Chapter 6 Inorganic and Organic Compounds: Names and Formulas

6.1 Octet Rule and Ions

© 2011 Pearson Education, Inc.

Octet Rule

An octet

- is 8 valence electrons
- is associated with the stability of the noble gases
- does not occur with He, which is stable with two valence electrons (duet)

Valence electrons

He1s²2Ne1s²2s²2p68Ar1s²2s²2p63s²3p68Kr1s²2s²2p63s²3p64s²3d104p68

Forming Octets

Atoms acquire octets

- to become more stable
- by losing, gaining, or sharing valence electrons
- by forming ionic or covalent bonds

© 2011 Pearson Education, Inc.

Ionic and Covalent Bonds

lonic bonds involve

- loss of electrons by a metal
- gain of electrons by a nonmetal

Covalent bonds involve

a sharing of electrons

Metals Form Positive Ions

Metals form positive ions (CATIONS)

- by a loss of their valence electrons
- with the electron configuration of their nearest noble gas
- that have fewer electrons than protons.

Group 1A (1) metals \longrightarrow ion⁺ Group 2A (2) metals \longrightarrow ion²⁺

Group 3A (13) metals \longrightarrow ion³⁺

Formation of a Sodium Ion, Na⁺

Sodium achieves an octet by losing its one valence electron.

Charge of Sodium Ion, Na⁺

With the loss of its valence Sodium ion electron, the sodium ion has a Na⁺ 1+ charge.

Sodium atom	Sodium ion	$11p^{+}$
11 <i>p</i> +	11 <i>p</i> +	
<u>11 e</u> -	<u>10 e</u> -	10 <i>e</i> -
0	1+	

 $1s^2 2s^2 2p^6$

• • • Formation of Mg²⁺

Magnesium achieves an octet by losing its two valence electrons.

8 Basi

Basic Chemistry

Copyright © 2011 Pearson Education, Inc.

Charge of Magnesium Ion, Mg²⁺

With the loss of two valence electrons, magnesium forms a positive ion with a 2+ charge. Magnesium ion Mg²⁺

Mg atom	Mg ²⁺ ion	
12 <i>p</i> +	12 <i>p</i> +	
<u>12 e</u> -	<u>10 e</u> -	
0	2+	

 $1s^2 2s^2 2p^6$

Learning Check

Select the correct answer for aluminum.

A. The number of valence electrons is _____.

1) 1 e⁻ 2) 2 e⁻ 3) 3 e⁻

B. The electron change for the octet is _____. 1) loss of 3 e^- 2) gain of 3 e^- 3) gain of 5 e^-

C. The ionic charge of the aluminum ion is _____.

 1) 3–
 2) 5–
 3) 3⁺

 D. The symbol for the aluminum ion is _____

 1) Al³⁺
 2) Al³⁻
 3) Al⁺

The number of valence electrons is ____.

1) 1 e⁻
 2) 2 e⁻
 3) 3 e⁻

The electron change for the octet is _.

- - 2) gain of 3 *e*⁻
 - 3) gain of 5 e^-

Select the correct answer for aluminum.

The ionic charge of the aluminum ion is

The symbol for the aluminum ion is ____.

33% 33% 33% DX

Copyright © 2011 Pearson Mucation, Inc.

Solution

Select the correct answer for aluminum: A. The number of valence electrons is 3) 3 e⁻

- B. The electron change for the octet is 1) loss of 3 e^-
- C. The ionic charge of the aluminum ion is
 3) 3⁺
- D. The symbol for the aluminum ion is
 1) Al³⁺

Formation of Negative Ions

In ionic compounds, nonmetals (FORM ANIONS)

- achieve an octet arrangement
- gain electrons
- form negatively charged ions with 3–, 2–, or 1– charges

Formation of Chloride Ion, Cl⁻

 Chlorine achieves an octet by adding an electron to its valence electrons.

© 2011 Pearson Education, Inc.

