node and its
parent have exchanged keys, and the index i moves up to the parent. (d) The max-heap after one more iteration of the while
loop. At this point, A[Parent(i)] ≥ A[i]. The max-heap property now holds and the procedure terminates.

Huffman Coding 15
15.1 From Text to Bits

Computers ultimately operate on sequences of bits. As a result, one needs encoding schemes that take text
written in richer alphabets (such as the alphabets underpinning human languages) and converts this text into
strings of bits. Moreover, in many cases, it is useful to do so in a way that compresses the data. For example,
when large files need to be shipped across communication networks, or stored on hard disks, it is important to
represent them as compactly as possible without losing information. As a result, compression algorithms are a
big focus in research. Before we jump into data compression algorithms, though, let’s return to the problem of
turning characters into bit sequences.

The simplest way to do this would be to use a fixed number of bits for each symbol in the alphabet, and then
just concatenate the bit strings for each symbol to form the text. Since you can form 2b different sequences
using b bits, you would need dlg ne-bit symbols to encode an alphabet of n characters. For example, to encode
the 26 letters of the English alphabet, plus “space,” you’d need 5 bit symbols. In fact, encoding schemes like
ASCII work precisely this way, except they use a larger number of bits per symbol (eight in the case of ASCII)
in order to handle larger alphabets which include capital letters, parenthesis, and a bunch of other special
symbols.

This method certainly gets the job done, but we should ask ourselves: is there anything more we could ask for
from an encoding scheme, maybe with respect to data compression? We can’t just use fewer bits per encoding:
if we only used four bits in the example above, we could only have 24 = 16 symbols. However, what if we used
fewer bits for some characters? As it currently stands (using the above example), we use five bits for every
character, so obviously the average number of bits per character is five. In some cases, though, we may be
able to use fewer than five bits per character on average. Think about it: letters like e, t and a get used much
more frequently than q and x (by more than an order of magnitude, in fact). So it’s a big waste to translate
them all into the same number of bits. Instead, we could use a small number of bits for the frequent letters,
and a larger number of bits for the less frequent ones, and hope to end up using fewer than five bits per letter
when we average over a long string of text.

15.2 Variable-Length Encoding Schemes

In fact, this idea was used by Samuel Morse when developing Morse Code, which translates letters to dots
and dashes (you can think of these as 0’s and 1’s). Morse consulted local printing presses to get frequency
estimates for the letters in English and constructed his namesake code accordingly (“e” is a single dot—0, “t”
a single dash—1, “a” is dot-dash—01, etc.).

Morse code, however, uses such short strings for letters that the encoding of words becomes ambiguous. For
example, the string 0101 could correspond to any one of eta, aa, etet, or aet. Morse dealt with this ambiguity
by putting pauses between letters. While this certainly eliminates ambiguity, it also means that now we require
three symbols (dot, dash, pause) instead of only two (dot, dash). Since our goal is to translate into bits, we
need to use a different method.

These notes were adapted from Kleinberg and Tardos’ Algorithm Design

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 80

Prefix Codes

The ambiguity in Morse code arises because there are pairs of letters where the bit string that encodes
one is a prefix of the bit string that encodes the other. To eliminate this problem, and hence to obtain an
encoding scheme that has a well-defined interpretation for every sequence of bits, we need the encoding to be
prefix-free:

Definition. A prefix code for a set S of letters is a function γ that maps each letters x ∈ S to some
sequence of zeros and ones, in such a way that for any distinct x, y ∈ S, the sequence γ(x) is not a prefix
of the sequence γ(y).

Why does this ensure every encoding has a well-defined interpretation? Suppose we have a text consisting of
letters x1x2...xn. If we encode each letter as a bit sequence using an encoding function γ, then concatenate
all the bit sequences together to get γ(x1)γ(x2)...γ(xn), then reconstructing the original text can be done by
following these steps:

I Scan the bit sequence from left to right
I As soon as you’ve seen enough bits to match the encoding of some letter, output this as the first letter

of the text. This must be the correct first letter, since no shorter or longer prefix of the bit sequence
could encode any other letter

I Now delete the corresponding set of bits from the front of the message and iterate.

As an example, suppose S = {a, b, c, d, e} and we have an encoding γ specified by

γ(a) = 11

γ(b) = 01

γ(c) = 001

γ(d) = 10

γ(e) = 000

Given the string 0010000011101, we see that c must be the first character, so now we are left with 0000011101.
e is clearly the second character, leaving 0011101. c is next, leaving 1101. Hence a followed by b end the string.
The final translation is cecab. The fact that γ is prefix free makes the translation straightforward.

Optimal Prefix Codes

We ultimately want to give more frequent characters shorter encodings. First we must introduce some
notation.

Assume S is our alphabet. For each character x ∈ S, we assume there is a frequency fx representing the
fraction of letters in the text equal to x. That is, we assume a probability distribution over the letters in the
texts we will be encoding. In a text with n letters, we expect nfx of them to be equal to x. Also, we must
have ∑

x∈S
fx = 1

since the frequencies must sum to 1.

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 81

If we use a prefix code γ to encode a text of length n, what is the total length of the encoding? Writing |γ(x)|
to denote the number of bits in the encoding γ(x), the expected encoding length of the full text is given by

encoding length =
∑
x∈S

nfx · |γ(x)| = n
∑
x∈S

fx · |γ(x)|

That is, we simply take the sum over all letters x ∈ S of the number of times x occurs in the text (nfx) times
the length of the bit string γ(x) used to encode x. The average number of bits per letter is simply the encoding
length divided by the number of letters:

Average bits per letter = ABL(γ) =
∑
x∈S

fx · |γ(x)|

Using the previous example where S = {a, b, c, d, e}, suppose the frequencies were given by

fa = 0.32 fb = 0.25 fc = 0.20 fd = 0.18 fe = 0.05

Then using the same encoding from above, we have

ABL(γ) = 0.32 · 2 + 0.25 · 2 + 0.20 · 3 + 0.18 · 2 + 0.05 · 3 = 2.25

Note that a fixed length encoding with five characters would require dlg 5e = 3 bits per character. Thus using
the code γ reduces the bits per letter from 3 to 2.25, a saving of 25%. In fact, there are even better encodings
for this example.

Definition. An optimal prefix code is as efficient as possible. That is, given an alphabet S and a set of
frequencies for the letters in S, it minimizes the average number of bits per letter ABL(γ) =

∑
x∈S

fx · |γ(x)|

This leads us to the underlying question: Given an alphabet S and a set of frequencies for the letters in S,
how do we produce an optimal prefix code?

15.3 Huffman Encoding

Binary Trees and Prefix Codes

A key insight into this problem is developing a tree-based representation of prefix codes. Suppose we take a
rooted tree T in which each node that is not a leaf has exactly two children; i.e. T is a binary tree. Further,
suppose that the number of leaves is equal to the size of the alphabet S, and we label each leaf with a distinct
letter in S.

Such a labeled binary tree T naturally describes a prefix code. For each letter x ∈ S, we follow the path from
the root to the leaf labeled x. Each time the path goes from a node to its left child, we write down a 0, and
each time the path goes from a node to its right child, we write down a 1. We take the resulting string of bits
as the encoding for x.

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 82

Lemma 1. The encoding of S constructed from T as described above is a prefix code.

Proof. In order for the encoding of x to be a prefix of the encoding for some other character y, the path from
the root to x would have to be a prefix of the path from the root to y. But this is the same as saying that x
would be on the path from the root to y, which isn’t possible since x is a leaf.

In fact, this relationship between binary trees and prefix codes goes the other way too: given a prefix code γ,
we can build a binary tree recursively as follows. We start with a root. All letters x ∈ S whose encodings begin
with a 0 will be leaves in the left subtree of the root, and all the letters y ∈ S whose encodings begin with a 1
will be leaves in the right subtree of the root. Then, just build the two subtrees recursively using this rule.

e d c b

a

Character Encoding
a 1
b 011
c 010
d 001
e 000

e c

b d a

Character Encoding
a 11
b 01
c 001
d 10
e 000

Figure 15.1: Examples of the correspondence between prefix codes and binary trees.

Thus by this equivalence, the search for an optimal prefix code can be viewed as the search for a binary tree
T , together with a labeling of leaves of T , that minimizes the average number of bits per letter. Moreover, this
average quantity has a natural interpretation in terms of the structure of T : the length of the encoding of a
letter x ∈ S is simply the length of the path from the root to the leaf labeled with x, a quantity which has a
special name:

Definition. The depth of a leaf in a binary tree is the length of the path from the root to that leaf. The
depth of a leaf v in tree T is denoted depthT (v).

Thus we seek the labeled tree that minimizes the weighted average of the depths of all leaves, where the
average is weighted by the frequencies of the letters that label the leaves. We use ABL(T) to denote this
quantity. If γ is the prefix code corresponding to T , then

ABL(T) =
∑
x∈S

fx · depthT (x) =
∑
x∈S

fx · |γ(x)| = ABL(γ)

One thing to note immediately about the optimal binary tree T is that it is full. That is, each node that is not
a leaf has exactly two children. To see why, suppose the optimal tree weren’t full. Then we could take any

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 83

node with only one child, remove it from the tree, and replace it by its lone child. This would create a new
tree T ′ such that ABL(T ′) < ABL(T), contradicting the optimality of T . We record this fact below:

Lemma 2. The binary tree corresponding to an optimal prefix code is full.

A First Attempt: The Top-Down Approach

Intuitively, our goal is to produce a labeled binary tree in which the leaves are as close to the root as possible.
This will give us a small average leaf depth.

A natural way to do this would be to try building a tree from the top down by “packing” the leaves as tightly
as possible, perhaps using a divide-and-conquer method. So suppose we try to split the alphabet S into two
sets, S1 and S2 such that the total frequency of the letters in each set is as close to 1/2 as possible. We then
recursively construct prefix codes for S1 and S2 independently, then make these the two subtrees of the root.

In fact, this type of encoding scheme is called the Shannon-Fano code, named after two major figures
in information theory, Claude Shannon and Robert Fano. Shannon-Fano codes work OK in practice, but
unfortunately it doesn’t lead to an optimal prefix code. For example, consider our five letter alphabet
S = {a, b, c, d, e} with frequencies

fa = 0.32 fb = 0.25 fc = 0.20 fd = 0.18 fe = 0.05

There is a unique way to split the alphabet into two sets of equal frequency: {a, d} and {b, c, e}. Recursing
on {a, d}, we can use a single bit to encode each. Recursing on {b, c, e}, we need to go one more level deeper
in the recursion, and again, there is a unique way to divide the set into two subsets of equal frequency. The
resulting code corresponds to:

a d b

c e

Character Encoding
a 00
b 10
c 110
d 01
e 111

Figure 15.2: A non-optimal prefix code for the given alphabet S.

However, it turns out this is NOT optimal. In fact, the optimal code is given by:

d e

c a b

Character Encoding
a 10
b 11
c 01
d 000
e 001

Figure 15.3: An optimal prefix code for the given alphabet S.

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 84

You can verify this is better than the Shannon-Fano tree by computing the value of ABL(T) for each of the
above trees. A quick way to see that the tree in Figure 3 is better than the Shannon-Fano is to notice that the
only characters whose depth differ between the trees are c and d. Since d has a lower frequency than c, it
should have greater depth.

David Huffman, a graduate student who had taken a class by Fano, decided to take up the problem for himself.
This would eventually lead to Huffman’s algorithm and Huffman coding, which always produce optimal
prefix-free codes.

Huffman’s Algorithm

In searching for an efficient algorithm or solving a tough problem, it often helps to assume—as a thought
experiment—that you know something about the optimal solution, and then to see how you would make use
of this partial knowledge in finding the complete solution. Applying this technique to the current problem, we
ask: What if we knew the binary tree T ∗ that corresponded to the optimal prefix code, but not the labeling of
the leaves? To complete the solution, we would need to figure out which letter should label which leaf of T ∗,
and then we’d have our code.

It turns out, this is rather simple to do.

Proposition 1. Suppose that u and v are leaves of T ∗, such that depth(u) < depth(v). Further, suppose
that in a labeling of T ∗ corresponding to an optimal prefix code, leaf u is labeled with character y ∈ S and
leaf v is labeled with z ∈ S. Then fy ≥ fz.

Proof. We will use a common technique called an exchange argument to prove this. Seeking contradiction,
suppose that fy < fz. Consider the code obtained by exchanging the labels at the nodes u and v. In the
expression for the average number of bits per letter, ABL(T ∗) =

∑
x∈S fx ·depth(x), the effect of the exchange

is as follows: the multiplier on fy increases from depth(u) to depth(v), and the multiplier on fz decreases by
the same amount. All other terms remain the same.

Thus the change to the overall sum is (depth(v)− depth(u))(fy − fz). If fy < fz, this change is a negative
number, contradicting the supposed optimality of the prefix code that we had before the exchange.

For example, as state above, it is easy to see that the tree in Figure 2 is not optimal, since we can exchange d
and c to achieve the more optimal code in Figure 3.

This proposition tells us how to label the tree T ∗ should someone give it to us: We go through the leaves in
order of increasing depth, assigning letters in order of decreasing frequency. Note that, among labels assigned
to leaves at the same depth, it doesn’t matter which label we assign to which leaf. Since the depths are all the
same, the corresponding multipliers in the expression ABL(T ∗) =

∑
x∈S fx · |γ(x)| are all the same too.

Now we have reduced the problem to finding the optimal tree T ∗. How do we do this? It helps to think about
the labelling process from the bottom-up, i.e. by considering the leaves at the greatest depths (which thus
receive the labels with the lowest frequencies). Specifically, let v be a leaf in T ∗ whose depth is a large as
possible. Leaf v has a parent u, and since T ∗ must be full, u has another child, w, which is a sibling of v. Note
that w is also a leaf in T ∗, otherwise, v would not be the deepest possible leaf.

Now, since v and w are siblings at the greatest depth, our level-by-level labelling process will reach them
last. The leaves at this deepest level will receive the lowest frequency letters, and since we argued above that
the order in which we assign these letters to the leaves within this level doesn’t matter, there is an optimal
labelling in which v and w get the two lowest-frequency letters over all:

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 85

Lemma 3. There is an optimal prefix code, corresponding to tree T ∗, in which the two lowest-frequency
letters are assigned to leaves that are siblings in T ∗.

Designing the Algorithm

Suppose that y and z are the two lowest frequency letters in S (ties can be broken arbitrarily). Lemma 3 tells
us that it is safe to assume that y and z are siblings in an optimal prefix tree. In fact, this directly suggests
an algorithm: we replace y and z with a meta-letter w, whose frequency is fy + fz. That is, we link y and z
together in the prefix tree, making them siblings with a common parent w. This step makes the alphabet one
letter smaller, so we can recursively find a prefix code for the smaller alphabet. Once we reach an alphabet
with one letter, we are done: this one letter is the root of our tree, and we can “unravel” or “open up” the
process to obtain a prefix code for the original alphabet S.

w

y z

Figure 15.4: We take the two lowest frequency letters y and z, combine them to form a meta-letter w, and recurse.

Huffman’s Algorithm

Input: A set of characters S, together with the frequencies of each character.

Output: An optimal, prefix-free code for S.

Huffman(S)
If |S| = 2 then

Encode one letter using 0 and the other letter using 1
Else

Let y,z be the two lowest -frequency letters

Form a new alphabet S’ by deleting y and z and
replacing them with a new letter w of frequency fw

Recursively construct a prefix code for S’ with tree T’

Define a prefix code for S as follows:
Start with T’
Take the leaf labeled w and add y and z as its

two children

Before jumping into the analysis of the algorithm, let’s trace out how it would work on our running example:

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 86

S = {a, b, c, d, e} with frequencies

fa = 0.32 fb = 0.25 fc = 0.20 fd = 0.18 fe = 0.05

We’d first merge d and e into a single letter, denoted (ed), of frequency 0.18 + 0.05 = 0.23. We now recurse
on the alphabet S′ = {a, b, c, (ed)}. The two lowest frequency letters are now c and (ed), so we merge these
into the single letter (c(ed)) of frequency 0.20 + 0.23 = 0.43. Next we merge a and b to get the alphabet
{(ba), (c(ed))}. Lastly, we perform one final merge to get the single letter ((c(ed))(ba)), and we are done. Here,
the parenthesis structure is meant to represent the structure of the corresponding prefix tree, which looks
like:

c

e d

b a

Note the contrast with the Shannon-Fano codes. Instead of a divide-and-conquer, top-down approach, Huffman’s
algorithm uses a bottom-up, “greedy” approach. Here, “greedy” just means that at each step, we make local,
short-sighted decision (merge the two lowest frequency nodes without worrying about how they will fit into the
overall structure) that leads to a globally optimal outcome (an optimal prefix code for the whole alphabet).

Correctness of Huffman’s Algorithm

Theorem 1. The Huffman code for a given alphabet S achieves the minimum average number of bits
per letter of any prefix code.

Proof. Since the algorithm has a recursive structure, it is natural to try to prove optimality by induction on
the size of the alphabet (CLRS provides a non-inductive proof). Clearly it is optimal for one and two-letter
alphabets (it uses only one bit per letter). So suppose inductively that it is optimal for all alphabets of size
k − 1, where k − 1 ≥ 2 and consider an input consisting of an alphabet of size k.

Now, let y and z be the lowest frequency letters in S (ties broken arbitrarily). The algorithm proceeds by merging
y and z into a single meta-letter w with fw = fy + fz, and forming a new alphabet S′ = (S ∪ {w})− {y, z}.
The algorithm then recurses on S′. By the induction hypothesis, this recursive call produces an optimal prefix
code for S′, represented by a labeled binary tree T ′. It then extends this into a tree T for S by attaching the
leaves labeled y and z as the children of the node in T ′ labelled w.

We have the following relationship:

Lemma 4. With T , T ′, and w defined as above, we have:

ABL(T ′) = ABL(T)− fw

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 87

Proof. The depth of each letter in S other than y and z is the same in both T and T ′. Also, the depths of y
and z in T are each one greater than the depth of w in T ′. Using this, plus the fact that fw = fy + fz, we have

ABL(T) =
∑
x∈S

fx · depthT (x)

= fy · depthT (y) + fz · depthT (z) +
∑
x 6=y,z

fx · depthT (x)

= (fy + fz)(1 + depthT ′(w)) +
∑
x 6=y,z

fx · depthT ′(x)

= fw + fw · depthT ′(w) +
∑
x 6=y,z

fx · depthT ′(x)

= fw +
∑
x∈S′

fx · depthT ′(x)

= fw + ABL(T ′)

Now we can prove optimality as follows: Seeking contradiction, suppose the tree T produced by Huffman’s
algorithm is not optimal. Then there exists some labeled binary tree Z such that ABL(Z) < ABL(T). By
Lemma 3, we can WLOG assume Z has y and z as siblings.

If we delete the leaves labeled y and z from Z, and label their former parent with w, we get a tree Z ′ that
defines a prefix code for S′. In the same way that T is obtained from T ′, the tree Z is obtained from Z ′ by
adding leaves from y and z below w. Thus Lemma 4 applies to Z and Z ′ as well, so ABL(Z ′) = ABL(Z)−fw.

But we have assumed that ABL(Z) < ABL(T). Subtracting fw from both sides of this inequality tells us
that ABL(Z ′) < ABL(T ′), contradicting the optimality of T ′ as a prefix code for S′ (which was given by the
induction hypothesis).

Running Time

Let n be the number of characters in the alphabet S. The recursive calls of the algorithm define a sequence
of n − 1 iterations over smaller and smaller alphabets until reaching the base case. Identifying the lowest
frequency letters can be done in a single scan of the alphabet in O(n) time, and so summing over the n− 1

iterations, the runtime is T (n) ≈ n+ (n− 1) + ...+ 2 + 1 = Θ(n2).

However, note that the algorithm requires finding the minimum of a set of elements. Thus we should expect
to use a data structure that makes it easy to find the minimum of a set of elements quickly. A priority queue
works well here. In this case, the keys are the frequencies. In each iteration, we just extract the minimum
twice (to get the two lowest frequency letters), and then insert a new letter whose key is the sum of these two
minimum frequencies, building the tree as we go. Our priority queue then contains a representation of the
alphabet needed for the next iteration.

Using a binary-heap implementation of a priority queue, we know that each insertion and extract-min operation
take O(log n) time. Hence summing over all n iterations gives a total running time of O(n log n).

This leads to a cleaner formulation of Huffman’s algorithm:

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 88

Huffman’s Algorithm

Input: A set of characters S, together with the frequencies of each character.

Output: An optimal, prefix-free code for S.

Huffman(S)
Let Q be a priority queue containing all elements in S

with frequencies as keys

for i = 1 to n do
allocate a new node z
x = ExtractMin(Q)
y = ExtractMin(Q)
z.left = x
z.right = y
fz = fx + fy
Insert(Q, z)

return ExtractMin(Q) // the root of the tree

15.4 Extensions

While Huffman works well in many cases, it by no means is the solution for all data compression problems. For
example, consider transmitting black-and-white images, where each image is a 1000-by-1000 array of black or
white pixels. Further, suppose a typical image is almost entirely white: only about 1000 of the million pixels
are black. If we wanted to compress this image using prefix codes, it wouldn’t work so well: we’d have a text
of length one million over the two letter alphabet {black, white}. As a result, the text is already encoded
using one-bit per letter, so no significant compression is really possible.

Intuitively, though, such images should be highly compressible. One possible compression scheme is to represent
each image by a set of (x, y) coordinates denoting which pixels are black.

Another drawback of prefix codes is that they cannot adapt to changes in text. For example, suppose we are
trying to encode the output of a program that produces a long sequence of letters from the set {a, b, c, d}.
Further suppose that for the first half of this sequence, the letters a and b occur equally frequently, while c
and d do not occur at all. Huffman’s algorithm would view the entire text as one where each letter is equally
frequent (all letters occur 1/4 of the time), and thus assign two bits per letter.

But what’s really happening here is that the frequency remains stable for half the text, and then it changes
radically. So one could get away with just one bit per letter plus a bit of extra overhead. Consider, for example,
the following scheme:

I Begin with an encoding in which a is represented by 0 and b is represented by 1
I Halfway into the sequence, insert an instruction that says “Change the encoding to 0 represents c and 1

represents d” (this could be some kind of reserved special character).
I Use the new encoding for the rest of the sequence.

CIS 121 – Draft of August 31, 2021 15 Huffman Coding 89

The point is that investing a small amount of space to describe a new encoding can pay off many times over if
it reduces the average number of bits per letter over a long run of text that follows. Such approaches, which
change the encoding in midstream, are called adaptive compression schemes, and for many kinds of data they
lead to significant improvements over the static Huffman method.

Graph Traversals: BFS and DFS 16
16.1 Graphs and Graph Representations

A graph is a set of vertices and edges connecting those vertices. Formally, we define a graph G as G = (V,E)

where E ⊂ V × V . For ease of analysis, the variables n and m typically stand for the number of vertices and
edges, respectively. Graphs can come in two flavors, directed or undirected. If a graph is undirected, it
must satisfy the property that (i, j) ∈ E iff (j, i) ∈ E (i.e., all edges are bidirectional). In undirected graphs,
m ≤ n(n−1)

2 . In directed graphs, m ≤ n(n− 1). Thus, m = O(n2) and logm = O(log n). A connected graph
is a graph in which for any two nodes u and v there exists a path from u v. For an undirected connected
graph m ≥ n− 1. A sparse graph is a graph with few edges (for example, Θ(n) edges) while a dense graph
is a graph with many edges (for example, m = Θ(n2)).

Graph Representations

A common issue is the topic of how to represent a graph’s edges in memory. There are two standard methods
for this task.

1. An adjacency matrix uses an arbitrary ordering of the vertices from 1 to |V |. The matrix consists of
an n× n binary matrix such that the (i, j)-th element is 1 if (i, j) is an edge in the graph, 0 otherwise.

2. An adjacency list consists of an array A of |V | lists, such that A[u] contains a linked list of vertices v
such that (u, v) ∈ E (the neighbors of u). In the case of a directed graph, it’s also helpful to distinguish
between outgoing and ingoing edges by storing two different lists at A[u]: a list of v such that (u, v) ∈ E
(the out-neighbors of u) as well as a list of v such that (v, u) ∈ E (the in-neighbors of u).

What are the tradeoffs between these two methods? To help our analysis, let deg(v) denote the degree of v,
or the number of vertices connected to v. In a directed graph, we can distinguish between out-degree and
in-degree, which respectively count the number of outgoing and incoming edges.

I The adjacency matrix can check if (i, j) is an edge in G in constant time, whereas the adjacency list
representation must iterate through up to deg(i) list entries

I The adjacency matrix takes Θ(n2) space, whereas the adjacency list takes Θ(m+ n) space.
I The adjacency matrix takes Θ(n) operations to enumerate the neighbors of a vertex v since it must

iterate across an entire row of the matrix. The adjacency list takes deg(v) time.

What’s a good rule of thumb for picking the implementation? One useful property is the sparsity of the graph’s
edges. If the graph is sparse, and the number of edges is considerably less than the max (m� n2), then the
adjacency list is a good idea. If the graph is dense and the number of edges is nearly n2, then the matrix
representation makes sense because it speeds up lookups without too much space overhead. Of course, some
applications will have lots of space to spare, making the matrix feasible no matter the structure of the graphs.
Other applications may prefer adjacency lists even for dense graphs. Choosing the appropriate structure is a
balancing act of requirements and priorities.

Note: in this course, please assume the graphs are given to you as adjacency lists unless otherwise specified.

