Circle Theorems GCSE Higher KS4 with Answers/Solutions

NOTE: You must give reasons for any answers provided.
All diagrams are NOT DRAWN TO SCALE.

1. (a) A, B and C are points on the circumference of a circle, centre, O . AC is the diameter of the circle.

Write down the size of angle ABC .

* (b) Given that $\mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$, work out

(i) the diameter of the circle,
(ii) the area of the triangle
(iii) the area and circumference of the circle, leaving your answer in terms of $\boldsymbol{\pi}$.
(c) D is a point on the circumference of the circle above such that angle $\mathrm{BDC}=60^{\circ}$.
(i) Write down the size of angle CAB. (ii) Work out the size of angle ACB.

2. P, Q, R and S are points on the circumference of a circle.

Angle $\mathrm{PRS}=65^{\circ}$ and angle $\mathrm{QSR}=44^{\circ}$.
Find the size of angle (i) PQS (ii) QPR

3. P, Q and R are points on the circumference of a circle, centre, O.

PR is the diameter of the circle and ST is a tangent to the circle at the point R .
Angle $\mathrm{QRS}=58^{\circ}$.
(a) Work out the size of angle QRP.
(b) Work out the size of angle QPR.

4.

R, S and T are points on the circumference of a circle, centre O.
ST is a diameter and Angle $\mathrm{RST}=37^{\circ}$.
U is the point on ST such that angle RUS is a right angle.
(a) Work out the size of angle URT.
(b) Work out the size of angle ROT.
(c) Work out the size of angle ORU.
(d) Find the size of angle ORT.
5.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are points on the circumference of a circle, centre O.
BD is a diameter of the circle. Angle $\mathrm{CAB}=48^{\circ}$.
(a) Write down the size of angle BCD.
(b) Find the size of angle BDC.
(c) Find the size of angle BOC.
(d) Find the size of angle CAD.
(e) Find the size of angle COD.
(f) Find the size of angle OCB.
6. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on the circumference of a circle, centre, O .

TU is a tangent to the circle at the point S .
Angle $\mathrm{ROS}=64^{\circ}$ and angle $\mathrm{QSU}=58^{\circ}$.
(i) Find the size of angle:
(a) OSQ
(b) SQR
(c) QPS
(d) QRS
(ii) Why are the lines QR and OS parallel?
(iii) Find the size of angle (a) QRO (b) QSR

7. P, Q, R and S are points on the circumference of a circle, centre, O. PST is a straight line.
$P Q=P S$
Angle $\mathrm{SOQ}=100^{\circ}$ and angle $\mathrm{RST}=78^{\circ}$
Work out the size of angle:
(a) QRS
(b) PQS
(c) OQS
(d) PSO
(e) SQR

8. P, Q and R are points on the circumference of a circle, centre, O .

Angle $\mathrm{PRQ}=64^{\circ} . \mathrm{SP}$ and SQ are tangents to the circle at the points P and Q respectively.
Work out the size of angle (i) PSQ (ii) PQO (iii) POS (iv) QSO

9. P, Q and R are points on the circumference of a circle, centre, O .

Angle $\mathrm{PSQ}=60^{\circ}$. SP and SQ are tangents to the circle at the points P and Q respectively.
(a) Work out the size of angle:
(i) QPS
(ii) PQO
(iii) PRQ
(iv) POQ
(b) What type of triangle is PQS?
(c) Given that angle $\mathrm{OQR}=10^{\circ}$,
work out the size of angle OPR.

10.

P, Q, R and S are points on the circumference of a circle.
PST and QRT are straight lines.
Angle $\mathrm{QSR}=34^{\circ}$ and angle $\mathrm{SRT}=62^{\circ}$.
(a) Find the size of the angle:
(i) SQR
(ii) RPS
(b) Given that angle $\mathrm{PRS}=62^{\circ}$, show that PR is a diameter of the circle.
11. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on the circumference of a circle.

TS is the tangent to the circle at the point S .
Angle $\mathrm{RST}=35^{\circ}$ and angle $\mathrm{QRS}=101^{\circ}$.
(a) Explain why QS cannot be a diameter of the circle.
(b) Find the size of angle:
(i) QPS (ii) SQR (iii) QPR

12.

P, Q, R and S are points on the circumference of a circle, centre, O.
PT and TR are tangents to the circle.
OST is a straight line.
Angle $\mathrm{OTR}=38^{\circ}$.
Find the size of the angle:
(i) ROT
(ii) $P Q R$
(iii) SRT
(iv) PSO
(v) PST
13. The diagram shows a circle of radius 8 cm , with centre P and a circle of radius 5 cm with centre Q . The circles touch externally and have a common tangent RS.
(a) Explain why the quadrilateral PQRS is a trapezium.
(b) Calculate the length of RS, giving your answer in the form $m \sqrt{10}$, where m is a positive integer to be found.

