| Chapter 6
Inorganic and Organic Compounds: Names and Formulas
6.1 Octet Rule and Ions

© 2011 Pearson Education, Inc.

Octet Rule

An octet

- is 8 valence electrons
- is associated with the stability of the noble gases
- does not occur with He, which is stable with two valence electrons (duet)

Valence electrons

$\mathrm{He} \quad 1 \mathbf{s}^{2}$
$\mathrm{Ne} 1 s^{2} 2 s^{2} 2 p^{6}$
2

Ar $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
$\mathrm{Kr} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$

Forming Octets

Atoms acquire octets

- to become more stable
- by losing, gaining, or sharing valence electrons
- by forming ionic or covalent bonds

Ionic and Covalent Bonds

Ionic bonds involve

- loss of electrons by a metal
- gain of electrons by a nonmetal

Covalent bonds involve

- a sharing of electrons

Loss and gain of electrons

Ionic bond

Sharing electrons

Covalent bond

M is a metal
Nm is a nonmetal

Metals Form Positive Ions

Metals form positive ions (CATIONS)

- by a loss of their valence electrons
- with the electron configuration of their nearest noble gas
- that have fewer electrons than protons.
Group 1A (1) metals \longrightarrow ion $^{+}$
Group 2A (2) metals \longrightarrow ion $^{2+}$
Group 3A (13) metals \longrightarrow ion $^{3+}$

Loss and gain of electrons

Formation of a Sodium Ion, Na^{+}

Sodium achieves an octet by losing its one valence electron.

Name
Electron-dot symbol

Protons

Electrons

Electron configuration
© 2011 Pearson Education, Inc.

Sodium atom
Na

$11 p^{+}$

$11 e^{-}$

Sodium ion
Na^{+}

Loss of valence electron
$11 p^{+}$
$10 e^{-}$

Charge of Sodium Ion, Na^{+}

With the loss of its valence electron, the sodium ion has a

Sodium ion Na^{+} $1+$ charge.

$10 e^{-}$

$$
1 s^{2} 2 s^{2} 2 p^{6}
$$

Formation of Mg^{2+}

- Magnesium achieves an octet by losing its two valence electrons.

Charge of Magnesium Ion, Mg^{2+}

With the loss of two valence
Magnesium ion
Mg^{2+}
electrons, magnesium forms a positive ion with a $2+$ charge.

Mg atom
$12 p^{+}$
$\frac{12 e^{-}}{0}$
Mg^{2+} ion
$12 p^{+}$
$10 e^{-}$
2+
$12 p^{+}$

$10 e^{-}$
$1 s^{2} 2 s^{2} 2 p^{6}$

Learning Check

Select the correct answer for aluminum.
A. The number of valence electrons is \qquad .

1) $1 e^{-}$
2) $2 e^{-}$
3) $3 e^{-}$
B. The electron change for the octet is \qquad .
4) loss of $3 e^{-} \quad 2$) gain of $3 e^{-} 3$) gain of $5 e^{-}$
C. The ionic charge of the aluminum ion is \qquad .
5) 3-
6) 5-
7) 3^{+}
D. The symbol for the aluminum ion is \qquad .
8) Al^{3+}
9) Al^{3-}
10) Al^{+}

Seleqt the correct answer for aluminum.

The number of valence electrons is \qquad -

1) $1 e^{-}$
2) $2 e^{-}$ خ̀「3) $3 e^{-}$

Seleqt the correct answer for aluminum.

The electron change for the octet is .
(1) loss of $3 e^{-}$
2) gain of $3 e^{-}$
3) gain of $5 e^{-}$

Seleqt the correct answer for aluminum.

The ionic charge of the aluminum ion is

1) 3-
2) 5-
(ᄎ3) 3^{+}

Seleqt the correct answer for aluminum.

 The symbol for the aluminum ion is \qquad .is1) Al^{3+}
2) Al^{3-}
3) Al^{+}

Solution

Select the correct answer for aluminum:
A. The number of valence electrons is 3) $3 e^{-}$
B. The electron change for the octet is 1) loss of $3 e^{-}$
C. The ionic charge of the aluminum ion is 3) 3^{+}
D. The symbol for the aluminum ion is

1) Al^{3+}

Formation of Negative Ions

In ionic compounds, nonmetals (FORM ANIONS)

- achieve an octet arrangement
- gain electrons
- form negatively charged ions with $3-$ - 2 -, or 1 - charges

Formation of Chloride Ion, Cl^{-}

- Chlorine achieves an octet by adding an electron to its valence electrons.

