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Chapter III 

Harmonic Excitation of Single-Degree-of-Freedom 

systems “Forced Vibration” 

There are many sources of excitations that cause machines and structures to 

vibrate. They include Unbalance rotating devices, Gusting winds, Vortex shedding, 

moving vehicles, Earthquakes, Rough road surfaces, and so on. 

The forced vibrations of systems are usually caused by dynamic forces F (t) or 

support motions y (t) such as shown. 

 

I- Exciting Force F (t) = Fo sin ωt (or = Fo cos ωt)  

𝐹 ≡ 𝐸𝑥𝑐𝑖𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒    

𝐹𝑜 ≡ 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑒𝑥𝑐𝑖𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒   

     𝜔 ≡ 𝐸𝑥𝑐𝑖𝑡𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦   
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Equation of motion: 

 𝐹𝑥 = −𝑘𝑥 − 𝑐𝑥 = 𝑚𝑥 + 𝐹𝑜 sin 𝜔𝑡      

𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 = 𝐹𝑜 sin 𝜔𝑡   

𝑥 +
2𝑐𝜔𝑛

2𝑚𝜔𝑛
𝑥 +

𝑘

𝑚
𝑥 =

𝐹𝑜
𝑚

sin 𝜔𝑡     

𝑥 + 2𝜁𝜔𝑛𝑥 + 𝜔𝑛
2𝑥 =

𝐹𝑜

𝑚
sin 𝜔𝑡                                      (1) 

The last equation is the general equation of motion of single degree of freedom 

system.  

Solution of equation of motion: 

The complete solution of this equation is the sum of: 

1-  Homogeneous solution “xh” (Free Response or natural response) which 

is dies out with time, it is often referred as a transient response, and 

2- Particular solution “xp” (Forced response) which is known as the steady 

state response. 

The total response is  

𝑥 = 𝑥𝑕 + 𝑥𝑝      

𝑥𝑕 = 𝑒−𝜁𝜔𝑛 𝑡[𝑥𝑜 cos 𝜔𝑑𝑡 +
𝑣𝑜+𝜁𝜔𝑛𝑥𝑜

𝜔𝑑
sin 𝜔𝑑𝑡]  

The particular solution or steady state response is best determined with the use of 

complex algebra, 

Since  𝐹 = 𝐹𝑜 sin 𝜔𝑡     

∴ 𝐹 = 𝐼𝑚𝑎𝑔.  𝐹𝑜𝑒
𝑖𝜔𝑡    𝑖 =  −1                                    (2) 

We can express the right-hand side of equation (1) as
𝐹𝑜

𝑚
𝑒𝑖𝜔𝑡 , with the provision 

that only the imaginary part of the term will be used in the solution process. 

We assume the steady state response as, 

 𝑥𝑝 = 𝐴𝑒𝑖𝜔𝑡      
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∴ 𝑥 = 𝑖𝜔𝐴𝑒𝑖𝜔𝑡                                                                (3) 

𝑥 = −𝜔2𝐴𝑒𝑖𝜔𝑡  

Substituting equations (2), (3) into (1) yields, 

 −𝜔2 + 𝑖𝜔. 2𝜁𝜔𝑛 + 𝜔𝑛
2 𝐴𝑒𝑖𝜔𝑡 =

𝐹𝑜
𝑚

𝑒𝑖𝜔𝑡       

𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝜔𝑛
2𝑎𝑛𝑑 𝑛𝑜𝑡𝑖𝑛𝑔 𝑡𝑕𝑎𝑡 𝑚𝜔𝑛

2 = 𝑘    

 1 −  
𝜔

𝜔𝑛
 

2

+ 𝑖. 2𝜁
𝜔

𝜔𝑛
 𝐴 =

𝐹𝑜
𝑘

     

𝑡𝑕𝑒 𝑏𝑟𝑎𝑐𝑡𝑒𝑑 𝑡𝑒𝑟𝑚 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠    

 1 −  
𝜔

𝜔𝑛
 

2

+ 𝑖. 2𝜁
𝜔

𝜔𝑛
 =   1 −  

𝜔

𝜔𝑛
 

2

 

2

+  2𝜁
𝜔

𝜔𝑛
 

2

𝑒𝑖𝜑     

𝑖𝑛 𝑤𝑕𝑖𝑐𝑕   

tan 𝜑 =
 2𝜁

𝜔
𝜔𝑛

 

 1 −  
𝜔
𝜔𝑛

 
2

 
     

𝐴 =

𝐹𝑜
𝑘

𝑒−𝑖𝜑  

  1 −  
𝜔
𝜔𝑛

 
2

 
2

+  2𝜁
𝜔
𝜔𝑛

 
2

= 𝑋𝑒−𝑖𝜑      

𝑋 𝑖𝑠 𝑡𝑕𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒      

𝑇𝑕𝑢𝑠 𝑡𝑕𝑒 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛    

𝑥𝑝 = 𝑋𝑒𝑖 𝜔𝑡−𝜑      

𝑢𝑠𝑖𝑛𝑔 𝑡𝑕𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 𝑜𝑓   𝑒𝑖 𝜔𝑡−𝜑      

∴ 𝑥𝑝 = 𝑋 sin 𝜔𝑡 − 𝜑                                                   (4) 
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 𝑤𝑕𝑒𝑟𝑒  

𝑋 =   

𝐹𝑜
𝑘

 

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                   (5) 

𝑎𝑛𝑑  

𝜑 = tan−1
2𝜁𝑟

1 − 𝑟2
                                                                   (6) 

𝑟 =
𝜔

𝜔𝑛
 𝑖𝑠 𝑡𝑕𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜    

 

φ is called the phase angle, the angle by which the steady state response lags the 

exciting force as shown. 

The complete solution, 

𝑥 = 𝑒−𝜁𝜔𝑛 𝑡  𝑥𝑜 cos 𝜔𝑑𝑡 +
𝑣𝑜+𝜁𝜔𝑛𝑥𝑜

𝜔𝑑
sin 𝜔𝑑𝑡 + 𝑋 sin 𝜔𝑡 − 𝜑         (7)    

The vibratory motion described by equation (7) is a combination of two motions; 

one has a frequency ωd and an exponentially decreasing amplitude, while the other 

has a frequency ω and constant amplitude of X. 

As mentioned, the transient vibration disappears with time, leaving just the steady 

state motion. 
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For Undamped Systems: 

For the undamped system “δ = 0”. According to Eq. (6), “φ” is equal to zero or 

180
o
 depending on the value of “r” whether it is less or more than one. This means 

that the displacement is in phase or out of phase with the force. The homogeneous 

part of the solution does not vanish. The general solution is written as 

𝑥 = 𝐴 cos 𝜔𝑛𝑡 + 𝐵 sin 𝜔𝑛𝑡 + 𝑋 sin 𝜔𝑡                                         (8) 

The constants “A” and “B” are determined from the initial conditions. Most 

probably, at the start of applying the external force, the initial displacement and 

velocity are zero. Thus, applying the conditions “x = 0” and “ = 0” for “t = 0”, we 

get 

𝐴 = 0   

𝐵 = −
𝑋𝑠𝑡 . 𝑟

1 − 𝑟2
     𝑤𝑕𝑒𝑟𝑒, 𝑋𝑠𝑡 =

𝐹𝑜
𝑘

    

𝑇𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒,   

𝑥 =
𝑋𝑠𝑡

1−𝑟2
(sin 𝜔𝑡 − 𝑟 sin 𝜔𝑛𝑡)                                                  (9) 

The displacement “x” is formed of two frequencies. 

x
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Forced response of a harmonically excited undamped simple oscillator:  

 (a) for a large frequency difference;                               .  