* (c) If the circle with centre P has a radius of R cm and the circle with centre Q has a radius of rcm , show that the length of RS is given by $2 \sqrt{R r} \mathrm{~cm}$.

14. P, Q and R are points on the circumference of a circle.

SQ and SR are tangents to the circle from a point S.
Angle $\mathrm{PQR}=$ Angle PRQ .
(a) Prove that triangles PQS and PRS are congruent.
(b) What type of quadrilateral is PRSR?
(c) Given that angle $\mathrm{QSP}=20^{\circ}$, find the size of angle: (i) QPR (ii) QRP

15. PR and QS are two chords of a circle that meet at the point T .
(a) Prove that triangles PTS and QTR are similar.

Given that $\mathrm{PT}=3 \mathrm{~cm}, \mathrm{TR}=8 \mathrm{~cm}$, and $\mathrm{QT}=4 \mathrm{~cm}$,
(b) Calculate the length of ST.

Some Proofs:

16. P, Q and R are points on the circumference of a circle, centre, O .

The straight line POS has been drawn to help you.
Prove that Angle QOR is twice the size of angle QPR.

17. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on the circumference of a circle, centre, O .

Prove that angle $\mathrm{SPQ}+\mathrm{SRQ}=180^{\circ}$
(Opposite angles in a cyclic quadrilateral are supplementary).

18. P, Q and R are points on the circumference of a circle, centre, O .

The line SR is extended to T .
Prove that angle QRT = angle QPS.

Algebraic:

19. P, Q and R are points on the circumference of a circle, centre, O .

PR is a diameter of the circle. Angle $\mathrm{QSO}=x^{\circ}$ and angle $\mathrm{OPS}=3 x^{\circ}$.
(a) Express in terms of x, the size of angle:
(i) SQR
(ii) PQS
(iii) PSQ
(iv) SOP
(v) PRQ
(vi) QPR (vii) SOR
(b) Find the value of x if angle $\mathrm{SOR}=120^{\circ}$.
(c) With this value of x, what type of triangle will OPS be?

Interesting and different!?

20. A, B, C, D and E are points on a circle.

Point C is due north of point D and point E is due west of point D.
Angle $\mathrm{CAB}=27^{\circ}$.
The angle of elevation of point B from point E is 87°.
(a) Find the size of the angle of elevation of point C from the point E .
(b) Why is EC a diameter of the circle?
(c) Find the size of the angle of elevation of point B from the point D.

Answers/Solutions
Only answers on this page. The Solutions are on the following pages. Please check answers.
Answers only
(1) (a) 90° (b) (i) 10 cm (ii) $24 \mathrm{~cm}^{2}$ (iii) $A=25 \pi \mathrm{~cm}^{2}$
(c) (i) 60° (ii) 30°
(2) (i) 65°
(ii) 44°
(3) (2) 32°
(b) 58°
(4) (a) 37°
(b) 74°
(c) 16°
(d) 53°
(5) (a) 90°
(b) 48° (c) 96°
(d) 42° (e) 84° (f) 42°
(b) (i) (a) 32°
(b) 32° (c) 58° (d) 122°
(ii) $R \hat{Q} S=Q \hat{S} O=32$ atternate angles
(iii) (a) 64°
(b) 26°
(7) (a) 50°
(b) 65° (c) 40°
(d) 25°
(e) 13^{*}
(8) (i) 52° (i)
(ii) 26° (iii) 64° (iv) 26°
(9) (a) (i) 60° (ii) 30° (iii) 60° (iv) 120°
(b) Equilatical
(c) 50°
(10) (a) (i) 28° (ii) 28° (b) $62+28=90^{\circ}$
(II) (a) $101 \neq 90$
(b) (i) 79 (ii) 35°
(iii) 35°
(i2) (i) 52° (ii) 52° (iii) $\mathbf{2} 6^{\circ}$ (iv) 64° (v) 116°
(13) (b) $n=4$
(C) Proof.
(14) (a) SSS
(b) Kite (c) (i) 140°
(ii) 70°
(15) (a) $\operatorname{erog}(A A A)$ (b) $S T=6 \mathrm{~cm}$
(16) (17) (18) See solutions
(19) (i) $3 x$ (ii) $90-3 x$
(iii) $2 x$ (vv) $180-6 x(v) 2 x$ (ii) $90-2 x \overline{\overline{(v i i)}} 6 x$ (b) $x=20$ (c) Equilateral

2

Answers: (Note: Solutions not unique in some questions)

1. (a) A, B and C are points on the circumference of a circle, centre, O . AC is the diameter of the circle.

