Chapter 111

Harmonic Excitation of Single-Degree-of-Freedom
systems “Forced Vibration”

There are many sources of excitations that cause machines and structures to
vibrate. They include Unbalance rotating devices, Gusting winds, VVortex shedding,
moving vehicles, Earthquakes, Rough road surfaces, and so on.

The forced vibrations of systems are usually caused by dynamic forces F (t) or
support motions y (t) such as shown.
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Equation of motion:

ZFx = —kx — cx = m¥X + F, sinwt

mx + cx + kx = F, sin wt
2cw, . k F

X+ % +—x = —sinwt
2muw, m m
. : F, .
¥+ 20wy % + wy’x = —sin wt (1)

The last equation is the general equation of motion of single degree of freedom
system.

Solution of equation of motion:

The complete solution of this equation is the sum of:

1- Homogeneous solution “xy” (Free Response or natural response) which
Is dies out with time, it is often referred as a transient response, and

2- Particular solution “x,” (Forced response) which is known as the steady
state response.

The total response is
X =Xp X%,

vo+{wnx,

xp, = e $nt[x, coswyt + sinwgyt]

wq

The particular solution or steady state response is best determined with the use of
complex algebra,

Since F = F, sinwt

« F =Imag.(Fe®t) i=+v-1 )

We can express the right-hand side of equation (1) asFm—"ei‘*’t, with the provision
that only the imaginary part of the term will be used in the solution process.

We assume the steady state response as,

_ iwt
Xy = Ae
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WX = iwAe™t (3)
¥ = —w?Ae't

Substituting equations (2), (3) into (1) yields,
) . E,
(_wz + iw. chn + wnZ)Aelwt — Eelwt
dividing by w,*and noting that mw,* = k
1 <w>2+'2 @ A—FO
W, . (a)n k

the bracted term can be written as

1- (w%)z + i.zcwﬁn] - \/[1 - (w%)zr + [zzwﬂn]z es

in which
)
ZZw—
tang@ = a;l >
=) ]
A= = Xe ¢

[i-@T+peas
X is the amplitude

Thus the steady state solution

— i (wt —
xp—XeL(“’ 2

using the imaginary part of e!@t=¢)

~ x, = X sin(wt — @) 4)
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kK
X = « (5)
V1 —72]2 + [20r]?
and
20r
— tan—1
@ = tan s (6)
r= wi is the frequency ratio
Imag.
Imag. o
777777 | 0
|
o | ot
Real Real

¢ is called the phase angle, the angle by which the steady state response lags the
exciting force as shown.

The complete solution,

Vo+{wnXx,

x = e $@nt [xo coswyt + sin w, t] + X sin(wt — @) (7)

The vibratory motion described by equation (7) is a combination of two motions;
one has a frequency w4 and an exponentially decreasing amplitude, while the other
has a frequency o and constant amplitude of X.

As mentioned, the transient vibration disappears with time, leaving just the steady
state motion.
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For Undamped Systems:

For the undamped system “C = 0”. According to Eq. (6), “¢” is equal to zero or
180° depending on the value of “r” whether it is less or more than one. This means
that the displacement is in phase or out of phase with the force. The homogeneous
part of the solution does not vanish. The general solution is written as

(8)

The constants “A” and “B” are determined from the initial conditions. Most
probably, at the start of applying the external force, the initial displacement and
velocity are zero. Thus, applying the conditions “x = 0" and “ x = 0” for “t = 0”, we

x = Acosw,t + Bsinw,t + X sin wt

get
A=0
Xt T F
B__ls—rz where, Xstzf
Therefore,
Xt , . :
X == (sinwt — r sin w,t)

The displacement “x” is formed of two frequencies.
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Forced response of a harmonically excited undamped simple oscillator:

(c)

(a) for a large frequency difference;

(b) for a small frequency difference (beat phenomenon)

(c) response at resonance.

When o is very close to o, “r =1” i.e. the exciting frequency is equal to the natural
frequency, the amplitude, theoretically, is infinite. This situation is known as
“resonance”. Actually, the amplitude does not jump to infinity all of a sudden. It
increases gradually. This is explained as follows.
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According to Eqg. (9), take the limit as “o” tends to “®” by differentiating the

(13 29

nominator and the denominator with respect to “®” and substitute “o = ®,”, then

Xot , .

X = TSt (sin w,t — w,t cos w,t) (10)
Xst

X = —=-wptcoswyt (11)

where,

sinw,t isverysmall

The plot of Egs. (10) and (11) is shown in Fig.
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Steady-State Response:
Equation (7) can be written as:
x = X sin(wt — @) (12)

Equation (5) in dimensionless form,
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X _ 1 (13)
Xse  [1—7r2]2 + [2¢r]?