These notes were adapted from Kleinberg and Tardos’ Algorithm Design and from CS 161 at Stanford University.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 91

16.2 Connectivity

Suppose we are given a graph G = (V,E) represented as an adjacency list and two particular nodes s, t ∈ V .
A natural question to ask is: Is there a path from s to t in G? This is the problem of s-t connectivity. As a
side note, s stands for “source” and t stands for “target.” One can also think of the connectivity problem as a
traversal problem: from s, which nodes are reachable? A traversal of the graph beginning at s would answer
such a question.

We will introduce two natural algorithms for solving this problem: breadth-first search (BFS) and depth-
first search (DFS). Later in the course, you will see several other uses for these algorithms beyond graph
connectivity.

Before introducing specific algorithms, we can consider a more general, high-level description of a process to
find the nodes reachable from a source s:

R will consist of nodes to which s has a path
R = {s}
while there is an edge (u, v) where u ∈ R and v /∈ R

Add v to R

In fact in an undirected graph, this “algorithm” finds the vertices in the connected component containing s.
The reason “algorithm” is in quotes is because the above process is under-specified: in the while loop, how do
we decide which edge to consider next? The BFS and DFS algorithms below give two different ways to do
this.

16.3 Breadth-First Search (BFS)

Perhaps the simplest algorithm for graph traversal is breadth-first search (BFS) in which we explore outward
from s in all possible directions, visiting nodes one “layer” at a time. Thus, we start at s and visit all nodes
that are joined by an edge to s—this is the first layer of the search. We then visit all additional nodes that are
joined by an edge to any node in the first layer—this is the second layer. We continue this way until no new
nodes are encountered.

We can define “layers” more formally:

I L0 = {s}
I Lk+1 is the set of all nodes that do not belong in

k⋃
i=0

Li and that have an edge to some node in Lk.

One can also think about BFS not in terms of layers, but in terms of a tree T rooted at s. More specifically,
for each node v 6= s, consider the moment when v is first discovered by the BFS algorithm. This happens
when some node u in layer Lk is begin examined, and we find that it has an edge to the previously unseen
node v. At this moment, we add the edge (u, v) to the tree T—u becomes the parent of v. We call the tree T
produced this way a breadth-first search tree.

The algorithm is described below. We will use a queue to determine which nodes to visit next, and we will use
an array discovered to keep track of which nodes have been visited. For simplicity, we assume the vertices
are integers numbered from 1 to |V |. The first implementation keeps track of the BFS tree via the parent
array, while the second implementation keeps track of both the BFS tree and the levels Li. Depending on the
scenario, one may be more useful than the other.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 92

Breadth-First Search

Input: A graph G = (V,E) implemented as an adjacency list and a source vertex s.

Output: A BFS traversal of G

BFS(G,s)
for each v ∈ V do

discovered[v] = FALSE
parent[v] = NIL

Let Q be an empty Queue
Q.enqueue(s)
discovered[s] = TRUE

while Q is not empty do
v = Q.dequeue ()
for each u ∈ Adj[v] do

if discovered[u] = FALSE then
discovered[u] = TRUE
Q.enqueue(u)
parent[u] = v

BFS(G,s)
for each v ∈ V do

discovered[v] = FALSE

discovered[s] = TRUE
L[0] = {s}
i = 0
while L[i] is not empty

Let L[i+1] be a new list
for each v ∈ L[i] do

for each u ∈ Adj[v] do
if discovered[u] = FALSE then

discovered[u] = TRUE
parent[u] = v
L[i+1]. append(u)

i = i + 1

Note: the order in which we visit each node in a particular level doesn’t matter. There could be multiple BFS
trees.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 93

4

2

5

1

3

6

7

8

9

10

11

12

13

To see how the algorithm works, suppose we start with s as node 1 in the above graph. With L0 = {1}, the
first layer of the search would be L1 = {2, 3}, the second layer would be L2 = {4, 5, 7, 8}, and the third layer
would be just L3 = {6}. At this point, there are no further nodes that could be added. Note in particular that
nodes 9 through 13 are never reached by the search.

For the BFS started at s = 1 on the tree in the figure above, the BFS tree is shown below. The solid edges are
the edges in T , the dashed edges are edges in G that aren’t in T . The first few steps of the execution that
produces this tree can be described in words:

I Starting from 1, L1 = {2, 3}.
I Layer L2 is then grown by considering the nodes in L1 in any order. If we examine node 2 first, then we

discover nodes 4 and 5, so 2 becomes their parent. When we examine node 3, we discover 7 and 8 (5 has
already been discovered), so 3 becomes their parent.

I We then consider the nodes in L2 (WLOG we consider them in ascending order). The only new node
discovered is node 6, which is discovered through node 5 and so becomes the child of node 5.

I No new nodes are discovered when node 6 is examined. The BFS traversal thus terminates.

1

2 3

4 5

6

7 8

Figure 16.1: The BFS tree with s = 1.

BFS Properties

We now prove some properties related to BFS and BFS trees.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 94

If we define the distance between two nodes as the minimum number of edges on a path joining them, we
have the following property:

Proposition 1. For each k ≥ 1, the layer Lk produced by BFS consists of all nodes at distance exactly k
from s. Moreover, there is path from s to t in G if and only if t appears in some layer (i.e. iff t is visited
by the BFS traversal).

Proposition 2. Let G be a graph in which vertices x and y share an edge. Let T be a BFS tree of G. In
T , let vertices x and y belong to layers Li and Lj , respectively. Then i and j differ by at most 1.

Proof. Seeking contradiction, suppose WLOG that i < j − 1, or equivalently i+ 1 < j. Consider the point in
the BFS algorithm when the edges incident to x were begin examined. Since x belongs to layer Li, the only
nodes discovered from x belong to layers Li+1 and earlier. Hence if y is a neighbor of x, then it should have
been discovered by this point at the latest and hence should belong to Li+1 or earlier. Since i+ 1 < j, we
have a contradiction.

Runtime of BFS

Proposition 3. Running BFS on a graph G = (V,E) given as an adjacency list takes O(m+ n) time,
where n = |V | and m = |E|. That is, BFS is a linear time algorithm.

Proof. It is easy to see that the algorithm is O(n2): it visits each node once, and examines all its neigh-
bors, performing O(1) work for each. Since there are n nodes, each having O(n) neighbors, the runtime is O(n2).

To get a tighter bound, note that for each node, we only examine its neighbors, so for each node v ∈ V we do
O(deg(v)) work. Since ∑

v∈V
deg(v) = 2m

by the handshake lemma, the runtime is O (n+ 2m) = O(n+m).

16.4 Depth-First Search (DFS)

While BFS explores nodes level-by-level, depth-first search searches “deeper” in the graph whenever possible.
In particular, DFS explores edges out of the most recently discovered vertex v that still has unexplored edges
leaving it. Once all of v’s edges have been explored, the search “back tracks” to explore edges leaving the vertex
from which v was discovered. This process continues until we have discovered all vertices that are reachable
from the original source vertex. If any undiscovered vertices remain, then DFS selects one of them as a new
source and it repeats the search from that source. The algorithm repeats until it has discovered every vertex.

Note that unlike BFS—which creates a tree—DFS creates a forest, called the depth-first search forest. Moreover,
the DFS algorithm will keep track of several things:

I At every point in the algorithm, a vertex will have one of three colors: white (undiscovered), grey
(discovered and currently examining), or black (finished).

I Each vertex v will be timestamped with its discovery time v.d and finish time v.f . These are related to
the color of v: v.d is the time when v is first colored grey, and v.f is the time when v is colored black.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 95

I At the end of the algorithm, each edge will be classified either as a tree edge, back edge, forward edge,
or cross edge.

We will discuss each of these in depth. First, let us present the algorithm. DFS can be implemented either
recursively or using a stack. We give a recursive version here (the implementation using a stack is very similar
to the BFS implementation using a queue, except with “queue” replaced with stack, “enqueue” replaced with
“push,” and “dequeue” replaced with pop throughout). As before, the DFS forest is represented by a parent
array. Start/finish times and colors are also maintained using arrays:

Depth-First Search

Input: A graph G = (V,E) implemented as an adjacency list.

Output: A DFS traversal of G

DFS(G)
for each v ∈ V do

color[v] = WHITE

time = 0

for each v ∈ V do
if color[v] = WHITE then

DFS -VISIT(G, v)

DFS -VISIT(G,u)
time = time + 1
d[u] = time
color[u] = GRAY
for each v ∈ Adj[u] do

if color[v] = WHITE then
parent[v] = u
DFS -VISIT(G,v) // go deeper into graph

color[u] = BLACK // all u’s neighbors explored
time = time + 1
f[u] = time

DFS works for both directed and undirected graphs. Consider the graph below:

1

2 3

4 5

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 96

A DFS traversal of this graph is given in Figure 2. In that traversal, we visit nodes in numerical order (this
is arbitrary: DFS can visit the nodes in any order). Pay careful attention to the start/finish times of each
node and how these relate to each node’s color. Also, be sure to note which edges are included in the DFS
forest (the red edges) and which aren’t. Note that there are two trees in the resulting forest: one consists of
the vertices {1, 2, 4, 5} and the other consists of the lone vertex {3}.

Runtime of DFS

The procedure DFS-VISIT is called once per vertex. At each vertex v, we iterate through v’s neighbors
(potentially calling DFS-VISIT on the neighbor), and thus this iteration takes

∑
v∈V deg(v) = O(m) time, not

including the calls to DFS-VISIT. The runtime of DFS is therefore O(n+m).

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 97

1

2 3

4 5

1

2 3

4 5

1/
1

2 3

4 5

1/

2/

1

2 3

4 5

1/

2/

3/

1

2 3

4 5

1/

2/

3/4

1

2 3

4 5

1/

2/

3/4 5/

1

2 3

4 5

1/

2/

3/4 5/6

1

2 3

4 5

1/

2/7

3/4 5/6

1

2 3

4 5

1/8

2/7

3/4 5/6

1

2 3

4 5

1/8

2/7

3/4 5/6

9/

1

2 3

4 5

1/8

2/7

3/4 5/6

9/10

Figure 16.2: A DFS traversal. The start/finish times are given for each node, and the red edges are those that are included in
the DFS forest.

DFS Properties and Extensions

Here we explore some of the reasons for keeping track of node colors and start/finish times. We will see that
they reveal valuable information about the structure of a graph.

First note that each DFS traversal naturally gives rise to a DFS forest: u is a parent of v if and only if
DFS-VISIT(G,v) was called during the search of u’s adjacency list. Additionally, v is a descendant of u if and
only if v is discovered during the time in which u is gray. We record that in the following lemma, as it will be
important later on:

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 98

Lemma 1. In the DFS forest, v is a descendant of u if and only if v is discovered during the time in
which u is gray.

Another important property of DFS is that discovery and finish times have parenthesis structure. If we represent
the discovery of vertex u with a left parenthesis “(u” and represent its finishing by a right parenthesis “u)”
then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses
are properly nested. For example, in the DFS traversal from figure 2, the parenthesis structure looks like:

(1 (2 (4 4) (5 5) 2) 1) (3 3)

1 2 3 4 5 6 7 8 9 10

where the bottom line represents time.

The following theorem characterizes this parenthesis structure and gives its relationship to the structure of
the DFS forest:

Theorem 1. (Parenthesis Theorem) In any DFS of a (directed or undirected) graph G = (V,E), for
any two vertices u and v, exactly one of the following three conditions holds:

I The intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint, and neither u nor v is a descendant of
the other in the DFS forest

I The interval [u.d, u.f] is contained entirely within the interval [v.d, v.f], and u is a descendant of v
in a DFS tree

I The interval [v.d, v.f] is contained entirely within the interval [u.d, u.f], and v is a descendant of u
in a DFS tree

Proof. First, consider the case in which u.d < v.d (i.e. u was discovered first). There are two subcases,
according to whether v.d < u.f or not. If v.d < u.f , then v was discovered while u was still gray, which
implies that v is a descendant of u. Moreover, since v was discovered more recently than u, all of its outgoing
edges are explored, and v is finished, before the search returns to and finishes u. In this case, therefore, the
interval [v.d, v.f] is entirely contained within the interval [u.d, u.f]. In the other subcase, u.f < v.d, and since
u.d < u.f always, we have

u.d < u.f < v.d < v.f

Thus the intervals [u.d, u.f] and [v.d, v.f] are disjoint. Because the intervals are disjoint, neither vertex was
discovered while the other was gray, and so neither vertex is a descendant of the other.

The case in which v.d < u.d is symmetric.

Corollary 1. (Nesting of Descendants’ Intervals) Vertex v is a proper descendant of vertex u in
the DFS forest for a (directed or undirected) graph G if and only if u.d < v.d < v.f < u.f .

The next theorem is extremely important, and vies another characterization of when one vertex is a descendant
of another in the DFS forest.

Theorem 2. (White Path Theorem (WPT)) In a DFS forest of a graph G = (V,E), vertex v is a
descendant of vertex u if and only if at the time u.d when the search discovers u, there is a path from u

to v in G consisting entirely of white vertices.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 99

Proof.
(⇒): If v = u, then the path from u to v contains just vertex u, which is still white when we set the value of
u.d. Now suppose that v is a proper descendant of u in the DFS forest. By the previous corollary, u.d < v.d

and so v is white at time u.d. Since v was an arbitrary descendant of u, this implies all vertices on the unique
simple path from u to v in the DFS forest are white at time u.d.

(⇐): Seeking contradiction, suppose there is a path of white vertices from u to v at time u.d, but v does not
become a descendant of u in the DFS tree containing u. WLOG assume that every vertex other than v along
the path becomes a descendant of u (otherwise, let v be the closest vertex to u along the path that doesn’t
become a descendant of u). Let w be the predecessor of v in the path, so that w is a descendant of u (it may
be the case that w = u). Again by the previous corollary, w.f < u.f . Because v must be discovered after u is
discovered, but before w is finished, we have

u.d < v.d < w.f ≤ u.f

The parenthesis theorem implies that the interval [v.d, v.f] is entirely contained within the interval [u.d, u.f].
By the previous corollary, v must after all be a descendant of u, a contradiction.

Classifying Edges

Another interesting property of DFS is that it can be used to classify the edges of the input graph G = (V,E).
The type of each edge can provide important information about a graph. For example, we will prove later that
a directed graph is acyclic if and only if a DFS search on the graph yields no back edges.

We define four types of edges below:

Definition. Let G = (V,E) be any graph and let GDFS be the DFS forest produced by a DFS on G.

1. Tree Edges are edges in the DFS forest GDFS . (u, v) is a tree edge if v was first discovered by
exploring edge (u, v).

2. Back Edges are those edges (u, v) connected a vertex u to an ancestor v in a DFS tree in GDFS .
3. Forward Edges are those non-tree edges (u, v) connected a vertex u to a descendant v in a DFS

tree in GDFS .
4. Cross Edges are all other edges. They can go between vertices in the same DFS tree, as long as

one vertex is not an ancestor of the other, or they can go between vertices in different DFS tree in
GDFS

For example, in the DFS traversal from Figure 2, edge (1, 2) is a tree edge, edge (5, 1) is a back-edge, edge
(3, 1) is a cross edge, and there are no forward edges (if we added the edge (1, 4) to the graph and ran DFS in
ascending order of vertices as before, then the edge (1, 4) would be a forward edge in the DFS forest).

We can classify edge (u, v) based on the color of v when the edge is first explored:

I If v is white, (u, v) is a tree edge
I If v is gray, (u, v) is a back edge
I If v is black, (u, v) is either a forward or a cross edge

An undirected graph may entail some ambiguity about how to classify edges, since (u, v) and (v, u) are really
the same edge. In such a case, we classify the edge as the first type in the classification list that applies.
Equivalently, we classify the edge according to whichever of (u, v) or (v, u) the DFS encounters first.

CIS 121 – Draft of August 31, 2021 16 Graph Traversals: BFS and DFS 100

Theorem 3. In a DFS of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof. Let (u, v) be an arbitrary edge of G, and suppose WLOG that u.d < v.d. Then the search must discover
and finish v before it finishes u (while u is gray), since v is on u’s adjacency list. If the first time that the
search explores edge (u, v), it is in the direction from u to v, then v is undiscovered (white) until that time, for
otherwise the search would have explored this edge already in the direction from v to u. Thus (u, v) becomes
a tree edge. If the search explores (u, v) first in the direction from v to u, then (u, v) is a back edge, since u is
still gray at the time the edge is first explored.

Application of BFS: Bipartiteness 17
17.1 Definitions and Properties

Definition. A graph G = (V,E) is bipartite if the set V can be partitioned into two sets X and Y such
that every edge in E has one end in X and the other in Y .

Another way to think of bipartiteness is in terms of colors: a graph is bipartite if and only if it is two colorable.
That is, it is possible to color its nodes using two colors (say red and blue) such that each edge has exactly
one red end and one blue end.

We’d like to characterize bipartite graphs. In order to do so, let’s consider some examples of bipartite graphs.
Clearly, a triangle graph is not bipartite. More generally, any cycle of odd length cannot be bipartite. If
C = (v1 v2 ... v2k v2k+1) is an odd cycle which we try to two-color, note that the even-indexed nodes and
odd-indexed nodes must have different colors. Since there is an edge between v1 and v2k+1, both of which are
the same color, it is impossible to two-color an odd cycle. Moreover, if a graph G simply contains an odd
cycle, it cannot be two-colorable. Hence:

Proposition 1. If a graph G is bipartite, then it has no odd cycles

It turns out that the converse is true as well. We now discuss an algorithm that uses BFS to determine if a
graph is bipartite. In analyzing the algorithm, we will prove the converse to the above proposition.

17.2 Algorithm

We want to determine if a graph G is bipartite. We may assume the graph G is connected, since otherwise
we can run the algorithm on each connected component separately. The algorithm is very straightforward:
essentially we try to two color the graph: if we succeed, the graph is two colorable, and if we fail, we argue that
there cannot be any two-coloring. The algorithm proceeds by picking an arbitrary vertex s ∈ V and coloring it
red. There is no loss in doing this, since s must receive some color. Now, in order for G to be bipartite, all the
neighbors of s must be colored blue, so we do this. It then follows that all the neighbors of these nodes must
be red, their neighbors must be blue, and so on until the whole graph is colored.

Note that this description is essentially identical to BFS: we move outward from s, coloring nodes in “layers.”
In fact, an equivalent description of the algorithm could be: perform BFS. Color all nodes in L2k, k ≥ 0 red
and color all nodes in L2k+1, k ≥ 0 blue.

It is obvious that if this algorithm results in a valid two coloring, the graph is bipartite. What we need to
show, however, is that if the process fails (for example, if at some point we try to color a red node blue), that
there is in fact no valid two-coloring of the graph.

17.3 Analysis

These notes were adapted from Kleinberg and Tardos’ Algorithm Design

CIS 121 – Draft of August 31, 2021 17 Application of BFS: Bipartiteness 102

Proposition 2. Let G be a connected graph, and let L0, L1, ... be the layers produced by BFS starting at
a node s. Then exactly one of the following two things must hold:

1. There is no edge of G joining two nodes of the same layer. In this case, G is a bipartite graph in
which the nodes in even-numbered layers can be colored red and the nodes in odd-numbered layers
can be colored blue.

2. There is an edge of G joining two nodes of the same layer. In this case, G contains an odd cycle,
and so it cannot be bipartite.

Proof. Let us first consider case 1. We know from our analysis of BFS that every edge in G connects nodes
that are at most one layer apart. Case 1 assumes that every edge joins two nodes that are exactly one layer
apart. Since the coloring procedure gives nodes in adjacent layers different colors, every edge connects nodes
with opposite colors. Thus this coloring establishes G is bipartite.

Now consider case 2, and let e = (u, v) be an edge joining two nodes u and v on the same layer, say j. Let
w be the lowest common ancestor of u and v in the BFS tree, i.e. w is the ancestor of u and v whose layer
number—say i—is as large as possible. Clearly, i < j. Consider the cycle C defined by following the w − u
path in the BFS tree, then the edge e = (u, v), then the v − w path in the BFS tree. The length of this cycle
is (j − i) + 1 + (j − i) = 2(j − i) + 1, which is an odd number. Hence G contains an odd cycle and cannot be
bipartite.

Note this shows the converse to proposition 1: if G is not bipartite, then G must contain an odd cycle. We
record the full statement below:

Theorem 1. A graph G is bipartite if and only if it contains no odd cycles.

Note: The above algorithm for determining bipartiteness runs in O(m+n) time, since it is just a modified
version of BFS. Essentially, this means that we can determine if a graph is two-colorable in the same
amount of time that it takes just to read the graph as input. On the other hand, determining if a graph
is k-colorable for k > 2 is a much harder problem. In fact, there is no known polynomial time solution to
this problem. If you can come up with one, you’ll get a $1 million prize!

DAGs and Topological Sorting 18
18.1 DAGs

If an undirected graph is acyclic, then it is a forest: a collection of trees. What can be said of an acyclic,
directed graph?

Definition. A DAG is a Directed Acyclic Graph

DAGs show up in many practical applications. One such example is a dependency network. In this case, DAGs
are used to represent precedence relations or dependencies. Suppose we are given a list of tasks, which we
represent as a graph. If task a cannot begin until task b finishes, we can draw an edge from b to a representing
the fact that b must come before a in any scheduling of the tasks. Doing this for all the precedence relations
gives a graph. In order for the graph to have meaning, it cannot contain any cycles, lest there be deadlock.
Hence such a graph is a DAG.

18.2 Topological Sorting

Given a dependency graph, a natural thing to want to do would be so order the tasks in a way that all
dependencies are respected, i.e. if task a depends on task b, then b comes before a in the order. In terms of
the dependency graphs, this corresponds to an ordering of the vertices in such a way that all edges point from
left to right.

Definition. A topological ordering of a graph G is an ordering of its nodes v1, v2, ..., vn such that for
every edge (vi, vj), i < j. In other words, the edges point “forward” in the ordering.

We have the following result:

Proposition 1. G is a DAG if and only if it has a topological ordering.

Proof. (⇐): Seeking contradiction, suppose G has a topological ordering v1, v2, ..., vn and also has a cycle C.
Let vi be the lowest-indexed node on the cycle and let vj be the node on C just before vi. Obviously (vj , vi) is
an edge in G. By by the choice of i, we have j > i, which contradicts the assumption that v1, v2, ..., vn is a
topological ordering.

In order to prove the other direction, we will provide an algorithm below that, given a DAG, produces a
topological sorting.

Before we describe the algorithm, note how useful the above theorem is in visualizing a DAG. Often, it is
much easier to understand the structure of a DAG when looking at it from the perspective of its topological
ordering. See Figure 1 for an example.

CIS 121 – Draft of August 31, 2021 18 DAGs and Topological Sorting 104

1

2 34

5

1 2 3 4 5

Figure 18.1: Two representations of the same graph. Note how the topologically ordered representation may be easier to reason
about in some cases.

18.3 Kahn’s Algorithm

The first step in finding a topological ordering is to ask: Which node comes first? Such a node must have no
incoming edges. Is it guaranteed that such a node always exists? The answer is yes:

Proposition 2. In every DAG, there is a node with no incoming edges.

Proof. We will show that a graph in which every node has an incoming edge must contain a cycle. Let G be
such a graph. Pick any node v in G. Now we just follow the edges backward: since v has an incoming edge, say
(v1, v), walk backward to v1. Since v1 has an incoming edge, say (v2, v1), walk backward to v2. Continue this
process. After n+ 1 steps, we must have visited some node twice. If we let C denote the sequence of nodes
encountered between successive visits to this node, then clearly C contains a cycle.

In fact, this proposition is all we need to prove the converse to Theorem 1, namely that every DAG has a
topological ordering. We can prove it by induction on the number of nodes as follows:

Proof. (Continued from above)

(⇒):

Base Case: A DAG with one node has a topological ordering consisting of just that node. The claim is also
clear for DAGs with two nodes u and v: such a DAG contains at most one edge (u, v), so a topological ordering
is just u followed by v.

Induction Hypothesis: Let k ≥ 2 and assume all DAGs with k nodes have a topological ordering.

Induction Step: Let G be a DAG on k + 1 nodes. Let v be a node with no incoming edges (which exists by
the previous proposition). Place v first in the topological ordering. Consider the graph G′ formed by removing
v and all its incident edges from G. G′ is a DAG (deleting a vertex cannot create a cycle) with k nodes, so by
the IH, there exists a topological ordering of the vertices in G′. Appending v to the front of this ordering gives
a topological ordering for G.

This proof gives rise to a recursive procedure for computing a topological ordering of a graph G:

I Find a node v with no incoming edges.
I Put v next in the topological ordering.

CIS 121 – Draft of August 31, 2021 18 DAGs and Topological Sorting 105

I Remove v and all edges incident on v from the graph.
I Repeat.

The running time of this algorithm can be computed as follows: identifying a node with in-degree 0 can be
done in O(n) time by scanning through the adjacency list. Since this algorithm runs for n iterations, the total
runtime is O(n2).

It turns out, using the right data structure, we can get this down to O(m+ n). Instead of scanning through
the entire adjacency list to find a node with in-degree 0 at each iteration, we can maintain a list of such nodes,
adding to it as necessary. That way, finding a node with no incoming edges is O(1), not O(n). To do this, we
maintain the indegree of each node. Each time we remove a node from the graph, we decrement the indegree
of all of its outneighbors. If the indegree of any of these nodes becomes 0, then we add it to our list. This
leads to Kahn’s algorithm:

Kahn’s Algorithm for Topological Ordering

Input: A DAG G = (V,E), given as an adjacency list

Output: A topological ordering of the nodes in G.