Write down the size of angle ABC .

90°

$$
\begin{aligned}
& \text { Angle in a semicircle } \\
& \text { is a right angle. }
\end{aligned}
$$

* (b) Given that $\mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$, work out
use Pythagoras' Theorem
(i) the diameter of the circle,

$$
\begin{aligned}
\text { Let } A C & =x \\
x^{2} & =6^{2}+8^{2}=36+64=100 \\
x & =10 \mathrm{~cm}
\end{aligned}
$$

(ii) the area of the triangle

$$
A=\frac{1}{2} b h=\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}
$$

(iii) the area and circumference of the circle, leaving your answer in terms of π.

$$
\begin{array}{rlrl}
\text { Radius, } r=5 & C & =\pi \times d \text { ore } 2 \pi r \\
A= & =\pi r^{2}=\pi \times 5^{2} & & =\pi \times 10 \\
& =25 \pi \mathrm{~cm}^{2} & & =10 \pi \mathrm{~cm}
\end{array}
$$

(c) D is a point on the circumference of the circle above such that angle $\mathrm{BDC}=60^{\circ}$.
(i) Write down the size of angle CAB . (ii) Work out the size of angle ACB.
(i) $\hat{A A B}=60^{\circ}$. Angles in the same segment are equal. (ii) $\hat{A B C}=90^{\circ}$ from (a) $\hat{A C B}=180-(90+60)$ $=180-150=30^{\circ}$ angles in a to 180°.
(OR $\hat{A C B}=90-60=30^{\circ}$) If one angle is 90 ,
mathsmalakiss.com

$$
\begin{aligned}
& \text { The sum of the } \\
& \text { other two angles } \\
& \text { in } \triangle A B C \text { add up to } 90
\end{aligned}
$$

2. P, Q, R and S are points on the circumference of a circle.

Angle $\mathrm{PRS}=65^{\circ}$ and angle $\mathrm{QSR}=44^{\circ}$.
Find the size of angle (i) PQS (ii) QPR
(i) $P \widehat{Q S}=65^{\circ}$
(ii) $\hat{P Q R}=44^{\circ}$

Reason:
Angles in the same Segment are equal
OR angles subtended by the
same arc are equal

3. P, Q and R are points on the circumference of a circle, centre, O .

PR is the diameter of the circle and ST is a tangent to the circle at the point R .
Angle $\mathrm{QRS}=58^{\circ}$.
(a) Work out the size of angle QRP.
(b) Work out the size of angle QPR.
(a)
$Q \hat{R} P=90^{\circ}-58^{\circ}=32^{\circ}$
Tangent andraduis meet at 90° $\left(P \hat{R} S=90^{\circ}\right)$
(b) $\hat{P Q R}=90^{\circ}$ angle in a

$$
\begin{aligned}
& Q \hat{P R}=480-(90+32) \\
& =180-122=58^{\circ} \\
& \text { cringes in a } \triangle a d d \operatorname{lnp} \text { to } 180 \\
& \text { OR } \hat{Q P R}=90-32=58^{\circ} \\
& \text { OR alternate segment } \\
& \text { theorem: QPRR }=5
\end{aligned}
$$

mathsmalakiss.com

$$
\begin{aligned}
& \text { OR alternate segment } \\
& \text { theorem: } Q \hat{P R}=58^{\circ}
\end{aligned}
$$

4.

R, S and T are points on the circumference of a circle, centre O.
ST is a diameter and Angle RST $=37^{\circ}$.
U is the point on ST such that angle RUS is a right angle.
(a) Work out the size of angle URT. $\quad \widehat{S R T}=90^{\circ}$
angle in asenicircle

$$
\hat{S R U}=90-37=53^{\circ} \text { angles in a } \Delta \quad \text { OR } \quad \hat{S} u+S \hat{S R U}=90^{\circ}
$$

$$
\begin{array}{ll}
S R U=9 R T=90-53=37^{\circ} & \text { OR } R \hat{R} U+S R U=90 \\
U R T+S \hat{R} U=90
\end{array}
$$