Name
Electron-dot symbol

Protons

Electrons
$17 e^{-}$

Electron configuration $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

Charge of a Chloride Ion, Cl^{-}

A chloride ion forms

- when Cl gains one electron

Chloride ion
$: \because C_{-}^{-}$

- with a 1-charge

Chlorine atom
$17 p^{+}$
$\frac{17 e^{-}}{0}$

Chloride ion
$17 p^{+}$
$\frac{18 e^{-}}{1-}$
$17 p^{+}$
4 $18 e^{-}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

Some Typical Ionic Charges

TABLE 6.1 Formulas and Names of Some Common Monatomic Ions

Group Number	Formula of lon	Name of lon	Group Number	Formula of lon	Name of lon
	Metals			Nonmetals	

© 2011 Pearson Education, Inc.

Ionic Charge from Group Numbers

Ions

- achieve the electron configuration of their nearest noble gas
- of metals in Group 1A (1), Group 2A (2), or Group 3A (13) have positive 1+. 2+, or 3+ charges
- of nonmetals in Groups 5A (15), 6A (16), or 7A (17) have negative $3-$, $2-$, or 1 - charges

The charge of an ion is obtained by subtracting 8 or 18 from its Group number.
Example: Group 6A (16) $=6-8=2-$ or $16-18=2-$

Some Ions and Their Nearest Noble Gases

TABLE 6.2 Examples of Monatomic lons and Their Nearest Noble Gases

		MetalsLose ValenceElectrons			Nonmetals Gain Valence Electrons				
Noble Gases		$\begin{aligned} & \text { 1A } \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \text { 2A } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \\ & \text { (13) } \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \\ & \text { (15) } \end{aligned}$	$\begin{aligned} & \text { 6A } \\ & (16) \end{aligned}$	$\begin{aligned} & \text { 7A } \\ & \text { (17) } \end{aligned}$		Noble Gases
He	\square	Li^{+}							
Ne	L	Na^{+}	$\mathbf{M g}{ }^{\mathbf{2}}$	Al^{3+}	N^{3-}	O^{2-}	\mathbf{F}^{-}		Ne
Ar		\mathbf{K}^{+}	Ca^{2+}		\mathbf{P}^{3-}	S^{2-}	Cl^{-}		Ar
Kr	$\stackrel{\square}{\square}$	$\mathbf{R b}{ }^{+}$	Sr^{2+}				Br^{-}		Kr
Xe	$\stackrel{\square}{\square}$	Cs ${ }^{+}$	Ba^{2+}				I^{-}		Xe

Learning Check

Select the correct answer for sulfur.
A. The group number for sulfur is \qquad .
B. The number of valence electrons in sulfur is \qquad .

1) $4 e^{-}$
2) $6 e^{-}$
3) $8 e$
C. The change in electrons for an octet requires a 1) loss of $2 e^{-}$2) gain of $2 e^{-} \quad 3$) gain of $4 e^{-}$
D. The ionic charge of a sulfide ion is \qquad .
4) $2+$
5) $2-$
6) $4-$

Solution

A. The group number for sulfur is 3) 6 A (16)
B. The number of valence electrons in sulfur is 2) $6 e^{-}$
C. The change in electrons for an octet requires a 2) gain of $2 e^{-}$
D. The ionic charge of a sulfide ion 2) 2

Chapter 6 Inorganic and Organic Compounds: Names and Formulas

6.2 Ionic Compounds

Ionic Compounds

Ionic compounds

- consist of positive and negative ions
- have attractions called ionic bonds between positively and negatively charged ions
- have high melting and boiling points
- are solids at room temperature

Salt is an Ionic Compound

Sodium chloride (table salt) is an example of an ionic compound.