— = M. F manification factor

Harmonic Excitation
1o ! E : ! )

Magnification factor x/x-st

15
Frequency ratio r
A plot of equation (12) for various magnitudes of damping is shown. These curves

reveal some important characteristics of steady-state vibration of a system
subjected to a harmonic excitation:

1- r << 1, the M.F. is nearly 1 approaching the static loading condition,
2- r= 1, and ( is small, the M.F. becomes very large,
3- r>>1, the system approaches a motionless state,
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4- { has a negligible effect on the M.F.
when r <<1 and r>>1, but has a very B0 e Faclort onanee
significant effect in the region of r = 1,

5- setting the derivative of the right-hand
side of equation (13) w.r.t r equal to

zero yields 7y =+/1—20% < 1.0
.which shows that the M.F. is maximum
just short of r = 1.0 depending upon the
magnitude of {, this condition is e e

damping ratio
referred as resonance,

6- The M.F. at resonance is given bei = % :
st
7- M.F. increases as the damping drops below 4% , at 0.01 the M.F. is 50 times
greater than the static displacement X caused by applying F, statically,

8- How to reduce the M.F. (or the amplitude of vibration X)?

r<1.0 r=1.0 r>1.0
) ) et
m] m? m7
k1 k| k|
The Phase Angle “@” Phase Angle

A family of curves of equation (7) is
shown,

1- For values of “r << 17, ¢ is
small, this means that the
excitation F is nearly in phase
with the displacement x.

2- For values of “r<1”,

“0 < @ < 90°”. This means
that the displacement is
lagging behind the force. / : : :

3- For “r = 17, the phase angle is %0 5 2 25
equal to 90° for all values of Freuengy rias
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the damping factor, F is in phase with the velocity x.

4- For “r>17,“90° < ¢ < 180°.

5- For large values of “r>> 1.0”, the phase angle approaches “180°”. The force
and the displacement are out of phase.

6- For no damping ({=0), ¢ =0, when r < 1.0 and ¢ = 180, when r > 1.0.

7- The excitation force F and the steady-state response x do not attain their
maximum values at the same time, ¢ is a measure of this time difference.

Graphical Analysis:

mi + cx + kx = F, sin wt

1 cw

=tan !l ——
@ k — mw?

Fo* = (cwx,)? + (kx, — mw?x,)?
%f -mxe”2

Fo PO 1:‘O
-cXm l 6 -cXw® \ L -cXm | \‘\

-mXe"2 -mXe"2 . -mXw"2
aj m,-"(g_n = 1.0 . b) (,'J‘"'(,-J_ﬂ =1.0 . C) (,'J.-"I(,'J_Il} 1.0 s
0 <90° 0 =90° ¢ >90°

Example 1:
For the system shown determine: o E[j
O F=E sinot
(a) the differential equation of §E) )

motion of the uniform slender
- ey o ——L/2 L/2§k
rod if the damping is sufficient




to keep the oscillation small for all values of the exciting frequency o,
(b) the damped natural frequency in terms of the system parameters,
(c) the of the damping coefficient c for critical damping, and
(d) The amplitude of steady-state response.

If the rod was steel and had a magnification factor of 2.5 at resonance. Then
replace the steel rod with aluminum one of identical length and cross section.
Assuming that ¢ and k are the same for both systems, find the magnification factor
with the aluminum rod.

(sp. wt. of alum. = 27.04 KN/m?, sp. wt. of steel = 78.4 KN/m°)

Solution:

a) XM, =1,0
. 2,
~ 1,0 +c (é) 0 + kl?0 = E,lsinwt  (Equation of motion)
b) w, = /kliz (natural frequency)

2

l
O ¢ =2hw, =21k, ¢= _d [T

Cc 8 | kI,
wg = wp/1— 3
QSt FO

d) Steady-state response: 6 = NearTar Ost =12

* For Aluminum I, = %rnall2 , For Steel 1, = %mstl2

(Io)st — &
(Io)al pal,
Sat _ |Pst
(st Pal
M-Fal (st Pal
M. F — = — —_— —_ —_— = —_—
)w—wn 2( ) M F.St)resonance (al pst
M.F.)y, =25 27'04—147
F)y = 2. T84 — L
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I1- Impressed Force Due to Rotating Unbalance:

Rotating unbalance is one of the major causes of vibration in machines. Even with
the best balancing process there still exists, even with small amount, an unbalance
which causes vibration especially when the operating speed is near resonance.
Consider the case of a machine of a total mass “M” supported by springs of total
stiffness “k” and a damper with damping coefficient “c”. The unbalance is
represented by a mass “m” with eccentricity “e” rotating with an angular speed “y”.

The machine is constrained to move in the vertical direction only.

SRR

@)

ﬁ,,,
J
(J

’ k/2 H c § k/2
_ S

The vertical displacement of the machine is “x” from the equilibrium position.

RS

The equation of motion is given by:

M¥ + cx + kx = mew? sin wt

_.+20wn .+k mew? .
i X+—x= sin w
2Maw, ~ M M

me(l)z

¥+ 20wy % + wy’x = sin wt (1)

The steady-state solution of equation (1):
s x = X sin(wt — @) (2)

where
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mew?

k
VI1 =122 + [20r]?

Or, in dimensionless form,

X =

MX r? 3)
me 1 —r2]? + [2{r)

and

@ =tan! 12_6:2 (4)

Rotating Unbalance

Mx/me

1
1] 05 1 15 2 2.5 3
Frequency ratio r

A plot of equation (3) for various magnitudes of damping is shown. These curves
reveal some important characteristics of steady-state vibration of a system
subjected to rotating unbalance:

1- r<<1, the MY s nearly 0,
me
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2- r= 1, and { is small, the % becomes very large,
3- r>>1, the value of % tends to one,
4- { has a negligible effect on the % when r <<1 and r>>1, but has a very
significant effect in the region of r= 1,
5- setting the derivative of the right-hand side of equation (3) w.r.t r equal to
. 1 . MX . . .
zero yields 7,4, = N > 1.0 ,which shows that the — Is maximum just
short of r = 1.0 depending upon the magnitude of , this condition is referred
as resonance,
6- The 2X at resonance is given by =1 :
me me 2¢
7- How to reduce the amplitude of vibration X?
r<1.0 r=1.0 r>1.0
q) 4 4
m| m? m?
k1 k| k|
Example 2:

The frame shown consists of a steel beam welded rigidly to two vertical channels.
An eccentric exciter weighing 250 N is attached to the beam, which weighs 10 KN
and is used to excite the frame. The unbalance weight of the exciter is 25 N and it
has an eccentricity of 5 cm. By varying the rotational speed of the exciter until
resonance occurs, the maximum horizontal amplitude was found to be 3.75 mm.
Assuming no bending on the beam and considering the channels to be completely

fixed at C and D, determine,

(a) The natural frequency in Hz.,
(b) The damping factor, and

(c) The magnification factor at k=870-_|
resonance. KN/m f
r
DIl |
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Solution:
M = (10000+250)/9.81
= 1045 Kg

_ [k _ [870000 _  rad e
Qo= 377 |qoa5 " 2885~ =406 Hz

b) at resonance: w = w,

Mx 1
me 20
¢ =0.0162

O M.F.=" =30.75
me
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I11- Support Excitation:

In many applications dynamical systems are subjected to base excitations. A
machine operating in a factory is affected by the vibration of other machines.
Another example of base excitation is the earthquake which affects greatly the
buildings. To study the effect of base excitation, consider the spring-mass-damper
system shown.

I.zm - |

The base moves with a

harmonic motion “y” which —
o _ (e-n]  ei-9 ¥ mi
IS given by:
IH:)
— H External Effective
y Y sin (Dt forces forces
{a) (b)

The vibratory motion of a
system subjected to support excitation may be analyzed in terms of:

1) The absolute motion: “motion w.r.t. a coordinate system attached to the earth”

ZFX=M5C'+C(X—3'1)+k(x—y)=O 0

2cw, . k c . k
X+—=x=—y+—y

-
T oMe,  TM T MY T M

¥+ 2{w,x + wy’x = 2{w,y + w,*y (1)
which is the dif ferential equation of absolute motion

We assume the steady state response as,

x = Ae'®t
nx = iwAelwt (2)
¥ = —w2Aewt

Using the imaginary part of Ye®t for Y= sin ot
y = Yeiwt
Y = iwYewt 3)
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Substituting the terms in equations (2) and (3) into equation (1), the results may be
arranged as:

F—(ﬂf+mzoﬂph=h+aquy (4)
Wy, Wy, Wy,

Equation (4) can be written more simply as:
(@a+ib)A=(1+ib)Y

The ratio,

A 1+ib 1+ b2el®1 :
Y a+4+ib g2t pleiv: ®)

A V1 + b2

or —= ———e™
Y a? + b2

where ¢ = @, — @y
@, =tan"1b

b
=tan" ! —
%) a

s x = Xsin(wt — @)

pore X 1+ [2¢r]? ©
wnere — =
Yo JI1 =122 + [2¢r]?

To determine the phase angle ¢ between X and Y, multiply the numerator and
denominator of equation (5) by a — i b (the conjugate of a + ib),

(1 +ib)(a—ib) a + b? N b(a—1)

(a +ib)(a—ib) a + bZ ' 'aZ + b2

Dividing the imaginary part by its real part gives:

20r3
1—7r2+ (20r)?

1

(7)

@ =tan™
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Absolute Mation of Support Excitation
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Frequency ratio r

A plot of equation (6) for various magnitudes of damping is shown. These curves
reveal some important characteristics of steady-state vibration of a system
subjected to support excitation:

1- The amplitude ratio %{ =1 for all values of the damping when r=+/2.

2- % is less than 1 when, r > v/2 so r=v2 is the beginning of the region of
vibration isolation.

3- r >>/2, the value of ; is quite small, which mean that the mass is
essentially stationary.

4- The amplitude ratio %{ attains a maximum for 0 < { < 1 at the frequency ratio
I' = Ipeak < 1 given by:

1 1
Tpeak = 2_6 [\/TW - 1]7

The Phase Angle “@”

A family of curves of equation (7) is shown,
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1- For values of “r << 17, ¢ is small,

2- For large values of “r>> 1.0, the phase angle approaches “180%”.

3- For no damping ({=0), ¢ =0, when r < 1.0 and ¢ = 180, when r > 1.0.

4- The excitation displacement y and the steady-state response x do not attain
their maximum values at the same time, ¢ is a measure of this time
difference.

1) The relative motion: “the displacement z of the mass M relative to the support
motiony =y (t)”

Z=x—Yy
Z=%—y
P=%—j

Substituting into equation (1)

MEZ+3y)+cz+kz=0
i+ 2{w,z + w,’z = =
ilwt

z = Ae
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oz = iwAe'?t
7= —w?het

Substituting, and solving for the ratio % , We obtain:

.z = Zsin(wt — @)

Where,
2= - (8
Y =727 + 202
and
. 2r
g0=tan11_r2 (9)

Relative Motion of Support Exitation

Y

=13
1] 0.5 1 15 2 25 3
Frequency ratio r
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A plot of equation (8) for various magnitudes of damping is shown. These curves
reveal some important characteristics of steady-state relative vibration of a system
subjected to support excitation:

1- When the amplitude ratio %zl, which corresponds to the absolute ratio % =0
the mass is essentially stationary.
2- Whenr > 3, éz 1 which indicate that the relative amplitude Z is the same as

the amplitude of the moving support Y. This is the principle in measuring
vibratory motion.