(b) Work out the size of angle ROT

$$
\text { hence } \begin{aligned}
u \hat{R} T & =R \hat{S} u \\
& =37^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROT }=2 \times 37^{\circ}=74^{\circ} \\
& \text { angle at the Centre }=\text { twice angle at the } \\
& \text { circumference (they most be subtended by the } \\
& \text { same are ore in the } \\
& \text { (c) Work out the size of angle ORU. }
\end{aligned}
$$

$$
\widehat{O R U}=90-74
$$

$$
\begin{aligned}
& =90-14 \\
& =16^{\circ} \triangle O U R \text { is right-angled. } \\
& \text { and angles in a } \Delta \text { add up to } 180^{\circ}
\end{aligned}
$$

(d) Find the size of angle ORT. isoscelres :OR O I T Radi'
mathsmalakiss.com

$$
\triangle O R T \text { is } \begin{aligned}
& \text { hence } O R T=\frac{1}{2}\left(180^{\circ}-74^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { or ORS }=37^{\circ} \triangle O R S \text { is isosceles. } \\
& \text { and } S \hat{R} T=90 \Rightarrow O \hat{R} T=90-37=53
\end{aligned}
$$

5.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are points on the circumference of a circle, centre O.
BD is a diameter of the circle. Angle $\mathrm{CAB}=48^{\circ}$.
(a) Write down the size of angle BCD . 90° angle in a semicircle $=90^{\circ}$.
(b) Find the size of angle BDC .

(c) Find the size of angle BOC.

$$
\begin{aligned}
& \text { Find the size of angle BOC. } \\
& \mathrm{BOC}^{\circ}=2 \times 48=96^{\circ}
\end{aligned}
$$

(d) Find the size of angle $C A D$. $\widehat{B A D}=90^{\circ}$ angle in a semicicle.

$$
\hat{B A D}=90^{\circ} \text { angl } 6 \mathrm{im}
$$

$$
\hat{A D}=90-48^{\circ}=42^{\circ}
$$

(e) Find the size of angle COD.
(f) Find the size of angle OCB.

$$
\text { angle at centre }=2 \times \text { angle at }
$$

$$
\triangle O C B \text { is isosceles } O C=O B=\text { radii }
$$

$$
\begin{aligned}
& \hat{B O C}=96 \text { (c) } \quad \hat{O C B}=\frac{1}{2} \times 84=42^{\circ} \\
& 180-96=84 \quad \hat{O R C}=\hat{C A D}=42^{\circ} \quad \text { (d) }
\end{aligned}
$$

mathsmalakiss.com

$$
\begin{aligned}
& 80-90=84 \\
& \text { or } O B C=\hat{C A D}=42^{\circ} \quad(d) \\
& \text { and } \hat{O C B}=\hat{O B C} \quad \text { isosc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR } O B C=\hat{C A D}=42^{\circ} \quad(d) \\
& \text { and } \hat{O C B}=\widehat{O B C} \quad \text { isosc. } \triangle
\end{aligned}
$$

$$
\therefore \hat{O C B}=42^{\circ}
$$

6. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on the circumference of a circle, centre, O .

TU is a tangent to the circle at the point S . Angle ROS $=64^{\circ}$ and angle $\mathrm{QSU}=58^{\circ}$.
(i) Find the size of angle:
(a) OSQ
(b) $S Q R$
(c) QPS
(d) QRS
(ii) Why are the lines $Q R$ and $O S$ parallel?
(iii) Find the size of angle (a) QRO (b) QSR
(i) (a) $\widehat{O S Q}=90-58^{\circ}=32^{\circ}$ tangent and radius mectat 90° (b) $\widehat{S Q R}=\frac{1}{2} \times 64=32^{\circ}$ angle at antre is twice the angle
(c) $Q \hat{P S}=58^{\circ} \quad$ (they must \sin same are)
alternate segment theorem

(angle between a tangent and a chord = angle in the
alternate segment; they both Subtend are QS)
(d) PQRS is a cyclic quad rilateral opposite angles are supplementary.

$$
\begin{aligned}
& \text { posite angles are supplement } \\
& \text { Hence } Q \hat{R S}=180-58=122^{\circ}
\end{aligned}
$$

(ii) $\begin{array}{r}\hat{Q Q S}=Q \hat{S O}=\frac{32}{} \text { equally, hence } K R \text { is parallel } \\ \text { alternate angles equal }\end{array}$ to OS.
(iii) (a) $Q \hat{R}_{O}=64^{\circ}$ alternate angles.
mathsmalakiss.com
(b) $\triangle O R S$ is isosceles $O R=$ US radii

$$
\text { hence } \begin{aligned}
O \hat{S} R & =\frac{1}{2}(180-64)= \\
& =\frac{1}{2}(116)=580
\end{aligned}
$$

$$
\text { hence } Q \hat{S R}=58-32=26^{\circ}
$$

7. P, Q, R and S are points on the circumference of a circle, centre, O.

PST is a straight line.
$P Q=P S$
Angle $\mathrm{SOQ}=100^{\circ}$ and angle $\mathrm{RST}=78^{\circ}$
Work out the size of angle:
(a) QRS
(b) PQS
(c) OQS
(d) PSO
(e) SQR