(b) for a small frequency difference (beat phenomenon)  

             (c) response at resonance.                                                . 

 

When ω is very close to ωn “r ≈1” i.e. the exciting frequency is equal to the natural 

frequency, the amplitude, theoretically, is infinite. This situation is known as 

“resonance”. Actually, the amplitude does not jump to infinity all of a sudden. It 

increases gradually. This is explained as follows. 
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According to Eq. (9), take the limit as “ω” tends to “ω” by differentiating the 

nominator and the denominator with respect to “ω” and substitute “ω = ωn”, then  

𝑥 =
𝑋𝑠𝑡

2
(sin 𝜔𝑛𝑡 − 𝜔𝑛𝑡 cos 𝜔𝑛𝑡)                                          (10) 

𝑥 = −
𝑋𝑠𝑡

2
𝜔𝑛𝑡 cos 𝜔𝑛𝑡                                                         (11) 

𝑤𝑕𝑒𝑟𝑒,  

sin 𝜔𝑛𝑡    𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 

The plot of Eqs. (10) and (11) is shown in Fig.  

 

Steady-State Response: 

Equation (7) can be written as: 

𝑥 = 𝑋 sin 𝜔𝑡 − 𝜑                                                                         (12)    

Equation (5) in dimensionless form, 
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𝑋

𝑋𝑠𝑡
=   

1 

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                        13   

𝑋

𝑋𝑠𝑡
= 𝑀. 𝐹  𝑚𝑎𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

 

A plot of equation (12) for various magnitudes of damping is shown. These curves 

reveal some important characteristics of steady-state vibration of a system 

subjected to a harmonic excitation: 

1- r << 1, the M.F. is nearly 1 approaching the static loading condition, 

2- r ≈ 1, and δ is small, the M.F. becomes very large, 

3- r >>1, the system approaches a motionless state, 
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4- δ has a negligible effect on the M.F. 

when r <<1 and r>>1, but has a very 

significant effect in the region of r ≈ 1,  

5-  setting the derivative of the right-hand 

side of equation (13)  w.r.t  r equal to 

zero yields 𝑟𝑝𝑒𝑎𝑘 =  1 − 2𝜁2 < 1.0 

,which shows that the M.F. is maximum 

just short of r = 1.0 depending upon the 

magnitude of δ, this condition is 

referred as resonance, 

6- The M.F. at resonance is given by 
𝑋

𝑋𝑠𝑡
=

1

2𝜁
 ,  

7- M.F. increases as the damping drops below 4% , at 0.01 the M.F. is 50 times 

greater than the static displacement Xst caused by applying Fo statically, 

8- How to reduce the M.F. (or the amplitude of vibration X)? 

r < 1.0 r = 1.0 r >1.0 

δ↑ δ↑ δ↑ 

m↓ m↑ m↑ 

k↑ k↓ k↓ 

 

The Phase Angle “φ”  

A family of curves of equation (7) is 

shown, 

1- For values of “r << 1”, φ is 

small, this means that the 

excitation F is nearly in phase 

with the displacement x.  

2- For values of “r < 1”,  

“0 < φ < 90
o
”. This means 

that the displacement is 

lagging behind the force.  

3- For “r = 1”, the phase angle is 

equal to 90
o
 for all values of 
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the damping factor, F is in phase with the velocity 𝑥 . 
4- For “r > 1”, “90

o
 < φ < 180

o
.  

5- For large values of “r>> 1.0”, the phase angle approaches “180
o
”. The force 

and the displacement are out of phase. 

6- For no damping (δ = 0), φ = 0, when r < 1.0 and φ = 180, when r > 1.0. 

7- The excitation force F and the steady-state response x do not attain their 

maximum values at the same time, φ is a measure of this time difference. 

 

Graphical Analysis: 
 

𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 = 𝐹𝑜 sin 𝜔𝑡   

            𝜑 = tan−1
𝑐𝜔

𝑘 − 𝑚𝜔2
             

           𝐹0
2 =  𝑐𝜔𝑥𝑜 

2 +  𝑘𝑥𝑜 − 𝑚𝜔2𝑥𝑜 
2                   

 

Example 1: 

For the system shown determine:  

(a) the differential equation of 

motion of the uniform slender 

rod if the damping is sufficient 
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to keep the oscillation small for all values of the exciting frequency ω, 

(b) the damped natural frequency in terms of the system parameters,  

(c) the of the damping coefficient c for critical damping, and  

(d) The amplitude of steady-state response.  

If the rod was steel and had a magnification factor of 2.5 at resonance. Then 

replace the steel rod with aluminum one of identical length and cross section. 

Assuming that c and k are the same for both systems, find the magnification factor 

with the aluminum rod.  

(sp. wt. of alum. = 27.04 KN/m
3
, sp. wt. of steel = 78.4 KN/m

3
)   

Solution: 

a)  𝑀𝑜 = 𝐼𝑜𝜃      

∴ 𝐼𝑜𝜃 + 𝑐  
𝑙

2
 

2
𝜃 + 𝑘𝑙2𝜃 = 𝐹𝑜 𝑙 sin 𝜔𝑡        (Equation of motion)  

b)  𝜔𝑛 =  
𝑘𝑙2

𝐼𝑜
         (natural frequency) 

c)  𝑐𝑐 = 2𝐼𝑜𝜔𝑛 = 2𝑙 𝑘𝐼𝑜         𝜁 =
𝑐 

𝑙

2
 

2

𝑐𝑐  
 =

𝑐𝑙

8
 

1

𝑘𝐼𝑜
      

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2     

d) Steady-state response:   𝜃 =   
𝜃𝑠𝑡

  1−𝑟2 2+ 2𝜁𝑟  2
  , 𝜃𝑠𝑡 =

𝐹𝑜

𝑘𝑙
     

∗ 𝐹𝑜𝑟 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚  𝐼𝑜 =
1

3
𝑚𝑎𝑙 𝑙

2      , 𝐹𝑜𝑟 𝑆𝑡𝑒𝑒𝑙  𝐼𝑜 =
1

3
𝑚𝑠𝑡 𝑙

2    

  
 𝐼𝑜 𝑠𝑡
 𝐼𝑜 𝑎𝑙

=
𝜌𝑠𝑡

𝜌𝑎𝑙
,   

 
𝜁𝑎𝑙
𝜁𝑠𝑡

 =  
𝜌𝑠𝑡

𝜌𝑎𝑙
      

𝑀. 𝐹. )𝜔=𝜔𝑛
=

1

2𝜁
    ,              

𝑀. 𝐹𝑎𝑙

𝑀. 𝐹.𝑠𝑡
)𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =

𝜁𝑠𝑡
𝜁𝑎𝑙

 =  
𝜌𝑎𝑙

𝜌𝑠𝑡
   

𝑀. 𝐹. )𝑎𝑙 = 2.5 
27.04

78.4
= 1.47 
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II- Impressed Force Due to Rotating Unbalance: 

Rotating unbalance is one of the major causes of vibration in machines. Even with 

the best balancing process there still exists, even with small amount, an unbalance 

which causes vibration especially when the operating speed is near resonance. 

Consider the case of a machine of a total mass “M” supported by springs of total 

stiffness “k” and a damper with damping coefficient “c”. The unbalance is 

represented by a mass “m” with eccentricity “e” rotating with an angular speed “γ”. 