Ionic Formulas

An ionic formula

- consists of positively and negatively charged ions
- is neutral
- has charge balance (net charge of zero) total positive charge $=$ total negative charge
- uses subscripts to indicate the number of ions needed to give charge balance

Charge Balance for NaCl, "Salt"

In NaCl ,

- a Na atom loses its valence electron
- a Cl atom gains an electron
- the symbol of the metal is written first followed by the symbol of the nonmetal
- the charges of the ions in the compound are not shown

Charge Balance in NaF

- The formulas of ionic compounds are determined from the charges on the ions.
atoms ions

sodium fluorine sodium fluoride The overall charge of NaF is zero (0).

$$
\begin{array}{ll}
\mathrm{Na}^{+} \quad \mathrm{F}^{-} & =\mathrm{NaF} \\
1(1+)+1(1-) & =0
\end{array}
$$

Charge Balance $\mathrm{In} \mathrm{MgCl}_{2}$

In MgCl_{2}

- a Mg atom loses two valence electrons
- two Cl atoms each gain one electron
- subscripts indicate the number of ions needed to give charge balance

Charge Balance In $\mathrm{Na}_{2} \mathrm{~S}$

In $\mathrm{Na}_{2} \mathrm{~S}$,

- two Na atoms lose one valence electron each
- one S atom gains two electrons
- subscripts show the number of ions needed to give charge balance

Writing Ionic Formulas from Charges

Charge balance is used to write the formula for sodium nitride, a compound containing Na^{+}and N^{3-}.

Formula from Ionic Charges

Write the ionic formula of the compound containing Ba^{2+} and Cl^{-}.

- Write the symbols of the ions.

$\mathbf{B a}^{2+} \mathrm{Cl}^{-}$

- Balance the charges.

$$
\begin{array}{lll}
\mathrm{Ba}^{2+} & \mathrm{Cl}^{-} \\
& \mathrm{Cl}^{-}
\end{array} \quad \text { two } \mathrm{Cl}^{-} \text {needed }
$$

- Write the ionic formula using a subscript 2 for two chloride ions that give charge balance.
BaCl_{2}

Learning Check

Select the correct formula for each of the following ionic compounds:
A. Li^{+}and O^{2-}

1) LiO
2) $\mathrm{Li}_{2} \mathrm{O}$
3) LiO_{2}
B. Al^{3+} and Cl^{-}
4) AlCl_{3}
5) AlCl
6) $\mathrm{Al}_{3} \mathrm{Cl}$
C. Mg^{2+} and N^{3-}
$\begin{array}{lll}\text { 1) } \mathrm{MgN} & \text { 2) } \mathrm{Mg}_{2} \mathrm{~N}_{3} & \text { 3) } \mathrm{Mg}_{3} \mathrm{~N}_{2}\end{array}$

What is the chemical formula for Li^{+}and O^{2-}

1. LiO
2. $\mathrm{Li}_{2} \mathrm{O}$
3. LiO_{2}

What is the chemical formula for Al^{3+} and Cl^{-}

1. AlCl_{3}
2. AlCl
3. $\mathrm{Al}_{3} \mathrm{Cl}$

What is the chemical formula for Mg^{2+} and N^{3-}

1. MgN
2. $\mathrm{Mg}_{2} \mathrm{~N}_{3}$
3. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$

Solution

A. Li+ and O^{2-}
2) $\mathrm{Li}_{2} \mathrm{O}$
check: $2 \mathrm{Li}^{+}+\mathrm{O}^{2-}=2(1+)+1(2-)=0$
B. Al^{3+} and Cl^{-}

1) AlCl_{3}
check: $\mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}=(3+)+3(1-)=0$
C. Mg^{2+} and N^{3-}
2) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
check: $3 \mathrm{Mg}^{2+}+2 \mathrm{~N}^{3-}=3(2+)+2(3-)=0$

Chapter 6 Inorganic and Organic Compounds: Names and Formulas

6.3
 Naming and Writing Ionic Formulas

Naming of Ionic Compounds

In the name of an ionic compound,

- the positive ion (first ion) is named as the element
- the negative ion (second ion) is named by changing the end of the element name to -ide

Learning Check

Complete the names of the following ions:
Ba^{2+}
N^{3-}
Al^{3+}
K^{+}
\qquad
\qquad
F^{-}
P^{3-}
S^{2-}
Cl^{-}

Solution

Ba^{2+}
 barium

N^{3-}
nitride

phosphide

O^{2-}
oxide
S^{2-}
sulfide
K^{+} potassium
F^{-}
fluoride
Cl^{-}
chloride

Naming Ionic Compounds with Two Elements

Guide to Naming Ionic Compounds with Metals That Form a Single Ion

STEP 1
 Identify the cation and anion.