TopoSort(G):
Let L be a new queue // nodes of in -degree 0
Let OUT be a new list // topological ordering

// compute in -degree of each node
for each v ∈ V

for each u ∈ Adj[v]
in[u] = in[u] + 1

// initially populate L
for each v ∈ V

if in[v] = 0 then
L.enqueue(v)

while L is not empty do
v = L.dequeue ()
OUT.append(v)
for each u ∈ Adj[v]

in[u] = in[u] - 1
if in[u] = 0 then

L.enqueue(u)

return OUT

The runtime of Kahn’s algorithm can be computed as follows: scanning through the adjacency list to compute
the in-degree of every node is O(m+ n), as is initially populating the list L. The while loop examines each
vertex exactly once, then scans through it’s neighbors, performing O(1) work for each. The runtime is thus
O
(
n+

∑
v∈V deg(v)

)
= O(m+ n). Hence the entire algorithm is O(m+ n).

When the graph G is sparse, O(m+ n) is a significant improvement over the O(n2) algorithm from above.

CIS 121 – Draft of August 31, 2021 18 DAGs and Topological Sorting 106

Note: Topologically sorting a DAG only takes O(m + n) time. This means that it if you are given a
problem where the input graph is a DAG, most of the time, it is useful to topologically sort it as a first
step. Since most graph algorithms take Ω(m+ n) time anyway, this step is essentially “free.” If nothing
else, topologically sorting the graph will probably make the problem easier to reason about.

18.4 Tarjan’s Algorithm

We will present another algorithm that topologically sorts a DAG, however, we will not analyze its correctness.
You should try to do this on your own as an exercise to see how well you understand the material. Moreover,
if you understand why this algorithm works, it will help a lot in understanding Kosaraju’s algorithm later on
in the course.

The algorithm is called Tarjan’s algorithm. At first glance, it seems quite magical that it actually outputs a
topological ordering. Nevertheless, you should be able to prove that it does in fact work.

Tarjan’s Algorithm for Topological Ordering

Input: A DAG G = (V,E), given as an adjacency list

Output: A topological ordering of the nodes in G.

TopoSort(G)
Perform a DFS on G

Return the nodes in decreasing order of finish time

Strongly Connected Components 19
19.1 Introduction and Definitions

We now consider a classic application of depth-first search: decomposing a directed graph into its strongly
connected components. This section shows how to do so using two depth-first searches. Many algorithms
that work with directed graphs begin with such a decomposition. After decomposing the graph into strongly
connected components, such algorithms run separately on each one and then combine the solutions according
to the structure of connections among components.

Definition. A strongly connected component of a directed graph G = (V,E) is a maximal∗ set of vertices
C ⊆ V such that for every pair of vertices u and v in C, we have both u v and v u; that is, vertices
u and v are reachable from each other.
∗By “maximal” we mean that no proper superset of the vertices forms a strongly connected component. However, note that
a single graph may have multiple strongly connected components of different sizes.

Note: connected components are defined for undirected graphs, and strongly connected components are
defined for directed graphs.

If we wanted to find the connected components in an undirected graph, we could simply run depth first
search (or breadth first search). Each depth first search tree consists of the vertices that are reachable from a
given start node, and those nodes are all reachable from each other. However, finding the strongly connected
components in a directed graph is not as easy, because u can be reachable from v without v being reachable
from u.

Definition. Suppose we decompose a graph into its strongly connected components, and build a new
graph, where each strongly connected component is a “giant vertex”. We call this graph GSCC or the
component graph. Then this new graph forms a directed acyclic graph, as in the figure below.

Formally, define GSCC = (V SCC , ESCC) with respect to graph G as follows:

I V SCC : Contains a vertex vi for each SCC Ci in G.
I ESCC : Contains edge (vi, vj) ∈ ESCC if G contains directed edge (x, y) where x ∈ Ci and y ∈ Cj .

CIS 121 – Draft of August 31, 2021 19 Strongly Connected Components 108

616 Chapter 22 Elementary Graph Algorithms

13/14 11/16

12/15 3/4

1/10

2/7

8/9

5/6

a b c d

e f g h

a b c d

e f g h

abe

cd

fg h

(c)

(b)

(a)

Figure 22.9 (a) A directed graph G. Each shaded region is a strongly connected component of G.
Each vertex is labeled with its discovery and finishing times in a depth-first search, and tree edges
are shaded. (b) The graph GT, the transpose of G, with the depth-first forest computed in line 3
of STRONGLY-CONNECTED-COMPONENTS shown and tree edges shaded. Each strongly connected
component corresponds to one depth-first tree. Vertices b, c, g, and h, which are heavily shaded, are
the roots of the depth-first trees produced by the depth-first search of GT. (c) The acyclic component
graph GSCC obtained by contracting all edges within each strongly connected component of G so
that only a single vertex remains in each component.

Our algorithm for finding strongly connected components of a graph G D
.V; E/ uses the transpose of G, which we defined in Exercise 22.1-3 to be the
graph GT D .V; ET/, where ET D f.u; �/ W .�; u/ 2 Eg. That is, ET consists of
the edges of G with their directions reversed. Given an adjacency-list representa-
tion of G, the time to create GT is O.V C E/. It is interesting to observe that G

and GT have exactly the same strongly connected components: u and � are reach-
able from each other in G if and only if they are reachable from each other in GT.
Figure 22.9(b) shows the transpose of the graph in Figure 22.9(a), with the strongly
connected components shaded.

Figure 19.1: (a) A directed graph G. Each shaded region is a strongly connected component of G. Each vertex is labeled
with its discovery and finishing times in a depth-first search, and tree edges are shaded. (b) The graph GT , the transpose of G,
with the depth-first forest computed in line 3 of Kosaraju shown and tree edges shaded. Each strongly connected component
corresponds to one depth-first tree. Vertices b, c, g, and h, which are heavily shaded, are the roots of the depth-first trees produced
by the depth-first search of GT . (c) The acyclic component graph GSCC obtained by contracting all edges within each strongly
connected component of G so that only a single vertex remains in each component.

CIS 121 – Draft of August 31, 2021 19 Strongly Connected Components 109

19.2 Kosaraju’s Algorithm

Note: we will first dive into the algorithm, and then will explain the idea behind it and why it works. This
algorithm is difficult to understand, so please ask if you have questions!

Our algorithm for finding strongly connected components of a graph G = (V,E) uses the transpose of G:
GT = (V,ET), where ET = {(u, v) : (v, u) ∈ E}. That is, ET consists the edges of G with their directions
reversed. Given an adjacency-list representation of G, the time to create GT is O(V + E).

It is interesting to observe that G and GT have exactly the same strongly connected components: u and
v are reachable from each other in G if and only if they are reachable from each other in GT .

The following linear-time (i.e., Θ(V + E)) algorithm∗ computes the strongly connected components of a
directed graph G = (V,E) using two depth-first searches, one on G and one on GT .

Kosaraju(G):
call DFS(G) to compute finishing times u.f for each vertex u
compute GT

call DFS(GT), but in the main loop of DFS, consider the vertices
in order of decreasing u.f (as computed in line 1)

output the vertices of each tree in the depth-first forest formed in line 3
as a separate strongly connected component

Proof of Correctness

The idea behind this algorithm comes from a key property of the component graph: GSCC is a DAG.

Lemma 1. Let C and C ′ be distinct strongly connected components in directed graph G = (V,E), let
u, v ∈ C and u′, v′ ∈ C ′, and suppose that G contains a path from u u′. Then G cannot also contain a
path v′ v.

Proof. If G contains a path v′ v, then it contains paths u u′ v′ and v′ v u. Thus, u and v′ are
reachable from each other, thereby contradicting the assumption that C and C ′ are distinct strongly connected
components.

We will see that by considering vertices in the second depth-first search in decreasing order of the finishing times
that were computed in the first depth-first search, we are, in essence, visiting the vertices of the component
graph (each of which corresponds to a strongly connected component of G) in topologically sorted order.

Because the Kosaraju procedure performs two depth-first searches, there is the potential for ambiguity
when we discuss u.d or u.f . In this section, these values always refer to the discovery and finishing times as
computed by the first call of DFS, in line 1.

We extend the notation for discovery and finishing times to sets of vertices. If C is a component, we let
d(C) = minu∈U (u.d) be the earliest discovery time out of any vertex in C and f(C) = maxu∈U (u.f) be the
latest finishing time out of any vertex in C.

∗ In CLRS and some other places, you will see this algorithm called the Strongly-Connected-Components algorithm. It was
invented by Kosaraju, who in fact received his PhD at Penn!

CIS 121 – Draft of August 31, 2021 19 Strongly Connected Components 110

The following lemma and its corollary give a key property relating strongly connected components and finishing
times in the first depth-first search.

Lemma 2. Let C and C ′ be distinct strongly connected components in a directed graph G = (V,E).
Suppose there is an edge (u, v) ∈ E, where u ∈ C and v ∈ C ′. Then, f(C) > f(C ′).

This lemma implies that if vertices are visited in reverse order of finishing time, then the components will
be visited in topologically sorted order. That is, if there is an edge from component 1 to component 2, then
component 1 will be visited before component 2.

Proof. Consider two cases:

1. d(C) < d(C ′) (i.e., component C was discovered first). Let x be the first vertex discovered in C. Then at
time x.d, all vertices in C and C ′ are white, so there is a path from x to each vertex in C consisting
only of white vertices. There is also a path from x to each vertex in C ′ consisting of only white vertices
(because you can follow the edge (u, v)). By the white path theorem, all vertices in C and C ′ become
descendants of x in the depth first search tree.

Now x has the latest finishing time out of any of its descendants, due to the parenthesis theorem.
However, you can see this if you look at the structure of the recursive calls – we call DFS-Visit on x,
and then recurse on the nodes that will become its descendants in the depth-first-search tree. So the
inner recursion has to finish before the outer recursion, which means x has the latest finishing time out
of all the nodes in C and C ′. Therefore, x.f = f(C) > f(C ′).

2. d(C) > d(C ′) (i.e., component C ′ was discovered first). Let y be the first vertex discovered in C ′. At time
y.d, all vertices in C are white, and there is a path from y to each vertex in C ′ consisting only of white
vertices. By the white path theorem, all vertices in C ′ are descendants of y in the depth-first-search tree,
so y.f = f(C ′).

However, there is no path from C ′ to C (because we already have an edge from C to C ′, and if there
was a path in the other direction, then C and C ′ would just be one component). Now all of the vertices
in C are white at time y.d (because d(C) > d(C ′)). And since no vertex in C is reachable from y, all the
vertices in C must still be white at time y.f . Therefore, the finishing time of any vertex in C is greater
than y.f , and f(C) > f(C ′).

The following corollary tells us that each edge in GT that goes between different strongly connected components
goes from a component with an earlier finishing time (in the first depth-first search) to a component with a
later finishing time.

Corollary 1. Let C and C ′ be distinct strongly connected components in directed graph G = (V,E).
Suppose that there is an edge (u, v) ∈ ET , where u ∈ C and v ∈ C ′. Then, f(C) < f(C ′).

Proof. Since (u, v) ∈ ET , we have (v, u) ∈ E. Because the strongly connected components of G and GT are
the same, the previous lemma implies that f(C) < f(C ′).

CIS 121 – Draft of August 31, 2021 19 Strongly Connected Components 111

This corollary provides the key to understanding why the strongly connected components algorithm works.
Let us examine what happens when we perform the second depth-first search, which is on GT .

We start with the strongly connected component C whose finishing time f(C) is maximum. The search starts
from some vertex x ∈ C, and it visits all vertices in C. By the corollary above, GT contains no edges from
C to any other strongly connected component, and so the search from x will not visit vertices in any other
component. Thus, the tree rooted at x contains exactly the vertices of C. Having completed visiting all vertices
in C, the search in line 3 selects as a root a vertex from some other strongly connected component C ′ whose
finishing time f(C ′) is maximum over all components other than C. Again, the search will visit all vertices in
C ′, but by the corollary above, the only edges in GT from C ′ to any other component must be to C, which
we have already visited. In general, when the depth-first search of GT in line 3 visits any strongly connected
component, any edges out of that component must be to components that the search already visited. Each
depth-first tree, therefore, will be exactly one strongly connected component.

The following theorem formalizes this argument.

Lemma 3. Kosaraju’s algorithm correctly computes the strongly connected components of the directed
graph G provided as its input.

Proof. We argue by induction on the number of depth-first trees found in the depth-first search of GT in line
3 that the vertices of each tree form a strongly connected component.

Induction Hypothesis: the first k trees produced in line 3 are strongly connected components.

Base Case: k = 0 is trivially true

Inductive Step: assume that each of the first k depth-first trees produced in line 3 is a strongly connected
component, and we consider the (k + 1)st tree produced. Let the root of this tree be vertex u, and let u
be in strongly connected component C. Because of how we choose roots in the depth-first search in line 3,
u.f = f(C) > f(C ′) for any strongly connected component C ′ other than C that has yet to be visited.

By the inductive hypothesis, at the time that the search visits u, all other vertices of C are white. By the
white-path theorem, therefore, all other vertices of C are descendants of u in its depth-first tree. Moreover,
by the inductive hypothesis and by the corollary above, any edges in GT that leave C must be to strongly
connected components that have already been visited.

Thus, no vertex in any strongly connected component other than C will be a descendant of u during the
depth-first search of GT . Thus, the vertices of the depth-first tree in GT that is rooted at u form exactly one
strongly connected component, which completes the inductive step and the proof.

Here is another way to look at how the second depth-first search operates. Consider the component graph
(GT)SCC of GT . If we map each strongly connected component visited in the second depth-first search to a
vertex of (GT)SCC , the second depth-first search visits vertices of (GT)SCC in the reverse of a topologically
sorted order. If we reverse the edges of (GT)SCC , we get the graph ((GT)SCC)T . Because ((GT)SCC)T = GSCC ,
the second depth-first search visits the vertices of GSCC in topologically sorted order.

Shortest Path 20
20.1 The Shortest Path Problem

As we’ve seen, graphs are often used to model networks in which one travels from one point to another. As a
result, a basic algorithmic problem is to determine the shortest path between nodes in a graph.

The concrete setup of the shortest paths problem is as follows. Assume we’re given a directed∗ graph G = (V,E)

with arbitrary non-negative weights on edges. The shortest path in G from source node s to destination node
t is the directed path that minimizes its sum of edge weights. Let d(s, t) denote this sum, also called the
distance between s and t.

While BFS was able to solve this problem for unweighted graphs, we will need a more robust algorithm to
solve the single-source shortest path problem on graphs with non-negative edge weights.

Here, we will focus on the single-source shortest-path (SSSP) problem: given a graph G = (V,E) we want to
find a shortest path from a given source vertex s ∈ V to each vertex v ∈ V . You will learn other variants in
CIS 320.

20.2 Dijkstra’s Algorithm

In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the single-source shortest-paths
problem for the case in which all edge weights are non-negative. In this section, therefore, we assume that
w(u, v) ≥ 0 for each edge (u, v) ∈ E.

The key idea that Dijkstra will maintain as an invariant is that ∀t ∈ V , the algorithm computes an estimate
dist[t] of the distance of t from the source such that:

I At any point in time, dist[t] ≥ d(s, t), and
I when t is finished, dist[t] = d(s, t)

Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path weights from the source s have
already been determined. The algorithm repeatedly selects the vertex u ∈ V − S with the minimum shortest-
path estimate, adds u to S, and relaxes all edges leaving u. In the following implementation, we use a
min-priority queue Q of vertices, keyed by their dist values. Finding the shortest path from s t is made
easy by using the parent pointers computed by the algorithm, and traversing them in reverse from parent[t]

to parent[s].

Dijkstra’s Algorithm

Input: A graph G = (V,E) implemented as an adjacency list and a source vertex s ∈ V .

Output: ∀t ∈ V , return dist[t] (shortest distance to t) and parent[t] (node on a shortest s t path that
occurs right before t)

These notes were adapted from Kleinberg and Tardos’ Algorithm Design and CLRS Ch. 24.3
∗We should mention that although the problem is specified for a directed graph, we can handle the case of an undirected graph
easily.

CIS 121 – Draft of August 31, 2021 20 Shortest Path 113

Dijkstra(G, s)
for each v ∈ V do

dist[v] = ∞
parent[v] = NIL

dist[s] = 0

S = ∅
Q = min -priority queue on all vertices , keyed by dist value

while Q is not empty do
u = Extract -Min(Q)
S = S ∪ {u}
for each v ∈ Adj[u] do

if dist[v] > dist[u] + w(u, v) then // edge relaxation step
dist[v] = dist[u] + w(u, v) // decrease -key operation
parent[v] = u

To get a better sense of what the algorithm is doing, consider the snapshot of its execution depicted in the
figure below. At the point the picture is drawn, two iterations have been performed: the first added node u, and
the second added node v. In the following iteration, the node x will be added since dist[x] > dist[u] + w(u, x).
Note that attempting to add y or z to the set S at this point would lead to an incorrect value for their
shortest-path distances; ultimately, they will be added because of their edges from x.

4.4 Shortest Paths in a Graph 139

u

y

z

x

v

s

1

3

3

11

2 2

4

2
Set S:
nodes already
explored

Figure 4.7 A snapshot of the execution of Dijkstra’s Algorithm. The next node that will
be added to the set S is x, due to the path through u.

the sense that we always form the shortest new s-v path we can make from a
path in S followed by a single edge. We prove its correctness using a variant of
our first style of analysis: we show that it “stays ahead” of all other solutions
by establishing, inductively, that each time it selects a path to a node v, that
path is shorter than every other possible path to v.

(4.14) Consider the set S at any point in the algorithm’s execution. For each
u ∈ S, the path Pu is a shortest s-u path.

Note that this fact immediately establishes the correctness of Dijkstra’s
Algorithm, since we can apply it when the algorithm terminates, at which
point S includes all nodes.

Proof. We prove this by induction on the size of S. The case |S| = 1 is easy,
since then we have S = {s} and d(s) = 0. Suppose the claim holds when |S| = k
for some value of k ≥ 1; we now grow S to size k + 1 by adding the node v.
Let (u, v) be the final edge on our s-v path Pv.

By induction hypothesis, Pu is the shortest s-u path for each u ∈ S. Now
consider any other s-v path P; we wish to show that it is at least as long as Pv.
In order to reach v, this path P must leave the set S somewhere; let y be the
first node on P that is not in S, and let x ∈ S be the node just before y.

The situation is now as depicted in Figure 4.8, and the crux of the proof
is very simple: P cannot be shorter than Pv because it is already at least as

Figure 20.1: A snapshot of the execution of Dijkstra’s Algorithm. The next node that will be added to the set S is x, due to
the path through u.

Analyzing the Algorithm

We see in this example that Dijkstra’s Algorithm is doing the right thing and avoiding recurring pitfalls:
growing the set S by the wrong node can lead to an overestimate of the shortest-path distance to that node.
The question becomes: Is it always true that when Dijkstra’s Algorithm adds a node v, we get the true
shortest-path distance to v?

We now answer this by proving the correctness of the algorithm, showing that the paths Pu really are shortest
paths. Dijkstra’s Algorithm is greedy in the sense that we always form the shortest new s v path we can
make from a path in S followed by a single edge. We prove its correctness using a variant of our first style of

CIS 121 – Draft of August 31, 2021 20 Shortest Path 114

analysis: we show that it “stays ahead” of all other solutions by establishing, inductively, that each time it
selects a path to a node v, that path is shorter than every other possible path to v.

Proposition 1. Consider the set S at any point in the algorithm’s execution. For each u ∈ S, the path
Pu is a shortest s u path.

Note that this fact immediately establishes the correctness of Dijkstra’s Algorithm, since we can apply it when
the algorithm terminates, at which point S includes all nodes.

Proof. We prove this by induction on the size of S.

Base Case: |S| = 1 holds since we have S = {s} and dist[s] = 0.

Induction Hypothesis: Suppose the claim holds when |S| = k for some value of k ≥ 1.

Induction Step: We now grow S to size k + 1 by adding the node v. Let (u, v) be the final edge on our s v

path Pv.

By induction hypothesis, Pu is the shortest s u path for each u ∈ S. Now consider any other s v path
P ; we wish to show that it is at least as long as Pv. In order to reach v, this path P must leave the set S
somewhere; let y be the first node on P that is not in S, and let x ∈ S be the node just before y.

The situation is now as depicted in the figure below, and the crux of the proof is very simple: P cannot be
shorter than Pv because it is already at least as long as Pv by the time it has left the set S. Indeed, in iteration
k + 1, Dijkstra’s Algorithm must have considered adding node y to the set S via the edge (x, y) and rejected
this option in favor of adding v. This means that there is no path from s to y through x that is shorter than
Pv. But the subpath of P up to y is such a path, and so this subpath is at least as long as Pv. Since edge
lengths are non-negative, the full path P is at least as long as Pv as well.

140 Chapter 4 Greedy Algorithms

x y

s
The alternate s–v path P through
x and y is already too long by
the time it has left the set S.

Set S

P!

Pu

u v

Figure 4.8 The shortest path Pv and an alternate s-v path P through the node y.

long as Pv by the time it has left the set S. Indeed, in iteration k + 1, Dijkstra’s
Algorithm must have considered adding node y to the set S via the edge (x, y)

and rejected this option in favor of adding v. This means that there is no path
from s to y through x that is shorter than Pv. But the subpath of P up to y is
such a path, and so this subpath is at least as long as Pv. Since edge lengths
are nonnegative, the full path P is at least as long as Pv as well.

This is a complete proof; one can also spell out the argument in the
previous paragraph using the following inequalities. Let P′ be the subpath
of P from s to x. Since x ∈ S, we know by the induction hypothesis that Px is a
shortest s-x path (of length d(x)), and so !(P′) ≥ !(Px) = d(x). Thus the subpath
of P out to node y has length !(P′) + !(x, y) ≥ d(x) + !(x, y) ≥ d′(y), and the
full path P is at least as long as this subpath. Finally, since Dijkstra’s Algorithm
selected v in this iteration, we know that d′(y) ≥ d′(v) = !(Pv). Combining these
inequalities shows that !(P) ≥ !(P′) + !(x, y) ≥ !(Pv).

Here are two observations about Dijkstra’s Algorithm and its analysis.
First, the algorithm does not always find shortest paths if some of the edges
can have negative lengths. (Do you see where the proof breaks?) Many
shortest-path applications involve negative edge lengths, and a more com-
plex algorithm—due to Bellman and Ford—is required for this case. We will
see this algorithm when we consider the topic of dynamic programming.

The second observation is that Dijkstra’s Algorithm is, in a sense, even
simpler than we’ve described here. Dijkstra’s Algorithm is really a “contin-
uous” version of the standard breadth-first search algorithm for traversing a
graph, and it can be motivated by the following physical intuition. Suppose
the edges of G formed a system of pipes filled with water, joined together at
the nodes; each edge e has length !e and a fixed cross-sectional area. Now
suppose an extra droplet of water falls at node s and starts a wave from s. As
the wave expands out of node s at a constant speed, the expanding sphere

Figure 20.2: The shortest path Pv and an alternate s v path P through the node y.

Here are two observations about Dijkstra’s Algorithm and its analysis. First, the algorithm does not always
find shortest paths if some of the edges can have negative lengths. (Do you see where the proof breaks?) Many
shortest-path applications involve negative edge lengths, and a more complex algorithm—due to Bellman and
Ford—is required for this case. You will explore this topic in-depth in CIS 320.

The second observation is that Dijkstra’s Algorithm is, in a sense, even simpler than we’ve described here.
Dijkstra’s Algorithm is really a “continuous” version of the standard BFS algorithm for traversing a graph,
and it can be motivated by the following physical intuition. Suppose the edges of G formed a system of pipes
filled with water, joined together at the nodes; each edge (u, v) has length w(u, v) and a fixed cross-sectional

CIS 121 – Draft of August 31, 2021 20 Shortest Path 115

area. Now suppose an extra droplet of water falls at node s and starts a wave from s. As the wave expands out
of node s at a constant speed, the expanding sphere of wavefront reaches nodes in increasing order of their
distance from s. It is easy to believe (and also true) that the path taken by the wavefront to get to any node v
is a shortest path. Indeed, it is easy to see that this is exactly the path to v found by Dijkstra’s Algorithm,
and that the nodes are discovered by the expanding water in the same order that they are discovered by
Dijkstra’s Algorithm.

Implementation and Running Time

Now that we have proved the correctness of Dijkstra, we’ll look at how long it will take to run.

It maintains the min-priority queue Q by calling three priority-queue operations: Build-Heap, Extract-Min,
and Decrease-Key. The algorithm calls Build-Heap once an all n nodes, and calls Extract-Min once
per vertex. Because each vertex u ∈ V is added to set S exactly once, each edge in the adjacency list Adj[u] is
examined in the for loop exactly once during the course of the algorithm. Since the total number of edges in all
the adjacency lists is |E|, this for loop iterates a total of |E| times, and thus the algorithm calls Decrease-Key
at most |E| times overall.

The running time of Dijkstra’s algorithm depends on how we implement the min-priority queue. In this course,
we focus on implementing the min-priority queue with a binary min-heap. Each Extract-Min operation then
takes time O(lg V). As before, there are |V | such operations. The time to build the binary min-heap is O(V).
Each Decrease-Key operation takes time O(lg V), and there are still at most |E| such operations. The total
running time is therefore O((V + E) lg V), which is O(E lg V) if all vertices are reachable from the source.

The fastest implementation of Dijkstra uses Fibonacci heaps, and is O(V lg V + E). This is beyond the scope
of this class.

20.3 Shortest Path in DAGs

As seen in the previous section, Dijkstra’s algorithm is slowed down through the use of the priority queue.

By relaxing the edges of a weighted DAG G = (V,E) according to a topological sort of its vertices, we can
compute shortest paths from a single source in Θ(V + E) time. Shortest paths are always well defined in a
DAG, since even if there are negative-weight edges, no negative-weight cycles can exist. The algorithm starts
by topologically sorting the DAG to impose a linear ordering on the vertices. If the DAG contains a path from
vertex u to vertex v, then u precedes v in the topological sort. We make just one pass over the vertices in the
topologically sorted order. As we process each vertex, we relax each edge that leaves the vertex.