The machine is constrained to move in the vertical direction only.  

 

 

 

 

 

 

 

 

The vertical displacement of the machine is “x” from the equilibrium position.  

The equation of motion is given by: 

𝑀𝑥 + 𝑐𝑥 + 𝑘𝑥 = 𝑚𝑒𝜔2 sin 𝜔𝑡   

𝑥 +
2𝑐𝜔𝑛

2𝑀𝜔𝑛
𝑥 +

𝑘

𝑀
𝑥 =

𝑚𝑒𝜔2

𝑀
sin 𝜔𝑡     

𝑥 + 2𝜁𝜔𝑛𝑥 + 𝜔𝑛
2𝑥 =

𝑚𝑒𝜔2

𝑀
sin 𝜔𝑡                                      (1) 

The steady-state solution of equation (1): 

∴ 𝑥 = 𝑋 sin 𝜔𝑡 − 𝜑                                                                   (2) 

 𝑤𝑕𝑒𝑟𝑒  

 M                 m 

                                ω t                 

                                

    k/2                    c         k/2  

 

 

 

            Fig. 3-17                    

      x                          

      e                          
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𝑋 =   

𝑚𝑒𝜔2

𝑘
 

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                              

Or, in dimensionless form, 

𝑀𝑋

𝑚𝑒
=   

𝑟2

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                                3   

𝑎𝑛𝑑  

𝜑 = tan−1
2𝜁𝑟

1 − 𝑟2
                                                                                   (4) 

 

A plot of equation (3) for various magnitudes of damping is shown. These curves 

reveal some important characteristics of steady-state vibration of a system 

subjected to rotating unbalance: 

1- r << 1, the 
𝑀𝑋

𝑚𝑒
 is nearly 0, 
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2- r ≈ 1, and δ is small, the 
𝑀𝑋

𝑚𝑒
 becomes very large, 

3- r >>1, the value of  
𝑀𝑋

𝑚𝑒
 tends to one, 

4- δ has a negligible effect on the 
𝑀𝑋

𝑚𝑒
 when r <<1 and r>>1, but has a very 

significant effect in the region of r ≈ 1,  

5-  setting the derivative of the right-hand side of equation (3)  w.r.t  r equal to 

zero yields 𝑟𝑝𝑒𝑎𝑘 =  
1

 1−2𝜁2
> 1.0 ,which shows that the 

𝑀𝑋

𝑚𝑒
 is maximum just 

short of r = 1.0 depending upon the magnitude of δ, this condition is referred 

as resonance, 

6- The 
𝑀𝑋

𝑚𝑒
 at resonance is given by 

𝑀𝑋

𝑚𝑒
=

1

2𝜁
 ,  

7- How to reduce the amplitude of vibration X? 

r < 1.0 r = 1.0 r >1.0 

δ↑ δ↑ δ↑ 

m↓ m↑ m↑ 

k↑ k↓ k↓ 

 

Example 2: 

The frame shown consists of a steel beam welded rigidly to two vertical channels. 

An eccentric exciter weighing 250 N is attached to the beam, which weighs 10 KN 

and is used to excite the frame. The unbalance weight of the exciter is 25 N and it 

has an eccentricity of 5 cm. By varying the rotational speed of the exciter until 

resonance occurs, the maximum horizontal amplitude was found to be 3.75 mm. 

Assuming no bending on the beam and considering the channels to be completely 

fixed at C and D, determine, 

(a) The natural frequency in Hz., 

(b) The damping factor, and 

(c) The magnification factor at 

resonance. 
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Solution: 

M = (10000+250)/9.81 

    = 1045 Kg 

𝑎) 𝜔𝑛 =  
𝑘

𝑀
=  

870000

1045
= 28.85

𝑟𝑎𝑑

𝑠
       𝑓 = 4.6  𝐻𝑧       

𝑏) 𝑎𝑡 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒:   𝜔 = 𝜔𝑛      

𝑀𝑋

𝑚𝑒
=

1

2𝜁
         

𝜁 = 0.0162     

𝑐) 𝑀. 𝐹. =
𝑀𝑋

𝑚𝑒
= 30.75    
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III- Support Excitation: 

In many applications dynamical systems are subjected to base excitations. A 

machine operating in a factory is affected by the vibration of other machines. 

Another example of base excitation is the earthquake which affects greatly the 

buildings. To study the effect of base excitation, consider the spring-mass-damper 

system shown.  

The base moves with a 

harmonic motion “y” which 

is given by: 

y = Y sin ωt 

The vibratory motion of a 

system subjected to support excitation may be analyzed in terms of: 

i) The absolute motion: “motion w.r.t. a coordinate system attached to the earth” 

 𝐹𝑥 = 𝑀𝑥 + 𝑐 𝑥 − 𝑦  + 𝑘 𝑥 − 𝑦 = 0                                             (𝐼) 

𝑥 +
2𝑐𝜔𝑛

2𝑀𝜔𝑛
𝑥 +

𝑘

𝑀
𝑥 =

𝑐

𝑀
𝑦 +

𝑘

𝑀
𝑦     

𝑥 + 2𝜁𝜔𝑛𝑥 + 𝜔𝑛
2𝑥 = 2𝜁𝜔𝑛𝑦 + 𝜔𝑛

2𝑦                            (1) 

𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑡𝑕𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑜𝑡𝑖𝑜𝑛  

We assume the steady state response as, 

 𝑥 = 𝐴𝑒𝑖𝜔𝑡      

∴ 𝑥 = 𝑖𝜔𝐴𝑒𝑖𝜔𝑡                                                                (2) 

𝑥 = −𝜔2𝐴𝑒𝑖𝜔𝑡  

Using the imaginary part of Y𝑒𝑖𝜔𝑡  for Y= sin ωt 

𝑦 = 𝑌𝑒𝑖𝜔𝑡      

∴ 𝑦 = 𝑖𝜔𝑌𝑒𝑖𝜔𝑡                                                              (3) 
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Substituting the terms in equations (2) and (3) into equation (1), the results may be 

arranged as: 

 1 −  
𝜔

𝜔𝑛
 

2

+ 𝑖. 2𝜁
𝜔

𝜔𝑛
 𝐴 =  1 + 𝑖. 2𝜁

𝜔

𝜔𝑛
 𝑌                     (4) 

Equation (4) can be written more simply as: 

(a + i b) A = (1 + i b) Y 

The ratio, 

𝐴

𝑌
=

1 +  i b

a +  i b
=  

 1 + 𝑏2𝑒𝑖𝜑1

 𝑎2 + 𝑏2𝑒𝑖𝜑2
                                                            (5)  

𝑜𝑟 
𝐴

𝑌
=  

 1 + 𝑏2

 𝑎2 + 𝑏2
𝑒−𝑖𝜑     

𝑤𝑕𝑒𝑟𝑒 𝜑 = 𝜑2 − 𝜑1    

             𝜑1 = tan−1 𝑏  

            𝜑2 = tan−1
𝑏

𝑎
    

∴ 𝑥 = 𝑋 sin 𝜔𝑡 − 𝜑    

𝑤𝑕𝑒𝑟𝑒  
𝑋

𝑌
=   

 1 +  2𝜁𝑟 2

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                   (6) 

To determine the phase angle φ between X and Y, multiply the numerator and 

denominator of equation (5) by a – i b (the conjugate of a + ib), 

 1 +  i b (a − ib)

 a +  i b (a − ib)
=

a + b2

a2  +  b2
+ 𝑖

b(a − 1)

a2  +  b2
 

Dividing the imaginary part by its real part gives: 

𝜑 = tan−1
2𝜁𝑟3

1 − 𝑟2 + (2𝜁𝑟)2
                                                                          (7) 
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A plot of equation (6) for various magnitudes of damping is shown. These curves 

reveal some important characteristics of steady-state vibration of a system 

subjected to support excitation: 

1- The amplitude ratio  
𝑋

𝑌
 =1 for all values of the damping when r= 2. 