STEP 2
Name the cation by its element name.

STEP 3

Name the anion by using the first
syllable of its element name followed
by ide.

STEP 4

Write the name of the cation first and the name of the anion second.

Examples of Ionic Compounds with Two Elements

Formula Ions
Cation Anion
NaCl
$\mathrm{K}_{2} \mathrm{~S}$
MgO
Cal_{2}
$\mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{Na}^{+} \mathrm{Cl}^{-}$
$\mathrm{K}^{+} \quad \mathrm{S}^{2-}$
$\mathrm{Mg}^{2+} \mathrm{O}^{2-}$
$\mathrm{Ca}^{2+} \mathrm{I}^{-}$
$\mathrm{Al}^{3+} \quad \mathrm{O}^{2-}$

Name
sodium chloride potassium sulfide magnesium oxide calcium iodide aluminum oxide

Some lonic Compounds

Compound	Metal Ion	Nonmetal lon	Name
KI	K^{+}	I^{-}	
	Potassium	Iodide	Potassium iodide
MgBr_{2}	Mg^{2+}	Br^{-}	
	Magnesium	Bromide	Magnesium bromide
$\mathrm{Al}_{2} \mathrm{O}_{3}$	Al^{3+}	O^{2-}	
	Aluminum	Oxide	Aluminum oxide

Learning Check

Write the formulas and names for compounds of the following ions:

N^{3-}

Solution

$\mathrm{Br}^{-} \quad \mathrm{S}^{2-} \quad \mathrm{N}^{3-}$
$\left.\mathrm{Na}^{+} \begin{array}{|l|l|l|}\hline \begin{array}{l}\mathrm{NaBr} \\ \text { sodium } \\ \text { bromide }\end{array} & \begin{array}{l}\mathrm{Na}_{2} \mathrm{~S} \\ \text { sodium } \\ \text { sulfide }\end{array} & \begin{array}{l}\mathrm{Na}_{3} \mathrm{~N} \\ \text { sodium } \\ \text { nitride }\end{array} \\ \mathrm{Al}^{3+} & \begin{array}{l}\mathrm{AlBr}_{3} \\ \text { aluminum } \\ \text { bromide }\end{array} & \begin{array}{l}\mathrm{Al}_{2} \mathrm{~S}_{3} \\ \text { aluminum } \\ \text { sulfide }\end{array}\end{array} \begin{array}{l}\text { AlN } \\ \text { aluminum } \\ \text { nitride }\end{array}\right\}$

Learning Check

Write the names of each of the following compounds:

1) CaO
2) KBr
3) $\mathrm{Al}_{2} \mathrm{O}_{3}$
4) MgCl_{2}

Solution

Write the names of each of the following compounds:

1) CaO calcium oxide
2) KBr
3) $\mathrm{Al}_{2} \mathrm{O}_{3}$
4) $\mathrm{MgCl}_{2} \quad$ magnesium chloride

Transition Metals That Form Two or More Positive Ions

Most transition metals and Group 4 (14) metals

- form two or more positive ions
- $\mathrm{Zn}^{2+}, \mathrm{Ag}^{+}$, and Cd^{2+} form only one ion

Examples:

Copper forms Cu^{+}and Cu^{2+}
Iron forms Fe^{2+} and Fe^{3+}
Gold forms Au^{+}and Au^{3+}

Metals with Variable Charge

TABLE 6.4 Some Metals That Form More Than One Positive Ion

Element	Possible lons	Name of Ion
Chromium	Cr^{2+}	Chromium(II)
	Cr^{3+}	Chromium(III)
Cobalt	Co^{2+}	Cobalt(II)
	Co^{3+}	Cobalt(III)
Copper	Cu^{+}	Copper(I)
	Cu^{2+}	Copper(II)
Gold	Au^{+}	Gold(I)
	Au^{3+}	Gold(III)
Iron	Fe^{2+}	Iron(II)
	Fe^{3+}	Iron(III)
Lead	Pb^{2+}	Lead(II)
	Pb^{4+}	Lead(IV)
Manganese	Mn^{2+}	Manganese(II)
	Mn^{3+}	Manganese(III)
Mercury	$\mathrm{Hg}_{2}{ }^{2+}$	Mercury(I)
	Hg^{2+}	Mercury(II)
Nickel	Ni^{2+}	Nickel(II)
	Ni^{3+}	Nickel(III)
Tin	Sn^{2+}	Tin(II)
	Sn^{4+}	Tin(IV)

[^0]
Periodic Table and Typical Ions

Metals
Metalloids
Nonmetals
© 2011 Pearson Education, Inc.