Charge of a Chloride Ion, Cl⁻

A chloride ion forms Chloride ion when CI gains one electron with a 1– charge • Chlorine atom Chloride ion 17 p⁺ 17 *p*⁺ <u>18 e</u>-<u>17 e</u>-1_ \cap

 $18e^{-}$

 $17p^{+}$

: Cl:

 $1s^2 2s^2 2p^6 3s^2 3p^6$

Some Typical Ionic Charges

TABLE 6.1 Formulas and Names of Some Common Monatomic Ions

Group Number	Formula of Ion	Name of Ion	Group Number	Formula of Ion	Name of Ion
	Metals			Nonmetals	
1A (1)	Li ⁺	Lithium	5A (15)	N ³⁻	Nitride
	Na^+	Sodium		P ³⁻	Phosphide
	\mathbf{K}^+	Potassium	6A (16)	O^{2-}	Oxide
2A (2)	Mg^{2+}	Magnesium		S^{2-}	Sulfide
	Ca^{2+}	Calcium	7A (17)	\mathbf{F}^{-}	Fluoride
	Ba^{2+}	Barium		Cl^{-}	Chloride
3A (13)	Al^{3+}	Aluminum		Br^{-}	Bromide
				Γ	Iodide

© 2011 Pearson Education, Inc.

Ionic Charge from Group Numbers

lons

- achieve the electron configuration of their nearest noble gas
- of metals in Group 1A (1), Group 2A (2), or Group 3A (13) have positive 1+. 2+, or 3+ charges
- of nonmetals in Groups 5A (15), 6A (16), or 7A (17) have negative 3–, 2–, or 1– charges

The charge of an ion is obtained by subtracting 8 or 18 from its Group number.

Example: Group 6A (16) = 6 - 8 = 2 - 2

or
$$16 - 18 = 2 -$$

Some lons and Their Nearest Noble Gases

 TABLE 6.2
 Examples of Monatomic Ions and Their Nearest Noble Gases

© 2011 Pearson Education, Inc.

Learning Check

Select the correct answer for sulfur.

- A. The group number for sulfur is _____.
- B. The number of valence electrons in sulfur is _____. 1) 4 e^- 2) 6 e^- 3) 8 e^-
- C. The change in electrons for an octet requires a 1) loss of 2 e^- 2) gain of 2 e^- 3) gain of 4 e^- D. The ionic charge of a sulfide ion is _____. 1) 2+ 2) 2- 3) 4-

Solution

A. The group number for sulfur is3) 6A (16)

- B. The number of valence electrons in sulfur is
 2) 6 e⁻
- C. The change in electrons for an octet requires a
 2) gain of 2 e⁻
- D. The ionic charge of a sulfide ion2) 2–

Chapter 6 Inorganic and Organic Compounds: Names and Formulas

6.2 Ionic Compounds

Ionic Compounds

Ionic compounds

- consist of positive and negative ions
- have attractions called ionic bonds between positively and negatively charged ions
- have high melting and boiling points
- are solids at room temperature

• • • Salt is an Ionic Compound

Sodium chloride (table salt) is an example of an ionic compound.

© 2011 Pearson Education, Inc.

• • • Ionic Formulas

An ionic formula

- consists of positively and negatively charged ions
- is neutral
- has charge balance (net charge of zero)
 total positive charge = total negative charge
- uses subscripts to indicate the number of ions needed to give charge balance

Charge Balance for NaCl, "Salt"

In NaCl,

- a Na atom loses its valence electron
- a CI atom gains an electron
- the symbol of the metal is written first followed by the symbol of the nonmetal
- the charges of the ions in the compound are not shown

Charge Balance in NaF

 The formulas of ionic compounds are determined from the charges on the ions.

sodium fluorine sodium fluoride The overall charge of NaF is zero (0).

$$1(1+) + 1(1-) = 0$$

Charge Balance In MgCl₂

In MgCl₂

- a Mg atom loses two valence electrons
- two CI atoms each gain one electron
- subscripts indicate the number of ions needed to give charge balance

Charge Balance In Na₂S

In Na₂S,

- two Na atoms lose one valence electron each
- one S atom gains two electrons
- subscripts show the number of ions needed to give charge balance

Writing Ionic Formulas from Charges

Charge balance is used to write the formula for sodium nitride, a compound containing Na⁺ and N³⁻.

Formula from Ionic Charges

Write the ionic formula of the compound containing Ba²⁺ and Cl⁻.

• Write the symbols of the ions.

Ba²⁺ Cl⁻

Balance the charges.

Ba²⁺ CI[−] two CI[−] needed CI[−]

• Write the ionic formula using a *subscript 2* for two chloride ions that give charge balance.