(a) QPS $=\frac{1}{2} \times 100=50^{\circ}$

$$
\hat{Q R S}=180-50^{\circ}=130^{\circ}
$$

$$
\begin{array}{r}
\text { angle at antre }=2 \times \text { angle at } \\
\text { circinferenc. } \\
\text { opposite angles in a cyclic } \\
\text { quadicilateral are supplementary. }
\end{array}
$$

OR Relax $\hat{O Q}=360-100=260^{\circ}$

$$
Q R S=\frac{1}{2} \times 260^{\circ}=130^{\circ}
$$

$$
\begin{array}{r}
\text { angle at antre }=2 \times \operatorname{mople} \text { at } \\
\text { circumference }
\end{array}
$$

(h) $\hat{Q} S=\frac{1}{2}(180-50)=\frac{1}{2}(130)=65^{\circ}$
$\triangle P Q S$ is isosceles (gwen).
(c) $O Q=\frac{1}{2}(180-100)=\frac{1}{2} \times 80=40^{\circ} \triangle O Q S$ is isosceles.
(d) $\hat{P S O}=65-40=250$
(e) $P Q S=78^{\circ}$ exterior angle of a cyclic quadictateral But $P Q S=65^{\circ}(b)$ hence $\widehat{S Q R}=78-65$

$$
=13^{\circ}
$$

$$
\begin{array}{r}
\text { OR } P \hat{S R}=180-78=102^{\circ} \\
P Q R=180-102=78^{\circ} \\
\text { opp. angles in } \\
\\
\text { acyclic quad. } \\
\text { are supplementary }
\end{array}
$$

8. P, Q and R are points on the circumference of a circle, centre, O .

Angle $P R Q=64^{\circ}$. SP and SQ are tangents to the circle at the points P and Q respectively.
Work out the size of angle (i) PSQ (ii) PQO (iii) POS (iv) QSO

(i) $\quad \hat{O O Q}=2 \times 64=1280$ angle at centre $=$
$2 \times \operatorname{angle}$ at Cirenference
$\hat{O P S}=90^{\circ}=\hat{O Q S}$ tangent radius meet at 90°
hence $P \hat{S} Q=180-128^{\circ} \quad(360-(90+90+128))$
$=52^{\circ}$ angles in a quadrilateral
(ii) $\hat{P} \hat{Q}$ add up to 360°
(11) $P Q O=\frac{1}{2}\left(180-128^{\circ}\right)=\frac{1}{2} \times 52=26^{\circ} \triangle O P Q$
(iii) $\hat{P O S}=\frac{1}{2} \times 128=64^{\circ} \quad \begin{aligned} & \text { Symmetry of the } \quad \begin{array}{l}O P=O Q \\ \text { radii }\end{array} \\ & \text { kite } O P S Q\end{aligned}$
(lv) $Q \hat{S O}=\frac{1}{2} \times 52=26^{\circ} \quad$ kite $O P S Q \quad \begin{aligned} & P S=P Q \\ & \text { tangents from } \\ & \text { a point for }\end{aligned}$
9. P, Q and R are points on the circumference of a circle, centre, O .

Angle $\mathrm{PSQ}=60^{\circ}$. SP and SQ are tangents to the circle at the points P and Q respectively.
(a) Work out the size of angle:
(i) QPS
(ii) $P Q O$
(iii) PRQ
(iv) $P O Q$
(b) What type of triangle is PQS ?
(c) Given that angle $\mathrm{OQR}=10^{\circ}$,
work out the size of angle OPR.

(a) (i) $\hat{Q P S}=\frac{1}{2}(180-60)=\frac{1}{2} \times 120=60^{\circ}$

(iii) $\widehat{P R Q}=\frac{1}{2} \times \widehat{P O Q} \quad \hat{P O Q}=180-60=120^{\circ}$

$$
\text { (iv) } \hat{P O Q}=120^{\circ} \mathrm{sec} \text { (iii) }
$$

(b) Equilateral triangle
(c) $\triangle O R Q$ in isosceles $O R=O Q$ radii
$\therefore O \widehat{R Q}=10^{\circ} \quad \hat{R} P=60-10=50^{\circ}$

$$
\begin{aligned}
& \hat{O Q}=10 \quad \hat{O R}=O 0^{\circ} \quad \triangle O P R \text { is isosceles } \\
& \text { with } O R=O P
\end{aligned}
$$

10.

