
235

Chapte r

6 Compiling to the
Assembly Level

The theme of this book is the application of the concept of levels of abstraction to
computer science. This chapter continues the theme by showing the relationship
between the high-order languages level and the assembly level. It examines features
of the C++ language at level HOL6 and shows how a compiler might translate pro-
grams that use those features to the equivalent program at level Asmb5.

One major difference between level-HOL6 languages and level-Asmb5 lan-
guages is the absence of extensive data types at level Asmb5. In C++, you can
define integers, reals, arrays, booleans, and structures in almost any combination.
But assembly language has only bits and bytes. If you want to define an array of
structures in assembly language, you must partition the bits and bytes accordingly.
The compiler does that job automatically when you program at level HOL6.

Another difference between the levels concerns the flow of control. C++ has
if, while, do, for, switch, and function statements to alter the normal sequential
flow of control. You will see that assembly language is limited by the basic von
Neumann design to more primitive control statements. This chapter shows how the
compiler must combine several primitive level-Asmb5 control statements to exe-
cute a single, more powerful level-HOL6 control statement.

6.1 Stack Addressing and Local Variables

When a program calls a function, the program allocates storage on the run-time
stack for the returned value, the parameters, and the return address. Then the func-
tion allocates storage for its local variables. Stack-relative addressing allows the
function to access the information that was pushed onto the stack.

You can consider main() of a C++ program to be a function that the operating
system calls. You might be familiar with the fact that the main program can have
parameters named argc and argv as follows:

int main (int argc, char* argv[])

236 Chapter 6 Compiling to the Assembly Level

A simplification with main()

Stack-relative addressing

The stack grows upward in main
memory.

The ADDSP instruction

With main declared this way, argc and argv are pushed onto the run-time stack,
along with the return address and any local variables.

To keep things simple, this book always declares main() without the parame-
ters, and it ignores the fact that storage is allocated for the integer returned value
and the return address. Hence, the only storage allocated for main() on the run-
time stack is for local variables. This section describes how the compiler translates
main programs that have local variables.

Stack-Relative Addressing

In stack-relative addressing, the relationship between the operand and the operand
specifier is

Oprnd = Mem [SP + OprndSpec]

The stack pointer acts as a memory address to which the operand specifier is
added. Figure 4.39 shows that the user stack grows upward in main memory start-
ing at address FBCF. When an item is pushed onto the run-time stack, its address is
less than the address of the item that was on the top of the stack.

You can think of the operand specifier as the offset from the top of the stack. If
the operand specifier is 0, the instruction accesses Mem [SP], the value on top of
the stack. If the operand specifier is 2, it accesses Mem [SP + 2], the value two
bytes below the top of the stack.

The Pep/8 instruction set has two instructions for manipulating the stack
pointer directly, ADDSP and SUBSP. (CALL, RETn, and RETTR manipulate the stack
pointer indirectly.) ADDSP simply adds a value to the stack pointer and SUBSP sub-
tracts a value. The RTL specification of ADDSP is

and the RTL specification of SUBSP is

Even though you can add to and subtract from the stack pointer, you cannot set
the stack pointer with a load instruction. There is no LDSP instruction. Then how is
the stack pointer ever set? When you select the execute option in the Pep/8 simula-
tor the following two actions occur:

SP ← Mem [FFF8]
PC ← 0000

The first action sets the stack pointer to the content of memory location FFF8.
That location is part of the operating system ROM, and it contains the address of the

SP SP Oprnd; N SP , Z SP , V , C← − ← < ← = ← { } ← { }0 0 overflow carry

SP SP Oprnd; N SP , Z SP , V , C← + ← < ← = ← { } ← { }0 0 overflow carry

The SUBSP instruction

6.1 Stack Addressing and Local Variables 237

top of the application’s run-time stack. Therefore, when you select the execute
option the stack pointer is initialized correctly. The default Pep/8 operating system
initializes SP to FBCF. The application never needs to set it to anything else. In gen-
eral, the application only needs to add to the stack pointer to push items onto the run-
time stack, and subtract from the stack pointer to pop items off of the run-time stack.