Learning Check

Select the correct formula for each of the following ionic compounds:

A. Li⁺ and O²⁻

- 1) LiO 2) Li₂O 3) LiO₂
- B. AI^{3+} and CI^{-} 1) AICI₃ 2) AICI 3) AI_3CI

C. Mg²⁺ and N^{3–} 1) MgN 2) Mg_2N_3 3) Mg_3N_2

What is the chemical formula for Li⁺ and O²⁻ LiO 1. 33% 33% 2. Li₂O 3. LiO₂

33%

What is the chemical formula for Al³⁺ and Cl⁻ AlCl₃

- 2. AICI
- 3. Al₃Cl

• • What is the chemical formula for Mg²⁺ and N^{3–}

- 1. MgN
- 2. Mg_2N_3
- 3. Mg_3N_2

Solution

A. Li⁺ and O^{2-} 2) Li_2O check: $2Li^+ + O^{2-} = 2(1+) + 1(2-) = 0$ B. Al³⁺ and Cl⁻ 1) AICI₃ check: $AI^{3+} + 3CI^{-} = (3+) + 3(1-) = 0$ C. Mg^{2+} and N^{3-} 3) Mg_3N_2 check: $3Mg^{2+} + 2N^{3-} = 3(2+) + 2(3-) = 0$

• • Naming of Ionic Compounds

In the name of an ionic compound,

- the positive ion (first ion) is named as the element
- the negative ion (second ion) is named by changing the end of the element name to –*ide*

Solution

Ba ²⁺	Al ³⁺	K+
barium	aluminum	potassium
N ^{3–}	O ²⁻	F-
nitride	oxide	fluoride
P ³⁻	S ^{2–}	CI⁻
phosphide	sulfide	chloride

Naming Ionic Compounds with Two Elements

Guide to Naming Ionic Compounds with Metals That Form a Single Ion

Examples of Ionic Compounds with Two Elements

Formula		ns n Anion	Name
NaCl	Na+	Cl-	sodium chloride
K ₂ S	K+	S ^{2–}	potassium sulfide
MgO	Mg ²⁺	O ²⁻	magnesium oxide
Cal ₂	Ca ²⁺	 -	calcium iodide
AI_2O_3	Al ³⁺	O ²⁻	aluminum oxide

Some Ionic Compounds

Compound	Metal Ion	Nonmetal Ion	Name
KI	K^+	I	
	Potassium	Iodide	Potassium iodide
MgBr ₂	Mg^{2+}	Br^{-}	
	Magnesium	Bromide	Magnesium bromide
Al_2O_3	Al^{3+}	O^{2-}	
© 2011 Pearson Education, Inc.	Aluminum	Oxide	Aluminum oxide

Learning Check

Write the formulas and names for compounds of the following ions:

	Br⁻	S ²⁻	N ³⁻
Na⁺	NaBr	Na ₂ S	Na ₃ N
	sodium	sodium	sodium
	bromide	sulfide	nitride
Al ³⁺	AlBr ₃	Al ₂ S ₃	AIN
	aluminum	aluminum	aluminum
	bromide	sulfide	nitride

Solution

Write the names of each of the following compounds:

- 1) CaO calcium oxide
- 2) KBr potassium bromide
- 3) AI_2O_3 aluminum oxide
- 4) MgCl₂ magnesium chloride

Transition Metals That Form Two or More Positive Ions

Most transition metals and Group 4 (14) metals

- form two or more positive ions
- Zn²⁺, Ag⁺, and Cd²⁺ form only one ion

Examples:

Copper forms Cu⁺ and Cu²⁺ Iron forms Fe²⁺ and Fe³⁺ Gold forms Au⁺ and Au³⁺

Metals with Variable Charge TABLE 6.4 Some Metals That Form More Than One Positive Ion

Element	Possible Ions	Name of Ion
Chromium	Cr ²⁺	Chromium(II)
	Cr^{3+}	Chromium(III)
Cobalt	Co^{2+}	Cobalt(II)
	Co^{3+}	Cobalt(III)
Copper	Cu^+	Copper(I)
	Cu^{2+}	Copper(II)
Gold	Au^+	Gold(I)
	Au ³⁺	Gold(III)
Iron	Fe ²⁺	Iron(II)
	Fe ³⁺	Iron(III)
Lead	Pb^{2+}	Lead(II)
	Pb^{4+}	Lead(IV)
Manganese	Mn^{2+}	Manganese(II)
	Mn^{3+}	Manganese(III)
Mercury	Hg_{2}^{2+}	Mercury(I)*
	Hg^{2+}	Mercury(II)
Nickel	Ni ²⁺	Nickel(II)
	Ni ³⁺	Nickel(III)
Tin	Sn^{2+}	Tin(II)
	Sn^{4+}	Tin(IV)

*Mercury(I) ions form pairs with a 2+ charge

© 2011 Pearson Education, Inc.