Examples of Names of Compounds with Variable Charge Metals

Transition metals

- with two different ions use a Roman numeral after the name of the metal to indicate the ionic charge
- only zinc, silver, and cadmium do not use a Roman numeral because they form only one ion $\left(\mathrm{Zn}^{2+}, \mathrm{Ag}^{+}\right.$, and Cd^{2+})

TABLE 6.5 Some lonic
Compounds of Metals That
Form Two Kinds of Positive Ions

Compound	Systematic Name
FeCl_{2}	Iron(II) chloride $\mathrm{Fe}_{2} \mathrm{O}_{3}$ $\mathrm{Cu}_{3} \mathrm{P}$ CuBr_{2}
Iron(III) oxide Copper(I) phosphide Copper(II) bromide	
SnCl_{2}	Tin(II) chloride PbS_{2}
Lead(IV) sulfide	

Naming Ionic Compounds with Variable Charge Metals

Naming FeCl_{2}

STEP1 Determine the charge of the cation from the anion.

$$
\begin{array}{ll}
\mathrm{Fe}(?)+2 \mathrm{Cl}^{-} & =\mathrm{Fe}(?)+2(1-)=0 \\
\mathrm{Fe}(?) & =2+=\mathrm{Fe}^{2+}
\end{array}
$$

STEP 2 Name the cation by its element name and use a Roman numeral in parentheses for the charge.

$$
\mathrm{Fe}^{2+}=\operatorname{iron}(\mathrm{II})
$$

Naming FeCl ${ }_{2}$ (continued)

STEP 3 Name the anion by using the first syllable of its element name followed by ide.
chloride

STEP 4 Write the name of the cation first and the name of the anion second.

$$
\text { iron(II) chloride }=\mathrm{FeCl}_{2}
$$

Naming $\mathrm{Cr}_{2} \mathrm{O}_{3}$

STEP1 Determine the charge of the cation from the anion.

$$
\begin{aligned}
& 2 \mathrm{Cr}(?)+3 \mathrm{O}^{2-}=2 \mathrm{Cr}(?)+3(2-)=0 \\
& 2 \mathrm{Cr}(?)=6+\quad \mathrm{Cr}(?)=3+=\mathrm{Cr}^{3+}
\end{aligned}
$$

STEP 2 Name the cation by its element name and use a Roman numeral in parentheses for the charge.

$$
\mathrm{Cr}^{3+}=\text { chromium(III) }
$$

Naming FeCl ${ }_{2}$ (continued)

STEP 3 Name the anion by using the first syllable of its element name followed by ide.
oxide

STEP 4 Write the name of the cation first and the name of the anion second.
chromium(III) oxide

Learning Check

Select the correct name for each.
A. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$

1) iron sulfide
2) iron(II) sulfide
3) iron (III) sulfide
B. CuO
4) copper oxide
5) copper(I) oxide
6) copper (II) oxide

Solution

Select the correct name for each.
A. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
3) iron (III) sulfide
$\mathrm{Fe}^{3+} \mathrm{S}^{2-}$
B. CuO
3) copper (II) oxide
$\mathrm{Cu}^{2+} \mathrm{O}^{2-}$

Guide to Writing Formulas from the Name

Guide to Writing Formulas from the
Name of an Ionic Compound

STEP 1
 Identify the cation and anion.

STEP 2
 Balance the charges.

STEP 3

Write the formula, cation first, using the subscripts from the charge balance.