Accessing the Run-Time Stack

Figure 6.1 shows how to push data onto the stack, access it with stack-relative
addressing, and pop it off the stack. The program pushes the string "BMW" onto the
stack followed by the decimal integer 325 followed by the character 'i'. Then it
outputs the items and pops them off the stack.

0000 C00042 LDA 'B',i ;push B

0003 F3FFFF STBYTEA -1,s

0006 C0004D LDA 'M',i ;push M

0009 F3FFFE STBYTEA -2,s

000C C00057 LDA 'W',i ;push W

000F F3FFFD STBYTEA -3,s

0012 C00145 LDA 325,i ;push 325

0015 E3FFFB STA -5,s

0018 C00069 LDA 'i',i ;push i

001B F3FFFA STBYTEA -6,s

001E 680006 SUBSP 6,i ;6 bytes on the run-time stack

0021 530005 CHARO 5,s ;output B

0024 530004 CHARO 4,s ;output M

0027 530003 CHARO 3,s ;output W

002A 3B0001 DECO 1,s ;output 325

002D 530000 CHARO 0,s ;output i

0030 600006 ADDSP 6,i ;deallocate stack storage

0033 00 STOP

0034 .END

Output

BMW325i

Figure 6.2(a) shows the values in the stack pointer (SP) and main memory
before the program executes. The machine initializes the stack pointer to FBCF
from the vector at Mem [FFF8].

The first two instructions,

LDA 'B',i

STBYTEA -1,s

Figure 6.1
Stack-relative addressing.

238 Chapter 6 Compiling to the Assembly Level

FBCFSP

FBC9

FBCA

FBCC

FBCD

FBCE

FBCF

?

?

?

?

?

?

FBC9SP

FBC9

FBCA

FBCC

FBCD

FBCE

FBCF

i

325

W

M

B

?

(a) Before the program executes. (b) After SUBSP executes.

Figure 6.2
Pushing BMW325i onto the run-
time stack in Figure 6.1.

put an ASCII ‘B’ character in the byte just above the top of the stack. LDA puts the
‘B’ byte in the right half of the accumulator, and STBYTEA puts it above the stack.
The store instruction uses stack-relative addressing with an operand specifier of –1
(dec) = FFFF (hex). Because the stack pointer has the value FBCF, the ‘B’ is stored
at Mem [FBCF + FFFF] = Mem [FBCE]. The next two instructions put ‘M’ and
‘W’ at Mem [FBCD] and Mem [FBCC], respectively.

The decimal integer 325, however, occupies two bytes. The program must store
it at an address that differs from the address of the ‘W’ by two. That is why the
instruction to store the 325 is

STA -5,s

and not

STA -4,s

In general, when you push items onto the run-time stack you must take into account
how many bytes each item occupies and set the operand specifier accordingly.

The SUBSP instruction subtracts 6 from the stack pointer, as Figure 6.2(b)
shows. That completes the push operation.

Tracing a program that uses stack-relative addressing does not require you to
know the absolute value in the stack pointer. The push operation would work the
same if the stack pointer were initialized to some other value, say FA18. In that case,
‘B’, ‘M’, ‘W’, 325, and ‘i’ would be at Mem [FA17], Mem [FA16], Mem [FA15],
Mem [FA13], and Mem [FA12], respectively, and the stack pointer would wind up
with a value of FA12. The values would be at the same locations relative to the top
of the stack, even though they would be at different absolute memory locations.

Figure 6.3 is a more convenient way of tracing the operation and makes use of
the fact that the value in the stack pointer is irrelevant. Rather than show the value
in the stack pointer, it shows an arrow pointing to the memory cell whose address is
contained in the stack pointer. Rather than show the address of the cells in memory,
it shows their offsets from the stack pointer. Figures depicting the state of the run-
time stack will use this drawing convention from now on.