2-  
𝑋

𝑌
 is less than 1 when, r >  2 so r= 2 is the beginning of the region of 

vibration isolation. 

3- r >> 2, the value of  
𝑋

𝑌
 is quite small, which mean that the mass is 

essentially stationary.  

4- The amplitude ratio  
𝑋

𝑌
 attains a maximum for 0 < δ < 1 at the frequency ratio 

r = rpeak < 1 given by: 

𝑟𝑝𝑒𝑎𝑘 =
1

2𝜁
[ 1 + 8𝜁2 − 1]

1
2 

The Phase Angle “φ”  

A family of curves of equation (7) is shown, 
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1- For values of “r << 1”,  φ is small,  

2- For large values of “r>> 1.0”, the phase angle approaches “180
o
”.  

3- For no damping (δ = 0), φ = 0, when r < 1.0 and φ = 180, when r > 1.0. 

4- The excitation displacement y and the steady-state response x do not attain 

their maximum values at the same time, φ is a measure of this time 

difference. 

 

ii) The relative motion: “the displacement z of the mass M relative to the support 

motion y = y (t)” 

𝑧 = 𝑥 − 𝑦    
𝑧 = 𝑥 − 𝑦     
𝑧 = 𝑥 − 𝑦  
Substituting into equation (I) 

 

𝑀 𝑧 + 𝑦  + 𝑐𝑧 + 𝑘𝑧 = 0 

𝑧 + 2𝜁𝜔𝑛𝑧 + 𝜔𝑛
2𝑧 = −𝑦  

𝑧 = 𝐴𝑒𝑖𝜔𝑡      
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∴ 𝑧 = 𝑖𝜔𝐴𝑒𝑖𝜔𝑡                              

𝑧 = −𝜔2𝐴𝑒𝑖𝜔𝑡  

Substituting, and solving for the ratio  
𝑍

𝑌
 , we obtain: 

∴ 𝑧 = 𝑍 sin 𝜔𝑡 − 𝜑    

Where, 

𝑍

𝑌
=   

𝑟2

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                              8   

𝑎𝑛𝑑  

𝜑 = tan−1
2𝜁𝑟

1 − 𝑟2
                                                                             (9) 

 



Dr. Bassuny EL-Souhily Chapter III Mechanical Vibrations 
 

80 
 

A plot of equation (8) for various magnitudes of damping is shown. These curves 

reveal some important characteristics of steady-state relative vibration of a system 

subjected to support excitation: 

1- When the amplitude ratio  
𝑍

𝑌
 ≈1, which corresponds to the absolute ratio 

𝑋

𝑌
 =0 

the mass is essentially stationary. 

2- When r > 3, 
𝑍

𝑌
 ≈ 1 which indicate that the relative amplitude Z is the same as 

the amplitude of the moving support Y. This is the principle in measuring 

vibratory motion. 

Example 3: 

The trailer shown is being pulled over an undulating road at a velocity v. The 

contour of the road is such that it can be approximated by a sine wave having a 

wavelength of 3 m. and amplitude of 

1.5 mm. The total static deflection of 

the springs and tires of the trailer due 

to its weight has been measured as 38 

mm. Assuming that damping is 

viscous of magnitude 0.05, determine: 

a) The speed v at which the 

amplitude of the trailer will be maximum, 

b) The maximum amplitude, and 

c) The amplitude when the speed 90 Km/hr. 

Solution: 

The contour of the road: y = Y sin ωt 

The distance traveled: S =  v. t  

l =  v. τ =  
2πv

ω
 

ω =
2πv

l
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y = Y sin  
2πvt

l
   

𝜔𝑛 =  
𝑘

𝑚
=  

𝑔

𝛿𝑠𝑡
=  

9.81

38 ∗ 10−3
= 16.07

𝑟𝑎𝑑

𝑠
 

The maximum amplitude X is when 𝜔 = 𝜔𝑛     

ω =
2πv

l
= 16.07   

∴  𝑣 = 7.67
𝑚

𝑠
 = 27.62

𝐾𝑚

𝑕𝑟
     

𝑏) 𝜁 = 0.05  𝑟 = 1  𝑌 = 1.5 ∗ 10−3 𝑚   

𝑋

𝑌
=   

 1 +  2𝜁𝑟 2

  1 − 𝑟2 2 +  2𝜁𝑟 2
     

𝑋𝑚𝑎𝑥 = 150.75 𝑚𝑚    

𝑐)  𝑎𝑡 90
𝐾𝑚

𝑕𝑟
   𝜔 =

2𝜋 ∗ 90 ∗ 103

3 ∗ 3600
= 52.36

𝑟𝑎𝑑

𝑠
   

𝑟 = 3.26    

𝑋

𝑌
= 0.11    

𝑋 = 1.64 𝑚𝑚 
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IV- Vibration Isolation: 

Vibration isolation analysis is concerned with reducing the magnitude of force 

transmitted from moving components of machines to supporting foundation or 

with reducing the support motion transmitted to instruments or equipments. 

 

The transmitted forces can be reduced by mounting the machine on isolation 

mounts, which are pads of rubber or some type of elastomer such as neoprene. The 

pads are modeled by a spring and a dashpot. 

- Motor-compressor units in refrigerators are supported on isolation mounts to 

minimize the force transmitted to the refrigerator frame, and in turn to the 

floor upon which refrigerator sits. 

- Instruments and equipments can malfunction or even suffer serious damage 

if not isolated from vibrating supports upon which they were mounted. For 

example, an electron microscope housed in a building that is close to street 

carrying heavy traffic would need to be isolated from the floor of the 

building. 

Transmissibility of Forces: 

The force transmitted to the foundation through the isolation system is: 

𝑓𝑇𝑅 = 𝑘𝑥 + 𝑐𝑥       

𝑋 =   

𝐹𝑜
𝑘

 

  1 − 𝑟2 2 +  2𝜁𝑟 2
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𝑥 = 𝑋𝑒𝑖 𝜔𝑡−𝜑     

𝑥 = 𝑖𝜔𝑋𝑒𝑖 𝜔𝑡−𝜑    

∴ 𝑓𝑇𝑅 =  𝑘 + 𝑖𝑐𝜔 𝑋𝑒𝑖 𝜔𝑡−𝜑     

= 𝑘𝑋 1 + (2𝜁𝑟)2  𝑒𝑖 𝜔𝑡−𝜑    

The magnitude of force transmitted:  

𝐹𝑇𝑅 = 𝑘𝑋 1 +  2𝜁𝑟 2                                                                              (10) 

𝑇𝑅 =
𝐹𝑇𝑅

𝐹𝑜
=  

 1 +  2𝜁𝑟 2

  1 − 𝑟2 2 +  2𝜁𝑟 2
 =

𝑋

𝑌
                                              (11)  

TR is referred to as transmissibility; the ratio 
𝑋

𝑌
 is used to determine what portion 

of the support motion amplitude Y is being transmitted to the system being excited 

by the support motion.  