Periodic Table and Typical Ions

Examples of Names of Compounds with Variable Charge Metals

Transition metals

- with two different ions use a Roman numeral after the name of the metal to indicate the ionic charge
- only zinc, silver, and cadmium do not use a Roman numeral because they form only one ion (Zn^{2+,} Ag⁺, and Cd²⁺)

TABLE 6.5Some lonicCompounds of Metals ThatForm Two Kinds of Positive lons

Compound	Systematic Name
FeCl ₂	Iron(II) chloride
Fe ₂ O ₃	Iron(III) oxide
Cu ₃ P	Copper(I) phosphide
CuBr ₂	Copper(II) bromide
SnCl ₂	Tin(II) chloride
PbS ₂	Lead(IV) sulfide

© 2011 Pearson Education. Inc

Naming Ionic Compounds with Variable Charge Metals

Guide to Naming Ionic Compounds with Variable Charge Metals

• • Naming FeCl₂ STEP1 Determine the charge of the cation from the anion.

Fe (?) +
$$2CI^{-} = Fe$$
 (?) + $2(1-) = 0$
Fe (?) = $2+ = Fe^{2+}$

STEP 2 Name the cation by its element name and use a Roman numeral in parentheses for the charge.

 $Fe^{2+} = iron(II)$

• • Naming FeCl₂ (continued)

STEP 3 Name the anion by using the first syllable of its element name followed by *ide*.

chloride

STEP 4 Write the name of the cation first and the name of the anion second.

iron(II) chloride = $FeCI_2$

• • • Naming Cr_2O_3 STEP1 Determine the charge of the cation from

the anion.

 $2Cr(?) + 3O^{2-} = 2Cr(?) + 3(2-) = 0$ $2Cr(?) = 6+ Cr(?) = 3+ Cr^{3+}$

STEP 2 Name the cation by its element name and use a Roman numeral in parentheses for the charge.

 Cr^{3+} = chromium(III)

• • Naming FeCl₂ (continued)

STEP 3 Name the anion by using the first syllable of its element name followed by *ide*.

oxide

STEP 4 Write the name of the cation first and the name of the anion second. chromium(III) oxide

Learning Check

Select the correct name for each.

- A. Fe_2S_3
 - 1) iron sulfide
 - 2) iron(II) sulfide
 - 3) iron (III) sulfide
- B. CuO
 - 1) copper oxide
 - 2) copper(I) oxide
 - 3) copper (II) oxide

Solution

Select the correct name for each.

A. Fe_2S_3 3) iron (III) sulfide Fe³⁺ S²⁻

B. CuO

3) copper (II) oxide $Cu^{2+} O^{2-}$

Guide to Writing Formulas from the Name

Guide to Writing Formulas from the Name of an Ionic Compound

Writing Formulas Write the formula of potassium sulfide. STEP1 Identify the cation and anion. potassium $= K^+$ sulfide = S^{2-} Balance the charges. STEP 2 K⁺ S^{2-} K⁺ 2(1+) + 2(1-) = 0Write the formula, cation first, STEP 3 using the subscripts from the charge balance. 2 K^+ and $1 \text{ S}^{2-} = \text{ K}_2 \text{ S}$

• • • Writing Formulas

Write the formula of cobalt(III) chloride.

STEP1 Identify the cation and anion.

cobalt (III) = Co^{3+} (III = charge of 3+)

chloride = CI^-

STEP 2 Balance the charges.

 $Co^{3+} and 3Cl^{-} = (3+) + 3(1-) = 0$

STEP 3 Write the formula, cation first, using the subscripts from the charge balance.

$$1 \text{ Co}^{3+}$$
 and $3 \text{ Cl}^- = \text{ CoCl}_3$

Learning Check

Select the correct formula for each of the following:

- A. copper (I) nitride
 - 1) CuN 2) CuN₃ 3) Cu₃N

B. lead (IV) oxide 1) PbO_2 2) PbO 3) Pb_2O_4

Solution

A. copper (I) nitride3) Cu₃N

3Cu⁺ and N³⁻

B. lead (IV) oxide1) PbO₂

Pb4+ and 2O²⁻

Chapter 6 Inorganic and Organic Compounds: Names and Formulas

6.4 Polyatomic lons

Polyatomic Ions

A polyatomic ion

- is a group of atoms
- has an overall ionic charge
 Examples:
 - NH_4^+ ammonium OH^- hydroxide
 - NO_3^- nitrate NO_2^- nitrite
 - CO_3^{2-} carbonate PO_4^{3-} phosphate
 - HCO₃⁻ hydrogen carbonate (bicarbonate)

Some Compounds with Polyatomic Ions

Plaster molding Fertilizer NH₄NO₃ $CaSO_4$ Experi **Bloom Plus** 2^{+} Ca^{2^+} SO_4^{2-} NO₃ NH_{4}^{+} Sulfate ion Nitrate ion

Copyright © 2011 Pearson Education, Inc.