Example 3:

The trailer shown is being pulled over an undulating road at a velocity v. The
contour of the road is such that it can be approximated by a sine wave having a
wavelength of 3 m. and amplitude of
1.5 mm. The total static deflection of
the springs and tires of the trailer due
to its weight has been measured as 38
mm. Assuming that damping is
viscous of magnitude 0.05, determine:

a) The speed v at which the
amplitude of the trailer will be maximum,

b) The maximum amplitude, and

¢) The amplitude when the speed 90 Km/hr.

Solution:
The contour of the road: y =Y sin ot

The distance traveled: S = v.t

2TV
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The maximum amplitude X is when w = w,

2TV
w = T = 16.07

m Km
v =767— =27.62—
S hr

b){=0057r=1Y=15%10"3m

X 1+ [2¢r]?

Y =12 + 20

Xmar = 150.75mm

t9OKm _2n*90*103_5236rad
€) at04= w=—amen0 - 02307
r = 3.26

X—Oll

Y_ .

X =1.64mm
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IVV- Vibration Isolation:

Vibration isolation analysis is concerned with reducing the magnitude of force
transmitted from moving components of machines to supporting foundation or
with reducing the support motion transmitted to instruments or equipments.

-ﬂ.rlra Fo SIN wt
EQUIPMENT m qr!: EQUIPMENT m ALT“
ISOLATOR ISOLATOR
FOUNDATION FOUNDATION
z dw-f =g SIN wh P

e

Fr

(a) 1:]]

The transmitted forces can be reduced by mounting the machine on isolation
mounts, which are pads of rubber or some type of elastomer such as neoprene. The
pads are modeled by a spring and a dashpot.

- Motor-compressor units in refrigerators are supported on isolation mounts to
minimize the force transmitted to the refrigerator frame, and in turn to the
floor upon which refrigerator sits.

- Instruments and equipments can malfunction or even suffer serious damage
if not isolated from vibrating supports upon which they were mounted. For
example, an electron microscope housed in a building that is close to street
carrying heavy traffic would need to be isolated from the floor of the
building.

Transmissibility of Forces:

The force transmitted to the foundation through the isolation system is:

fTR =kx+cx
F

k

= VI1—712]2 + [2¢r]?
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x = Xe!@t—9)

X = iwXelwt—9)

o frp = (k + icw)Xel@t—¢)

= kX1 + (2{r)? e'@t=?)

The magnitude of force transmitted:

Frp = kXy/1+ (20r)? (10)

F. 1+ [2¢r]? X
o Fre T _x

B 1 =722 + [20r]2

(11)

TR is referred to as transmissibility; the ratio );( Is used to determine what portion

of the support motion amplitude Y is being transmitted to the system being excited
by the support motion.

Transmissibility

TR =F-TR/Fo or X/Y

Frequency ratio r
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1- The region of vibration isolation begins at r > /2 since either ratio of
equation (11) must be less than 1 for vibration isolation. Thus, for a given
excitation frequency ®, the isolation mounts must be selected so that the

: : : k
natural frequency , of the resulting system is less than ©v2. Since o, = \/%

and the mass of the mounts is generally much less than the mass of the
system, appropriate isolation mounts are usually selected on the basis of
their stiffness. However, there are certain systems for which isolation is
accomplished by adding mass to the system when the exciting frequency ®
Is very low.

2- Since the transmissibility of an exciting force or support motion decreases as
r increases in the isolation region, the less stiff the isolation mounts the
greater the efficiency of the isolation system, some damping must be present
to minimize the peak response when the system passes through resonance
during start-up or shut down.

3- When r > 3 the response curves are about the same for different of damping
below 20 percent ({ < 0.2). This shows that in this region the transmissibility
of a force or support motion is relatively unaffected by changing the
damping. This is a fortunate feature of vibration isolation, since accurate
values of ( are generally not known.

4- Relative transmissibility is the ratio:

Relative Transmissibility

n

=FTa‘(mew )2

TR

I i I i
0 0.5 1 15 2 25 3 3.5 4
Frequency ratio r
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FTR rzﬂ 1+ [2(7"]2

TRy = =
B mew? JIL = 2% + [20r)2

Since the transmissibility is relatively unaffected by the damping in the isolation
region, it is common practice to neglect damping in equation (11) when isolating a
system.

1

TR =
r2 —1

(12)

In which negative root has been used so that equation (12) will yield positive
transmissibility.

The reduction R in transmissibility is given by
R=1-TR (13)
and is used to indicate the efficiency of an isolation system.

From equations (12), (13)

1-R=

r2 —1

from which

r= |[—— (14)

Equation (14) can be used to determine the required stiffness k of an isolation
system to accomplish a desired reduction R.