Writing Formulas

Write the formula of potassium sulfide.
STEP1
Identify the cation and anion.

$$
\begin{array}{ll}
\text { potassium } & =\mathrm{K}^{+} \\
\text {sulfide } & =\mathrm{S}^{2-}
\end{array}
$$

STEP 2
Balance the charges.
$\mathrm{K}^{+} \quad \mathrm{S}^{2-}$
K^{+}
$2(1+)+2(1-)=0$
STEP 3 Write the formula, cation first, using the subscripts from the charge balance.

$$
2 \mathrm{~K}^{+} \text {and } 1 \mathrm{~S}^{2-}=\mathrm{K}_{2} \mathrm{~S}
$$

Writing Formulas

Write the formula of cobalt(III) chloride.
STEP1 Identify the cation and anion.

$$
\begin{aligned}
\text { cobalt (III) } & =\mathrm{Co}^{3+} \quad(\text { III }=\text { charge of } 3+) \\
\text { chloride } & =\mathrm{Cl}^{-}
\end{aligned}
$$

STEP 2 Balance the charges.

$$
\mathrm{Co}^{3+} \text { and } 3 \mathrm{Cl}^{-}=(3+)+3(1-)=0
$$

STEP 3 Write the formula, cation first, using the subscripts from the charge balance.
$1 \mathrm{Co}^{3+}$ and $3 \mathrm{Cl}^{-}=\mathrm{CoCl}_{3}$

Learning Check

Select the correct formula for each of the following:

A. copper (I) nitride

1) CuN
2) CuN_{3}
3) $\mathrm{Cu}_{3} \mathrm{~N}$
B. lead (IV) oxide
4) PbO_{2}
5) PbO
6) $\mathrm{Pb}_{2} \mathrm{O}_{4}$

Solution

A. copper (I) nitride 3) $\mathrm{Cu}_{3} \mathrm{~N}$
B. lead (IV) oxide

1) PbO_{2}
$3 \mathrm{Cu}^{+}$and N^{3-}
Pb^{4+} and $2 \mathrm{O}^{2-}$

Chapter 6 Inorganic and Organic Compounds: Names and Formulas
 6.4 Polyatomic Ions

Polyatomic lons

A polyatomic ion

- is a group of atoms
- has an overall ionic charge

Examples:
$\begin{array}{llll}\mathrm{NH}_{4}{ }^{+} & \text {ammonium } & \mathrm{OH}^{-} & \text {hydroxide } \\ \mathrm{NO}_{3}{ }^{-} & \text {nitrate } & \mathrm{NO}_{2}^{-} & \text {nitrite } \\ \mathrm{CO}_{3}{ }^{2-} & \text { carbonate } & \mathrm{PO}_{4}{ }^{3-} & \text { phosphate }\end{array}$
$\mathrm{HCO}_{3}{ }^{-}$hydrogen carbonate
(bicarbonate)

Some Compounds with Polyatomic lons

Fertilizer
$\mathrm{NH}_{4} \mathrm{NO}_{3}$

More Names of Polyatomic Ions

The names of the common polyatomic anions

- end in ate
$\mathrm{NO}_{3}{ }^{-}$
nitrate
$\mathrm{PO}_{4}{ }^{3-}$
phosphate
- with one oxygen less end in ite
$\mathrm{NO}_{2}{ }^{-} \quad$ nitrite
$\mathrm{PO}_{3}{ }^{3-}$
phosphite
- with hydrogen use prefix hydrogen (or bi)
$\mathrm{HCO}_{3}{ }^{-}$hydrogen carbonate (bicarbonate)
$\mathrm{HSO}_{3}{ }^{-} \quad$ hydrogen sulfite (bisulfite)

Names and Formulas of Common Polvatomic Ions

tABLE 6.6 Names and Formulas of Some Common Polyatomic Ions

Nonmetal	Formula of Ion ${ }^{\text {a }}$	Name of Ion
Hydrogen	OH^{-}	Hydroxide
Nitrogen	$\mathrm{NH}_{4}{ }^{+}$	Ammonium
	$\mathrm{NO}_{3}{ }^{-}$	Nitrate
	$\mathrm{NO}_{2}{ }^{-}$	Nitrite
Chlorine	$\mathrm{ClO}_{4}{ }^{-}$	Perchlorate
	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	ClO^{-}	Hypochlorite
Carbon	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate (or bicarbonate)
	CN^{-}	Cyanide
		Acetate
	SCN^{-}	Thiocyanate
Sulfur	$\mathrm{SO}_{4}{ }^{2-}$	Sulfate
	$\mathrm{HSO}_{4}{ }^{-}$	Hydrogen sulfate (or bisulfate)
	$\mathrm{SO}_{3}{ }^{2-}$	Sulfite
	$\mathrm{HSO}_{3}{ }^{-}$	Hydrogen sulfite (or bisulfite)
Phosphorus	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate
	$\mathrm{HPO}_{4}{ }^{2-}$	Hydrogen phosphate
	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Dihydrogen phosphate
	$\mathrm{PO}_{3}{ }^{3-}$	Phosphite
Chromium	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate
Manganese	$\mathrm{MnO}_{4}{ }^{-}$	Permanganate