More Names of Polyatomic Ions

The names of the common polyatomic anions

- end in ate
 - NO_3^- nitrate PO_4^{3-} phosphate
- with one oxygen less end in *ite*
 - NO_2^- nitrite PO_3^{3-} phosphite
- with hydrogen use prefix hydrogen (or bi)
 HCO₃⁻ hydrogen carbonate (bicarbonate)
 HSO₃⁻ hydrogen sulfite (bisulfite)

Names and Formulas of Common Polyatomic Ions TABLE 6.6 Names and Formulas of Some Common Polyatomic Ions Nonmetal Formula of Ion² Name of Ion

Nonmetal	Formula of Ion ^a	Name of Ion
Hydrogen	OH ⁻	Hydroxide
Nitrogen	NH_4^+	Ammonium
	NO ₃	Nitrate
	NO_2^-	Nitrite
Chlorine	ClO_4^-	Perchlorate
	ClO ₃ ⁻	Chlorate
	ClO_2^-	Chlorite
	ClO ⁻	Hypochlorite
Carbon	CO_{3}^{2-}	Carbonate
	HCO ₃ ⁻	Hydrogen carbonate (or bicarbonate)
	CN^{-}	Cyanide
	$C_2H_3O_2^-$	Acetate
	SCN ⁻	Thiocyanate
Sulfur	SO4 ²⁻	Sulfate
	HSO_4^-	Hydrogen sulfate (or bisulfate)
	SO_3^{2-}	Sulfite
	HSO ₃ ⁻	Hydrogen sulfite (or bisulfite)
Phosphorus	PO ₄ ³⁻	Phosphate
	HPO_4^{2-}	Hydrogen phosphate
	$H_2PO_4^-$	Dihydrogen phosphate
	PO ₃ ³⁻	Phosphite
Chromium	CrO ₄ ²⁻	Chromate
	$Cr_2O_7^{2-}$	Dichromate
Manganese	MnO_4^-	Permanganate

^aBoxed formulas are the most common polyatomic ion for that element.

© 2011 Pearson Education, Inc.

7

Some Compounds Containing Polyatomic Ions

TABLE 6.7 Some Compounds That Contain Polyatomic Ions

Formula	Name	Use	
BaSO ₄	Barium sulfate	Contrast medium for X-rays	
CaCO ₃	Calcium carbonate	Antacid, calcium supplement	4
CaSO ₃	Calcium sulfite	Preservative in cider and fruit juices	
CaSO ₄	Calcium sulfate	Plaster casts	
AgNO ₃	Silver nitrate	Topical anti-infective	
NaHCO ₃	Sodium bicarbonate	Antacid	
$Zn_3(PO_4)_2$	Zinc phosphate	Dental cements	
FePO ₄	Iron(III) phosphate	Food and bread enrichment	
K ₂ CO ₃	Potassium carbonate	Alkalizer, diuretic	© 2011 Pearson Education, Inc.
$Al_2(SO_4)_3$	Aluminum sulfate	Antiperspirant, anti-infective	
AlPO ₄	Aluminum phosphate	Antacid	
MgSO ₄	Magnesium sulfate	Cathartic, Epsom salts	

© 2011 Pearson Education, Inc.

Prefixes for Names of Polyatomic Ions of Halogens

Some polyatomic ions of the halogens require prefixes.

- ClO₄⁻ perchlorate
- CIO₃⁻ chlorate
- ClO_2^- chlorite
- CIO⁻ hypochlorite

one oxygen more

most common form

one oxygen less

two oxygens less

Guide to Naming Compounds with Polyatomic Ions

Guide to Naming Ionic Compounds with Polyatomic Ions

Examples of Naming Compounds with Polyatomic lons

In a compound with a negatively charged polyatomic,

- the positive ion is named first
- followed by the name of the polyatomic ion NaNO₃ sodium nitrate
 K₂SO₄ potassium sulfate
 Fe(HCO₃)₃ iron(III) bicarbonate or iron(III) hydrogen carbonate
 (NH₄)₃PO₃ ammonium phosphite

Select the correct formula for each:

A. aluminum nitrate

1) $AINO_3$ 2) $AI(NO)_3$ 3) $AI(NO_3)_3$

- B. copper(II) nitrate
 - 1) $CuNO_3$ 2) $Cu(NO_3)_2$ 3) $Cu_2(NO_3)_3$
- C. iron (III) hydroxide
 - 1) FeOH 2) Fe_3OH 3) $Fe(OH)_3$
- D. tin(IV) hydroxide
 - 1) $Sn(OH)_4$ 2) $Sn(OH)_2$ 3) $Sn_4(OH)$

Select the correct formula for each: A. aluminum nitrate 3) Al(NO₃)₃ B. copper(II) nitrate 2) Cu(NO₃)₂ C. iron(III) hydroxide 3) $Fe(OH)_3$ D. tin(IV) hydroxide 1) Sn(OH)₄

Match each formula with the correct name:

- A. MgS
 MgSO₃
 MgSO₄
 MgSO₄
 Magnesium sulfate
- B. $Ca(CIO_3)_2$ 1) calcium chlorate $Ca(CIO)_2$ 2) calcium chlorite $Ca(CIO_2)_2$ 3) calcium hypochlorite

Match each formula with the correct name:

- A. MgS
 MgSO₃
 MgSO₄
 MgSO₄
 MgSO₄
 MgSO₄
- B. $Ca(CIO_3)_2$ 1) calcium chlorate $Ca(CIO)_2$ 3) calcium hypochlorite $Ca(CIO_2)_2$ 2) calcium chlorite

Name each of the following compounds:

- A. $Mg(NO_3)_2$
- B. $Cu(ClO_3)_2$
- C. PbO₂
- D. $Fe_2(SO_4)_3$ E. $Ba_3(PO_3)_2$

Name each of the following compounds:

- A. $Mg(NO_3)_2$ magnesium nitrate

B. $Cu(ClO_3)_2$ copper(II) chlorate C. PbO_2 lead (IV) oxide D. $Fe_2(SO_4)_3$ iron(III) sulfateE. $Ba_3(PO_3)_2$ barium phosph

barium phosphite

• • • • Writing Formulas with Polyatomic Ions

The formula of an ionic compound

 containing a polyatomic ion must have a charge balance that equals zero(0)

Na⁺ and NO₃⁻ \rightarrow NaNO₃

 with two or more polyatomic ions encloses the polyatomic ions in parentheses

 Mg^{2+} and $2NO_3^- \rightarrow Mg(NO_3)_2$

subscript 2 for charge balance

Write the correct formula for each:

- A. potassium bromate
- B. calcium carbonate
- C. sodium phosphate
- D. iron(III) oxide
- E. iron (II) nitrite

Write the correct formula for each:

- A. potassium bromate KBrO₃
- B. calcium carbonate $CaCO_3$
- C. sodium phosphate Na_3PO_4
- D. iron(III) oxide Fe_2O_3
- E. iron (II) nitrite $Fe(NO_2)_2$

Flowchart for Naming Ionic Compounds

© 2011 Pearson Education, Inc.

Name the following compounds:

- A. $Ca_3(PO_4)_2$
- B. FeBr₃
- C. AI_2S_3
- D. $Mn(NO_2)_2$
- E. NaHCO₃

Name the following compounds:

- A. $Ca_3(PO_4)_2$ $Ca^{2+} PO_4^{3-}$ calcium phosphate
- B. $FeBr_3$ Fe^{3+} Br⁻ iron(III) bromide
- C. AI_2S_3 AI^{3+} S^{2-} aluminum sulfide
- D. $Mn(NO_2)_2$ $Mn^{2+}NO_2^{-}$ manganese(II) nitrite
- E. NaHCO₃ Na⁺ HCO₃⁻ sodium hydrogen carbonate

(sodium bicarbonate)

Write the formulas for the following:

- A. calcium nitrate
- B. iron(II) hydroxide
- C. aluminum carbonate
- D. copper(II) hypobromite
- E. lithium phosphate

Write the formulas for the following:

- A. calcium nitrate Ca^{2+} , NO_3^{-} $Ca(NO_3)_2$
- B. iron(II) hydroxide Fe^{2+} , $OH^ Fe(OH)_2$
- C. aluminum carbonate AI^{3+} , CO_3^{2-} $AI_2(CO_3)_3$
- D. copper(II) hypobromite Cu^{2+} , BrO⁻ $Cu(BrO)_2$
- E. lithium phosphate Li^+ , PO_4^{3-} Li_3PO_4