Expressing o as

_ 21N
“ =760

and w,, as
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_ |k kg
T lm o yw
_ 30 |kg(2—R)
WA—R) a1-B (rpm or cpm)

W = ké,,,

30 g2 —R)
m (rpm or cpm)

In these equations:

we obtain

substituting

k = stiffness of isolation system (N/m)
g = acceleration of gravity (9.81 m/s?)
Ot = static deflection (m)

W = weight of machine or structure (N)

(15)

Equation (15) can be plotted on log-log paper to facilitate the design of isolation
systems by providing a graph such as the one shown. Taking the logarithm of both

sides of equation (15) gives

logN = — Slogs.. +1og-2 |92 —F)
Og Zog st Og (1 R)

(16)

which has the form of equation of a straight line,y = mx + b,

A plot of equation (16) is shown:
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Yibration Isolation

Excitation frequency N {cpm or rpm)

10 o miaieeE 2 5 g e
10 10 10" 10
Static deflection ¥W/k (in)

These curves can be used to determine the stiffness k that a system must have for a
specified reduction in transmissibility. It is usually difficult to provide isolation at
very low excitation frequencies. At those frequencies, static deflection d, can
become so large that isolation becomes impractical.

When it becomes necessary to provide a highly efficient isolation system (R>90%)
at fairly low excitation frequencies, the machine or instrument to be isolated is
sometimes attached to, or rested upon, a rather large mass M (such as a block of
concrete).

It is often necessary to consider isolating a system for more than one excitation
frequency, in such instances, it should be apparent that the lowest excitation
frequency is the one of primary importance, as the reduction R for an excitation
frequency w, would be even greater than that for ®; when ®; < m,.
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Example 4: The machine shown has an armature with a small imbalance that is
causing a force Frr to be transmitted to the foundation upon which the machine
rests. The machine weighs 18 KN and has an operating speed of 2000 rpm. It is
desired to reduce the amplitude of the transmitted force by 80 percent, using
isolation pads represented by the springs shown.

R=08
30 kg(2 —R)
1w W@ -=R)

k=134%10" N/m

Example 5:

A large machine that weighs 135 KN is found to be transmitting a force of 2250 N
to its foundation when running at 1200 rpm. The total (equivalent) spring stiffness
is 2.66*10" N/m. Determine the magnitude of the unbalance force F, developed by
the machine. What is the amplitude

of vibration of the machine?

Solution: @

w = 2nf = 125.66 rad/s

777 e
k .
W, = |—=4397 rad/s ; § k §
STTTT T i
r = 2.86
TR = =
E, r2—-1

~x =0.0085mm
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Transducers

[Force and Vibratory Motion]

Transducers are devices transfer energy from one form to another, and have
different configurations. Our discussion is concerned with transducers that are used
to measure dynamic forces and vibratory

motion. Such transducers are usually modeled F@®)
as simple spring-and-mass systems with I
viscous damping. : I_

-~} _ Equivalent mass
of the transducer

“Flat response” frequency region:

It is only in this region that the response (the
output) of the transducer is essentially
independent of the frequency components
present in the dynamic phenomenon being
measured. This flat region depends upon the ratios formed by the circular
frequency o present in the dynamic phenomenon being measured and the natural
frequency w, of the transducer.

Stiffness and Damping
‘ of the transducer

Force Transducers:

Load cells or pressure transducers that are used to measure forces or pressures
frequently utilize resistance strain gages bonded to the elastic elements of the
transducer to sense the strains resulting from the forces the transducer experiences.

The output of the transducer is proportional to the strain of the elastic element of
the transducer, and corresponds to the displacement x of the mass shown.

X 1

X V=12 + [20r]°
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- Xi is very nearly unity for small values of r. This means that the amplitude
N4

X of the response is the same as the static displacement X resulting from a
statically applied force of magnitude F, in this “flat response” frequency
region.

1- If r < 0.2 the response of the transducer is independent of the excitation
frequency ® and Xi ~1

st

2- The maximum error in the deviation of Xi from unity in the flat response

st
region is less than 5%, regardless of the magnitude of damping0 < £<1.0
Conclusion: accurate force measurements

can be obtained from a force transducer F(0)

when it is used to measure forces having HHHHHHI
frequencies up to 20% of the natural L s
frequency of the transducer. For example, RO T i )
a transducer having natural frequency of ﬂmmm” clement
1000 Hz. would yield accurate F(1)

measurements of the dynamic force if the
frequency of that force were no greater than 200 Hz.

Dynamic forces generally contain more than one frequency component, the
highest ~ frequency = component
should be less than 20% of the
natural frequency of the transducer.

Flat-Response Region

Force transducers that utilize a
piezoelectric material (usually a
polarized ferroelectric ceramic) as a
sensing  element can  have
fundamental  natural  frequency
above 100,000 Hz. :

11F

1.05F

Magnification factor x/x-st

The deformation of the : _ : ; : :
piezoelectric element produces a T U-*grequegg mmfrl-[?ﬁ 03 0% 04
charge q on the pole faces that is

proportional to the force F (t)
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Since the voltage V (volts), charge g (coulombs) and capacitance C (farads) are
related by: V=q/C, the sensitivity of piezoelectric force transducers can be
measured in terms of Pico-coulombs (pc = 10" ¢) per unit force (N) or mille-
volts per unit of force.

Since the capacitance C indicates the capacitance of both the piezoelectric
element and the cable connecting the transducer to oscillograph, the voltage V
will be reduced by the capacitance of the cable. This loss can be eliminated by
adding a charge amplifier as shown.

F(t)

— Transducer Charge Amplifier

OSCHIOSCOPE\ .e;
e}

o}

Phase Distortion:

Phase distortion causes changes in the shape of a wave in the time domain.
Wi
2¢ @,

w.
1- (b

Q; = tan~!
@i = 0 if there is no damping.