Shortest Path in DAG Algorithm

Input: A DAG G = (V,E) implemented as an adjacency list and a source vertex s ∈ V .

Output: ∀t ∈ V , return dist[t] (shortest distance to t) and parent[t] (node on a shortest s t path that
occurs right before t)

DAG -Shortest -Path(G, s)
topologically sort the vertices of G

CIS 121 – Draft of August 31, 2021 20 Shortest Path 116

for each v ∈ V do
dist[v] = ∞
parent[v] = NIL

dist[s] = 0

for each vertex u, taken in topologically sorted order do
for each vertex v ∈ Adj[u] do

if dist[v] > dist[u] + w(u, v) then
dist[v] = dist[u] + w(u, v)
parent[v] = u

The running time of this algorithm is easy to analyze. As covered previously, topological sort takes Θ(V + E)

time. Initializing the dist and parent arrays takes Θ(V) time. The for loop that iterates through the vertices in
topological order makes one iteration per vertex. Altogether, the that for loop relaxes each edge exactly once.
(We have used an aggregate analysis here.) Because each iteration of the inner for loop takes Θ(1) time, the
total running time is Θ(V +E), which is linear in the size of an adjacency-list representation of the graph.

656 Chapter 24 Single-Source Shortest Paths

2
∞ ∞05

16

3 4
∞ ∞ ∞

7 –1 –2

2
(a)

xtsr y z

25
16

3 4

7 –1 –2

2
(c)

xtsr y z

25
16

3 4

7 –1 –2

2
(e)

xtsr y z

25
16

3 4

7 –1 –2

2
(g)

xtsr y z

25
16

3 4

7 –1 –2

2
(b)

xtsr y z

25
16

3 4

7 –1 –2

2
(d)

xtsr y z

25
16

3 4

7 –1 –2

2
(f)

xtsr y z

∞ 0 ∞ ∞2 6

∞ 0 2 6 5 4

∞ 0 2 6 5 3

∞ 0 2 6 5 3

∞ 0 2 6 6 4

∞ ∞0 ∞ ∞ ∞

Figure 24.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The
vertices are topologically sorted from left to right. The source vertex is s. The d values appear
within the vertices, and shaded edges indicate the ! values. (a) The situation before the first iteration
of the for loop of lines 3–5. (b)–(g) The situation after each iteration of the for loop of lines 3–5.
The newly blackened vertex in each iteration was used as u in that iteration. The values shown in
part (g) are the final values.

Theorem 24.5
If a weighted, directed graph G D .V; E/ has source vertex s and no cycles, then
at the termination of the DAG-SHORTEST-PATHS procedure, ":d D ı.s; "/ for all
vertices " 2 V , and the predecessor subgraph G! is a shortest-paths tree.

Proof We first show that ":d D ı.s; "/ for all vertices " 2 V at termina-
tion. If " is not reachable from s, then ":d D ı.s; "/ D 1 by the no-path
property. Now, suppose that " is reachable from s, so that there is a short-
est path p D h"0; "1; : : : ; "ki, where "0 D s and "k D ". Because we pro-

Figure 20.3: The execution of the algorithm for shortest paths in a DAG. The vertices are topologically sorted from left to
right. The source vertex is s. The dist values appear within the vertices, and shaded edges indicate the parent values. (a) The
situation before the first iteration of the second for loop. (b)-(g) The situation after each iteration of the second for loop. The
newly blackened vertex in each iteration was used as u in that iteration. The values shown in part (g) are the final values.

CIS 121 – Draft of August 31, 2021 20 Shortest Path 117

The following proof shows that the algorithm correctly computes the shortest paths.

Proof. Let v be the first vertex in the topological ordering for which dist[v] 6= δ(s, v), where δ(s, v) is the
shorest path distance from s v in G. Let parent[v] = u. Let the actual shortest path from s v in G be
given by s w → v.

Case 1: dist[v] =∞: Note that w comes before v in the topological ordering, and dist[w] = δ(s, w). Thus, by
the time the outer for loop finishes processing w, we must have updated dist[v] to a value smaller than ∞.
This is a contradiction.

Case 2: dist[v] <∞: Recall that parent[v] = u. Note that both u and w come before v in the topological
ordering. By the time the outer for loop finishes processing both u and w, the value of dist[v] is no more than
min(dist[u] + w(u, v), dist[w] + w(w, v)). Since dist[u] = δ(s, u) and dist[w] = δ(s, w), it must be that dist[v]

is no more than δ(s, w) + w(w, v). This is a contradiction.

Minimum Spanning Trees 21
21.1 Introduction and Background

Consider a very natural problem: we are given a set of locations V = {v1, v2, ..., vn}. We want to build a road
system that connects these locations. Building a road between locations (vi, vj) costs some amount of money,
c(vi, vj) > 0. Hence we want our road system to be as cheap as possible.

As the notation suggests, we can model this as a graph problem: we are given a set of vertices V = {v1, v2, ..., vn},
a set of edges E, and a mapping w : E → R+ from edges to positive real numbers (we will discuss applications
with negative real numbers later). Here w is called the weight function. We assume the graph G = (V,E) is
connected, otherwise one can apply the results of this section to each connected component separately.

Stated this way, our goal is to find a subset of edges T ⊆ E such that the graph (V, T) is connected and the
total cost, defined as w(T) =

∑
e∈T w(e), is as small as possible. We call such a graph T a minimum weight

spanning subgraph:

Definition. A spanning subgraph of G is a subgraph of G that contains all the vertices in G.

A minimum weight spanning subgraph or minimum spanning subgraph is a spanning subgraph whose
total cost is the minimum over all other spanning subgraphs.

Note We will often abuse notation and interchange T and the graph (V, T). For example, we may say
“consider the graph T ” even though T is technically a set of edges. In most cases, there is no ambiguity.

When the edge weights are all positive, we have the following result:

Proposition 1. Let T be a minimum cost set of edges as described above. Then (V, T) is a tree.

Proof. We know T is connected by how it is defined. Seeking contradiction, supposed T contained a cycle C.
Choose any edge e on this cycle, and remove it from T . This forms a new graph with edge set T ′ = T − {e}.
Clearly this resulting graph is still connected, however it’s weight is w(T ′) = w(T)− w(e) < w(T) since all
the edge weights were positive. This contradicts the assumption that T is the minimum cost set of edges that
connect the graph.

Hence the graph T is in fact a minimum spanning tree (MST), and our goal will be to design an algorithm
that efficiently computes the MST of a given graph.

Clearly the above proposition doesn’t hold if there are negative weight edges: the critical part of the proof
above was that e had positive weight. On the other hand, if we allow some edges to have weight 0, then even
though there may be multiple minimum spanning subgraphs, there will always exist at least one MST. Why?
Note that by the above proof, there cannot be any cycles in which every edge has positive weight. That is,
every cycle has at least one edge with weight 0. Hence if you remove all such edges, you get rid of all the
cycles, and the resulting graph has the same weight as the original. Moreover, it is a tree.

These notes were adapted from Kleinberg and Tardos’ Algorithm Design

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 119

21.2 MST Algorithms

It turns out that many of the algorithms used to find MSTs are very simple greedy procedures. We will
consider two of the more popular algorithms here.

Prim’s Algorithm

Prim’s algorithm is very similar to Dijkstra’s shortest-paths algorithm. Let G = (V,E) be a connected graph.
We choose any starting node s ∈ V and greedily grow a tree outward from s by simply adding the node that
can be attached as cheaply as possible to the partial tree we already have.

More rigorously, we maintain a set T , where initially T = {s}. At each step, we consider all the vertices in
V − T which have an edge to some vertex in T . From these, we choose the one that has the minimum weight
edge.

It is similar to Dijkstra’s algorithm in that we will be maintaining a priority queue to determine which
vertex is the one that has the minimum weight edge to some vertex in T . In fact, the pseudocode is identical
to Dijkstra’s, the only difference being how we update the keys in the priority queue. The tree T in the
pseudocode is represented by parent pointers, while the set V − T is represented by the vertices in the priority
queue.

Prim’s Algorithm for MSTs

Input: A connected graph G = (V,E) given as an adjacency list, a weight function w : E → R+, and a
starting node s.

Output: An MST of G.

Prim(G, s)
Let PQ be a priority queue containing every vertex in G
for each v ∈ V do

v.key = ∞
parent[v] = NIL

s.key = 0

while PQ is not empty do
v = PQ.ExtractMin ()
for each u ∈ Adj[v] do

if u ∈ PQ and w(u,v) < u.key then
u.key = w(u,v)
parent[u] = v

Return the parent array

Another way to phrase Prim’s algorithm is that it starts with T = {s} and at each step, chooses the lightest
weight edge crossing the cut (T, V − T) (here we use T as a set of vertices) and adds it to the growing tree.

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 120

V − T represents all the vertices still in the priority queue. This may be easier to visualize, as in the figure
below:

4

2

5

1

3

6

7

8

9

10

11

12

13

Figure 21.1: Prim’s Algorithm in the middle of execution. The red lines denote the tree T that is being built. The next step in
the algorithm will be to choose the lightest edge crossing the (T, V − T) cut and add it to T . Here, that means choosing the
lightest weight dotted line. In this picture, vertices 10 and 11 have keys equal to ∞ in the priority queue.

We will postpone a proof of correctness for Prim’s algorithm until later. The runtime is easily seen to be
O(m lg n) by analogy to Dijkstra’s algorithm.

Kruskal’s Algorithm

Kruskal’s algorithm takes a different approach: it begins with a graph T that has no edges. Then it iterates
through the edges in increasing order of weight. For each edge e, if adding e to T doesn’t create a cycle, then
T = T ∪ {e}, otherwise you discard e and move on to the next edge. At the end of the algorithm, T will be an
MST.

In order to determine if adding an edge (u, v) creates a cycle, we will need to use the Union Find (UF) data
structure, which has the following methods:

I MakeSet(x): creates a set with the single element x
I Find(x): returns the ID of the set to which x belongs
I Union(x,y): combines the set containing x and the set containing y

More details are provided in the Union Find notes, which also discusses the runtimes of the above functions.

Using UF, we can implement Kruskal’s algorithm as follows (note how we don’t need to specify a starting
vertex like we do in Prim’s algorithm):

Kruskal’s Algorithm for MSTs

Input: A connected graph G = (V,E) given as an adjacency list, a weight function w : E → R+.

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 121

Output: An MST of G.

Kruskal(G)
T = ∅
Sort the edges in E in increasing order of weight.
for each v ∈ V do

MakeSet(v)

for each e = (u, v) ∈ E do
if Find(u) 6= Find(v)

T = T ∪ {e}
Union(u, v)

return T

Sorting the edges takes O(m logm) = O(m log n) time, and as the Union Find notes prove, this O(m log n)

term in fact dominates the runtime of all the UF operations combined. Hence Kruskal’s also runs in O(m log n)

time, just like Prim’s (and Dijkstra’s).

Reverse-Delete

Prim’s algorithm and Kruskal’s algorithm both take different approaches to finding an MST. Prim’s algorithm
starts with a source node s, then progressively grows an MST outwards from s. On the other hand, Kruskal’s
algorithm starts with a bunch of different trees (initially just single nodes), and combines these trees by adding
edges until there is just one single tree.

In fact, there is another algorithm for finding MSTs called “Reverse Delete” which is kind of like a backwards-
Kruskal. It starts with the full graph G = (V,E), then iterates through the edges in decreasing order of weight,
deleting edges as long as they don’t disconnect the graph. The pseudocode is below:

Reverse-Delete Algorithm for MSTs

Input: A connected graph G = (V,E) given as an adjacency list, a weight function w : E → R+.

Output: An MST of G.

Reverse -Delete(G)
T = E

Sort the edges in E in decreasing order of weight.

for each e = (u, v) ∈ E do
if T − {e} is connected

T = T − {e}

return T

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 122

Checking if T − {e} is connected can be done in O(n + m) time using BFS, hence the algorithm can be
implemented in O(m lg n + m(n + m)) = O(m2), where n = O(m) since we assume the input graph is
connected.

It may be surprising that there are so many efficient greedy algorithms for solving the MST problem. The
proof of correctness for both Prim’s and Kruskal’s will shed some light on why this is the case.

21.3 Correctness of Prim’s, Kruskal’s, and Reverse-Delete

Since Prim’s and Kruskal’s algorithms work by repeatedly inserting edges from a partial solution, it will be
useful to characterize when an edge is “safe” to include in the MST. We will also provide a characterization of
edges that are guaranteed not to be in any MST. In this analysis we will assume that all the edge weights of
the input graph G = (V,E) are distinct–you should think about how to argue that this assumption is WLOG.
We will revisit this topic at the end of the notes.

We have the following two important results:

Proposition 2. (Cut Property) Let G = (V,E) be a connected, undirected graph. Let S be any subset
of nodes that is neither empty nor equal to all of V . Let e = (u, v) be the minimum cost edge with one
end in S and the other in V − S. Then every MST of G contains e.

Proof. Let T be a spanning tree that does not contain e. We need to show that T does not have the minimum
possible cost. To do this, we will use an exchange argument: we need to find an edge e′ in T that is more
expensive than e such that T ′ = T − {e′} ∪ {e} is a tree with lower total weight than T .

Since T is a spanning tree, there must be a path P from u to v in T . Since one end of e is in S and the other
is in V − S, the path P must cross the (S, V − S) cut at some point. Let e′ = (u′, v′) be the edge on P that
crosses this cut.

Now consider T ′ = T −{e′} ∪ {e}. T ′ is a spanning tree: since T was a spanning tree, any path in T that went
through e′ can be “re-routed” in T ′ through the edge e. Also, T ′ is acyclic because the only cycle in T ′ ∪ {e′}
is the one composed of e and the path P , and this cycle is not present in T ′ due to the deletion of e′.

Now, since e was the lightest edge crossing the (S, V − S) cut, we must have w(e) < w(e′). Hence the weight
of T ′ must be strictly less than the weight of T , since T ′ and T are the same except for the edges e and e′.

Note the choice of the edge e′ is important–you need to make sure that T ′ is in fact a spanning tree. If you
just choose any edge in T that crosses the (S, V − S) cut, such as the edge f in the figure below, then it is
not guaranteed that T ′ = T − {f} ∪ {e} is a spanning tree.

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 123

u′

u

v′

v

h

10

11

12

13

f

e

e′

S ← → V − S

While the Cut Property is all that is needed to prove the correctness of Prim’s and Kruskal’s algorithm, we
include the following important result since it is useful for analyzing properties of MSTs (and can also be used
to prove the correctness of the Reverse-Delete algorithm):

Proposition 3. (Cycle Property) Let G = (V,E) be a connected, undirected graph. Let C be any cycle
in G and let e = (u, v) be the heaviest edge in C. Then e does not belong to any MST of G.

Proof. Let T be a spanning tree that contains e. We will show T doesn’t have the minimum possible weight.
First, delete e from T : this partitions the nodes into two components, S (which contains u) and V − S (which
contains v). Consider the cycle C. C − {e} is just a path from u to v and hence must cross the cut (S, V − S)

at some point. Let e′ be the edge in C − {e} such that e′ has one endpoint in S and the other in V − S.
Then T ′ = T − {e} ∪ {e′} is a spanning tree of G (the argument is similar to the one in the proof of the cut
property) and since e was the heaviest edge on C, we know w(e) > w(e′) and thus the weight of T ′ is strictly
less than the weight of T . Hence T doesn’t have the lowest possible weight, completing the proof.

With the cut property, the correctness of Prim’s and Kruskal’s are straightforward.

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 124

Prim’s Algorithm: Correctness

In each iteration of Prim’s, there is a set S ⊆ V on which a partial spanning tree has been constructed, and
a node v and edge e are added to minimize mine=(u,v) | u∈S w(e). Hence by definition, e is the lightest edge
crossing the (S, V − S) cut so by the cut property, e is in every MST. Since Prim’s outputs a spanning tree
such that every edge in the spanning tree is contained in an MST, Prim’s outputs an MST.

Kruskal’s Algorithm: Correctness

Consider any edge e = (u, v) added by Kruskal’s algorithm, and let S be the set of all nodes to which u has a
path at the moment just before e is added. Clearly u ∈ S but v /∈ S since adding e doesn’t create a cycle.
Moreover, no edge from S to V − S has been encountered yet, since any such edge could have been added
without creating a cycle, and hence would have already been added by Kruskal’s algorithm. Thus e is the
lightest edge crossing the (S, V − S) cut, and so it belongs to every MST. Since by construction, Kruskal’s
algorithm outputs a spanning tree, it follows this output is actually an MST.

Reverse-Delete Algorithm: Correctness

The correctness of the reverse delete algorithm follows immediately from the cycle property. Consider any
edge e = (u, v) removed by Reverse-Delete. At the time e is removed, it lies on some cycle C; and since it is
the first edge on C encountered by the algorithm in decreasing order of edge costs, it must be the heaviest
edge on C. Thus by the cycle property e doesn’t belong to any MST. Moreover, by construction, the output
of Reverse-Delete is a spanning tree, since it never removes an edge that disconnects the graph and it will
never end while there is a cycle in G.

21.4 Eliminating the Assumption that All Edge Weights are
Distinct

Suppose we are given an instance of the MST problem in which certain edges have the same weight. To apply
the results from this section, we need to specify some way to “break ties” among edges with the same weights
(i.e. some way to impose an ordering over the edges with the same weights). Suppose we perturb each edge
weight by small, different numbers so that they all become distinct yet maintain their relative ordering. For
example, define

δ = min
e,e′∈E

|w(e)− w(e′)|

to be the smallest difference in weights between two edges. We can then construct the weight function w′

such that for each set of edges {e0, e1, ..., ek} with the same weight w(e0) = w(e1) = ... = w(ek), the weight
function w′ is defined by w′(ei) = w(ei) + i · δm . For edges e that aren’t part of a tie, we can set w′(e) = w(e).
This ensures that

(1) The edges in G maintain their relative order (i.e. if w(e) < w(e′) then w′(e) < w′(e′)

(2) There are no ties

CIS 121 – Draft of August 31, 2021 21 Minimum Spanning Trees 125

What we have essentially done is arbitrarily break ties between the edges with the same weights in a way that
allows us to apply the results from the above sections.

Now, any minimum spanning tree T for a graph with the new edge weight function w′ is also a MST for the
graph with the edge weight function w. Moreover, we can restate the cut and cycle properties to account for
tied edge weights:

Proposition 4. (Cut Property) Let G = (V,E) be a connected, undirected graph. Let S be any subset
of nodes that is neither empty nor equal to all of V . Let e = (u, v) be a minimum cost edge with one end
in S and the other in V − S. Then some MST of G contains e.

Proposition 5. (Cycle Property) Let G = (V,E) be a connected, undirected graph. Let C be any cycle
in G and let e = (u, v) be a heaviest edge in C. Then e does not belong to some MST of G.

Note the subtle difference: here we say that if e is some (not “the”) minimum weight edge crossing the cut,
then there exists an MST containing e. Similarly, if e is a heaviest edge on a cycle, then there exists an MST
that doesn’t contain e.

Union Find 22
22.1 Introduction

Some applications involve grouping n distinct elements into a collection of disjoint sets. These applications
often need to perform two operations in particular: finding the unique set that contains a given element
and unioning two sets. This chapter explores methods for maintaining a data structure that supports these
operations.

Definition. A disjoint-set data structure maintains a collection S = {S1, S2, ..., Sk} of disjoint dynamic
sets. We identify each set by a representative, which is some member of the set (for our purposes in this
course, it does not matter which).

In this course, we will refer to this data structure as Union Find (coming from the name of the operations
it supports).

We wish to support the following operations:

Make-Set(x) creates a new set whose only member (and thus representative) is x. Since the sets are
disjoint, we require that x not already be in some other set.

Union(x, y) unions the two sets that contain x and y, say Sx and Sy, into a new set that is the union of
these two sets. If these two sets are not disjoint, then they must be the same set (because non-disjoint
sets are not allowed), and thus no change is made. Otherwise, a new set S is created with the elements
in Sx ∪ Sy, with any valid representative element (implementation specific detail we will cover soon).
The original sets Sx and Sy are destroyed. In practice, we often absorb the elements of one of the sets
into the other set.

Find(x) returns a pointer to the representative element of the set containing x. If x and y belong to the
same set (i.e., they are connected), Find(x) == Find(y).

A common use case is to check if two nodes are in the same connected component. This is easily accomplished:

Connected-Components(G):
for each vertex v ∈ G.V

Make-Set(v)

for each edge (u, v) ∈ G.E
if Find(u) 6= Find(v)

Union(u, v)

Same-Component(u, v):
return Find(u) == Find(v)

22.2 Union by Rank

As shown in the figure below, one way to store a set is as a directed tree. Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to the root of the
tree. This root element is a convenient representative, or name, for the set. It is distinguished from the other
elements by the fact that its parent pointer is a self-loop.

These notes were adapted from CLRS Chapter 21 and S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani’s Algorithm Textbook

CIS 121 – Draft of August 31, 2021 22 Union Find 127

E

B

H

C D F

G A

Figure 22.1: A directed-tree representation of two sets {B,E} and {A,C,D, F,G,H}.

In addition to a parent pointer π, each node also has a rank that, for the time being, should be interpreted as
the height of the subtree hanging from that node.

Make-Set(x):
π(x) = x

rank(x) = 0

Find(x):
while x 6= π(x)

x = π(x)

return x

As can be expected, Make-Set is a constant-time operation. On the other hand, Find follows parent pointers
to the root of the tree and therefore takes time proportional to the height of the tree. The tree actually gets
built via the third operation, Union, and so we must make sure that this procedure keeps trees shallow.

Merging two sets is easy: make the root of one point to the root of the other. But we have a choice here. If the
representatives (roots) of the sets are rx and ry, do we make rx point to ry or the other way around?

Definition. Since tree height is the main impediment to computational efficiency, a good strategy is to
make the root of the shorter tree point to the root of the taller tree. This way, the overall height increases
only if the two trees being merged are equally tall. Instead of explicitly computing heights of trees, we
will use the rank numbers of their root nodes–which is why this scheme is called union by rank.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This means, for
instance, that as you move up a path toward a root node, the rank values along the way are strictly
increasing. However, as you will see later, the rank becomes just an upper bound on the height of the
node, since it is not maintained when used along with path compression.

Union(x, y):
rx = Find(x)

ry = Find(y)

if rx = ry
return // already in the same set

if rank(rx) > rank(ry)

π(ry) = rx
else

π(rx) = ry
if rank(rx) = rank(ry)

rank(ry) = rank(ry) + 1

CIS 121 – Draft of August 31, 2021 22 Union Find 128

Here is an example of a sequence of disjoint-set operations (Make-Set and Union) to show how path
compression works. The superscript in the node denotes the rank of the node.

After Make-Set(A), Make-Set(B), ..., Make-Set(G):

A0 B0 C0 D0 E0 F 0 G0

After Union(A,D), Union(B,E), and Union(C,F):

A0 B0 C0

D1 E1 F 1 G0

After Union(C,G) and Union(E,A):

A0

B0

C0

D2

E1

F 1

G0

After Union(B,G):

A0

B0 C0

D2

E1 F 1

G0

CIS 121 – Draft of August 31, 2021 22 Union Find 129

We note that the following three properties emerge:

Property 1. For any non-root x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1.

Property 2. Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k descendants. After all, any
internal node was once a root, and neither its rank nor its set of descendants has changed since then. Moreover,
different rank-k nodes cannot have common descendants, since by Property 1 any element has at most one
ancestor of rank k.

Property 3. If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the trees have height
≤ log n, and this is an upper bound on the running time of Find and Union.

22.3 Path Compression

With the data structure as presented so far, Kruskal’s algorithm becomes O(|E| log |V |) for sorting the edges
(remember, log |E| ≈ log |V |) plus another O(|E| log |V |) for the Find and Union operations that dominate
the rest of the algorithm. So there seems to be little incentive to make our data structure any more efficient.

But what if the edges are given to us sorted? Or if the weights are small (say, O(|E|)) so that sorting can be
done in linear time? Then the data structure part becomes the bottleneck, and it is useful to think about
improving its performance beyond log n per operation. As it turns out, the improved data structure is useful
in many other applications.

But how can we perform Union’s and Find’s faster than log n? The answer is, by being a little more careful
to maintain our data structure in good shape. As any housekeeper knows, a little extra effort put into routine
maintenance can pay off handsomely in the long run, by forestalling major calamities. We have in mind a
particular maintenance operation for our union-find data structure, intended to keep the trees short.

Definition. During each Find, when a series of parent pointers is followed up to the root of a tree, we will
change all these pointers so that they point directly to the root (see figure below). This path compression
heuristic only slightly increases the time needed for a find and is easy to code.

Find(x):
if x 6= π(x)

π(x) = Find(π(x))

return π(x)

CIS 121 – Draft of August 31, 2021 22 Union Find 130

The following example demonstrates the effect of path compression.

A3

B0 C1

D0

E2

F 1 G1 H0

I0 J0 K0

After Find(I):

A3

B0 C1

D0

E2 F 1

G1 H0

I0

J0

K0

After Find(K):

A3

B0 C1

D0

E2 F 1 G1

H0

I0

J0

K0

CIS 121 – Draft of August 31, 2021 22 Union Find 131

The benefit of this simple alteration is long-term rather than instantaneous and thus necessitates a particular
kind of analysis: we need to look at sequences of Find and Union operations, starting from an empty data
structure, and determine the average time per operation. This amortized cost turns out to be just barely more
than O(1), down from the earlier O(log n).