 



Dr. Bassuny EL-Souhily Chapter III Mechanical Vibrations 
 

84 
 

1- The region of vibration isolation begins at r >  2 since either ratio of 

equation (11) must be less than 1 for vibration isolation. Thus, for a given 

excitation frequency ω, the isolation mounts must be selected so that the 

natural frequency ωn of the resulting system is less than ω 2. Since ωn =  
𝑘

𝑚
 

and the mass of the mounts is generally much less than the mass of the 

system, appropriate isolation mounts are usually selected on the basis of 

their stiffness. However, there are certain systems for which isolation is 

accomplished by adding mass to the system when the exciting frequency ω 

is very low. 

2- Since the transmissibility of an exciting force or support motion decreases as 

r increases in the isolation region, the less stiff the isolation mounts the 

greater the efficiency of the isolation system, some damping must be present 

to minimize the peak response when the system passes through resonance 

during start-up or shut down. 

3- When r > 3 the response curves are about the same for different of damping 

below 20 percent (δ < 0.2). This shows that in this region the transmissibility 

of a force or support motion is relatively unaffected by changing the 

damping. This is a fortunate feature of vibration isolation, since accurate 

values of δ are generally not known. 

4- Relative transmissibility is the ratio:   
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𝑇𝑅𝑅 =
𝐹𝑇𝑅

𝑚𝑒𝜔𝑛
2

=  
𝑟2 1 +  2𝜁𝑟 2

  1 − 𝑟2 2 +  2𝜁𝑟 2
    

Since the transmissibility is relatively unaffected by the damping in the isolation 

region, it is common practice to neglect damping in equation (11) when isolating a 

system. 

𝑇𝑅 =  
1

𝑟2 − 1
                                                               (12) 

In which negative root has been used so that equation (12) will yield positive 

transmissibility. 

The reduction R in transmissibility is given by 

R = 1 – TR                                                                              (13) 

and is used to indicate the efficiency of an isolation system.  

From equations (12), (13)  

1 − 𝑅 =  
1

𝑟2 − 1
      

𝑓𝑟𝑜𝑚 𝑤𝑕𝑖𝑐𝑕    

𝑟 =  
2 − 𝑅

1 − 𝑅
                                                            (14) 

Equation (14) can be used to determine the required stiffness k of an isolation 

system to accomplish a desired reduction R. 

Expressing ω as 

𝜔 =
2𝜋𝑁

60
    

𝑎𝑛𝑑 𝜔𝑛  𝑎𝑠    
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𝜔𝑛 =  
𝑘

𝑚
=  

𝑘𝑔

𝑊
     

 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛   

𝑁 =
30

𝜋
 
𝑘𝑔 2 − 𝑅 

𝑊 1 − 𝑅 
   𝑟𝑝𝑚 𝑜𝑟 𝑐𝑝𝑚   

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔   

𝑊 = 𝑘𝛿𝑠𝑡 ,  

𝑁 =
30

𝜋
 

𝑔 2 − 𝑅 

𝛿𝑠𝑡 1 − 𝑅 
     𝑟𝑝𝑚 𝑜𝑟 𝑐𝑝𝑚                          (15) 

In these equations: 

k = stiffness of isolation system (N/m) 

g = acceleration of gravity (9.81 m/s
2
) 

δst = static deflection (m) 

W = weight of machine or structure (N) 

Equation (15) can be plotted on log-log paper to facilitate the design of isolation 

systems by providing a graph such as the one shown. Taking the logarithm of both 

sides of equation (15) gives 

log 𝑁 = −
1

2
log 𝛿𝑠𝑡 + log

30

𝜋
 
𝑔 2 − 𝑅 

 1 − 𝑅 
                   (16) 

𝑤𝑕𝑖𝑐𝑕 𝑕𝑎𝑠 𝑡𝑕𝑒 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑠𝑡𝑟𝑎𝑖𝑔𝑕𝑡 𝑙𝑖𝑛𝑒, 𝑦 = 𝑚𝑥 + 𝑏,  

A plot of equation (16) is shown: 
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These curves can be used to determine the stiffness k that a system must have for a 

specified reduction in transmissibility. It is usually difficult to provide isolation at 

very low excitation frequencies. At those frequencies, static deflection δst, can 

become so large that isolation becomes impractical. 

When it becomes necessary to provide a highly efficient isolation system (R≥90%) 

at fairly low excitation frequencies, the machine or instrument to be isolated is 

sometimes attached to, or rested upon, a rather large mass M (such as a block of 

concrete). 

It is often necessary to consider isolating a system for more than one excitation 

frequency, in such instances, it should be apparent that the lowest excitation 

frequency is the one of primary importance, as the reduction R for an excitation 

frequency ω2 would be even greater than that for ω1 when ω1 < ω2. 
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Example 4:  The machine shown has an armature with a small imbalance that is 

causing a force FTR to be transmitted to the foundation upon which the machine 

rests. The machine weighs 18 KN and has an operating speed of 2000 rpm. It is 

desired to reduce the amplitude of the transmitted force by 80 percent, using 

isolation pads represented by the springs shown. 

Solution: 

𝑅 = 0.8    

𝑁 =
30

𝜋
 
𝑘𝑔 2 − 𝑅 

𝑊 1 − 𝑅 
    

𝑘 = 1.34 ∗ 107     𝑁 𝑚     

Example 5: 

A large machine that weighs 135 KN is found to be transmitting a force of 2250 N 

to its foundation when running at 1200 rpm. The total (equivalent) spring stiffness 

is 2.66*10
7
 N/m. Determine the magnitude of the unbalance force Fo developed by 

the machine. What is the amplitude 

of vibration of the machine? 

Solution: 

𝜔 = 2𝜋𝑓 = 125.66    𝑟𝑎𝑑 𝑠           

𝜔𝑛 =  
𝑘

𝑚
= 43.97    𝑟𝑎𝑑 𝑠     

𝑟 = 2.86     

𝑇𝑅 =
𝐹𝑇𝑅

𝐹𝑜
=

1

𝑟2 − 1
    

𝐹𝑜 = 16.154  𝑁    𝐹𝑇𝑅 = 𝑘𝑥     

∴ 𝑥 = 0.0085 𝑚𝑚     



Dr. Bassuny EL-Souhily Chapter III Mechanical Vibrations 
 

89 
 

Transducers 

[Force and Vibratory Motion] 

Transducers are devices transfer energy from one form to another, and have 

different configurations. Our discussion is concerned with transducers that are used 

to measure dynamic forces and vibratory 

motion. Such transducers are usually modeled 

as simple spring-and-mass systems with 

viscous damping. 

“Flat response” frequency region:  

It is only in this region that the response (the 

output) of the transducer is essentially 

independent of the frequency components 

present in the dynamic phenomenon being 

measured. This flat region depends upon the ratios formed by the circular 

frequency ω present in the dynamic phenomenon being measured and the natural 

frequency ωn of the transducer. 

Force Transducers:  

Load cells or pressure transducers that are used to measure forces or pressures 

frequently utilize resistance strain gages bonded to the elastic elements of the 

transducer to sense the strains resulting from the forces the transducer experiences. 

 

The output of the transducer is proportional to the strain of the elastic element of 

the transducer, and corresponds to the displacement x of the mass shown. 