Since phase distortion is negligible in most force transducers because of their
low inherent damping, there is no practical reason to make & = 0.707 in
designing force transducers.
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Vibration Measuring Transducers “Seismic Transducers”

Two general types of seismic transducers are used for vibration measurements.
One is the vibrometer (seismometer), which is designed with a low natural
frequency. The other is the accelerometer, which is designed with a high natural
frequency.

Most vibrometers are electromagnetic transducers, which consists of a moving
mass m within a coil and a permanent magnet fixed to the case as shown. In some
electromagnetic transducers, the moving mass is the permanent magnet and the
coil is fixed to the transducer case. In either case, the voltage output from the coil
Is proportional to the rate at which the magnetic flux lines are cut (proportional to
the relative velocity between the mass m and the vibrating body).

mass with y T
/C.Qil | strain gage X T
Vibratory IIll
Magnet Body -
Elastic element
v T Accelerometer
[ Vibratory Body
Vibrometer

One type of accelerometer consists of a mass m attached to some type of elastic
element such as the small cantilever beam shown. When it is mounted on a
vibrating body, its output is proportional to the absolute acceleration of the mass
m, which is equal to the acceleration of the vibrating body (the support
acceleration). Electrical-resistance strain gages are sometimes used to sense this
acceleration since the strain in the elastic element caused by the inertia of the mass
m is proportional to the absolute acceleration of the mass m.
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At present, the most widely used accelerometer for measuring shock and vibration
Is the piezoelectric accelerometer, which is similar in many ways to the
piezoelectric force transducer.

1-Vibrometer (Low Frequency Transducer)

To determine the characteristics of this type transducer and its natural frequency
range, we refer to equation (8) which is:

2 . (®)
Y =2 + [20r]

A plot of this equation is shown, when r > 3, the steady-state amplitude ratio é ~ 1
for a wide range of damping factors. Therefore, in this frequency range,

=Y

and since Z=X-Y

Yibrometer (Low-Frequency Transducer)
10 T 1 1 T | T
: ! : I : : : 2 '

Y

Frequency ratio r
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~X=0

This means the mass m is remains stationary as the case moves with the vibrating
body.

A vibration meter used with this type of transducer containing integrating and
differentiating networks will yield direct readings of the displacement y, the
velocityy, and the acceleration y of the vibrating body to which the transducer is
attached.

The usable frequency range of a vibrometer depends upon its natural frequency o,
and damping present.

Increasing damping, extend the lower end of the flat-response range (increase the
speed range of this instrument), also, increasing the accuracy of the instrument
(decreasing the percentage error of instrument reading).

As (1, the speed range 1, the error |,
As k|, o, |, the speed range 1, the error |,
As mT, o, |, the speed range 1, the error |,

2- Accelerometer (High Frequency Transducer)

Rewriting equation (8) in the form:

Zw, 1
Yo 1 -r2 + [20r]

If the natural frequency w, is greater than the frequency of the vibrating body o,
the ratio r is small,

Zw?

Yw?

~
~

Or,Z= %sz = the acceleration amplitude of the vibrating body

n
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Increasing damping, extend the upper end of the flat-response range (increase the
speed range of this instrument), also, increasing the accuracy of the instrument
(decreasing the percentage error of
instrument reading).

Flat-Response Region of accelerometers
T v T T T

As ( 1, the speed range 1, the error |,
As k1, onT, the speed range 1, error |,

As m], onT, the speed range 1, error |,

1] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Frequency ratio r

Piezoelectric Accelerometer

ICF Amplifier

Pre-loading Spring

Seismic Mass

| Crystal Element

Base

Mounting Stud
The compression-type Piezoelectric Accelerometer

(a) (b)
Accelerometer

Housing \\3. Displacement My,

High-Stiffness
Holding Spring |

Inertia (Seismic) J-
|
Element k b Displacement V'
Piezoelectric Acceleration a= ¥
Element J\
Mounting base -
{Magnetic/Threaded) )
Connecting
Cable

(a) Schematic diagram of a piezoelectric accelerometer, and (b) A simplified model
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The most widely used accelerometer for measuring shock and vibration is the
piezoelectric accelerometer.

preload spring

X T
piezoelectric ]

Vibratory Body Vibratory Body

Compression type Shear type

There are two types of this accelerometer, as shown, the shear type is less affected
by airborne vibration (sound) than is the compression type. The iso-shear type (not
shown) which contain multiple piezoelectric elements in shear, include high
sensitivity and high signal to noise ratio. Both produce an electrical charge q
proportional to the base acceleration

These accelerometers are small, rugged, and reliable transducers that have quite
stable characteristics over long periods of time.

Their small size (typically 0.25 to 0.75 in, diameter) facilitates their use in small
confined areas.

Their light weight (typically 0.2 to 20 g) permits their use on lightweight test
objects without affecting the vibration characteristics being measured.

For most acceleration measurements ( 10 g’s or less), they are easily mounted
using a wax-type material such as beeswax, when the acceleration is above
10g’s, other means should be employed, such as an epoxy cement or threaded
mounting studs.

They are self-generating and as such require no external power supply.
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Small ones with small mass elements can have natural frequencies over 100,000
Hz, and will produce accurate measurements for frequency components of up to
around 10,000 Hz, with negligible phase distortion.