[^1]
Some Compounds Containing Polyatomic lons

TABLE 6.7 Some Compounds That Contain Polyatomic lons

Formula	Name	Use
BaSO_{4}	Barium sulfate	Contrast medium for X-rays
CaCO_{3}	Calcium carbonate	Antacid, calcium supplement
CaSO_{3}	Calcium sulfite	Preservative in cider and fruit juices
CaSO_{4}	Calcium sulfate	Plaster casts
AgNO_{3}	Silver nitrate	Topical anti-infective
NaHCO_{3}	Sodium bicarbonate	Antacid
$\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	Zinc phosphate	Dental cements
FePO_{4}	Iron(III) phosphate	Food and bread enrichment
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate	Alkalizer, diuretic
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	Aluminum sulfate	Antiperspirant, anti-infective
AlPO_{4}	Aluminum phosphate	Antacid
MgSO_{4}	Magnesium sulfate	Cathartic, Epsom salts

Prefixes for Names of Polyatomic lons of Halogens

Some polyatomic ions of the halogens require prefixes.
ClO_{4}^{-}perchlorate
$\mathrm{ClO}_{3}{ }^{-}$chlorate
ClO_{2}^{-}chlorite
ClO^{-}hypochlorite
one oxygen more most common form
one oxygen less
two oxygens less

Guide to Naming Compounds with Polyatomic Ions

Guide to Naming lonic Compounds with Polyatomic Ions

STEP 1
Identify the cation and polyatomic ion (anion).

Examples of Naming
Compounds with Polyatomic Ions
In a compound with a negatively charged polyatomic,

- the positive ion is named first
- followed by the name of the polyatomic ion

NaNO_{3}	sodium nitrate
$\mathrm{K}_{2} \mathrm{SO}_{4}$	potassium sulfate
$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{3}$	iron(III) bicarbonate
	or iron(III) hydrogen carbonate
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{3}$	ammonium phosphite

Learning Check

Select the correct formula for each:
A. aluminum nitrate

1) AlNO_{3}
2) $\mathrm{Al}(\mathrm{NO})_{3}$
3) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
B. copper(II) nitrate
4) $\mathrm{CuNO}_{3} \quad$ 2) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
5) $\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)$
C. iron (III) hydroxide
6) $\mathrm{FeOH} \quad$ 2) $\mathrm{Fe}_{3} \mathrm{OH}$
7) $\mathrm{Fe}(\mathrm{OH})_{3}$
D. tin(IV) hydroxide
8) $\mathrm{Sn}(\mathrm{OH})_{4} \quad$ 2) $\mathrm{Sn}(\mathrm{OH})_{2}$
9) $\mathrm{Sn}_{4}(\mathrm{OH})$

Solution

Select the correct formula for each:
A. aluminum nitrate
3) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
B. copper(II) nitrate
2) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
C. iron(III) hydroxide
3) $\mathrm{Fe}(\mathrm{OH})_{3}$
D. tin(IV) hydroxide

1) $\mathrm{Sn}(\mathrm{OH})_{4}$

Learning Check

Match each formula with the correct name:
A. MgS
MgSO_{3}
MgSO_{4}
B. $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$
$\mathrm{Ca}(\mathrm{ClO})_{2}$
$\mathrm{Ca}\left(\mathrm{ClO}_{2}\right)_{2}$

1) magnesium sulfite
2) magnesium sulfate
3) magnesium sulfide
4) calcium chlorate
5) calcium chlorite
6) calcium hypochlorite