6.1 Stack Addressing and Local Variables 239

SP

–6

–5

–3

–2

–1

0

?

?

?

?

?

?

0

1

3

4

5

6

i

325

W

M

B

?

SP

Figure 6.3
The stack of Figure 6.2 with relative
addresses.

The instruction

CHARO 5,s

outputs the ASCII ‘B’ character from the stack. Note that the stack-relative address
of the ‘B’ before SUBSP executes is –1, but its address after SUBSP executes is 5. Its
stack-relative address is different because the stack pointer has changed. Both

STBYTEA -1,s

and

CHARO 5,s

access the same memory cell. The other items are output similarly using their stack
offsets shown in Figure 6.3(b).

The instruction

ADDSP 6,i

deallocates six bytes of storage from the run-time stack by adding 6 to SP. Because
the stack grows upward toward smaller addresses, you allocate storage by subtract-
ing from the stack pointer and you deallocate storage by adding to the stack pointer.

Local Variables

The previous chapter shows how the compiler translates programs with global vari-
ables. It allocates storage for a global variable with a .BLOCK dot command and it
accesses it with direct addressing. Local variables, however, are allocated on the
run-time stack. To translate a program with local variables the compiler

■ allocates local variables with SUBSP,

■ accesses local variables with stack-relative addressing, and

■ deallocates storage with ADDSP.

The rules for accessing local
variables

240 Chapter 6 Compiling to the Assembly Level

The memory model for global
versus local variables

An important difference between global and local variables is the time at which
the allocation takes place. The .BLOCK dot command is not an executable state-
ment. Storage for global variables is reserved at a fixed location before the program
executes. In contrast, the SUBSP statement is executable. Storage for local variables
is created on the run-time stack during program execution.

Figure 6.4 is identical to the program of Figure 5.26 except that the variables
are declared local to main(). Although this difference is not perceptible to the user

High-Order Language

#include <iostream>
using namespace std;

int main () {
const int bonus = 5;
int exam1;
int exam2;
int score;
cin >> exam1 >> exam2;
score = (exam1 + exam2) / 2 + bonus;
cout << "score = " << score << endl;
return 0;

}

Assembly Language

0000 040003 BR main
bonus: .EQUATE 5 ;constant
exam1: .EQUATE 4 ;local variable
exam2: .EQUATE 2 ;local variable
score: .EQUATE 0 ;local variable
;

0003 680006 main: SUBSP 6,i ;allocate locals
0006 330004 DECI exam1,s ;cin >> exam1
0009 330002 DECI exam2,s ; >> exam2
000C C30004 LDA exam1,s ;score = (exam1
000F 730002 ADDA exam2,s ; + exam2)
0012 1E ASRA ; / 2
0013 700005 ADDA bonus,i ; + bonus
0016 E30000 STA score,s
0019 410026 STRO msg,d ;cout << "score = "
001C 3B0000 DECO score,s ; << score
001F 50000A CHARO '\n',i ; << endl
0022 600006 ADDSP 6,i ;deallocate locals
0025 00 STOP
0026 73636F msg: .ASCII "score = \x00"

726520
3D2000

002F .END

Figure 6.4
A program with local variables.

6.2 Branching Instructions and Flow of Control 241

–6 ? score

–4 ? exam2

–2 ? exam1

(a) Before SUBSP executes.

0 ? score

2 ? exam2

4 ? exam1

(a) After SUBSP executes.

SP

SP Figure 6.5
The run-time stack for the program
of Figure 6.4.

.EQUATE specifies the stack offset
for a local variable.

of the program, the translation performed by the compiler is significantly different.
Figure 6.5 shows the run-time stack for the program. As in Figure 5.26, bonus is a
constant and is defined with the .EQUATE command. However, local variables are
also defined with .EQUATE. With a constant, .EQUATE specifies the value of the
constant, but with a local variable, .EQUATE specifies the stack offset on the run-
time stack. For example, Figure 6.5 shows that the stack offset for local variable
exam1 is 6. Therefore, the assembly language program equates the symbol exam1
to 6. Note from the assembly language listing that .EQUATE does not generate any
code for the local variables.