Think of the data structure as having a “top level” consisting of the root nodes, and below it, the insides of
the trees. There is a division of labor: Find operations (with or without path compression) only touch the
insides of trees, whereas Union’s only look at the top level. Thus path compression has no effect on Union
operations and leaves the top level unchanged.

We now know that the ranks of root nodes are unaltered, but what about nonroot nodes? The key point here
is that once a node ceases to be a root, it never resurfaces, and its rank is forever fixed. Therefore the ranks of
all nodes are unchanged by path compression, even though these numbers can no longer be interpreted as tree
heights. In particular, properties 1-3 (from before) still hold.

If there are n elements, their rank values can range from 0 to log n by Property 3. Let’s divide the nonzero
part of this range into certain carefully chosen intervals, for reasons that will soon become clear:

{1}, {2}, {3, 4}, {5, 6, ..., 16}, {17, 18, ..., 216 = 65536}, {65537, 65538, ..., 265536}

Each group is of the form {k+ 1, k+ 2, ..., 2k}, where k is a power of 2. The number of groups is log∗ n, which
is defined to be the number of successive log operations that need to be applied to n to bring it down to 1 (or
below 1). For instance, log∗ 1000 = 4 since log log log log 1000 ≤ 1. In practice there will just be the first five
of the intervals shown; more are needed only if n ≥ 265536, in other words never.

In a sequence of Find operations, some may take longer than others. We’ll bound the overall running time
using some creative accounting. Specifically, we will give each node a certain amount of pocket money, such that
the total money doled out is at most n log∗ n dollars. We will then show that each find takes O(log∗ n) steps,
plus some additional amount of time that can be “paid for” using the pocket money of the nodes involved-one
dollar per unit of time. Thus the overall time for m Find’s is O(m log∗ n) plus at most O(n log∗ n).

In more detail, a node receives its allowance as soon as it ceases to be a root, at which point its rank is fixed.
If this rank lies in the interval {k+ 1, ..., 2k}, the node receives 2k dollars. By Property 3, the number of nodes
with rank > k is bounded by

n

2k+1
+

n

2k+2
+ ... ≤ n

2k

Therefore the total money given to nodes in this particular interval is at most n dollars, and since there are
log∗ n intervals, the total money disbursed to all nodes is ≤ n log∗ n.

Now, the time taken by a specific Find is simply the number of pointers followed. Consider the ascending
rank values along this chain of nodes up to the root. Nodes x on the chain fall into two categories: either the
rank of π(x) is in a higher interval than the rank of x, or else it lies in the same interval. There are at most
log∗ n nodes of the first type, so the work done on them takes O(log∗ n) time. The remaining nodes—whose
parents’ ranks are in the same interval as theirs—have to pay a dollar out of their pocket money for their
processing time.

This only works if the initial allowance of each node x is enough to cover all of its payments in the sequence
of Find operations. Here’s the crucial observation: each time x pays a dollar, its parent changes to one of
higher rank. Therefore, if x’s rank lies in the interval {k + 1, ..., 2k}, it has to pay at most 2k dollars before its
parent’s rank is in a higher interval; whereupon it never has to pay again.∗

∗ If you are interested in a more in-depth analysis of the log∗ n proof, you can consult CLRS 21.4: Analysis of union by rank with
path compression.

Hashing 23
A hash table is a commonly used data structure to store an unordered set of items, allowing constant time
inserts, lookups and deletes (in expectation). Every item consists of a unique identifier called a key and a
piece of information. For example, the key might be a Social Security Number, a driver’s license number, or
an employee ID number. The way in which a hash table stores a item depends only on its key, so we will only
focus on the key here, but keep in mind that each key is usually associated with additional information that is
also stored in the hash table.

A hash table supports the following operations:

I Insert(k): Insert k into the hash table
I Search(k): Check if k is in the hash table
I Delete(k): Delete the key k from the hash table

23.1 Direct-Address Tables

Direct addressing is a simple technique that works well when the universe U of keys is reasonably small.
Suppose that an application needs a dynamic set in which each element has a key drawn from the universe
U = {0, 1, ...,m− 1}, where m is not too large. We will assume that no two elements have the same key.

To represent the dynamic set, we use an array, or direct-address table, denoted by T [0..m− 1], in which each
position, or slot, corresponds to a key in the universe U . The figure below illustrates the approach; slot k
points to an element in the set with key k. If the set contains no element with key k, then T [k] = NIL.

254 Chapter 11 Hash Tables

11.1 Direct-address tables

Direct addressing is a simple technique that works well when the universe U of
keys is reasonably small. Suppose that an application needs a dynamic set in which
each element has a key drawn from the universe U D f0; 1; : : : ; m ! 1g, where m
is not too large. We shall assume that no two elements have the same key.

To represent the dynamic set, we use an array, or direct-address table, denoted
by T Œ0 : : m ! 1!, in which each position, or slot, corresponds to a key in the uni-
verse U . Figure 11.1 illustrates the approach; slot k points to an element in the set
with key k. If the set contains no element with key k, then T Œk! D NIL.

The dictionary operations are trivial to implement:
DIRECT-ADDRESS-SEARCH.T; k/

1 return T Œk!

DIRECT-ADDRESS-INSERT.T; x/

1 T Œx:key! D x

DIRECT-ADDRESS-DELETE.T; x/

1 T Œx:key! D NIL

Each of these operations takes only O.1/ time.

T

U
(universe of keys)

K
(actual
keys)

2
3

5 8

1
9 4

0
7

6 2
3

5

8

key satellite data
2

0
1

3
4
5
6
7
8
9

Figure 11.1 How to implement a dynamic set by a direct-address table T . Each key in the universe
U D f0; 1; : : : ; 9g corresponds to an index in the table. The set K D f2; 3; 5; 8g of actual keys
determines the slots in the table that contain pointers to elements. The other slots, heavily shaded,
contain NIL.

Figure 23.1: How to implement a dynamic set by a direct-address table T . Each key in the universe U = {0, 1, ..., 9} corresponds
to an index in the table. The set K = {2, 3, 5, 8} of actual keys determines the slots in the table that contain pointers to elements.
The other slots, heavily shaded, contain NIL.

The dictionary operations are trivial to implement, and each operation takes O(1) time:

Search(T, k):
return T [k]

Insert(T, x):
T [x.key] = x

Delete(T, k):
T [k] = NIL

These notes were adapted from CLRS Chapter 11, though some of our proofs are approached differently.

CIS 121 – Draft of August 31, 2021 23 Hashing 133

This method would give us guaranteed O(1) look-ups and inserts, but would take space Θ(|U |) which can be
impracticably large. For example, assuming that the longest name at Penn is 20 characters long (including
spaces), there would be 2720 strings in our universe. This is clearly inefficient because there is no way we are
going to be storing that many names.

Thus, Direct Addressing could be a good option when U is small. But as U becomes very large, storing an
array of size |U | can be impractical due to memory limitations. Furthermore, often the set of actual keys K
stored is much less than |U |, as such the extra space allocated to T would be wasted.

23.2 Hash Tables

Let |U | be a very big universe, and let K be the set of keys stored in T . Let’s also assume that |K| � |U |. We
want a table T of size that is proportional to the number of keys stored in T , and we also want the runtime of
the three operations to be O(1). We will achieve O(1) time per operation, but in the average case.

With direct addressing, an element with key k is stored in slot k. With hashing, this element is stored in slot
h(k); that is, we use a hash function h to compute the slot from the key k. Here, h maps the universe U of
keys into the slots of a hash table T [0..m− 1] of size m. Formally, the hash function h is:

h : U → 0, ...,m− 1

where usually m� |U |. We say that an element with key k hashes to slot h(k); we also say that h(k) is the
hash value of key k. The figure below illustrates the basic idea. The hash function reduces the range of array
indices and hence the size of the array. Instead of a size of |U |, the array can have size m.

256 Chapter 11 Hash Tables

11.2 Hash tables

The downside of direct addressing is obvious: if the universe U is large, storing
a table T of size jU j may be impractical, or even impossible, given the memory
available on a typical computer. Furthermore, the set K of keys actually stored
may be so small relative to U that most of the space allocated for T would be
wasted.

When the set K of keys stored in a dictionary is much smaller than the uni-
verse U of all possible keys, a hash table requires much less storage than a direct-
address table. Specifically, we can reduce the storage requirement to ‚.jKj/ while
we maintain the benefit that searching for an element in the hash table still requires
only O.1/ time. The catch is that this bound is for the average-case time, whereas
for direct addressing it holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k. With hashing,
this element is stored in slot h.k/; that is, we use a hash function h to compute the
slot from the key k. Here, h maps the universe U of keys into the slots of a hash
table T Œ0 : : m ! 1!:
h W U ! f0; 1; : : : ; m ! 1g ;

where the size m of the hash table is typically much less than jU j. We say that an
element with key k hashes to slot h.k/; we also say that h.k/ is the hash value of
key k. Figure 11.2 illustrates the basic idea. The hash function reduces the range
of array indices and hence the size of the array. Instead of a size of jU j, the array
can have size m.

T

U
(universe of keys)

K
(actual
keys)

0

m–1

k1

k2 k3

k4 k5

h(k1)
h(k4)

h(k3)

h(k2) = h(k5)

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k2 and k5 map
to the same slot, they collide.

Figure 23.2: Using a hash function h to map keys to hash-table slots. Because keys k2 and k5 map to the same slot, they collide.

By initializing a table of size m� |U | and defining the hash function h, we’ve managed to save a lot of space.
However, this improvement (like many things in life), comes at a cost: insertions and look-ups are now on
average O(1)—worst case for some particular insert or lookup may be O(n)—instead of guaranteed O(1).
Furthermore, by the pigeonhole principle, two keys in U may now hash to the same slot, a situation known as
a collision. Thus, while a well-designed, “random”-looking hash function can minimize the number of collisions,
we still need a method for resolving the collisions that do occur. In this course we will cover separate chaining
and open addressing, which are two common ways of resolving collisions

CIS 121 – Draft of August 31, 2021 23 Hashing 134

Collision Resolution by Chaining

In collision resolution by chaining, we place all the elements that hash to the same slot into the same linked
list, as shown in the figure below. Slot j contains a pointer to the head of the list of all stored elements that
hash to j; if there are no such elements, slot j contains NIL.

11.2 Hash tables 257

T

U
(universe of keys)

K
(actual
keys)

k1

k2 k3

k4 k5

k6

k7

k8

k1

k2

k3

k4

k5

k6

k7

k8

Figure 11.3 Collision resolution by chaining. Each hash-table slot T Œj ! contains a linked list of
all the keys whose hash value is j . For example, h.k1/ D h.k4/ and h.k5/ D h.k7/ D h.k2/.
The linked list can be either singly or doubly linked; we show it as doubly linked because deletion is
faster that way.

There is one hitch: two keys may hash to the same slot. We call this situation
a collision. Fortunately, we have effective techniques for resolving the conflict
created by collisions.

Of course, the ideal solution would be to avoid collisions altogether. We might
try to achieve this goal by choosing a suitable hash function h. One idea is to
make h appear to be “random,” thus avoiding collisions or at least minimizing
their number. The very term “to hash,” evoking images of random mixing and
chopping, captures the spirit of this approach. (Of course, a hash function h must be
deterministic in that a given input k should always produce the same output h.k/.)
Because jU j > m, however, there must be at least two keys that have the same hash
value; avoiding collisions altogether is therefore impossible. Thus, while a well-
designed, “random”-looking hash function can minimize the number of collisions,
we still need a method for resolving the collisions that do occur.

The remainder of this section presents the simplest collision resolution tech-
nique, called chaining. Section 11.4 introduces an alternative method for resolving
collisions, called open addressing.

Collision resolution by chaining
In chaining, we place all the elements that hash to the same slot into the same
linked list, as Figure 11.3 shows. Slot j contains a pointer to the head of the list of
all stored elements that hash to j ; if there are no such elements, slot j contains NIL.

Figure 23.3: Collision resolution by chaining. Each hash-table slot T [j] contains a linked list of all the keys whose hash value is
j. For example, h(k1) = h(k4) and h(k5) = h(k7) = h(k2). The linked list can be either singly or doubly linked; we show it as
doubly linked because deletion is faster that way.

The dictionary operations on a hash table T are easy to implement when collisions are resolved by chaining:

Insert(T, x):
insert x at the head of
list T [h(x.key)]

Search(T, k):
search for an element with
key k in list T [h(k)]

Delete(T, x):
delete x from the list
T [h(x.key)]

Analysis of Hashing with Chaining

Given a hash table T with m slots that stores n elements, we define the load factor α for T as n/m, that is,
the average number of elements stored in a chain. Our analysis will be in terms of α, which can be less than,
equal to, or greater than 1.

The worst-case behavior of hashing with chaining is terrible: all n keys hash to the same slot, creating a list of
length n. The worst-case time for searching is thus Θ(n) plus the time to compute the hash function—no
better than if we used one linked list for all the elements. Clearly, we do not use hash tables for their worst-case
performance.

The average-case performance of hashing depends on how well the hash function h distributes the set of
keys to be stored among the m slots, on the average. It intuitively follows that we seek a hash function that
distributes the universe U of keys as evenly as possible among the m slots of our table. We can formalize this
concept and give it a name:

Definition. The Simple Uniform Hashing Assumption (SUHA) states that any key k is equally likely to
be mapped to any of the m slots in our hash table T , independently of where any other key is hashed
to. In other words, the probability of hashing some key k not already present in the hash table into any
arbitrary slot in T is 1

m .

CIS 121 – Draft of August 31, 2021 23 Hashing 135

We assume that O(1) time suffices to compute the hash value h(k), so that the time required to search for an
element with key k depends linearly on the length of the list T [h(k)]. Setting aside the O(1) time required to
compute the hash function and to access slot h(k), let us consider the expected number of elements examined
by the search algorithm, that is, the number of elements in the list T [h(k)] that the algorithm checks to see
whether any have a key equal to k. We consider two cases. In the first, the search is unsuccessful: no element
in the table has key k. In the second, the search successfully finds an element with key k.

Theorem 1. In a hash table in which collisions are resolved by chaining, an unsuccessful search takes
average-case time Θ(1 + α), under the assumption of simple uniform hashing.

Proof. The average time it takes to search for key k is the expected size of the linked list T [h(k)].

E
[
|T [h(k)]|

]
=

n∑
i=1

Pr
[
Xi is mapped to h(k)

]
=

n∑
i=1

1
m = n

m = α

Thus, the expected number of elements examined in an unsuccessful search is α, and the total time required
(including the time for computing h(k)) is Θ(1 + α).

The situation for a successful search is slightly different, since each list is not equally likely to be searched.
Instead, the probability that a list is searched is proportional to the number of elements it contains. Nonetheless,
the expected search time still turns out to be Θ(1 + α).

Theorem 2. In a hash table in which collisions are resolved by chaining, a successful search takes
average-case time Θ(1 + α), under the assumption of simple uniform hashing.

Proof. We assume that the element being searched for is equally likely to be any of the n elements stored in
the table. The number of elements examined during a successful search for an element x is one more than the
number of elements that appear before x in x’s list. Because new elements are placed at the front of the list,
elements before x in the list were all inserted after x was inserted. To find the expected number of elements
examined, we take the average, over the n elements x in the table, of 1 plus the expected number of elements
added to x’s list after x was added to the list.

Let xi denote the ith element inserted into the table, for i = 1, 2, ..., n, and let ki = xi.key. Let Z be the
random variable denoting the search time in a successful search, let Zi be a random variable denoting the
search time in a successful search for xi, let Z

j
i = 1 if xj (j 6= i) is mapped to same location as xi, and let

Zji = 0 otherwise.

Z =
Z1 + Z2 + ...+ Zn

n

By Linearity of Expectation, we get:

E[Z] =
1

n

n∑
i=1

(E[Zi])

=
1

n

n∑
i=1

1 +

n∑
j=i+1

E[Zji]

=

1

n

n∑
i=1

1 +
n∑

j=i+1

1

m

=

1

n

n∑
i=1

(
1 +

n− i
m

)

CIS 121 – Draft of August 31, 2021 23 Hashing 136

=
1

n

(
n+

n∑
i=1

n− i
m

)

= 1 +
1

nm

(
n∑
i=1

n−
n∑
i=1

i

)

= 1 +
1

nm

(
n2 − n(n+ 1)

2

)
= 1 +

n− 1

2m

= 1 +
α

2
− α

2n

Thus, the total time required for a successful search (including the time for computing the hash function) is
Θ(2 + α/2− α/2n) = Θ(1 + α).

What does this analysis mean? If the number of hash-table slots is at least proportional to the number of
elements in the table, we have n = O(m) and, consequently, α = n/m = O(m)/m = O(1). Thus, searching
takes constant time on average. Since insertion takes O(1) worst-case time and deletion takes O(1) worst-case
time when the lists are doubly linked, we can support all dictionary operations in O(1) time on average.

23.3 Hash Functions

What makes a good hash function?

A good hash function satisfies (approximately) the assumption of simple uniform hashing: each key is equally
likely to hash to any of the m slots, independently of where any other key has hashed to. Unfortunately, we
typically have no way to check this condition, since we rarely know the probability distribution from which
the keys are drawn. Moreover, the keys might not be drawn independently.

Occasionally we do know the distribution. For example, if we know that the keys are random real numbers k
independently and uniformly distributed in the range 0 ≤ k < 1 then the hash function h(k) = bkmc satisfies
the condition of simple uniform hashing.

In practice, we can often employ heuristic techniques to create a hash function that performs well. Qualitative
information about the distribution of keys may be useful in this design process. A good approach derives the
hash value in a way that we expect to be independent of any patterns that might exist in the data.

Interpreting Keys as Natural Numbers

Most hash functions assume that the universe of keys is the set N = {0, 1, 2, ...} of natural numbers. Thus, if
the keys are not natural numbers, we find a way to interpret them as natural numbers. For example, we can
interpret a character string as an integer by summing the ASCII values and multiplying them by a constant
c raised to a variable power. The string “pat” can therefore be represented as an integer: ASCII(p) · c2+

ASCII(a) · c1+ ASCII(t) · c0. We need to multiply that additional constant c raised to a variable power because
if we didn’t, then all permutations of the string would map to the same integer.

CIS 121 – Draft of August 31, 2021 23 Hashing 137

In the context of a given application, we can usually devise some such method for interpreting each key as
a (possibly large) natural number. In Java, this is the job of the HashCode method. In what follows, we
assume for simplicity that the keys are natural numbers.

The Division Method

In the division method for creating hash functions, we map a key k into one of m slots by taking the remainder
of k divided by m. That is, the hash function is h(k) = k mod m.

When using the division method, we usually avoid certain values of m. For example, m should not be a power
of 2, since if m = 2p, then h(k) is just the p lowest-order bits of k. Unless we know that all low-order p-bit
patterns are equally likely, we are better off designing the hash function to depend on all the bits of the
key. A prime not too close to an exact power of 2 is often a good choice for m. This is what has been found
empirically.

The Multiplication Method

The multiplication method for creating hash functions operates in two steps. First, we multiply the key k by a
constant A in the range 0 < A < 1 and extract the fractional part of kA. Then, we multiply this value by
m and take the floor of the result. In short, the hash function is h(k) = bm(kA mod 1)c where “kA mod 1”
means the fractional part of kA, that is, kA− bkAc. An advantage of the multiplication method is that the
value of m is not critical. We typically choose it to be a power of 2 (m = 2p for some integer p), since we can
then easily implement the function on most computers as follows.

Although this method works with any value of the constant A, it works better with some values than with
others as has been shown empirically. A ≈ (

√
5− 1)/2 = .6180339887... is likely to work reasonably well.

23.4 Open Addressing

In open addressing, all elements occupy the hash table itself. That is, each table entry contains either an
element of the dynamic set or NIL. When searching for an element, we systematically examine table slots until
either we find the desired element or we have ascertained that the element is not in the table. No lists and no
elements are stored outside the table, unlike in chaining. Thus, in open addressing, the hash table can “fill up”
so that no further insertions can be made; one consequence is that the load factor α can never exceed 1.

Of course, we could store the linked lists for chaining inside the hash table, in the otherwise unused hash-table
slots, but the advantage of open addressing is that it avoids pointers altogether. Instead of following pointers,
we compute the sequence of slots to be examined. The extra memory freed by not storing pointers provides the
hash table with a larger number of slots for the same amount of memory, potentially yielding fewer collisions
and faster retrieval.

To perform insertion using open addressing, we successively examine, or probe, the hash table until we find an
empty slot in which to put the key. Instead of being fixed in the order {0, 1, ...,m− 1} (which requires Θ(n)

search time), the sequence of positions probed depends upon the key being inserted. To determine which slots
to probe, we extend the hash function to include the probe number (starting from 0) as a second input. Thus,
the hash function becomes:

h : U × {0, 1, ...,m− 1} → {0, 1, ...,m− 1}

CIS 121 – Draft of August 31, 2021 23 Hashing 138

With open addressing, we require that for every key k, the probe sequence

〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉

be a permutation of 〈0, 1, ...,m− 1〉, so that every hash-table position is eventually considered as a slot for a
new key as the table fills up.

In the following pseudocode, we assume that the elements in the hash table T are keys with no satellite
information; the key k is identical to the element containing key k. Each slot contains either a key or NIL (if
the slot is empty).

Insert(T, k):
for i← 0 to m− 1 do

j ← h(k, i)

if T [j] == NIL then
T [j]← k

return j

return “Error: hash table overflow!”

Search(T, k):
for i← 0 to m− 1 do

j ← h(k, i)

if T [j] == k then
return j

else if T [j] == NIL then
return NIL

return NIL

Deletion from an open-address hash table is difficult. When we delete a key from slot i, we cannot simply
mark that slot as empty by storing NIL in it. If we did, we might be unable to retrieve any key k during whose
insertion we had probed slot i and found it occupied. We can solve this problem by marking the slot, storing
in it the special value Deleted instead of NIL. We would then modify Insert to treat such a slot as if it
were empty so that we can insert a new key there. We do not need to modify Search, since it will pass over
Deleted values while searching. When we use the special value Deleted, however, search times no longer
depend on the load factor α, and for this reason chaining is more commonly selected as a collision resolution
technique when keys must be deleted.

Definition. In our analysis, we assume uniform hashing: the probe sequence of each key is equally
likely to be any of the m! permutations of 〈0, 1, ...,m − 1〉. Uniform hashing generalizes the notion of
simple uniform hashing defined earlier to a hash function that produces not just a single number, but a
whole probe sequence. True uniform hashing is difficult to implement, however, and in practice suitable
approximations (such as double hashing, defined below) are used.

We will examine three commonly used techniques to compute the probe sequences required for open address-
ing: linear probing, quadratic probing, and double hashing. These techniques all strive to guarantee that
〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉 is a permutation of 〈0, 1, ...,m− 1〉 for each key k. None of these techniques
fulfills the assumption of uniform hashing, however, since none of them is capable of generating more than m2

different probe sequences (instead of the m! that uniform hashing requires). Double hashing has the greatest
number of probe sequences and, as one might expect, seems to give the best results.

Linear Probing

Given an ordinary hash function h′ : U → {0, 1, ...,m− 1}, which we refer to as an auxiliary hash function,
the method of linear probing uses the hash function

h(k, i) = (h′(k) + i) mod m

CIS 121 – Draft of August 31, 2021 23 Hashing 139

for i = 0, 1, ...,m− 1. Given key k, we first probe T [h′(k)], i.e., the slot given by the auxiliary hash function.
We next probe slot T [h′(k) + 1], and so on up to slot T [m− 1]. Then we wrap around to slots T [0], T [1], ...

until we finally probe slot T [h′(k)− 1]. Because the initial probe determines the entire probe sequence, there
are only m distinct probe sequences.

Linear probing is easy to implement, but does not work well in practice because it suffers from a problem
known as primary clustering. Long runs of occupied slots build up, increasing the average search time. Clusters
arise because an empty slot preceded by i full slots gets filled next with probability (i+ 1)/m. Long runs of
occupied slots tend to get longer, and the average search time increases.

Quadratic Probing

Quadratic probing uses a hash function of the form

h(k, i) = (h′(k) + c1i+ c2i
2) mod m

where h′ is an auxiliary hash function, c1 and c2 are positive auxiliary constants, and i = 0, 1, ...,m− 1. The
initial position probed is T [h′(k)]; later positions probed are offset by amounts that depend in a quadratic
manner on the probe number i. This method works much better than linear probing, but to make full use
of the hash table, the values of c1, c2, and m are constrained. Also, if two keys have the same initial probe
position, then their probe sequences are the same, since h(k1, 0) = h(k2, 0) implies h(k1, i) = h(k2, i). This
property leads to a milder form of clustering, called secondary clustering. As in linear probing, the initial
probe determines the entire sequence, and so only m distinct probe sequences are used.

Double Hashing

Double hashing offers one of the best methods available for open addressing because the permutations produced
have many of the characteristics of randomly chosen permutations. It uses a hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m

where both h1 and h2 are auxiliary hash functions. The initial probe goes to position T [h1(k)]; successive
probe positions are offset from previous positions by the amount h2(k), modulo m. Thus, unlike the case of
linear or quadratic probing, the probe sequence here depends in two ways upon the key k, since the initial
probe position, the offset, or both, may vary. Here’s an example:11.4 Open addressing 273

0
1
2
3
4
5
6
7
8
9
10
11
12

79

69
98

72

14

50

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with h1.k/ D
k mod 13 and h2.k/ D 1C .k mod 11/. Since 14 ! 1 .mod 13/ and 14 ! 3 .mod 11/, we insert
the key 14 into empty slot 9, after examining slots 1 and 5 and finding them to be occupied.

amount h2.k/, modulo m. Thus, unlike the case of linear or quadratic probing, the
probe sequence here depends in two ways upon the key k, since the initial probe
position, the offset, or both, may vary. Figure 11.5 gives an example of insertion
by double hashing.