Solution

Match each formula with the correct name:
$\begin{array}{ll}\text { A. } \mathrm{MgS} & \text { 3) magnesium sulfide }\end{array}$
MgSO_{3} 1) magnesium sulfite
MgSO_{4}
2) magnesium sulfate
B. $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$

1) calcium chlorate
$\mathrm{Ca}(\mathrm{ClO})_{2}$
2) calcium hypochlorite
$\mathrm{Ca}\left(\mathrm{ClO}_{2}\right)_{2}$
3) calcium chlorite

Learning Check

Name each of the following compounds:
A. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2}$
C. PbO_{2}
D. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
E. $\quad \mathrm{Ba}_{3}\left(\mathrm{PO}_{3}\right)_{2}$

Solution

Name each of the following compounds:
A. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2}$
C. PbO_{2}
D. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
E. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{3}\right)_{2}$
magnesium nitrate
copper(II) chlorate
lead (IV) oxide
iron(III) sulfate
barium phosphite

Writing Formulas with Polyatomic lons

The formula of an ionic compound

- containing a polyatomic ion must have a charge balance that equals zero(0)
Na^{+}and $\mathrm{NO}_{3}{ }^{-} \rightarrow \quad \mathrm{NaNO}_{3}$
- with two or more polyatomic ions encloses the polyatomic ions in parentheses
Mg^{2+} and $2 \mathrm{NO}_{3}{ }^{-} \rightarrow \quad \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
subscript 2 for charge balance

Learning Check

Write the correct formula for each:
A. potassium bromate
B. calcium carbonate
C. sodium phosphate
D. iron(III) oxide
E. iron (II) nitrite

Solution

Write the correct formula for each:
A. potassium bromate KBrO_{3}
B. calcium carbonate CaCO_{3}
C. sodium phosphate $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D. iron(III) oxide
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
E. iron (II) nitrite
$\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$

Flowchart for Naming Ionic Compounds

Learning Check

Name the following compounds:
A. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
B. FeBr_{3}
C. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
D. $\mathrm{Mn}\left(\mathrm{NO}_{2}\right)_{2}$
E. NaHCO_{3}

Solution

Name the following compounds:
A. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \mathrm{Ca}^{2+} \mathrm{PO}_{4}{ }^{3-}$ calcium phosphate
B. FeBr_{3}
$\mathrm{Fe}^{3+} \mathrm{Br}^{-} \quad$ iron(III) bromide
C. $\mathrm{Al}_{2} \mathrm{~S}_{3} \quad \mathrm{Al}^{3+} \quad \mathrm{S}^{2-} \quad$ aluminum sulfide
D. $\mathrm{Mn}\left(\mathrm{NO}_{2}\right)_{2} \quad \mathrm{Mn}^{2+} \mathrm{NO}_{2}^{-}$manganese(II) nitrite
E. $\mathrm{NaHCO}_{3} \quad \mathrm{Na}^{+} \mathrm{HCO}_{3}^{-}$sodium hydrogen
carbonate
(sodium bicarbonate)

Learning Check

Write the formulas for the following:
A. calcium nitrate
B. iron(II) hydroxide
C. aluminum carbonate
D. copper(II) hypobromite
E. lithium phosphate

Solution

Write the formulas for the following:
A. calcium nitrate $\quad \mathrm{Ca}^{2+}, \mathrm{NO}_{3}^{-} \quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
B. iron(II) hydroxide
$\mathrm{Fe}^{2+}, \mathrm{OH}^{-}$
$\mathrm{Fe}(\mathrm{OH})_{2}$
C. aluminum carbonate
$\mathrm{Al}^{1++}, \mathrm{CO}_{3}{ }^{2-}$ $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
D. copper(II) hypobromite $\mathrm{Cu}^{2+}, \mathrm{BrO}^{-}$ $\mathrm{Cu}(\mathrm{BrO})_{2}$
E. lithium phosphate
$\mathrm{Li}^{+}, \mathrm{PO}_{4}{ }^{3-}$
$\mathrm{Li}_{3} \mathrm{PO}_{4}$

[^0]: *Mercury(I) ions form pairs with a $2+$ charge
 © 2011 Pearson Education, Inc.

[^1]: / ${ }^{\text {a }}$ Boxed formulas are the most common polyatomic ion for that element.
 © 2011 Pearson Education, Inc.