𝑋

𝑋𝑠𝑡
=   

1 

  1 − 𝑟2 2 +  2𝜁𝑟 2
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- 
𝑋

𝑋𝑠𝑡
 is very nearly unity for small values of r. This means that the amplitude 

X of the response is the same as the static displacement Xst resulting from a 

statically applied force of magnitude Fo in this “flat response” frequency 

region. 

1- If  r ≤ 0.2 the response of the transducer is independent of the excitation 

frequency ω and  
𝑋

𝑋𝑠𝑡
 ≈ 1 

2- The maximum error in the deviation of 
𝑋

𝑋𝑠𝑡
 from unity in the flat response 

region is less than 5%, regardless of the magnitude of damping 0 ≤  ξ ≤ 1.0 

Conclusion: accurate force measurements 

can be obtained from a force transducer 

when it is used to measure forces having 

frequencies up to 20% of the natural 

frequency of the transducer. For example, 

a transducer having natural frequency of 

1000 Hz. would yield accurate 

measurements of the dynamic force if the 

frequency of that force were no greater than 200 Hz. 

Dynamic forces generally contain more than one frequency component, the 

highest frequency component 

should be less than 20% of the 

natural frequency of the transducer. 

Force transducers that utilize a 

piezoelectric material (usually a 

polarized ferroelectric ceramic) as a 

sensing element can have 

fundamental natural frequency 

above 100,000 Hz. 

The deformation of the 

piezoelectric element produces a 

charge q on the pole faces that is 

proportional to the force F (t) 
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Since the voltage V (volts), charge q (coulombs) and capacitance C (farads) are 

related by: V=q/C, the sensitivity of piezoelectric force transducers can be 

measured in terms of Pico-coulombs (pc = 10
-12

 c) per unit force (N) or mille-

volts per unit of force. 

Since the capacitance C indicates the capacitance of both the piezoelectric 

element and the cable connecting the transducer to oscillograph, the voltage V 

will be reduced by the capacitance of the cable. This loss can be eliminated by 

adding a charge amplifier as shown. 

 

Phase Distortion:  

Phase distortion causes changes in the shape of a wave in the time domain. 

𝜑𝑖 = tan−1
2𝜁

𝜔𝑖

𝜔𝑛

1 − (
𝜔𝑖

𝜔𝑛
)2

 

φi = 0 if there is no damping. 

Since phase distortion is negligible in most force transducers because of their 

low inherent damping, there is no practical reason to make ξ = 0.707 in 

designing force transducers. 
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Vibration Measuring Transducers “Seismic Transducers” 

Two general types of seismic transducers are used for vibration measurements. 

One is the vibrometer (seismometer), which is designed with a low natural 

frequency. The other is the accelerometer, which is designed with a high natural 

frequency. 

Most vibrometers are electromagnetic transducers, which consists of a moving 

mass m within a coil and a permanent magnet fixed to the case as shown. In some 

electromagnetic transducers, the moving mass is the permanent magnet and the 

coil is fixed to the transducer case. In either case, the voltage output from the coil 

is proportional to the rate at which the magnetic flux lines are cut (proportional to 

the relative velocity between the mass m and the vibrating body). 

 

One type of accelerometer consists of a mass m attached to some type of elastic 

element such as the small cantilever beam shown. When it is mounted on a 

vibrating body, its output is proportional to the absolute acceleration of the mass 

m, which is equal to the acceleration of the vibrating body (the support 

acceleration). Electrical-resistance strain gages are sometimes used to sense this 

acceleration since the strain in the elastic element caused by the inertia of the mass 

m is proportional to the absolute acceleration of the mass m. 
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At present, the most widely used accelerometer for measuring shock and vibration 

is the piezoelectric accelerometer, which is similar in many ways to the 

piezoelectric force transducer. 

1-Vibrometer (Low Frequency Transducer) 

To determine the characteristics of this type transducer and its natural frequency 

range, we refer to equation (8) which is: 

𝑍

𝑌
=   

𝑟2

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                              8   

A plot of this equation is shown, when r > 3, the steady-state amplitude ratio 
𝑍

𝑌
 ≈ 1 

for a wide range of damping factors. Therefore, in this frequency range, 

Z ≈ Y 

and since       Z = X-Y 
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∴ 𝑋 = 0 

This means the mass m is remains stationary as the case moves with the vibrating 

body.  

A vibration meter used with this type of transducer containing integrating and 

differentiating networks will yield direct readings of the displacement y, the 

velocity𝑦 , and the acceleration 𝑦  of the vibrating body to which the transducer is 

attached. 

The usable frequency range of a vibrometer depends upon its natural frequency ωn 

and damping present. 

Increasing damping, extend the lower end of the flat-response range (increase the 

speed range of this instrument), also, increasing the accuracy of the instrument 

(decreasing the percentage error of instrument reading). 

As δ ↑, the speed range ↑, the error ↓, 

As k↓, ωn ↓, the speed range ↑, the error ↓, 

As m↑, ωn ↓, the speed range ↑, the error ↓, 

  2- Accelerometer (High Frequency Transducer) 

Rewriting equation (8) in the form: 

𝑍𝜔𝑛
2

𝑌𝜔2
=   

1

  1 − 𝑟2 2 +  2𝜁𝑟 2
                                                               

If the natural frequency ωn is greater than the frequency of the vibrating body ω, 

the ratio r is small, 

𝑍𝜔𝑛
2

𝑌𝜔2
≈ 1 

Or, Z = 
1

𝜔𝑛
2 𝑌𝜔2 = 𝑡𝑕𝑒 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑛𝑔 𝑏𝑜𝑑𝑦 
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Increasing damping, extend the upper end of the flat-response range (increase the 

speed range of this instrument), also, increasing the accuracy of the instrument 

(decreasing the percentage error of 

instrument reading). 

As δ ↑, the speed range ↑, the error ↓, 

As k↑, ωn↑, the speed range ↑,  error ↓, 

As m↓, ωn↑, the speed range ↑, error ↓, 

 

 

Piezoelectric Accelerometer 

 
The compression-type Piezoelectric Accelerometer 

 

(a) Schematic diagram of a piezoelectric accelerometer, and (b) A simplified model 
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The most widely used accelerometer for measuring shock and vibration is the 

piezoelectric accelerometer. 

There are two types of this accelerometer, as shown; the shear type is less affected 

by airborne vibration (sound) than is the compression type. The iso-shear type (not 

shown) which contain multiple piezoelectric elements in shear, include high 

sensitivity and high signal to noise ratio. Both produce an electrical charge q 

proportional to the base acceleration  𝑦  

- These accelerometers are small, rugged, and reliable transducers that have quite 

stable characteristics over long periods of time. 

- Their small size (typically 0.25 to 0.75 in, diameter) facilitates their use in small 

confined areas.  

- Their light weight (typically 0.2 to 20 g) permits their use on lightweight test 

objects without affecting the vibration characteristics being measured. 

- For most acceleration measurements ( 10 g’s or less), they are easily mounted 

using a wax-type material such as beeswax, when the acceleration is above 

10g’s, other means should be employed, such as an epoxy cement or threaded 

mounting studs. 

- They are self-generating and as such require no external power supply. 
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- Small ones with small mass elements can have natural frequencies over 100,000 

Hz, and will produce accurate measurements for frequency components of up to 

around 10,000 Hz, with negligible phase distortion. 

- Natural frequencies of 30,000 to 50,000 Hz are typical for general-purpose 

piezoelectric accelerometers, depending upon the design. 