The value h2.k/ must be relatively prime to the hash-table size m for the entire
hash table to be searched. (See Exercise 11.4-4.) A convenient way to ensure this
condition is to let m be a power of 2 and to design h2 so that it always produces an
odd number. Another way is to let m be prime and to design h2 so that it always
returns a positive integer less than m. For example, we could choose m prime and
let
h1.k/ D k mod m ;

h2.k/ D 1C .k mod m0/ ;

where m0 is chosen to be slightly less than m (say, m " 1). For example, if
k D 123456, m D 701, and m0 D 700, we have h1.k/ D 80 and h2.k/ D 257, so
that we first probe position 80, and then we examine every 257th slot (modulo m)
until we find the key or have examined every slot.

When m is prime or a power of 2, double hashing improves over linear or qua-
dratic probing in that ‚.m2/ probe sequences are used, rather than ‚.m/, since
each possible .h1.k/; h2.k// pair yields a distinct probe sequence. As a result, for

Figure 23.4: Double hashing. Here m = 13 with h1(k) = k mod 13 and h2(k) = 1 + (k mod 11). Since 14 ≡ 1(mod 13) and
14 ≡ 3(mod 11), we insert the key 14 into empty slot 9, after examining slots 1 and 5 and finding them to be occupied.

CIS 121 – Draft of August 31, 2021 23 Hashing 140

Analysis of Open-Address Hashing

As in our analysis of chaining, we express our analysis of open addressing in terms of the load factor α = n/m

of the hash table. Of course, with open addressing, at most one element occupies each slot, and thus n ≤ m,
which implies α ≤ 1.

Definition. We assume that we are using the uniform hashing assumption. In this idealized scheme, the
probe sequence 〈h(k, 0), h(k, 1), ..., h(k,m− 1)〉 used to insert or search for each key k is equally likely
to be any of the m! permutations of 〈0, 1, ...,m − 1〉. Of course, a given key has a unique fixed probe
sequence associated with it; what we mean here is that, considering the probability distribution on the
space of keys and the operation of the hash function on the keys, each possible probe sequence is equally
likely.

We now analyze the expected number of probes for hashing with open addressing under the uniform hashing
assumption, beginning with an analysis of the number of probes made in an unsuccessful search.

Theorem 3. Given an open-address hash table with load factor α = n/m < 1, the expected number of
probes in an unsuccessful search is at most 1/(1− α), assuming uniform hashing.

Proof. Let X be the random variable that denotes the number of probes made in an unsuccessful search. We
want to find E[X]. From CIS 160, we know X is a non-negative integer random variable. Therefore,

E[X] =

∞∑
i=1

Pr[X ≥ i]

. Let Aj be the event that the jth probe is unsuccessful (i.e., the slot is full). Hence,

Pr[X ≥ i] = Pr[A1 ∩A2 ∩ ... ∩Ai−1]

= Pr[A1] Pr[A2|A1] Pr[A3|A1 ∩A2] · · · Pr[Ai−1|A1 ∩A2 ∩ ... ∩Ai−2]

=
n

m
· n− 1

m− 1
· n− 2

m− 2
· · · n− i+ 2

m− i+ 2

≤
(n
m

)i−1
(Note that n−k

m−k ≤ n
m)

= αi−1

Now, we plug that value back in, and find that:

E[X] =

∞∑
i=1

Pr[X ≥ i]

=

∞∑
i=1

αi−1

=

∞∑
i=0

αi

=
1

1− α

Alternate explanation: α is the fraction of the table that is full. 1 − α is the fraction of the table that
is empty. Hence, the probability of finding an empty slot for a given probe is equal to 1 − α. That is the

CIS 121 – Draft of August 31, 2021 23 Hashing 141

success probability of a geometric distribution! X is a geometric random variable, and so we know that
E[X] = 1/(1− α).

Theorem 4. Given an open-address hash table with load factor α < 1, the expected number of probes
in a successful search is at most 1

α lg 1
1−α , assuming uniform hashing and assuming that each key in the

table is equally likely to be searched for.

Proof. Just as we did in our analysis for chaining, we will assume that x1, x2, ..., xn are elements inserted into
T in that order. In expectation, the number of probes needed to insert any of the first m/2 elements is at most
2. So, in expectation, the total number of probes needed to insert the first m/2 elements is at most 2 · m2 = m.

Consider the insertion of the next m/4 elements xm/2+1, xm/2+2, ..., x3m/4.

The number of probes needed (in expectation) to insert any of the next m/4 elements is at most 4. Hence, the
total number of probes needed to insert xm/2+1, xm/2+2, ..., x3m/4 is at most 4 · m4 = m.

Similarly, the total number of probes needed to insert the next m/23 = m/8 elements is at most 8 · m8 = m.

Thus, the total number of probes needed to insert the first m/2 elements, then the next m/4 elements, then
the next m/8 elements, ..., then the next m/2i elements is at most m · i.

Note that after inserting m/2 + m/4 + m/8 + m/2i elements in the table, the fraction of the table that is
empty is equal to 1/2i = 2−i.

Observe that m · i = −m · lg(2−i). After we insert x1, x2, ..., xn, the fraction of the table that is empty is equal
to 1− α. Therefore, the total number of probes needed to insert x1, x2, ..., xn is at most −m · lg(2−i).

Hence, the average time to search for an element which we know exists in the table is at most −m lg(1−α)
n .

This is equal to − 1
α lg(1− α) = 1

α lg
(

1
1−α

)
. ∗

∗ You can see a different proof for this same theorem in CLRS Ch. 11

Tries 24
24.1 Introduction

Here, we present string searching algorithms that preprocess the text. This approach is suitable for applications
in which many queries are performed on a fixed text, so that the initial cost of preprocessing the text is
compensated by a speedup in each subsequent query (for example, a website that offers pattern matching in
Penn’s Almanac or a search engine that offers Web pages containing the term Penn).

Definition. A trie (pronounced “try”) is a tree-based data structure for storing strings in order to support
fast pattern matching. The main application for tries is in information retrieval. Indeed, the name “trie”
comes from the word “retrieval.”

In an information retrieval application, we are given a collection S of strings, all defined using the same
alphabet. The primary query operations that tries support are pattern and prefix matching. The latter
operation involves being given a string X, and looking for all the strings in S that begin with X.

24.2 Standard Tries

Let S be a set of |S| strings from alphabet Σ such that no string in S is a prefix of another string.

Definition. A standard trie for S is an ordered tree T with the following properties:

I Each node of T , except the root, is labeled with a character of Σ.
I The children of an internal node of T have distinct labels.
I T has |S| leaves, each associated with a string of S, such that the concatenation of the labels of the

nodes on the path from the root to a leaf v of T yields the string of S associated with v.

13.3. Tries 587

b

e

l

i

l

d

l

y

u e

c

k

oa

r

l

s

l

t

l

p

Figure 13.7: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock, stop}.

X [0..k−1] of a string X of S. In fact, for each character c that can follow the prefix
X [0..k− 1] in a string of the set S, there is a child of v labeled with character c.
In this way, a trie concisely stores the common prefixes that exist among a set of
strings.

As a special case, if there are only two characters in the alphabet, then the
trie is essentially a binary tree, with some internal nodes possibly having only one
child (that is, it may be an improper binary tree). In general, although it is possible
that an internal node has up to |Σ| children, in practice the average degree of such
nodes is likely to be much smaller. For example, the trie shown in Figure 13.7 has
several internal nodes with only one child. On larger data sets, the average degree
of nodes is likely to get smaller at greater depths of the tree, because there may
be fewer strings sharing the common prefix, and thus fewer continuations of that
pattern. Furthermore, in many languages, there will be character combinations that
are unlikely to naturally occur.

The following proposition provides some important structural properties of a
standard trie:

Proposition 13.4: A standard trie storing a collection S of s strings of total length
n from an alphabet Σ has the following properties:

• The height of T is equal to the length of the longest string in S.

• Every internal node of T has at most |Σ| children.

• T has s leaves.

• The number of nodes of T is at most n+ 1.

The worst case for the number of nodes of a trie occurs when no two strings
share a common nonempty prefix; that is, except for the root, all internal nodes
have one child.

www.it-ebooks.info

Figure 24.1: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock, stop}

These notes were adapted from Goodrich and Tamassia’s Data Structures and Algorithms in Java, 4th edition Chapter 13.3

CIS 121 – Draft of August 31, 2021 24 Tries 143

Thus, a trie T represents the strings of S with paths from the root to the leaves of T . Note the importance
of assuming that no string in S is a prefix of another string. This ensures that each string of S is uniquely
associated with a leaf of T . (This is similar to the restriction for prefix codes with Huffman coding.)

We can always satisfy this assumption that no string in S is a prefix of another string by adding a special
character (such as $) that is not in the original alphabet Σ at the end of each string.

Note: this is an implementation detail that makes analysis simpler. When implementing tries, we do
want to support words that are prefixes of other words, such as “pen” and “penguin”. There are two ways
of accomplishing this: the special character way (e.g., adding a $ or some other character not part of Σ at
the end of each word), or by putting a special “end of word” marker (i.e., a field/variable) at the last
character node of each word.

An internal node in a standard trie T can have anywhere between 1→ |Σ| children. There is an edge going
from the root r to one of its children for each character that is first in some string in the collection S. In
addition, a path from the root of T to an internal node v at depth k corresponds to a k-character prefix.
X[0..k − 1] of a string X of S. In fact, for each character c that can follow the prefix X[0..k − 1] in a string
of the set S, there is a child of v labeled with character c. In this way, a trie concisely stores the common
prefixes that exist among a set of strings.

Although it is possible that an internal node has up to Σ children, in practice the average degree of such nodes
is likely to be much smaller. For example, the trie shown in the figure above has several internal nodes with
only one child. On larger data sets, the average degree of nodes is likely to get smaller at greater depths of the
tree, because there may be fewer strings sharing the common prefix, and thus fewer continuations of that
pattern. Furthermore, in many languages, there will be character combinations that are unlikely to naturally
occur.

The following proposition provides some important structural properties of a standard trie:

Proposition 1. A standard trie storing a collection S of |S| strings of total length n from an alphabet Σ

has the following properties:

I The height of T is equal to the length of the longest string in S.
I T has |S| leaves
I The number of nodes of T is at most n+ 1

The worst case for the number of nodes of a trie occurs when no two strings share a common nonempty prefix;
that is, except for the root, all internal nodes have one child.

A trie T for a set S of strings can be used to implement a set or map whose keys are the strings of S. Namely,
we perform a search in T for a string X by tracing down from the root the path indicated by the characters in
X. If this path can be traced and terminates at a leaf node (or if we use the alternative implementation, an
“end of work” field), then we know X is a string in S.

For example, in the trie in the previous figure, tracing the path for “bull” ends up at a leaf, so X ∈ S. If the
path cannot be traced or the path can be traced but terminates at an internal node, then X is not a string in
S. The path for “bet” cannot be traced and the path for “be” ends at an internal node. Neither such word “be”
or “bet” is in the set S.

It is easy to see that the running time of the search for a string of length m is O(m · |Σ|), because we visit at
most m+ 1 nodes of T and we spend O(|Σ|) time at each node determining the child having the subsequent
character as a label. The O(|Σ|) upper bound on the time to locate a child with a given label is achievable,

CIS 121 – Draft of August 31, 2021 24 Tries 144

even if the children of a node are unordered, since there are at most |Σ| children. We can improve the time
spent at a node to be O(log |Σ|) or expected O(1), by mapping characters to children using a secondary search
table or hash table at each node, or by using a direct lookup table of size |Σ| at each node, if |Σ| is sufficiently
small (as is the case for DNA strings). For these reasons, we typically expect a search for a string of length m
to run in O(m) time.

From the discussion above, it follows that we can use a trie to perform a special type of pattern matching,
called word matching, where we want to determine whether a given pattern matches one of the words of the
text exactly. Word matching differs from standard pattern matching because the pattern cannot match an
arbitrary substring of the text—only one of its words. To accomplish this, each word of the original document
must be added to the trie. A simple extension of this scheme supports prefix-matching queries. However,
arbitrary occurrences of the pattern in the text (for example, the pattern is a proper suffix of a word or spans
two words) cannot be efficiently performed.

To construct a standard trie for a set S of strings, we can use an incremental algorithm that inserts the strings
one at a time. Recall the assumption that no string of S is a prefix of another string. To insert a string X
into the current trie T , we trace the path associated with X in T , creating a new chain of nodes to store the
remaining characters of X when we get stuck. The running time to insert X with length m is similar to a
search, with worst-case O(m · |Σ|) performance, or expected O(m) if using secondary hash tables at each node.
Thus, constructing the entire trie for set S takes expected O(n) time, where n is the total length of the strings
of S.

There is a potential space inefficiency in the standard trie that has prompted the development of the
compressed trie, which is also known (for historical reasons) as the Patricia trie. Namely, there are potentially
a lot of nodes in the standard trie that have only one child, and the existence of such nodes is a waste. We
discuss the compressed trie next.

24.3 Compressed Tries

A compressed trie is similar to a standard trie but it ensures that each internal node in the trie has at least
two children. It enforces this rule by compressing chains of single-child nodes into individual edges. (See figure
below). Let T be a standard trie. We say that an internal node v of T is redundant if v has one child and is
not the root. For example, the standard trie in the first figure of these notes has eight redundant nodes. Let
us also say that a chain of k ≥ 2 edges,

(v0, v1)(v1, v2) · · · (vk−1, vk),

is redundant if:

I vi is redundant for i = 1, ..., k − 1

I v0 and vk are not redundant

We can transform T into a compressed trie by replacing each redundant chain (v0, v1) · · · (vk−1, vk) of k ≥ 2

edges into a single edge (v0, vk), relabeling vk with the concatenation of the labels of nodes v1, ..., vk.

CIS 121 – Draft of August 31, 2021 24 Tries 145

590 Chapter 13. Text Processing

13.3.2 Compressed Tries

A compressed trie is similar to a standard trie but it ensures that each internal node
in the trie has at least two children. It enforces this rule by compressing chains of
single-child nodes into individual edges. (See Figure 13.9.) Let T be a standard
trie. We say that an internal node v of T is redundant if v has one child and is not
the root. For example, the trie of Figure 13.7 has eight redundant nodes. Let us
also say that a chain of k ≥ 2 edges,

(v0,v1)(v1,v2) · · · (vk−1,vk),

is redundant if:

• vi is redundant for i = 1, . . . ,k−1.

• v0 and vk are not redundant.
We can transform T into a compressed trie by replacing each redundant chain
(v0,v1) · · · (vk−1,vk) of k ≥ 2 edges into a single edge (v0,vk), relabeling vk with
the concatenation of the labels of nodes v1, . . . ,vk.

s

to

p

b

ck

e id

ar yll

u

ll

ell

Figure 13.9: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,
stop}. (Compare this with the standard trie shown in Figure 13.7.) Notice that, in
addition to compression at the leaves, the internal node with label “to” is shared by
words “stock” and “stop”.

Thus, nodes in a compressed trie are labeled with strings, which are substrings
of strings in the collection, rather than with individual characters. The advantage of
a compressed trie over a standard trie is that the number of nodes of the compressed
trie is proportional to the number of strings and not to their total length, as shown
in the following proposition (compare with Proposition 13.4).

Proposition 13.5: A compressed trie storing a collection S of s strings from an
alphabet of size d has the following properties:

• Every internal node of T has at least two children and most d children.

• T has s leaves nodes.

• The number of nodes of T is O(s).

www.it-ebooks.info

Figure 24.2: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock, stop}. Notice that, in addition to compression
at the leaves, the internal node with label “to” is shared by words “stock” and “stop”.

Thus, nodes in a compressed trie are labeled with strings, which are substrings of strings in the collection,
rather than with individual characters. The advantage of a compressed trie over a standard trie is that the
number of nodes of the compressed trie is proportional to the number of strings and not to their total length,
as shown in the following proposition (compare with Proposition 1).

Proposition 2. A compressed trie storing a collection S of s strings from an alphabet of size d has the
following properties:

I Every internal node of T has at least two children and most d children.
I T has s leaves nodes
I The number of nodes of T is O(s)

The attentive reader may wonder whether the compression of paths provides any significant advantage, since
it is offset by a corresponding expansion of the node labels. Indeed, a compressed trie is truly advantageous
only when it is used as an auxiliary index structure over a collection of strings already stored in a primary
structure, and is not required to actually store all the characters of the strings in the collection.

Suppose, for example, that the collection S of strings is an array of strings S[0], S[1], ..., S[s− 1]. Instead of
storing the label X of a node explicitly, we represent it implicitly by a combination of three integers (i, j, k),
such that X = S[i][j..k]; that is, X is the substring of S[i] consisting of the characters from the jth to the kth

inclusive.

13.3. Tries 591

The attentive reader may wonder whether the compression of paths provides
any significant advantage, since it is offset by a corresponding expansion of the
node labels. Indeed, a compressed trie is truly advantageous only when it is used as
an auxiliary index structure over a collection of strings already stored in a primary
structure, and is not required to actually store all the characters of the strings in the
collection.

Suppose, for example, that the collection S of strings is an array of strings S[0],
S[1], . . ., S[s− 1]. Instead of storing the label X of a node explicitly, we represent
it implicitly by a combination of three integers (i, j, k), such that X = S[i][j..k];
that is, X is the substring of S[i] consisting of the characters from the j th to the k th

inclusive. (See the example in Figure 13.10. Also compare with the standard trie
of Figure 13.8.)

S[2] =

S[3] =

S[4] =

S[5] =

S[6] = S[9] =

S[8] =

S[7] =S[0] =

S[1] =

kt co

s e ll

b e ra

s e e

ll

0 1 2 3

b u ll r

b u y

h

b i d

e

s t po

a

b e

0 1 2 30 1 2 3 4

s

(a)

5, 2, 2

3, 1, 2

0, 2, 2 3, 3, 4

0, 1, 1

7, 0, 31, 0, 0

9, 3, 3

0, 0, 0

6, 1, 2 4, 1, 1

4, 2, 3

1, 1, 1

1, 2, 3 8, 2, 3 2, 2, 3

(b)

Figure 13.10: (a) Collection S of strings stored in an array. (b) Compact represen-
tation of the compressed trie for S.

This additional compression scheme allows us to reduce the total space for the
trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n

is the total length of the strings in S and s is the number of strings in S. We must
still store the different strings in S, of course, but we nevertheless reduce the space
for the trie.

Searching in a compressed trie is not necessarily faster than in a standard tree,
since there is still need to compare every character of the desired pattern with the
potentially multicharacter labels while traversing paths in the trie.

www.it-ebooks.info

Figure 24.3: (a) Collection S of strings stored in an array. (b) Compact representation of the compressed trie for S.

CIS 121 – Draft of August 31, 2021 24 Tries 146

This additional compression scheme allows us to reduce the total space for the trie itself from O(n) for the
standard trie to O(s) for the compressed trie, where n is the total length of the strings in S and s is the
number of strings in S. We must still store the different strings in S, of course, but we nevertheless reduce the
space for the trie.

Searching in a compressed trie is not necessarily faster than in a standard tree, since there is still need to
compare every character of the desired pattern with the potentially multicharacter labels while traversing
paths in the trie.

24.4 Suffix Tries

One of the primary applications for tries is for the case when the strings in the collection S are all the suffixes
of a string X. Such a trie is called the suffix trie (also known as a suffix tree or position tree) of string X. For
example, the figure (a) below shows the suffix trie for the eight suffixes of string “minimize”. For a suffix trie,
the compact representation presented in the previous section can be further simplified. Namely, the label of
each vertex is a pair “j..k” indicating the string X[j..k]. (See figure (b) below.) To satisfy the rule that no
suffix of X is a prefix of another suffix, we can add a special character, denoted with $, that is not in the
original alphabet Σ at the end of X (and thus to every suffix). That is, if string X has length n, we build a
trie for the set of n strings X[j..n− 1]$, for j = 0, ..., n− 1.

13.3. Tries 593

e

ze

ze

mize

i

nimize zenimize

mi nimize

(a)

0..1 6..7

6..72..7 2..7

2..71..1

6..7

7..7

4..7

e

0 1 2 3 4 5 6 7

m i n i m i z

(b)

Figure 13.11: (a) Suffix trie T for the string X = "minimize". (b) Compact repre-
sentation of T , where pair j..k denotes the substring X [j..k] in the reference string.

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern-matching
queries on text X . Namely, we can determine whether a pattern is a substring of X

by trying to trace a path associated with P in T . P is a substring of X if and only
if such a path can be traced. The search down the trie T assumes that nodes in T

store some additional information, with respect to the compact representation of
the suffix trie:

If node v has label j..k and Y is the string of length y associated with
the path from the root to v (included), then X [k− y+ 1..k] = Y .

This property ensures that we can compute the start index of the pattern in the text
when a match occurs in O(m) time.

www.it-ebooks.info

Figure 24.4: (a) Suffix trie T for the string X = “minimize”. (b) Compact representation of T , where pair j..k denotes the
substring X[j..k] in the reference string.

CIS 121 – Draft of August 31, 2021 24 Tries 147

Saving Space

Using a suffix trie allows us to save space over a standard trie by using several space compression techniques,
including those used for the compressed trie.

The advantage of the compact representation of tries now becomes apparent for suffix tries. Since the total
length of the suffixes of a string X of length n is

1 + 2 + ...+ n =
n(n+ 1)

2

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suffix trie represents these strings
implicitly in O(n) space, as formally stated in the following proposition.

Proposition 3. The compact representation of a suffix trie T for a string X of length n uses O(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental algorithm like the one presented
earlier for standard tries. This construction takes O(|Σ| · n2) time because the total length of the suffixes is
quadratic in n. However, the (compact) suffix trie for a string of length n can be constructed in O(n) time
with a specialized algorithm, different from the one for general tries. This linear-time construction algorithm
is fairly complex, however, and is not covered here. You can find a description of Ukkonen’s Algorithm on the
internet if you’d like – it is beyond the scope of this course. Still, we can take advantage of the existence of
this fast construction algorithm when we want to use a suffix trie to solve other problems.

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern-matching queries on text X. Namely,
we can determine whether a pattern is a substring of X by trying to trace a path associated with P in T . P is
a substring of X if and only if such a path can be traced. The search down the trie T assumes that nodes in T
store some additional information, with respect to the compact representation of the suffix trie:

If node v has label j..k and Y is the string of length y associated with the path from the root to v
(included), then X[k − y + 1..k] = Y .

This property ensures that we can compute the start index of the pattern in the text when a match occurs in
O(m) time.

Balanced BSTs: AVL Trees 25
25.1 Review: Binary Search Tree

A binary search tree is organized, as the name suggests, in a binary tree. The keys in a binary search tree are
always stored in such a way as to satisfy the binary search tree property.

Definition. The binary search tree property is as follows: Let x be a node in a binary search tree. If
y is a node in the left subtree of x, then y.key ≤ x.key. If y is a node in the right subtree of x, then
y.key ≥ x.key.

Please review your CIS 120 notes for tree traversals, and how Insert, Search, and Delete work.

All of the basic operations on a binary search trees run in O(h) time, where h is the height of the tree. The
height of a binary search tree varies, however, as items are inserted and deleted. If, for example, the n items
are inserted in strictly increasing order, the tree will be a chain with height n− 1, making all operations on
that tree O(n).

Therefore, our goal is to make the tree’s height O(lg n) so that basic operations on a BST take worst case
O(lg n) time.

25.2 Definition of an AVL Tree

The simple correction to the worst-case linear runtime for basic BST operations is to add a rule to the binary
search tree definition that maintains a logarithmic height for the tree. The rule we consider in this section is
the following height-balance property, which characterizes the structure of a binary search tree T in terms of
the heights of its internal nodes (recall that the height of a node v in a tree is the length of the longest path
from v to an external node).

Definition. Height balance property: For every internal node v of T , the heights of the children of v
differ by at most 1.

Any binary search tree T that satisfies the height-balance property is said to be an AVL tree, named
after the initials of its inventors Adel’son-Vel’skii and Landis.

These notes were adapted from Goodrich and Tamassia’s Data Structures and Algorithms in Java, 4th edition Chapter 10.2

CIS 121 – Draft of August 31, 2021 25 Balanced BSTs: AVL Trees 149

!
!

“main” — 2011/1/13 — 12:30 — page 438 — #460 !
!

!
!

!
!

438 Chapter 10. Search Trees

10.2 AVL Trees

In the previous section, we discussed what should be an efficient map data struc-
ture, but the worst-case performance it achieves for the various operations is linear
time, which is no better than the performance of list- and array-based map imple-
mentations (such as the unordered lists and search tables discussed in Chapter 9).
In this section, we describe a simple way of correcting this problem in order to
achieve logarithmic time for all the fundamental map operations.

Definition of an AVL Tree

The simple correction is to add a rule to the binary search tree definition that main-
tains a logarithmic height for the tree. The rule we consider in this section is the
following height-balance property, which characterizes the structure of a binary
search tree T in terms of the heights of its internal nodes (recall from Section 7.2.1
that the height of a node v in a tree is the length of the longest path from v to an
external node):
Height-Balance Property: For every internal node v of T , the heights of the chil-

dren of v differ by at most 1.
Any binary search tree T that satisfies the height-balance property is said to be an
AVL tree, named after the initials of its inventors, Adel’son-Vel’skii and Landis.
An example of an AVL tree is shown in Figure 10.8.

Figure 10.8: An example of an AVL tree. The keys of the entries are shown inside
the nodes, and the heights of the nodes are shown next to the nodes.