$\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on the circumference of a circle.
PST and QRT are straight lines.
Angle $\mathrm{QSR}=34^{\circ}$ and angle $\mathrm{SRT}=62^{\circ}$.
(a) Find the size of the angle:
(i) SQR
(ii) RPS
(b) Given that angle $P R S=62$, show that $P R$ is a diameter of the circle.
(a)(i) $S R Q=180-162=118^{\circ}$ straight Ane

$$
\begin{aligned}
& S R Q=180-162=118 \quad \text { straight line } \\
& S Q R=180-(118+34) \quad \text { anglesini a } \Delta \text { add up to } 180 .
\end{aligned}
$$

$$
=180-152=28^{\circ}
$$

or $\widehat{S Q R}=62-34=28^{\circ}$ exterior angle $(62)=$ Sung opp. interior angles.
(ii) $\hat{R P S}=\hat{S Q R}=28$ angles in the same
(b) $\begin{aligned} & P \hat{R} S=62 \text { guin } \\ & P Q S=62^{\circ} \text { angles in the same segment. }\end{aligned}$ $P \hat{Q} S=62^{\circ}$
hence $P Q R=62+28=90^{\circ}$
hence $P Q R=62+28=$ is Angle min a
$P R$ is a diameter. Anglericle $=90^{\circ}$
11. P, Q, R and S are points on the circumference of a circle. TS is the tangent to the circle at the point S.

Angle RST $=35^{\circ}$ and angle $\mathrm{QRS}=101^{\circ}$.
(a) Explain why QS cannot be a diameter of the circle.
(b) Find the size of angle:
(i) QPS (ii) SQR (iii) QPR

(a) $\hat{Q R S}=101^{\circ} \neq 90^{\circ}$ (angle in a semicircle $=90^{\circ}$)
(b) (i)

$$
\begin{aligned}
& \hat{Q P S}=180-101^{\circ} \\
&=79^{\circ} \text { opposite angles in a cyc } \\
& \text { are supple mentary. }
\end{aligned}
$$

(ii) $S \hat{Q R}=35^{\circ}$ alternate segment theorem (iii) $Q \hat{Q P R}=Q \hat{S R}=35^{\circ}$ angles in she same segment.
12.

P, Q, R and S are points on the circumference of a circle, centre, O.
PT and TR are tangents to the circle.
OST is a straight line.
Angle $\mathrm{OTR}=38^{\circ}$.
Find the size of the angle:
(i) ROT
(ii) $P Q R$
(iii) SRT (iv) PSO
(v) PST
(i) $\hat{O R T}=90^{\circ}$ tangent radius at 90°

$$
\begin{aligned}
& \hat{O R T}=90 \quad \text { ROT }=90-38^{\circ}=52^{\circ} \quad \text { angles in a } \Delta \\
& \text { R }
\end{aligned}
$$

 $=52^{\circ}$

$$
\begin{aligned}
& P T=T R \\
& O P=O R
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\hat{O R S} & =\frac{1}{2}(180-52) \\
& =\frac{1}{2}(128)=64^{\circ} \quad \triangle O R S \text { is isoscks. }
\end{aligned}
$$

SET $=90-64=26^{\circ}$ tangent radius meet at 90°

$$
\text { (iv) } \begin{aligned}
\text { SO } & =\frac{1}{2}(180-52) \text { OSP is an isosceles } \triangle \\
& =\frac{1}{2} \times 128=64
\end{aligned}
$$

mathsmalakiss.com
(v) $\begin{aligned} & \hat{S S T}=180-64 \\ &=116^{\circ} \text { OST is a straight } \\ & \text { the }\end{aligned}$
13. The diagram shows a circle of radius 8 cm , with centre P and a circle of radius 5 cm with centre Q . The circles touch externally and have a common tangent RS.
(a) Explain why the quadrilateral PQRS is a trapezium.
(b) Calculate the length of RS, giving your answer in the form $m \sqrt{10}$, where m is a positive integer to be found.

* (c) If the circle with centre P has a radius of R cm and the circle with centre Q has a radius of $r \mathrm{~cm}$, show that the length of RS is given by $2 \sqrt{R r} \mathrm{~cm}$.