Natural frequencies of 30,000 to 50,000 Hz are typical for general-purpose
piezoelectric accelerometers, depending upon the design.

Charge amplifiers are used to reduce the sensitivity loss due to the capacitance
in the cable connecting the transducer to such instruments as oscilloscopes and
frequency analyzers. The sensitivity is usually given as Pico-coulombs per g of
acceleration (pC/g), and the output of the charge amplifier is volts/g or
millivolts/g.

Example 6:

\J sine wave

50 mm

- Base i

The instrument shown is attached to the 85" floor of the Empire state building
to measure the lateral oscillations of the building caused by strong gusting
winds. The weight W is rigidily attached to the two vertical elastic elements
each have stiffness k. The vertical penholder is pinned to the frame of the
instrument at A and to the weight at B. Previous observations have shown that
the lateral oscillations of the 85™ floor can have amplitudes as large as 60 cm
when it is vibrating at 0.2 Hz Should the instrument be designed as an
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accelerometer or as a vibrometer? Give a brief explanation of the reason for
your answer.

Solution:

If designed as a vibrometer;

Z=Y

1- the drum being over 120 cm. long to record an amplitude of 60 cm
2-®=2*m*0.2, then ®, must be very small so that r = (o / ®, ) >3
Ifr=4, W=5N

opn=0/4=0.1%*n

so that 2k = ke = ®, 2 * m = 0.05 N/m which is impractical

So, instrument should be designed as an accelerometer.

Example 7:

In example 6, assume that the instrument was designed as an accelerometer for
whichW=0.4N,anda=9bh.

Determine:

a) the value of the spring constant k for frequency ratio of 0.1
b) the amplitude Y of the oscillation of the 85" floor when the chart amplitude
reading on the drum is 50 mm with a period of 5 seconds.

Solution:

r=0.1, on=100 =4, ke=wp>*m=2k, k=3.22N/m
Z=Y r*=Y(0.01), Y=100Z,  Z/b=0.05/10b

Z =0.005m

Y=05m
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Critical Speed of Rotating Shafts

Disk with
Mass Eccentricity

? 7 Bearing
(a) b, by i)

(a) A whirling shaft carrying a disk with mass eccentricity; (b) end view of the disk and whirling shaft.

|

When a shaft is rotating about its longitudinal axis bends about that axis (line
AB), the bent shaft will whirl about its original axis of rotation as well as
continuing to rotate about its longitudinal axis. Unbalanced disks, loose or worn

bearing, and gyroscopic effects are examples of things that can cause shafts to
whirl.
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G = mass center

€ = eccentricity

C = geometric center

O = intersection of the bearing centerline with the plane of the disk
z = is the lateral deflection of the shaft z = OC

o = the angular velocity of the shaft-and-disk system w.r.t the longitudinal axis
of the shaft

6 = the angular velocity of the rotating plane formed the bent shaft and the line
AB

¢ = the angle between the position vector 7 and the position of vector &
The mass of the shaft is small compared with that of attached disk (m)

Xs =X+€e cos ot
Yo =Y+e sin ot

- X =X—ew’cos ot

Ve =V —eo’sin ot

For circular shaft, the stiffness and damping of the shaft are the same
K =ky = ky

and,c=cx=c¢y

—kx—cx = m(X —ew’ cos wt)
and —ky—cy =m(y—ew’sin wt)

which can be reduced to:

X+ 2w, X + o X = e’ €S at

V+2lw, Y+ o’y =ewn’ sinot

Assuming steady-state solution

lwt

x = Ae'@t | y = Be
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xz_wZAeiwt j}: _a)ZBeia)t
- B e.r? i
= = e
VI —72]2 + [20r]?
20r
=t -1
@ = tan s

The rectangular components of the disk center C are:
x = X cos(wt — @),
y = Y sin(wt — @)

Squaring the above components

2= (T H )

and 6 = w

The above relationships show that the plane formed by the bent shaft and line
AB whirls about line AB with angular velocity @ that is equal to the angular
velocity o of the shaft-and-disk system.

Prove that O,C and G at the same straight-line if there is no damping?

- For no damping 6 = wt
- = 0,C and G at the same straight line
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z/e

Frequency ratio r

A plot of the dimensionless ratio z/e versus the frequency ratio /w, for various
magnitudes of damping is shown:

- Whenr<<1,z/e=0, ¢=0°which means that the center of gravity G of
the disk rotates on the outside of the path of the center C of the disk with a
radius of rotation OG =~ z + e [Fig. (a)]

- When r = 1, (the critical speed) z=e/2&, ¢ = 90°, that the magnitude of the
whirling motion can be quite large if the damping factor is small, G rotates

in a circular path of radius OG = vz2 + e? [Fig. (b)]
- Whenr>>1,z/e~ 1, ¢=180° Thus, G rotates on the inside of the path of C
with a radius of OG = z-e [Fig. ()]
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o/o n>>1.0

o/o n<<1.0

(©)
(a)

The deflection of the shaft must not exceed a given value, from the above

curve, according to this value:

a) When r <1, we can obtain the maximum value of w at which the shaft
must not run above it,

b) When r >1, we can obtain the minimum value of ® at which the shaft
must not run below it.

The effective spring constant k of the shaft depends not only upon the size of

the shaft but also upon the degree of bending resistance provided by the

bearing. For example, if the bearings are attached to a rigid supports that

prevent rotation of the bearing about any axis perpendicular to line AB, the

stiffness k used would be the stiffness for a fixed-fixed beam. If the bearing

were free to rotate, the stiffness k used would be that for a pinned-pinned

beam.