An immediate consequence of the height-balance property is that a subtree of an
AVL tree is itself an AVL tree. The height-balance property has also the important
consequence of keeping the height small, as shown in the following proposition.

Figure 25.1: An example of an AVL tree. The keys of the entries are shown inside the nodes, and the heights of the nodes are
shown next to the nodes.

An immediate consequence of the height-balance property is that a subtree of an AVL tree is itself an AVL
tree. The height-balance property has also the important consequence of keeping the height small, as shown in
the following proposition.

Proposition 1. The height of an AVL tree storing n entries is O(lg n).

Proof. Instead of trying to find an upper bound on the height of an AVL tree directly, it turns out to be easier
to work on the “inverse problem” of finding a lower bound on the minimum number of internal nodes n(h) of
an AVL tree with height h. We show that n(h) grows at least exponentially. From this, it is an easy step to
derive that the height of an AVL tree storing n entries is O(lg n).

To start with, notice that n(1) = 1 and n(2) = 2, because an AVL tree of height 1 must have at least one
internal node and an AVL tree of height 2 must have at least two internal nodes. Now, for h ≥ 3, an AVL
tree with height h and the minimum number of nodes is such that both its subtrees are AVL trees with the
minimum number of nodes: one with height h − 1 and the other with height h − 2. Taking the root into
account, we obtain the following formula that relates n(h) to n(h− 1) and n(h− 2), for h ≥ 3:

n(h) = 1 + n(h− 1) + n(h− 2)

You may see that this recurrence relation is that of the Fibonacci sequence, and can see that n(h) is indeed
exponential. If you aren’t familiar with that explanation, we’ll prove it below.

The recurrence relation implies that n(h) is a strictly increasing function of h. Thus, we know that n(h− 1) >

n(h− 2). Replacing n(h− 1) with n(h− 2) in the recurrence relation and dropping the 1, we get, for h ≥ 3,

n(h) > 2 · n(h− 2)

This implies that n(h) at least doubles each time h increases by 2, which intuitively means that n(h) grows
exponentially. To show this fact in a formal way, we apply this formula repeatedly, yielding the inequalities:

n(h) > 2 · n(h− 2)

> 4 · n(h− 4)

> 8 · n(h− 6)

...

> 2i · n(h− 2i)

CIS 121 – Draft of August 31, 2021 25 Balanced BSTs: AVL Trees 150

That is, n(h) > 2i · n(h− 2i), for any integer i, such that h− 2i ≥ 1. Since we already know the values of n(1)

and n(2), we pick i so that h− 2i = 1 or h− 2i = 2. That is, we pick

i =

⌈
h

2

⌉
− 1

By substituting the above value of i into the expanded inequality, we get for h ≥ 3:

n(h) > 2dh
2 e−1 · n

(
h− 2

⌈
h

2

⌉
+ 2

)
≥ 2dh

2 e−1 · n(1)

> 2
h
2−1 (since n(1) = 1)

By taking logarithms of both sides, we get

lg n(h) >
h

2
− 1

from which we get
h < 2 lg n(h) + 2

which implies that an AVL tree storing n entries has height at most 2 lg n+ 2.

With this knowledge, we can see that the Search operation runs in O(lg n) time. Of course, we still have to
show how to maintain the height-balance property after an insertion or removal.

25.3 Update Operations: Insertion and Deletion

The insertion and deletion operations for AVL trees are similar to those for binary search trees, but with AVL
trees we must perform additional computations.

Insertion

An insertion in an AVL tree T begins as in an Insert operation for a binary search tree. Recall that this
operation always inserts the new entry at a node w in T that was previously an external node, and it makes
w become an internal node. That is, it adds two external node children to w. This action may violate the
height-balance property, however, for some nodes increase their heights by one. In particular, node w, and
possibly some of its ancestors, increase their heights by one. Therefore, let us describe how to restructure T to
restore its height balance.

Definition. Given a binary search tree T , we say that an internal node v of T is balanced if the absolute
value of the difference between the heights of the children of v is at most 1, and we say that it is
unbalanced otherwise. Thus, the height-balance property characterizing AVL trees is equivalent to saying
that every internal node is balanced.

Suppose that T satisfies the height-balance property, and hence is an AVL tree, prior to our inserting the new
entry. As we have mentioned, after performing the Insert operation on T , the heights of some nodes of T ,

CIS 121 – Draft of August 31, 2021 25 Balanced BSTs: AVL Trees 151

including w, increase. All such nodes are on the path of T from w to the root of T , and these are the only
nodes of T that may have just become unbalanced. See the figure (a) below. Of course, if this happens, then
T is no longer an AVL tree; hence, we need a mechanism to fix the “unbalance” that we have just caused.

!
!

“main” — 2011/1/13 — 12:30 — page 441 — #463 !
!

!
!

!
!

10.2. AVL Trees 441

operation insertAtExternal on T , the heights of some nodes of T , including w,
increase. All such nodes are on the path of T from w to the root of T , and these are
the only nodes of T that may have just become unbalanced. (See Figure 10.9(a).)
Of course, if this happens, then T is no longer an AVL tree; hence, we need a
mechanism to fix the “unbalance” that we have just caused.

Figure 10.9: An example insertion of an entry with key 54 in the AVL tree of
Figure 10.8: (a) after adding a new node for key 54, the nodes storing keys 78
and 44 become unbalanced; (b) a trinode restructuring restores the height-balance
property. We show the heights of nodes next to them, and we identify the nodes x,
y, and z participating in the trinode restructuring.

We restore the balance of the nodes in the binary search tree T by a simple
“search-and-repair” strategy. In particular, let z be the first node we encounter in go-
ing up from w toward the root of T such that z is unbalanced. (See Figure 10.9(a).)
Also, let y denote the child of z with higher height (and note that node y must be
an ancestor of w). Finally, let x be the child of y with higher height (there cannot
be a tie and node x must be an ancestor of w). Also, node x is a grandchild of z
and could be equal to w. Since z became unbalanced because of an insertion in the
subtree rooted at its child y, the height of y is 2 greater than its sibling.

We now rebalance the subtree rooted at z by calling the trinode restructur-
ing function, restructure(x), given in Code Fragment 10.12 and illustrated in Fig-
ures 10.9 and 10.10. A trinode restructuring temporarily renames the nodes x, y,
and z as a, b, and c, so that a precedes b and b precedes c in an inorder traversal
of T . There are four possible ways of mapping x, y, and z to a, b, and c, as shown
in Figure 10.10, which are unified into one case by our relabeling. The trinode
restructuring then replaces z with the node called b, makes the children of this node
be a and c, and makes the children of a and c be the four previous children of x,
y, and z (other than x and y) while maintaining the inorder relationships of all the
nodes in T .

Figure 25.2: An example insertion of an entry with key 54 in the AVL tree of Figure 1: (a) after adding a new node for key 54,
the nodes storing keys 78 and 44 become unbalanced; (b) a trinode restructuring restores the height-balance property. We show
the heights of nodes next to them, and we identify the nodes x, y, and z participating in the trinode restructuring.

We restore the balance of the nodes in the binary search tree T by a simple “search-and-repair” strategy.
In particular, let z be the first node we encounter in going up from w toward the root of T such that z is
unbalanced. (See figure (a) above.) Also, let y denote the child of z with higher height (and note that node
y must be an ancestor of w). Finally, let x be the child of y with higher height (there cannot be a tie and
node x must be an ancestor of w). Also, node x is a grandchild of z and could be equal to w. Since z became
unbalanced because of an insertion in the subtree rooted at its child y, the height of y is 2 greater than its
sibling.

We now rebalance the subtree rooted at z by calling the trinode restructuring function∗, Restructure(x) as
shown in the figures above and below. A trinode restructuring temporarily renames the nodes x, y, and z as
a, b, and c, so that a precedes b and b precedes c in an inorder traversal of T . There are four possible ways
of mapping x, y, and z to a, b, and c, as shown in the figure below, which are unified into one case by our
relabeling. The trinode restructuring then replaces z with the node called b, makes the children of this node
be a and c, and makes the children of a and c be the four previous children of x, y, and z (other than x and
y) while maintaining the inorder relationships of all the nodes in T .

The modification of a tree T caused by a trinode restructuring operation is often called a rotation, because of
the geometric way we can visualize the way it changes T . If b = y, the trinode restructuring method is called
a single rotation, for it can be visualized as “rotating” y over z. (See figure (a) and (b).) Otherwise, if b = x,
the trinode restructuring operation is called a double rotation, for it can be visualized as first “rotating” x
over y and then over z. (See figure (c) and (d).) Some treat these two kinds of rotations as separate methods,
each with two symmetric types. We have chosen, however, to unify these four types of rotations into a single
trinode restructuring operation. No matter how we view it, though, the trinode restructuring method modifies
parent-child relationships of O(1) nodes in T , while preserving the inorder traversal ordering of all the nodes
in T .

∗ Pseudocode is in the pages that follow.

CIS 121 – Draft of August 31, 2021 25 Balanced BSTs: AVL Trees 152

!
!

“main” — 2011/1/13 — 12:30 — page 443 — #465 !
!

!
!

!
!

10.2. AVL Trees 443

(a)

(b)

(c)

(d)

Figure 10.10: Schematic illustration of a trinode restructuring operation (Code
Fragment 10.12): (a) and (b) a single rotation; (c) and (d) a double rotation.

Figure 25.3: Schematic illustration of a trinode restructuring operation: (a) and (b) a single rotation; (c) and (d) a double
rotation.

CIS 121 – Draft of August 31, 2021 25 Balanced BSTs: AVL Trees 153

Restructure(x)−Trinode Restructuring Algorithm

Input: A node x of a binary search tree T that has both a parent y and a grandparent z.

Output: Tree T after a trinode restructuring (which corresponds to a single or double rotation) involving
nodes x, y, and z

1. Let (a, b, c) be a left -to -right (inorder) listing of the nodes x, y, and
z, and let (T0, T1, T2, T3) be a left -to -right (inorder) listing of the

four subtrees of x, y, and z not rooted at x, y, or z.

2. Replace the subtree rooted at z with a new subtree rooted at b.

3. Let a be the left child of b and let T0 and T1 be the left and right
subtrees of a, respectively.

4. Let c be the right child of b and let T2 and T3 be the left and right
subtrees of c, respectively.

In addition to its order-preserving property, a trinode restructuring changes the heights of several nodes in T ,
so as to restore balance. Recall that we execute the function Restructure(x) because z, the grandparent of
x, is unbalanced. Moreover, this unbalance is due to one of the children of x now having too large a height
relative to the height of z’s other child. As a result of a rotation, we move up the “tall” child of x while pushing
down the “short” child of z. Thus, after performing Restructure(x), all the nodes in the subtree now rooted
at the node we called b are balanced. (See figure 3.) Thus, we restore the height-balance property locally at
the nodes x, y, and z. In addition, since after performing the new entry insertion the subtree rooted at b
replaces the one formerly rooted at z, which was taller by one unit, all the ancestors of z that were formerly
unbalanced become balanced. (See figure 2) Therefore, this one restructuring also restores the height-balance
property globally.

Deletion

As was the case for the Insert operation, we begin the implementation of the Delete operation on an
AVL tree T by using the algorithm for performing this operation on a regular binary search tree. The added
difficulty in using this approach with an AVL tree is that it may violate the height-balance property. In
particular, after removing an internal node and elevating one of its children into its place, there may be an
unbalanced node in T on the path from the parent w of the previously removed node to the root of T . (See
figure (a) below.) In fact, there can be one such unbalanced node at most.

As with insertion, we use trinode restructuring to restore balance in the tree T . In particular, let z be the first
unbalanced node encountered going up from w toward the root of T . Also, let y be the child of z with larger
height (note that node y is the child of z that is not an ancestor of w), and let x be the child of y defined as
follows: if one of the children of y is taller than the other, let x be the taller child of y; else (both children of y
have the same height), let x be the child of y on the same side as y (that is, if y is a left child, let x be the
left child of y, else let x be the right child of y). In any case, we then perform a Restructure(x) operation,
which restores the height-balance property locally, at the subtree that was formerly rooted at z and is now
rooted at the node we temporarily called b. (See figure (b) below.)

CIS 121 – Draft of August 31, 2021 25 Balanced BSTs: AVL Trees 154

!
!

“main” — 2011/1/13 — 12:30 — page 444 — #466 !
!

!
!

!
!

444 Chapter 10. Search Trees

Removal

As was the case for the insert map operation, we begin the implementation of the
erase map operation on an AVL tree T by using the algorithm for performing this
operation on a regular binary search tree. The added difficulty in using this ap-
proach with an AVL tree is that it may violate the height-balance property. In
particular, after removing an internal node with operation removeAboveExternal
and elevating one of its children into its place, there may be an unbalanced node in
T on the path from the parent w of the previously removed node to the root of T .
(See Figure 10.11(a).) In fact, there can be one such unbalanced node at most. (The
justification of this fact is left as Exercise C-10.13.)

Figure 10.11: Removal of the entry with key 32 from the AVL tree of Figure 10.8:
(a) after removing the node storing key 32, the root becomes unbalanced; (b) a
(single) rotation restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T .
In particular, let z be the first unbalanced node encountered going up from w toward
the root of T . Also, let y be the child of z with larger height (note that node y is the
child of z that is not an ancestor of w), and let x be the child of y defined as follows:
if one of the children of y is taller than the other, let x be the taller child of y; else
(both children of y have the same height), let x be the child of y on the same side as
y (that is, if y is a left child, let x be the left child of y, else let x be the right child
of y). In any case, we then perform a restructure(x) operation, which restores the
height-balance property locally, at the subtree that was formerly rooted at z and is
now rooted at the node we temporarily called b. (See Figure 10.11(b).)

Unfortunately, this trinode restructuring may reduce the height of the subtree
rooted at b by 1, which may cause an ancestor of b to become unbalanced. So,
after rebalancing z, we continue walking up T looking for unbalanced nodes. If we
find another, we perform a restructure operation to restore its balance, and continue
marching up T looking for more, all the way to the root. Still, since the height of T
is O(logn), where n is the number of entries, by Proposition 10.2, O(logn) trinode
restructurings are sufficient to restore the height-balance property.

Figure 25.4: Removal of the entry with key 32 from the AVL tree of Figure 1: (a) after removing the node storing key 32, the
root becomes unbalanced; (b) a (single) rotation restores the height-balance property.

Unfortunately, this trinode restructuring may reduce the height of the subtree rooted at b by 1, which may
cause an ancestor of b to become unbalanced. So, after rebalancing z, we continue walking up T looking for
unbalanced nodes. If we find another, we perform a restructure operation to restore its balance, and continue
marching up T looking for more, all the way to the root. Still, since the height of T is O(lg n), where n is the
number of entries, O(lg n) trinode restructurings are sufficient to restore the height-balance property.

Lecture Notes CMSC 420

Unbalanced

Unbalanced
Delete

Double rotation (15,7)

Single rotation (2)1

18

11

13

15

10

5

3

2

7

11

139

10

18

17

15

17

5

3

2

7

11

139

10 17

15

5

3

2

9

7

18

Figure 26: AVL Deletion example.

41

Figure 25.5: Additional AVL deletion example.

Advanced Topics

Skip Lists 26
26.1 Skip Lists

A skip list∗ (due to Bill Pugh in 1990) is a randomized data structure that can be thought of as a generalization
of sorted linked lists. They have most of the desirable properties of balanced binary search trees and the
simplicity of linked lists. Skip lists support the standard operations for managing a dynamic data set – Insert,
Delete, and Search.

In a sorted linked list with n elements, searching an element takes Θ(n) time. What if we had two-level sorted
linked lists structure as shown in the figure below? The bottom list L1 contains all the elements and another
list L2 contains only a subset of elements of L1.

10L1 18 30 46 53 67 75 81 88 93 99

10L2 53 88

Note that to minimize the worst case search time, the nodes in L2 should be evenly distributed, i.e., the
number of nodes in L1 that are “skipped” between any two consecutive nodes in L2 should be the same. The
search time in such a 2-level structure is given by

|L2|+
|L1|
|L2|

= |L2|+
n

|L2|

To minimize the search time, the two terms in the above expression must be equal. Thus solving

|L2| =
n

|L2|

we get |L2| =
√
n and hence the total search time is at most 2

√
n. Generalizing it a step further, consider a

3-level structure – list L1 containing all the elements, list L2 containing elements that are evenly distributed
over elements in L1, and list L3 containing elements that are evenly distributed over elements in L2. The
search time in a 3-level structure is given by

|L3|+
|L2|
|L3|

+
|L1|
|L2|

= |L3|+
|L2|
|L3|

+
n

|L2|

The above expression is minimized when the three terms are equal. If we solve the following two equations:

|L3| =
|L2|
|L3|

and
|L2|
|L3|

=
n

|L2|
,

we get that |L3| = 3
√
n and hence the search time is at most 3 3

√
n. Generalizing this to a k-level structure, we

get the total search time to be at most k k
√
n. Setting k = lg n, we get the search time to be at most

lg n(n
1

lg n) = lgn(2lgn)
1

lg n = 2 lg n

∗ You can read the full research paper here: https://epaperpress.com/sortsearch/download/skiplist.pdf

CIS 121 – Draft of August 31, 2021 26 Skip Lists 157

Thus, in a skip list with lg n levels, the bottom list L1 contains all of the n elements, L2 contains n/2 elements
(every other element of L1), L3 contains n/4 elements, and so on. Note that this structure is like a perfectly
balanced binary search tree. The insertion or deletion of a node could disrupt this structure, however just as in
AVL trees, we do not need a perfectly balanced structure – a little imbalance still allows for fast search time.
In skip lists the balancing is done using randomization – for each element in Li we toss a fair coin to decide
whether the element should also belong to Li+1 or not. In expectation, we would expect half the elements to
also be part of Li+1. Note that the randomization in constructing this data structure does not arise because
of any assumption on the distribution of the keys. The randomization only depends on a random number
generator. Thus an adversary cannot pick a “bad” input for this data structure, i.e., a sequence of keys that
will result in poor performance of this data structure.

The three operations Search, Insert, and Delete can be implemented as follows. Let ` be the largest index
of a linked list. We add a sentinel nodes −∞ to each list.

The pseudo-code for the Search operation is as follows.

Search(x):
v` ← element with key −∞ in L`.
for i← ` down to 2 do

Follow the down-link from vi to vi−1.
Follow the right-links starting from vi−1 until the key of an element is larger than x.
vi−1 ← largest element in Li−1 that is at most x.

return v1

The pseudo-code for the Insert operation is given below.

Insert(x):
if Search(x) = x then

return
(v`, v`−1, . . . , v1)← elements in L`, L`−1, . . . , L1 with key values at most x
Flip a fair coin until we get tails. Let f be the number of coin flips.
for i← 1 to min(`, f) do

Insert x in Li
if f > ` then

Create lists L`+1, L`+2, . . . , Lf .
Add elements {−∞, x} to L`, L`+1, . . . , Lf .
Create Lf+1 containing −∞.

`← max(`, f + 1)

The pseudo-code for the Delete operation is as follows.

Delete(x):
if Search(x) 6= x then

return
(v`, v`−1, . . . , v1)← elements in L`, L`−1, . . . , L1 with key values at most x
for i← 1 to ` do

if vi = x then
Delete x in Li

while ` ≥ 2 and L`−1 contains only the element −∞ do
`← `− 1

CIS 121 – Draft of August 31, 2021 26 Skip Lists 158

An example of a skip list on the set {30, 81, 10, 46, 53, 75, 99, 88, 93, 67, 18} is as shown in the figure below.
The search path for element with key 75 is highlighted.

−∞L1 10 18 30 46 53 67 75 81 88 93 99

−∞L2 10 30 53 81 88 99

−∞L3 30 53 88

−∞L4 53 88

−∞L5 88

−∞L6

26.2 Analysis

In the analysis below we will show that some events happen with a high probability (w.h.p). This means that
the probability with which the event occurs is at least 1− 1

nc , for some constant c ≥ 1.

Let x1, x2, . . . , xn be the elements inserted into the skip list. Let Hi denote the number of lists that element xi
belongs to. Note that Hi is exactly equal to the total number of flips of a fair coin until the first “success”. This
is a geometric random variable with parameter 1/2 and hence E[Hi] = 2. Let H = max{H1, H2, . . . ,Hn}.

Theorem 1. The space requirement for a skip list with n elements is O(n) in expectation.

Proof. Let S be the random variable denoting the total amount of space required by a skip list with n elements.
Taking into account the space overhead of the sentinel keys (−∞), we have

S = O

(
n∑
i=1

Hi

)

E[S] = O

(
n∑
i=1

E[Hi]

)
= O(n)

CIS 121 – Draft of August 31, 2021 26 Skip Lists 159

Lemma 1. Pr[H ≥ h] ≤ n
2h−1

Proof. We have

Pr[H ≥ h] = Pr[

n⋃
i=1

Hi ≥ h]

≤
n∑
i=1

Pr[Hi ≥ h] (using the union-bound)

=
n

2h−1

Lemma 2. The expected number of levels in a skip list with n elements is at most dlg ne+ 3.

Proof. The number of levels in a skiplist of n elements is H + 1. The second term is due to the list with the
highest index that contains only the key −∞. Since H is a non-negative random variable, we have

E[H] =

∞∑
h=1

Pr[H ≥ h]

=

dlgne∑
h=1

Pr[H ≥ h] +
∑

h≥dlgne+1

Pr[H ≥ h]

≤
dlgne∑
h=1

1 +
∑

h≥dlgne+1

n

2h−1

≤ dlg ne+
∑

h≥lgn+1

n

2h−1

= dlg ne+
n

2lgn

∞∑
i=0

1

2i

= dlg ne+ 2

Thus the expected number of levels is E[H] + 1 ≤ dlg ne+ 3.

Lemma 3. With a high probability, a skip list with n elements has O(log n) levels.

Proof. We will show that w.h.p, the number of levels in a skip list with n elements is at most 2 lg n+ 1. This
is equivalent to showing that w.h.p, H ≤ 2 lg n. From Lemma 1, we have

Pr[H ≥ 2 lg n+ 1] ≤ n

22 lgn+1−1

=
1

n

CIS 121 – Draft of August 31, 2021 26 Skip Lists 160

Lemma 4. For any r such that 0 < r ≤ n,
r∑
i=0

(
n

i

)
≤
(ne
r

)r

Proof. Rewriting the left hand side in a more convenient form we have

r∑
i=0

(
n

i

)
=
(n
r

)r r∑
i=0

(
n

i

)(r
n

)r
≤
(n
r

)r r∑
i=0

(
n

i

)(r
n

)i
≤
(n
r

)r n∑
i=0

(
n

i

)(r
n

)i
=
(n
r

)r (
1 +

r

n

)n
(using the Binomial Theorem)

≤
(n
r

)r
e(

r
n)n (using 1 + x ≤ ex for all x)

=
(ne
r

)r

Theorem 2. With a high probability, in a skip list of n elements, every search takes O(log n) time.

Proof. When searching an element with key x, we begin at the first element in the top list and then move
down to the next lower indexed list or move right along the same list until we reach the element v1 (the
element with the largest key in L1 that is at most x). We want to bound the total number of steps (“down”
steps plus “right” steps) with a high probability. Instead of counting the total number of down steps plus the
total number of right steps, we will start at the element v1 and trace the search path in reverse, i.e., either go
“left” or go “up”. Note that we go left at key xj in list Li because xj was not promoted to the next higher list
Li+1, i.e., the ith flip of the coin must have resulted in tails when inserting xj in the skip list. From Lemma 3,
we know that w.h.p., the number of up moves are at most 2 lg n. We will show that the total number of up
moves plus the total number of left moves (total number of coin flips) is at most 20 lg n with a high probability.

We consider the following events:

E: event that the total number of coin flips is 20 lg n and our search has not ended.
U : event that the total number of up-moves (heads) is greater than 2 lg n.

We want to upper bound Pr[E]. By Lemma 3 we know that Pr[U] = Pr[H > 2 lg n] ≤ 1/n.

Pr[E] = Pr[E ∩ U] + Pr[E ∩ U]

≤ Pr[U] + Pr[E] Pr[U |E]

≤ 1

n
+ Pr[U |E]

CIS 121 – Draft of August 31, 2021 26 Skip Lists 161

Let X be the random variable denoting the number of heads.

Pr[U |E] =

2 lgn∑
i=0

Pr[X = i]

=

2 lgn∑
i=0

(
20 lg n

i

)(
1

2

)i(
1

2

)20 lgn−i

=

(
1

2

)20 lgn 2 lgn∑
i=0

(
20 lg n

i

)

≤
(

1

2

)20 lgn(
e · 20 lg n

2 lg n

)2 lgn

(using Lemma 4)

=

(
1

2

)20 lgn

(10e)2 lgn

= 2lg(10e)·2 lgn · 2−20 lgn

= 22 lgn(lg(10e)−10)

≤ 1

22 lgn

=
1

n2

Plugging this bound in to the Pr[E] = 1
n + Pr[U |E] equation we found earlier, we get

Pr[E] ≤ 1

n
+

1

n2

≤ 1

n
+

1

n

=
2

n

Bloom Filters 27
27.1 Bloom Filters

Bloom Filter, introduced by Bloom in 1970, is a space-efficient randomized data structure for representing a
set in order to support membership queries. The set membership problem is as follows. We have a very large
U , with |U| = u. Let S = {x1, x2, . . . , xn} be a subset of U such that u >> n. We want a data structure to
maintain S that supports membership queries: “Given x ∈ U , is x ∈ S?” The supported operations are

I Insert(x): S ← S ∪ {x}
I Query(x): is x ∈ S?