(a) tangent and radius meet at 90°, hence bolt PS and $Q R$ are perpendicular to $S R$ and hence parallel. Hence $P Q R S$ is a trope $z 4 i m ;$
(b) $P Q=13 \quad P T=8-5=3 \quad Q T^{2}=13^{2}-3^{2}=169-9$

$$
\begin{aligned}
& Q T=\sqrt{16 \times 10}=4 \sqrt{10} \\
& S R=Q T=4 \sqrt{10} \quad \mathrm{~m}=4
\end{aligned}
$$

mathsmalakiss.com

$$
\begin{aligned}
T Q & =(R+r)-(R-r) \\
& =R^{2}+2 R r+r^{2}-\left(R^{2}-2 R r+r^{2}\right) \\
& =R^{2}+2 R r+r^{2}-R^{2}+2 R r-r^{2} \\
T Q & =\sqrt{4 R r}=2 \sqrt{R r} \quad T Q=S R
\end{aligned}
$$

14. P, Q and R are points on the circumference of a circle.
$S Q$ and $S R$ are tangents to the circle from a point S.
Angle $P Q R=$ Angle $P R Q$.
(a) Prove that triangles PQS and PRS are congruent.
(b) What type of quadrilateral is PRSR?
(c) Given that angle $\mathrm{QSP}=20^{\circ}$, find the size of angle: (i) QPR (ii) QRP

(a)

$$
\frac{\triangle P Q S}{P Q}=\frac{\Delta P R S}{P R} \quad \triangle P Q R \text { given isosceles }
$$ $S Q=S R \quad$ tangents from a ponit to a circle $P S=P S$ common to bothtriangles By SSS the triangles are congruent.

(b) $P R S R$ is a kite $(P Q=P R, S Q=S R)$
(c) (i) $Q R$ is perpendicular to $P S$ (properties of)

$$
\text { hence } R Q S=90-20=70^{\circ} \text { angles min a } \triangle
$$

$$
Q \hat{P}_{S}=R Q S=70^{\circ} \text { alternate add up }
$$

and $Q \hat{P} S=Q P R$ congruent triangles
mathsmalakiss.com hence $Q \hat{P} R=70+70=140^{\circ}$

$$
\text { (ii) } Q \hat{R} P=R \hat{Q} \cdot S=70^{\circ} \triangle \text { SRQ is isosceles. }
$$

15. PR and $Q S$ are two chords of a circle that meet at the point T.
(a) Prove that triangles PTS and QTR are similar.

Given that $\mathrm{PT}=3 \mathrm{~cm}, \mathrm{TR}=8 \mathrm{~cm}$, and $\mathrm{QT}=4 \mathrm{~cm}$,
(b) Calculate the length of ST.
(a) $\left.\begin{array}{l}\hat{S P} T=T \hat{Q} R \\ P \hat{S} T=T R Q\end{array}\right\} \begin{aligned} & \text { angles in the same } \\ & \text { segment are equal }\end{aligned}$ $P \hat{T S}=Q \hat{T R} \rightarrow$ (they are subtended by the $\quad \rightarrow$ Vertically same are)
hence the
 opposite angles triangles are
equiangular
hence by AAA the triangles are similar.
(b) Since the triangles are similar, ont ratio of the Corresponding Sides are equal.

$$
\begin{aligned}
& \frac{S T}{8}=\frac{3}{4} \\
& S T=8 \times \frac{3}{4}=6 \mathrm{~mm}
\end{aligned}
$$

Some Proofs:
16. P, Q and R are points on the circumference of a circle, centre, \mathbf{O}.

The straight line POS has been drawn to help you.
Prove that Angle QOR is twice the size of angle QPR.
Let $\hat{R P O}=x$ hence $\hat{P R O}=x$ $\triangle O P R$ is isosceles $O P=O R$ radii Let $O \hat{P} Q=y$ hence $\hat{D Q P}=y$ same read on as for x.
Now: the exterior

angle of a triangle
= the sum of the 2 opposite interior angles.
hence

$$
R \widehat{R O S}=2 x
$$

and $\hat{Q O S}=2 y$
Now $R \widehat{O Q}=2 x+2 y$

$$
\begin{aligned}
& \hat{R O Q}=2(x+y) \\
& \hat{R O Q}=2 \times \hat{Q P R}
\end{aligned}
$$

Note: other methods of proofs may exist.