In starting and stopping rotating machines such as turbine that operates at

speeds above their natural frequencies (critical speeds), large amplitudes of

vibration can build up as the machine passes through the critical speed.

These can be minimized by passing through the critical speed as quickly as

possible since the amplitude does occur over some finite length of time.

Elastic Support
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Zy = bearing deflection, Zs = shaft deflection, Z = total deflection,

zZ=12Z,+ 7,
Ky = bearing stiffness, ks = shaft stiffness, k = equivalent stiffness,
k = kb ks
ky, + k.

Example 6:

The shaft-and-disk system shown is supported by self-aligning bearings so that
the steel shaft can be considered as a simply supported beam for purposes of
choosing a spring constant k. the rotating disk is fixed to the shaft midway
between bearings A and B, the data for the system are as follows:

m=12Kg, | =0.5m,d=25.4mm and E = 206.8 GPa.
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Since the shaft is to operate over a range of speeds varying from 2400 to 3600
rpm. there is some concern that the bearing forces R, and Rg could become
large at the disks, the eccentricity of the disk is 0.05 mm and damping assumed
0.02. Determine:

a) the critical speed,
b) the maximum bearing forces that could be anticipated in operating over a
range of 2400 to 3500 rpm.

%
A % B
< = % = —Dg—
7
7
L/2
Solution:
48EI
k = i
wd*
_ " —8 4
1_64 2.043x107°m
k =1.62210° N/m
w, = 367.65 rad./s or N =3511rpm

* w, S within the range of 2400 to 3600 rpm,

Max displacement whenr =1
nz==—=125mm

The bearing forces:
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R, 1013.8

= = 17.224
Rigpre 981+ 12

Equivalent Viscous Damping

A viscous damping model was used in which the damping force cx was assumed
to be proportional to the velocity and was represented by a dashpot. Such model
provides ordinary linear differential equations that are solved quite easily
mathematically.

Energy-dissipating mechanisms in materials such as molecular friction, fluid
resistance, and so on are very complicated phenomena and difficult to model
mathematically. Such modeling is further complicated by the fact that energy
dissipation or damping can result from combinations of different types of damping
mechanisms.

An equivalent-viscous damping factor (; can be determined for a non-viscous
damping mechanism by equating the energy dissipated per cycle by viscous
damping mechanism to that dissipated by the non- viscous damping mechanism.

Since the major effect of damping on a forced vibration occurs at or near resonance
, equivalent viscous damping factors are usually determined at resonance.

Coulomb damping is an exception, since the amplitude of vibration goes to infinity
when o/w, = 1 for this type of damping.

Enerqy Dissipated by Viscous Damping:

The steady state response of a viscously damped system is:
x = X sin(wt — @)

x = Xw cos(wt — @)
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E
o/k

VI1 =722 + [20r]?

The energy dissipated by Fq= cx for one cycle:

X =

T dx T
Ed=f£c5cdx=cf J'c—dt=cj5c2dt T=— E,
o dat 0

2
= cX?’w? f “ cos?(wt — @)dt
0

2
cX’w? (o
=— j [1 4 cos2(wt — @)]dt
0
= ncX’w 0
c ) do = w= k ¢
— = {w, and w, =w = |—  atresonance,
~ Ey = m2(kX?

which gives the energy dissipated per cycle by viscous damping at resonance.

Velocity-Squared Damping: (Fluid Damping)

Velocity-squared damping is commonly used to describe the damping mechanism
of a system vibrating in a fluid medium. The damping force is assumed to be
proportional to the square of the velocity and can be approximated by

CpA
Fy = +(C00)i? = —alilx

where x= velocity of vibrating body relative to fluid medium m/s
|x| = absolute value of x
C = drag coefficient (dimensionless)

A = projected area of body perpendicular to x  (m?
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p = mass density of fluid (Kg/m®)

_ CpA
2

The equivalent viscous damping factor:

_ 2CpAX
3 mm

e

Coulomb Damping (Dry friction):

The friction damping force Fq = + uW
The energy dissipated in 1 cycle is Eq = 4XF4
The equivalent-viscous-damping coefficient ¢, = 4F; / nXw (from equation (I))

_2F,
e = w, mMrXw

To investigate the response of a Coulomb-damped system at resonance

2 w . 4Fd
e w, wkX
F,
o/k
X = >
4F,
Ju-ro [
Solving for the amplitude X yields:
4F; .,
¥ = E, 1- (T[E))
Tk 1—7r2

The last equation shows that the amplitude X is theoretically infinite at resonance

for Coulomb-damped system. It should be noted that for X to be real, the quantity
4F 4

TThy

must be less than 1.

Structural Damping (complex Stiffness):
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The energy dissipation caused by cyclic stress and strain within a structural
material is often referred as structural damping (hysteretic damping, solid
damping, and displacement damping).

The energy dissipated in 1 cycle is Eq = pX* (in which P is a constant having the
units of force /displacement like a spring constant. The magnitude of B can vary
with the size, shape, material, and temperature of the structural system.

Equating the last equation by equation (I), the equivalent-viscous-damping
coefficient c, for structural damping is:

B

c, = —
¢ o

{, = % in whichn = % is the structral damping factor
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