- Charge amplifiers  are used to reduce the sensitivity loss due to the capacitance 

in the cable connecting the transducer to such instruments as oscilloscopes and 

frequency analyzers. The sensitivity is usually given as Pico-coulombs per g of 

acceleration (pC/g), and the output of the charge amplifier is volts/g or 

millivolts/g. 

Example 6: 

 

The instrument shown is attached to the 85
th
 floor of the Empire state building 

to measure the lateral oscillations of the building caused by strong gusting 

winds. The weight W is rigidily attached to the two vertical elastic elements 

each have stiffness k. The vertical penholder is pinned to the frame of the 

instrument at A and to the weight at B. Previous observations have shown that 

the lateral oscillations of the 85
th

 floor can have amplitudes as large as 60 cm 

when it is vibrating at 0.2 Hz Should the instrument be designed as an 
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accelerometer or as a vibrometer? Give a brief explanation of the reason for 

your answer. 

Solution: 

If designed as a vibrometer; 

Z ≈ Y 

1- the drum being over 120 cm. long to record an amplitude of 60 cm 

2- ω = 2 * π * 0.2, then ωn must be very small so that r = (ω / ωn ) ≥ 3 

If r = 4, W = 5 N  

ωn = ω / 4 = 0.1 * π 

so that 2k = ke = ωn 
2 
 * m = 0.05 N/m which is impractical

 

So, instrument should be designed as an accelerometer. 

 

Example 7: 

In example 6, assume that the instrument was designed as an accelerometer for 

which W = 0.4 N, and a = 9 b. 

Determine: 

a) the value of the spring constant k for frequency ratio of 0.1 

b) the amplitude Y of the oscillation of the 85
th

 floor when the chart amplitude 

reading on the drum is 50 mm with a period of 5 seconds. 

 

Solution: 

r =0.1,             ωn = 10 ω = 4 π,                 ke = ωn 
2 
 * m = 2k,       k = 3.22 N/m 

Z = Y r
2
 = Y(0.01),           Y = 100 Z,        Z/b = 0.05/10b 

Z = 0.005 m 

Y = 0.5 m 



Dr. Bassuny EL-Souhily Chapter III Mechanical Vibrations 
 

99 
 

Critical Speed of Rotating Shafts 

 

(a) A whirling shaft carrying a disk with mass eccentricity; (b) end view of the disk and whirling shaft. 

 

 

When a shaft is rotating about its longitudinal axis bends about that axis (line 

AB), the bent shaft will whirl about its original axis of rotation as well as 

continuing to rotate about its longitudinal axis. Unbalanced disks, loose or worn 

bearing, and gyroscopic effects are examples of things that can cause shafts to 

whirl. 
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G ≡ mass center 

e ≡ eccentricity 

C ≡ geometric center 

O ≡ intersection of the bearing centerline with the plane of the disk 

z ≡ is the lateral deflection of the shaft z = OC 

ω ≡ the angular velocity of the shaft-and-disk system w.r.t the longitudinal axis 

of the shaft 

  ≡ the angular velocity of the rotating plane formed the bent shaft and the line 

AB 

φ ≡ the angle between the position vector z


and the position of vector e


  

The mass of the shaft is small compared with that of attached disk (m) 
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For circular shaft, the stiffness and damping of the shaft are the same  

k = kx = ky  

and, c = cx = cy  
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which can be reduced to: 
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Assuming steady-state solution 

𝑥 = 𝐴𝑒𝑖𝜔𝑡  ,                                             𝑦 = 𝐵𝑒𝑖𝜔𝑡    
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∴ 𝑥 = 𝑖𝜔𝐴𝑒𝑖𝜔𝑡  ,                                    𝑦 = 𝑖𝜔𝐵𝑒𝑖𝜔𝑡           

𝑥 = −𝜔2𝐴𝑒𝑖𝜔𝑡  ,                                    𝑦 = −𝜔2𝐵𝑒𝑖𝜔𝑡    

𝐴 = 𝐵 =   
𝑒. 𝑟2

  1 − 𝑟2 2 +  2𝜁𝑟 2
 𝑒−𝑖𝜑     

𝜑 = tan−1
2𝜁𝑟

1 − 𝑟2
    

The rectangular components of the disk center C are: 

𝑥 = 𝑋 cos 𝜔𝑡 − 𝜑 ,       

 𝑦 = 𝑌 sin 𝜔𝑡 − 𝜑  

Squaring the above components 

𝑧 =  𝑥2 + 𝑦2    

∴ 𝑧 = 𝑋 = 𝑌 =  
𝑒. 𝑟2

  1 − 𝑟2 2 +  2𝜁𝑟 2
  

 𝜃 = tan−1
𝑦

𝑥
= 𝜔𝑡 − 𝜑   

𝑎𝑛𝑑 𝜃 = 𝜔  

The above relationships show that the plane formed by the bent shaft and line 

AB whirls about line AB with angular velocity 𝜃  that is equal to the angular 

velocity ω of the shaft-and-disk system. 

Prove that O,C and G at the same straight-line if there is no damping? 

- For no damping   𝜃 = 𝜔𝑡                

- ∴ 𝑂, 𝐶 𝑎𝑛𝑑 𝐺 𝑎𝑡 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑠𝑡𝑟𝑎𝑖𝑔𝑕𝑡 𝑙𝑖𝑛𝑒     
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A plot of the dimensionless ratio z/e versus the frequency ratio ω/ωn for various 

magnitudes of damping is shown: 

- When r << 1, z/e ≈ 0 , φ = 0º, which means that the center of gravity G of 

the disk rotates on the outside of the path of the center C of the disk with a 

radius of rotation OG ≈ z + e [Fig. (a)] 

- When r = 1, (the critical speed) z=e/2ξ, φ = 90º, that the magnitude of the 

whirling motion can be quite large if the damping factor is small, G rotates 

in a circular path of radius OG =  𝑧2 + 𝑒2  [Fig. (b)] 

- When r >> 1, z/e ≈ 1, φ = 180º, Thus, G rotates on the inside of the path of C 

with a radius of OG ≈ z-e [Fig. (c)] 
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- The deflection of the shaft must not exceed a given value, from the above 

curve, according to this value:  

a) When r <1, we can obtain the maximum value of ω at which the shaft 

must not run above it,  

b) When r >1, we can obtain the minimum value of ω at which the shaft 

must not run below it.     

- The effective spring constant k of the shaft depends not only upon the size of 

the shaft but also upon the degree of bending resistance provided by the 

bearing. For example, if the bearings are attached to a rigid supports that 

prevent rotation of the bearing about any axis perpendicular to line AB, the 

stiffness k used would be the stiffness for a fixed-fixed beam. If the bearing 

were free to rotate, the stiffness k used would be that for a pinned-pinned 

beam. 

- In starting and stopping rotating machines such as turbine that operates at 

speeds above their natural frequencies (critical speeds), large amplitudes of 

vibration can build up as the machine passes through the critical speed. 

These can be minimized by passing through the critical speed as quickly as 

possible since the amplitude does occur over some finite length of time. 