Example

17. P, Q, R and S are points on the circumference of a circle, centre, O.

Prove that angle $\mathrm{SPQ}+\mathrm{SRQ}=180^{\circ}$
(Opposite angles in a cyclic quadrilateral are supplementary).
Let $\hat{S \hat{P}_{O}}=x$
and $S \hat{R Q}=y$
then
$S \hat{S O Q}=2 x$ (cobthes)
Reflex $S \hat{O}_{Q}=2$ y (Reflex)
Reason: angle at the
centre $=2 \times$ angl
at aiccunterince
but $2 x+2 y=360^{\circ}$ complete
hence $x+y=180^{\circ}$
$\therefore \widehat{S P Q}+\widehat{S R Q}=180$
18. P, Q and R are points on the circumference of a circle, centre, O .
The line SR is extended to T.
Prove that angle $\mathrm{QRT}=$ angle QPS.
Let $S P_{Q} Q=x$
$\Rightarrow S R Q=180-x$ oppositure angles
in are cyclic quad.
are suppentent (add up to 180)
But $S R T_{1}$ is a straight lie henna $\quad \widehat{S R Q}+Q \hat{R}_{,} T=180^{\circ}$

$$
\begin{aligned}
180-x+Q R T & =180^{\circ} \\
\angle R T & =180
\end{aligned}
$$

maltsmakkiss.com

$$
\begin{aligned}
& Q \hat{R} T=x \\
& \text { hence } S \hat{P Q}=Q \widehat{R} T
\end{aligned}
$$

Algebraic:

19. P, Q and R are points on the circumference of a circle, centre, O .

PR is a diameter of the circle. Angle $\mathrm{QSO}=x^{\circ}$ and angle $\mathrm{OPS}=3 x^{\circ}$.
(a) Express in terms of x, the size of angle:
(i) SQR
(ii) PQS
(iii) PSQ
(iv) SOP
(v) PRQ
(vi) QPR
(vii) SOR
(b) Find the value of x if angle $S O R=120^{\circ}$.
(c) With this value of x, what type of triangle will OPS be?
(a)(i) $\hat{S Q R}=\underline{\underline{Z} x}$ angles in the same segment.
(ii) $P \widehat{Q R}=90$ angle in asemicicle
$\therefore \hat{Q Q S}=90-3 x$ anger ina Δ.
(iii) $\triangle O P Q$ is isosceles

OP $=0$ R Radii
hence

$$
O \hat{P} S=O \hat{S} P=3 x
$$

hence $P \widehat{S Q}=3 x-x$

$$
=2 x
$$

(iv) $\hat{S O P}=180-\overline{6 x}$ angles in a Δ.
(v) $P \hat{R Q}=\hat{P \hat{S Q}}=2 x$ angles in the same segment
(vi) $\hat{Q P R}=90-2 x$ angles in a Δ.
(vii) $\hat{S O R}=\overline{2 \times \hat{S Q R}} \quad$ angle at centre $=2 \times$ angle at circumference.

$$
\begin{aligned}
\text { OR } & =2 \times 3 x \\
& =6 x
\end{aligned}
$$

(b) $\hat{S O R}=6 x=120^{\circ}$
(c) Equilateral triangle $\begin{array}{ll}3 x & =60^{\circ}, 180-6 x \\ 2 x & =600 \\ x=20\end{array}$
mathsmalakiss.com

Interesting and different!?

20. A, B, C, D and E are points on a circle.

Point C is due north of point D and point E is due west of point D.
Angle $\mathrm{CAB}=27^{\circ}$.
The angle of elevation of point B from point E is 87°.
(a) Find the size of the angle of elevation of point C from the point E .
(b) Why is EC a diameter of the circle?
(c) Find the size of the angle of elevation of point B from the point D.
(a) $\widehat{B E C}=\hat{B A C}=27^{\circ}$ angles in the same segment \mathbf{N}

$$
\begin{aligned}
\therefore \hat{C E D} & =B \hat{E D D}-B \hat{E C} C \\
& =87-27 \\
& =60^{\circ}
\end{aligned}
$$

(b) C is north or D and E is west hence $C \hat{D E}=90^{\circ}$
hence EC is a

$$
\begin{gathered}
\text { diameter } \\
\text { (angle a semicich) } \\
=90^{\circ}
\end{gathered}
$$

(c) The required angle is $B D E$.

$$
\begin{aligned}
& \text { Now } E \hat{B C}=90^{\circ} \hat{1} \text { angle in a semicircle. } \\
& \text { in } \triangle E B C, B E C=27^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \triangle \hat{E B C}, \hat{B E C}=27^{\circ} \\
& \text { hence } \hat{E C} B=90-27=63^{\circ} \text {. (angles in a } \Delta \text {) } \\
& \text { ut } \hat{B D E}=\hat{B C E} \text { angles in the same segment }
\end{aligned}
$$

$$
\text { hence } \hat{B D E}=63^{\circ}
$$

I hope you find this useful and challenging for some students.
Answers need checking, please and let me know if you find any errors.
Thank you.