Initial Idea: We will use a bit vector B of m = 2n bits. Let h be a hash function such that maps each
element of U to a random number uniform over the range {1, 2, . . . ,m}. The above functions are implemented
as follows.

Insert(x):
B[h(x)]← 1

Query(x):
return B[h(x)]

Clearly, both operations can be performed in constant time. Note that if x ∈ S then Pr[Query(x)] = 1 is 1,
i.e., our algorithm always gives the correct answer. If x 6∈ S then we may get a false positive as shown below.

Pr[we output that x ∈ S] = Pr[there is a y s.t. h[y] = h[x]] ≤
∑
y∈S

Pr[h(y) = h(x)] =
n

m
≤ 1

2

Reducing the probability of error. Suppose we want to reduce the probability of error to ε, that is, when
x 6∈ S, we want Pr[Query(x)] = 1] ≤ ε. To achieve this we will have k > 1 tables, each of size 2n and each
with its own hash function. The two operations now can be implemented as follows.

Insert(x):
for i← 1 to k do
Bi[hi(x)]← 1

Query(x):
for i← 1 to k do
if Bi[hi(x)] = 0 then

return 0
return 1

CIS 121 – Draft of August 31, 2021 27 Bloom Filters 163

Note that if x ∈ S then Pr[Query(x)] = 1 is 1, i.e., our algorithm always gives the correct answer. If x 6∈ S
then

Pr[we output that x ∈ S] = Pr[∀1 ≤ i ≤ k, there is a y s.t. hi[y] = hi[x]]

≤
k∏
i=1

∑
y∈S

Pr[hi(y) = hi(x)]

=
(n
m

)k
≤
(

1

2

)k

Since we want the error to be at most ε, solving for
(
1
2

)k ≤ ε yields k ≥ lg(1/ε). Thus the time for each
operation is O(lg(1/ε)) and the amount of space is O(n lg(1/ε)).

Sometimes Bloom filters are described slightly differently: instead of having different hash tables, there is one
array of size m that is shared among all k hash functions.

Balanced BSTs: Red-Black Trees 28
Similar to AVL trees, our goal is to design a self-balancing BST so that basic operations on the tree take
worst case O(lg n) time. Here, we will look an introductory look at a special type of BBSTs: red-black trees.

28.1 Properties of Red-Black Trees

The red-black tree is a binary search tree with one modification: each node has a color, either Red or Black,
using a single bit of storage. By constraining the node colors on any path from the root to a leaf, red-black trees
guarantee that no such path is more than twice as long as any other, so the tree is approximately balanced. If
the child or parent of a node does not exist, the corresponding pointer contains the value Nil. We regard the
Nil nodes as external nodes and the normal, key-bearing nodes as internal nodes.

A red-black tree satisfies the following properties, known as red-black properties:

1. Every node is either Red or Black.
2. The root is Black.
3. Every leaf (Nil) is Black.
4. If a node is Red, its children are Black.
5. For each node, all paths from the node to descendant leaves contain the same number of Black nodes.

Figure 28.1: From CLRS, an example of a red-black tree with shaded Black nodes and non-shaded Red nodes. Leaf (Nil)
nodes are colored Black. Note that all simple paths from root to leaves have the same number of Black nodes.

Figure 28.2: From CLRS, a more common representation of a red-black tree with Nil nodes omitted.

These notes were adapted from CLRS Chapter 13.1

CIS 121 – Draft of August 31, 2021 28 Balanced BSTs: Red-Black Trees 165

We will show that the height of red-black trees is upper-bounded by O(lg n) in the following series of proofs.
Denote the number of Black nodes on any simple path from, but not including, a node x to a leaf as the
black-height of the node, or bh(x).

Lemma 1. The subtree rooted at x contains at least 2bh(x) − 1 internal nodes.

Proof. We will prove this claim using strong induction on the height of x.

Base Case: Height of x is 0. In this case, x must be a leaf, so the subtree rooted at x indeed has at least
2bh(x) − 1 = 20 − 1 = 0 internal nodes.

Inductive Hypothesis: Assume that the claim holds true for all nodes of height 0 ≤ j ≤ k.

Inductive Step: Consider a node x of height k + 1 such that x is an internal node with two children. By
construction of the red-black tree, each child has black-height of either bh(x) or bh(x) − 1, depending on
whether the child is Red or Black, respectively. Since each child has height less than that of x, we can apply
the inductive hypothesis to conclude that each child has at least 2bh(x)−1 − 1 internal nodes in their rooted
subtrees. Therefore, the subtree rooted at x has at least 2 · (2bh(x)−1 − 1) + 1 = 2bh(x) − 1 internal nodes.

Theorem 1. A red-black tree with n internal nodes has height at most 2 lg(n+ 1).

Proof. Let h be the height of the red-black tree. By Property 4, at least half the nodes of any simple path
from the root to a leaf, not counting the root itself, must be Black. Consequently, the black-height of the
root must be at least h

2 . By Lemma 1,

n ≥ 2
h
2 − 1

Rearranging the inequality and applying a logarithm on both sides yields

h ≤ 2 lg(n+ 1)

From Theorem 1, the height of a red-black tree is upper-bounded by O(lg n). Thus, basic operations on
red-black trees can be performed in worst case logarithmic time with some overhead to maintain red-black
properties. Like AVL trees, red-black trees have their own implementations of Insertion, Deletion, and
Rotation to maintain their red-black property invariants. ∗

∗ These are covered in CLRS Chapters 13.2 - 13.4

Minimum Cut 29
29.1 The Minimum Cut Problem

Recall that a cut is a partition of vertices into two disjoint proper subsets, and a cut-set is the set of edges
that cross such a cut. In this chapter, we introduce a fast randomized algorithm that finds the minimum cut
(or "min-cut"), which is a minimum cardinality cut-set of a graph.

Definition. A minimum cut is the smallest set of edges in an undirected graph such that the removal of
these edges breaks the graph into two or more connected components.

Minimum cut problems frequently arise in the study of network reliability, where nodes correspond to machines
in the network and edges correspond to connections between machines. The min-cut of a network identifies
the smallest number of connections that can fail before some pair of machines are unable to communicate.
Minimum cuts also arise in clustering problems: if nodes represent Web pages and an edge between two nodes
represent a corresponding hyperlink, then min-cuts divide the graph into clusters of related documents.

29.2 A Randomized Approach

A brute force approach to solve this problem is to calculate all O(2n) possible cuts and return the smallest cut
found. As with most algorithms, this exponential blow-up time is not ideal for any practical application of
this problem, so we set it as a benchmark to beat.

We propose a simple randomized algorithm for solving the min-cut problem with high probability in only
polynomial time. The crux of this algorithm involves repeated calls to an operation known as an edge contraction
until only one cut remains. In contracting an edge (u, v), we merge two vertices u and v at random into one
vertex and eliminate all edges connecting u and v. This updated graph retains all other edges in the graph
and permits parallel edges but no self-loops.

This algorithm is known as Karger’s Algorithm (attributed to David Karger in 1993) and is formalized below.

Karger’s Algorithm for the Minimum Cut Problem

Input: An undirected graph G = (V,E).

Output: A set of edges in G that represent the minimum size cut-set (min-cut) in G.

Min -Cut(G)
for i ← 1 to n− 2 do

Pick a remaining edge (u, v) in G uniformly at random.
Contract(u, v)

Return the edges between the remaining two vertices as the min -cut.

These notes were adapted from Mitzenmacher and Upfal’s Probability and Computing, Chapter 1.4

CIS 121 – Draft of August 31, 2021 29 Minimum Cut 167

The algorithm runs until only two vertices (and one cut) remains. In each iteration, we pick an edge uniformly
at random from the existing edges and contract that edge. After n− 2 iterations, the graph consists of two
vertices and outputs the set of edges connecting the two remaining vertices as our min-cut.

Examples of a) a successful run and b) an unsuccessful run of the Min-Cut algorithm are shown below.

Figure 29.1: A successful run of Min-Cut on a graph with min-cut of size 2.

Figure 29.2: An unsuccessful run of Min-Cut on the same graph. Note that this execution incorrectly returns a cut-set of size 3.

Note that any cut-set of the current graph in any immediate iteration of the algorithm is also a cut-set of
the original graph. On the other hand, a particular cut-set of the original graph may not exist in the current
graph if an edge of this cut-set was previously contracted. Therefore, the output of Min-Cut will always be
a cut-set of the original graph but not necessarily the minimum size cut-set (see Figure 29.2). In the next
sections, we will show how Min-Cut can be used to find the min-cut while mitigating the probability of an
incorrect result.

29.3 Probabilistic Analysis

We will now establish a lower bound on the probability that an execution of Min-Cut on a graph G with n
vertices returns a correct output.

Theorem 1. The Min-Cut algorithm outputs a min-cut set with probability of at least 2
n(n−1) .

Proof: Let k be the size of a particular min-cut set C that partitions G into two sets, S and V \ S. There may
be multiple min-cut sets, but we will only focus on a specific set C in our lower bounding. Notice that C only
survives an iteration of Min-Cut only if the contracted edge is not a part of C. Therefore, the algorithm
correctly returns C as the minimum cut-set if the algorithm never chooses an edge in C to contract.

Let Ei be the event that the edge contracted in iteration i is not in C. Let Fi = ∩ij=1Ej be the event that no
edge of C was contracted within the first i iterations. Our goal is to compute Pr[Fn−2].

We start by computing Pr[E1] = Pr[F1]. Since the minimum cut-set has k edges, every vertex in the graph
must have degree k or larger (δ(G) ≥ k). By Handshaking Lemma, the graph must have at least nk

2 edges.

CIS 121 – Draft of August 31, 2021 29 Minimum Cut 168

With at least nk
2 edges to choose from uniformly at random, the probability that we do not choose one of the

k edges in C in the first iteration is as follows:

Pr[E1] = Pr[F1] ≥ 1− k

nk/2
= 1− 2

n

For the sake of analysis, let’s assume that the first contraction did not eliminate an edge in C. Conditioning
on such an event F1, we are left with n− 1 nodes but still a minimum cut-set size k and thus still at least
k(n−1)

2 edges. So,

Pr[E2|F1] ≥ 1− k

(n− 1)k/2
= 1− 2

n− 1

We generalize this conditional probability in a similar manner.

Pr[Ei|Fi−1] ≥ 1− k

(n− i+ 1)k/2
= 1− 2

n− i+ 1

All that remains is to compute a lower bound for Pr[Fn−2].

Pr[Fn−2] = Pr[En−2 ∩ Fn−3] = Pr[En−2|Fn−3] · Pr[Fn−3]

= Pr[En−2|Fn−3] · Pr[En−3|Fn−4] · ... · Pr[E2|F1] · Pr[F1]

≥
n−2∏
i=1

(1− 2

n− i+ 1
) =

n−2∏
i=1

n− i− 1

n− i+ 1

=
n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· ... · 3

5
· 2

4
· 1

3

=
2

n(n− 1)

Reducing the probability of error. Although one execution of Min-Cut likely may not produce the
correct output, we can reduce the error probability by repeating the algorithm. For reasons that will soon
be clear, let’s assume that Min-Cut is independently run n(n− 1) lnn times and the minimum size cut-set
found over all runs is outputted.

Theorem 2. The probability of an incorrect output over n(n− 1) lnn calls to Min-Cut is at most 1
n2

The probability of an non-optimal output is bounded by

(1− 2

n(n− 1)
)n(n−1) lnn ≤ e−2 lnn =

1

n2
(using 1− x ≤ e−x).

Monte Carlo Algorithms. Karger’s Min-Cut Algorithm belongs to a class of algorithms known as Monte
Carlo algorithms, which are finite randomized algorithms that may produce an incorrect output within a
certain probability. By repeatedly sampling executions of these algorithms enough times, the probability of an
incorrect solution becomes almost neglibile, demonstrating the power of randomization.

2-SAT 30
30.1 Introduction to the 2-SAT Problem

The Boolean satisfiability problem (abbrev. SAT) takes in a Boolean formula consisting of a conjunction
(AND, denoted as ∧) of a set of clauses, where each clause is a disjunction (OR, denoted as ∨) of literals. A
literal is a Boolean variable (i.e. x1) or the negation of a boolean variable (i.e. ¬x1). A solution to a SAT
instance is an assignment of True and False values to each variable x1 ... xn in a SAT formula such that all
clauses return True.

In the k-satisfiability (k-SAT) problem, each SAT clause is restricted to exactly k literals. The 2-SAT problem
is a special case of k-SAT where each clause has exactly 2 variables. These types of boolean formulas are known
as 2-CNF or Krom formulas. While generalized k-SAT belongs to a class of problems known as NP-complete
problems, 2-SAT can actually be solved in linear time (using Kosaraju’s, interestingly enough).

(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ ¬x3) ∧ (x4 ∨ ¬x1)

The above shows an instance of a 2-SAT formula. A truth assignment that solves this input is the following:
x1 = True, x2 = False, x3 = False, x4 = True. You should trace through this assignment as an exercise
to gauge your understanding of 2-SAT.

In this chapter, we examine a randomized algorithm to solve the 2-SAT problem with high probability.

30.2 Randomized 2-SAT Algorithm

Rather than trying all 2n possible truth assignments for a given SAT formula, let’s consider the following
approach: start with an assignment, find an unsatisfied clause, and tweak the assignment so that the clause
is satisfied. Our randomized 2-SAT algorithm repeatedly performs this step by choosing at random which
variable’s value in the clause to toggle in order to satisfy this clause. We also consider an integer parameter m
that determines the probability of a correct answer, which will be soon made clear in the analysis.

Randomized 2-SAT Algorithm

Input: A 2-CNF Boolean formula Φn with n variables, and an integer parameter m.

Output: An assignment that solves the 2-SAT formula, or outputs that the formula is unsatisfiable.

2-SAT(Φn, m)
Start with an arbitrary truth assignment.
for i ← 1 to 2mn2 do

Choose an arbitrary unsatisfied clause.
Choose uniformly at random one of the literals in this clause and

switch the value of its variable.
If a valid truth assignment was ever found , return it.

These notes were adapted from Mitzenmacher and Upfal’s Probability and Computing, Chapter 7.1

CIS 121 – Draft of August 31, 2021 30 2-SAT 170

Otherwise , return that the formula is unsatisfiable.

We can take the example 2-SAT formula above to demonstrate an execution of 2-SAT. Starting with an
arbitrary truth assignment of all False, we find that the clause (x1 ∨ ¬x2) is unsatisfied. Choosing the literal
x1 randomly, we toggle the value of x1 to be True. Next, we pick (x4 ∨ ¬x3) as our unsatisfied clause, choose
x4 at random, and toggle x4 to be True. By now, we have reached a satisfying assignment which will be
correctly outputted by the algorithm.

Note that we were extremely "lucky" in picking the right values to switch. In other random executions, it may
feel like we take one step forward toward an optimal assignment during one iteration, but one step backward
during another. This is precisely the correct intuition and will be explored in the following analysis.

30.3 Probabilistic Analysis

Let S be an optimal satisfying assignment of Φn for variables x1 .. xn, and let Ai be the assignment of variables
after the ith step of the algorithm. Let Xi denote the number of variables for which the truth assignments of
Ai and S match. When Xi = n, then all variables in the assignment of An have the same values as that of S
so the algorithm terminates with a satisfying assignment. Note that the algorithm may have found another
satisfying assignment 6= S and terminated early, but for our worst-case analysis we assume that the algorithm
stops only when Xi = n.

Lemma 1. Assume that Φn has a satisfying assignment and that the 2-SAT algorithm is allowed to
run until it finds a satisfying assignment. Then the expected number of steps until the algorithm finds an
assignment is at most n2.

We case on the value of the Xi, which is the number of matching values or "distance" toward from the optimal
assignment S, in formalizing our conditional probabilities.

Case I: Xi = 0. For any change in a variable’s value, we can only move one step closer to S.

Pr[Xi+1 = 1|Xi = 0] = 1

Case II: 1 ≤ Xi ≤ n− 1. At step i we choose an unsatisfied clause, at which point Ai and S disagree on the
value of at least one of the two variables in this clause. If we mismatch on both variables, then flipping any of
the variables’ values would bring us one step closer to S. If we match on one of the variables, then we flip the
mismatched value (and thus increase the number of matches) with a probability of 1

2 . On the other hand, we
may flip a matched value and move one step away from S. Hence, for 1 ≤ j ≤ n− 1,

Pr[Xi+1 = j + 1|Xi = j] ≥ 1

2

Pr[Xi+1 = j − 1|Xi = j] ≤ 1

2

CIS 121 – Draft of August 31, 2021 30 2-SAT 171

For the sake of analysis, we will only consider the pessimistic version of the above stochastic process.

Pr[Xi+1 = 1|Xi = 0] = 1

Pr[Xi+1 = j + 1|Xi = j] =
1

2
for 1 ≤ j ≤ n− 1

Pr[Xi+1 = j − 1|Xi = j] =
1

2
for 1 ≤ j ≤ n− 1

Figure 30.1: Illustration of the probabilistic effects of flipping a clause’s value at random for Xi ≥ 1.

Note that this pessimistic assumption can only increase the number of expected steps and frees us from any
dependence on previously considered clauses. This is known as a Markov chain, which maps probabilistic
transitions from one state to another. Here, this Markov chain models a random walk on a graph, where the
states/vertices are the integers 0 ... n with edges connecting consecutive integers.

Figure 30.2: A probabilistic transition model known as a Markov chain. Each state is a possible value for Xi at step i, and each
transition represents the probability of changing between states. S is discovered when n is reached.

Let Tj be the expected number of steps to reach n from state j. Clearly, Tn = 0 and T0 = T1 + 1. For
1 ≤ j ≤ n− 1, we move to the next state j + 1 with probability 1

2 and move to the previous state j − 1 with
probability 1

2 . We therefore have the following equations:

T0 = T1 + 1

Tn = 0

Tj =
1

2
(1 + Tj−1) +

1

2
(1 + Tj+1) (Linearity of Expectation)

= 1 +
Tj−1

2
+
Tj+1

2
, 1 ≤ j ≤ n− 1

CIS 121 – Draft of August 31, 2021 30 2-SAT 172

Rearranging the last equation, we get:

2Tj = 2 + Tj−1 + Tj+1

Tj − Tj+1 = 2 + Tj−1 − Tj
= 2 + 2 + Tj−2 − Tj−1
= 2 + 2 + 2 + Tj−3 − Tj−2
...

= 2 + 2 + 2 + ...+ 2 + T0 − T1
= 2j + 1 (T0 − T1 = 1)

Almost there! It follows to calculate T0, the upper bound on the expected number of steps to reach S:

T0 = (T0 − T1) + (T1 − T2) + ...+ (Tn−1 − Tn)

=

n−1∑
j=0

Tj − Tj+1

=

n−1∑
j=0

2j + 1

= n2

Theorem 1. The 2-SAT algorithm always returns a correct answer if the formula is unsatisfiable, and
returns a correct answer with probability of at least 1− 1

2m if the formula is satisfiable.

Proof: Clearly, if there is no satisfying assignment then the algorithm returns that the formula is unsatisfiable.
Suppose the formula is satisfiable. Divide the execution of 2-SAT into m disjoint segments of 2n2 steps each.
The expected number of steps that the algorithm takes to find a satisfying assignment for each segment is
bound by n2 by Lemma 1, regardless of the segment’s starting position.

Let Z be the number of steps from the start of a segment until the algorithm finds a satisfying assignment.
Applying Markov’s Inequality,

Pr[Z > 2n2] ≤ n2

2n2
=

1

2

The probability that the algorithm succeeds in finding a satisfying assignment after m segments is thus at
least 1− (1

2)m.

Appendix

Common Running Times A
For your convenience, we’ve compiled a list of running times of commonly used operations and data structures
in Java. This list is not meant to be exhaustive.

All runtimes below assume Java 8 implementation.

Array

I Initialization of size s: worst case O(s)

I Accessing an index: worst case O(1)

java.util.ArrayList [JavaDoc] [Implementation]:

I add(e): amortized O(1), worst case O(n)

I add(i, e): worst case O(n)

I contains(e): worst case O(n)

I get(i): worst caseO(1)

I indexOf(e) : worst case O(n)

I isEmpty(): worst case O(1)

I remove(i): worst case O(n)

I set(i, e): worst case O(1)

I size(): worst case O(1)

Note: Adding/Removing an element to/from index n− c for some constant c takes amortized O(1) time.

java.util.LinkedList [JavaDoc][Implementation]:

I add(e): worst case O(1)

I add(i, e): worst case O(n)

I contains(e): worst case O(n)

I get(i): worst case O(i)

I indexOf(e) : worst case O(n)

I isEmpty(): worst case O(1)

I remove(): worst case O(1)

I remove(i): worst case O(n)

I set(i, e): worst case O(i)

I size(): worst case O(1)

Note: Adding/Removing an element to/from index n− c for some constant c takes O(1) time.

java.util.HashMap [JavaDoc] [Implementation]:

I containsKey(k): expected O(1), worst case O(lg n)

I containsValue(v): worst case O(n)

I entrySet(): worst case O(1)

I get(k): expected O(1), worst case O(lg n)

I isEmpty(): worst case O(1)

I keySet(): worst case O(1)

I put(k, v): expected O(1), worst case O(n)

I remove(k): expected O(1), worst case O(lg n)

I size(): worst case O(1)

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/ArrayList.java
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/LinkedList.java
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java

CIS 121 – Draft of August 31, 2021 A Common Running Times 175

I values(): worst case O(1)

java.util.HashSet [JavaDoc] [Implementation]

I add(e): expected O(1), worst case O(n)

I contains(e) : expected O(1), worst case O(lg n)

I isEmpty(): worst case O(1)

I remove(e): expected O(1), worst case O(n)

I size(): worst case O(1)

java.lang.String [Javadoc] [Implementation]

I charAt(i): worst case O(1)

I compareTo(s): worst case O(n)

I concat(s): worst case O(n+ s.length())

I contains(s): worst case O(n · s.length())

I equals(s): worst case O(n)

I indexOf(c): worst case O(n)

I indexOf(s): worst case O(n · s.length())

I length(): worst case O(1)

I substring(i, j): worst case O(j − i)

https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashSet.java
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/lang/String.java

	CIS 121: Data Structures and Algorithms
	Table of Contents
	Review of Terms, Proofs, and Probability
	Review of Proofs and Proof Techniques
	Graphs
	Probability
	Linearity of Expectation
	Probability Distributions

	Gale-Shapley Stable Matching
	Background and Intuition
	Formulating the Problem
	Examples
	Designing an Algorithm
	Runtime of the GS Algorithm
	Correctness of the GS Algorithm
	Extensions

	Greatest Common Divisor
	Definitions
	Calculating the GCD
	Correctness of Euclid's Algorithm
	Runtime of Euclid's Algorithm

	Insertion Sort
	Insertion Sort
	Correctness of Insertion Sort
	Running Time of Insertion Sort

	Running Time and Growth Functions
	Measuring Running Time of Algorithms
	RAM Model of Computation
	Average Case and Worst Case
	Order of Growth
	Properties of Asymptotic Growth Functions

	Analyzing Runtime of Code Snippets
	Divide & Conquer and Recurrence Relations
	Computing Powers of Two
	Linear Search and Binary Search
	MergeSort
	More Recurrence Practice
	Simplified Master Theorem

	Quicksort
	Deterministic Quicksort
	Randomized Quicksort

	Counting Inversions
	Introduction and Problem Description
	Designing an Algorithm
	Runtime

	Selection Problem
	Introduction to Problem
	Selection in Worst-Case Linear Time

	Closest Pair
	Closest Pair
	Divide and Conquer Algorithm
	Closest Pair Between the Sets

	Integer Multiplication
	Introduction and Problem Statement
	Designing the Algorithm
	Runtime

	Stacks and Queues
	The Stack ADT
	Queues

	Binary Heaps and Heapsort
	Definitions and Implementation
	Maintaining the Heap Property
	Building a Heap
	Heapsort
	Priority Queues

	Huffman Coding
	From Text to Bits
	Variable-Length Encoding Schemes
	Huffman Encoding
	Extensions

	Graph Traversals: BFS and DFS
	Graphs and Graph Representations
	Connectivity
	Breadth-First Search (BFS)
	Depth-First Search (DFS)

	Application of BFS: Bipartiteness
	Definitions and Properties
	Algorithm
	Analysis

	DAGs and Topological Sorting
	DAGs
	Topological Sorting
	Kahn's Algorithm
	Tarjan's Algorithm

	Strongly Connected Components
	Introduction and Definitions
	Kosaraju's Algorithm

	Shortest Path
	The Shortest Path Problem
	Dijkstra's Algorithm
	Shortest Path in DAGs

	Minimum Spanning Trees
	Introduction and Background
	MST Algorithms
	Correctness of Prim's, Kruskal's, and Reverse-Delete
	Eliminating the Assumption that All Edge Weights are Distinct

	Union Find
	Introduction
	Union by Rank
	Path Compression

	Hashing
	Direct-Address Tables
	Hash Tables
	Hash Functions
	Open Addressing

	Tries
	Introduction
	Standard Tries
	Compressed Tries
	Suffix Tries

	Balanced BSTs: AVL Trees
	Review: Binary Search Tree
	Definition of an AVL Tree
	Update Operations: Insertion and Deletion

	Advanced Topics
	Skip Lists
	Skip Lists
	Analysis

	Bloom Filters
	Bloom Filters

	Balanced BSTs: Red-Black Trees
	Properties of Red-Black Trees

	Minimum Cut
	The Minimum Cut Problem
	A Randomized Approach
	Probabilistic Analysis

	2-SAT
	Introduction to the 2-SAT Problem
	Randomized 2-SAT Algorithm
	Probabilistic Analysis

	Appendix
	Common Running Times