 

Elastic Support 
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zb  ≡ bearing deflection,         zs  ≡ shaft deflection,             z  ≡ total deflection, 

𝑧 = 𝑧𝑠 + 𝑧𝑏  

kb  ≡ bearing stiffness,          ks  ≡ shaft stiffness,           k  ≡ equivalent stiffness, 

𝑘 =
𝑘𝑏𝑘𝑠

𝑘𝑏 + 𝑘𝑠
    

𝜔𝑛 =  
𝑘

𝑚
       

 𝑘𝑏𝑧𝑏 = 𝑘𝑠𝑧𝑠 = 𝑘𝑧 

 

 

 

Example 6: 

The shaft-and-disk system shown is supported by self-aligning bearings so that 

the steel shaft can be considered as a simply supported beam for purposes of 

choosing a spring constant k. the rotating disk is fixed to the shaft midway 

between bearings A and B, the data for the system are as follows: 

m = 12 Kg, l = 0.5 m, d = 25.4 mm and E = 206.8 GPa. 
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Since the shaft is to operate over a range of speeds varying from 2400 to 3600 

rpm. there is some concern that the bearing forces RA and RB could become 

large at the disks, the eccentricity of the disk is 0.05 mm and damping assumed 

0.02. Determine: 

a) the critical speed, 

b) the maximum bearing forces that could be anticipated in operating over a 

range of 2400 to 3500 rpm.  

 

Solution: 

𝑘 =
48𝐸𝐼

𝑙3
 ,          

𝐼 =
𝜋𝑑4

64
= 2.043 ∗ 10−8 𝑚4    

     𝑘 = 1.622 ∗ 106  𝑁 𝑚     

𝜔𝑛 = 367.65   𝑟𝑎𝑑. 𝑠                       𝑜𝑟 𝑁 = 3511 𝑟𝑝𝑚  

∗ 𝜔𝑛  𝑖𝑠 𝑤𝑖𝑡𝑕𝑖𝑛 𝑡𝑕𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 2400 𝑡𝑜 3600 𝑟𝑝𝑚,     

𝑀𝑎𝑥 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑤𝑕𝑒𝑛 𝑟 = 1  

∴ 𝑧 =
𝑒

2𝜁
= 1.25 𝑚𝑚     

𝑇𝑕𝑒 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠: 
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𝑅𝐴 = 𝑅𝐵 =
𝑘𝑧

2
= 1013.8 𝑁   

 
𝑅𝐴

𝑅𝐴𝑠𝑡𝑎𝑡𝑖𝑐

=
1013.8

9.81 ∗ 12
= 17.224 

 

 

Equivalent Viscous Damping 

A viscous damping model was used in which the damping force 𝑐𝑥  was assumed 

to be proportional to the velocity and was represented by a dashpot. Such model 

provides ordinary linear differential equations that are solved quite easily 

mathematically. 

Energy-dissipating mechanisms in materials such as molecular friction, fluid 

resistance, and so on are very complicated phenomena and difficult to model 

mathematically. Such modeling is further complicated by the fact that energy 

dissipation or damping can result from combinations of different types of damping 

mechanisms. 

An equivalent-viscous damping factor δe can be determined for a non-viscous 

damping mechanism by equating the energy dissipated per cycle by viscous 

damping mechanism to that dissipated by the non- viscous damping mechanism. 

Since the major effect of damping on a forced vibration occurs at or near resonance 

, equivalent viscous damping factors are usually determined at resonance. 

Coulomb damping is an exception, since the amplitude of vibration goes to infinity 

when ω/ωn = 1 for this type of damping. 

Energy Dissipated by Viscous Damping: 

The steady state response of a viscously damped system is: 

𝑥 = 𝑋 sin 𝜔𝑡 − 𝜑    

𝑥 = 𝑋𝜔 cos 𝜔𝑡 − 𝜑    
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𝑋 =   

𝐹𝑜
𝑘

  

  1 − 𝑟2 2 +  2𝜁𝑟 2
    

The energy dissipated by Fd = 𝑐𝑥   for one cycle: 

𝐸𝑑 =  𝑐𝑥 𝑑𝑥 = 𝑐 𝑥 
𝑑𝑥

𝑑𝑡
𝑑𝑡

𝜏

0

= 𝑐  𝑥 2𝑑𝑡
𝜏

0

                           𝜏 =
2𝜋

𝜔
   𝐸𝑑     

= 𝑐𝑋2𝜔2  cos2 𝜔𝑡 − 𝜑 𝑑𝑡

2𝜋
𝜔

0

 

                        =
𝑐𝑋2𝜔2

2
 [1 + cos 2 𝜔𝑡 − 𝜑 ]𝑑𝑡

2𝜋
𝜔

0

 

                        = 𝜋𝑐𝑋2𝜔                                                   (I) 

 
𝑐

𝑚
= 2𝜁𝜔𝑛            𝑎𝑛𝑑 𝜔𝑛 = 𝜔 =  

𝑘

𝑚
     𝑎𝑡 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒,  

∴ 𝐸𝑑 = 𝜋2𝜁𝑘𝑋2 

which gives the energy dissipated per cycle by viscous damping at resonance. 

Velocity-Squared Damping: (Fluid Damping) 

Velocity-squared damping is commonly used to describe the damping mechanism 

of a system vibrating in a fluid medium. The damping force is assumed to be 

proportional to the square of the velocity and can be approximated by 

𝐹𝑑 = ±(
𝐶𝜌𝐴

2
)𝑥 2 = −𝛼 𝑥  𝑥    

where  𝑥 = velocity of vibrating body relative to fluid medium m/s 

          𝑥   = absolute value of  𝑥   

          C = drag coefficient (dimensionless) 

         A = projected area of body perpendicular to 𝑥     (m2
) 
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         ρ = mass density of fluid (Kg/m
3
) 

         α = 
𝐶𝜌𝐴

2
   

The equivalent viscous damping factor: 

𝜁𝑒 =  
2

3

𝐶𝜌𝐴𝑋

𝜋𝑚
 

 Coulomb Damping (Dry friction): 

The friction damping force Fd = ± μW 

The energy dissipated in 1 cycle is Ed = 4XFd  

The equivalent-viscous-damping coefficient ce = 4Fd / πXω   (from equation (I)) 

𝜁𝑒 =
2𝐹𝑑

𝜔𝑛𝑚𝜋𝑋𝜔
 

To investigate the response of a Coulomb-damped system at resonance 

2𝜁𝑒
𝜔

𝜔𝑛
=

4𝐹𝑑

𝜋𝑘𝑋
 

𝑋 =   

𝐹𝑜
𝑘

  

  1 − 𝑟2 2 +  
4𝐹𝑑

𝜋𝑘𝑋
 

2
    

Solving for the amplitude X yields: 

𝑋 =
𝐹𝑜
𝑘

 1 − (
4𝐹𝑑

𝜋𝐹𝑜
)2

1 − 𝑟2
 

The last equation shows that the amplitude X is theoretically infinite at resonance 

for Coulomb-damped system. It should be noted that for X to be real, the quantity 
4𝐹𝑑

𝜋𝐹𝑜
 must be less than 1. 

Structural Damping (complex Stiffness): 
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The energy dissipation caused by cyclic stress and strain within a structural 

material is often referred as structural damping (hysteretic damping, solid 

damping, and displacement damping). 

The energy dissipated in 1 cycle is Ed = βX
2
 (in which β is a constant having the 

units of force /displacement like a spring constant. The magnitude of β can vary 

with the size, shape, material, and temperature of the structural system. 

Equating the last equation by equation (I), the equivalent-viscous-damping 

coefficient ce for structural damping is: 

𝑐𝑒 =  
𝛽

𝜋𝜔
,       

𝜁𝑒 =
𝜂

2
, 𝑖𝑛 𝑤𝑕𝑖𝑐𝑕 𝜂 =

𝛽

𝜋𝑘
 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑟𝑎𝑙 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟     

 

 

 

 

 

               

          

 