Translation of the executable statements in main() differs in two respects
from the version with global variables. First, SUBSP and ADDSP allocate and
deallocate storage on the run-time stack for the locals. Second, all accesses to
the variables use stack-relative addressing instead of direct addressing. Other
than these differences, the translation of the assignment and output statements is
the same.

6.2 Branching Instructions and Flow of Control

The Pep/8 instruction set has eight conditional branches:

BRLE Branch on less than or equal to

BRLT Branch on less than

BREQ Branch on equal to

BRNE Branch on not equal to

BRGE Branch on greater than or equal to

BRGT Branch on greater than

BRV Branch on V

BRC Branch on C

242 Chapter 6 Compiling to the Assembly Level

The conditional branch instructions

Each of these conditional branches tests one or two of the four status bits, N, Z, V,
and C. If the condition is true, the operand is placed in PC, causing the branch. If
the condition is not true, the operand is not placed in PC, and the instruction follow-
ing the conditional branch executes normally. You can think of them as comparing
a 16-bit result to 0000 (hex). For example, BRLT checks whether a result is less than
zero, which happens if N is 1. BRLE checks whether a result is less than or equal to
zero, which happens if N is 1 or Z is 1. Here is the Register Transfer Language
(RTL) specification of each conditional branch instruction.

BRLE N = 1 ∨ Z = 1 ⇒ PC ← Oprnd

BRLT N = 1 ⇒ PC ← Oprnd

BREQ Z = 1 ⇒ PC ← Oprnd

BRNE Z = 0 ⇒ PC ← Oprnd

BRGE N = 0 ⇒ PC ← Oprnd

BRGT N = 0 ∧ Z = 0 ⇒ PC ← Oprnd

BRV V = 1 ⇒ PC ← Oprnd

BRC C = 1 ⇒ PC ← Oprnd

Whether a branch occurs depends on the value of the status bits. The status bits
are in turn affected by the execution of other instructions. For example,

LDA num,s

BRLT place

causes the content of num to be loaded into the accumulator. If the word represents
a negative number, that is, if its sign bit is 1, then the N bit is set to 1. BRLT tests the
N bit and causes a branch to the instruction at place. On the other hand, if the
word loaded into the accumulator is not negative, then the N bit is cleared to 0.
When BRLT tests the N bit, the branch does not occur and the instruction after BRLT
executes next.

Translating the If Statement

Figure 6.6 shows how a compiler would translate an if statement from C++ to
assembly language. The program computes the absolute value of an integer.

The assembly language comments show the statements that correspond to the
high-level program. The cin statement translates to DECI and the cout statement
translates to DECO. The assignment statement translates to the sequence LDA, NEGA,
STA.

The compiler translates the if statement into the sequence LDA, BRGE. When
LDA executes, if the value loaded into the accumulator is positive or zero, the N bit
is cleared to 0. That condition calls for skipping the body of the if statement. Fig-
ure 6.7(a) shows the structure of the if statement at level HOL6. S1 represents the

6.2 Branching Instructions and Flow of Control 243

statement cin >> number, C1 represents the condition number < 0, S2 repre-
sents the statement number = -number, and S3 represents the statement cout <<
number. Figure 6.7(b) shows the structure with the more primitive branching

S1
if (C1) {
 S2
}
S3

S1
C1

S2
S3

(a) The structure at Level HOL6. (b) The structure at level Asmb5
 for Figure 6.6.

Figure 6.7
The structure of the if statement at
level Asmb5.

High-Order Language

#include <iostream>

using namespace std;

int main () {

int number;

cin >> number;

if (number < 0) {

number = -number;

}

cout << number;

return 0;

}

Assembly Language

0000 040003 BR main

number: .EQUATE 0 ;local variable

;

0003 680002 main: SUBSP 2,i ;allocate local

0006 330000 DECI number,s ;cin >> number

0009 C30000 if: LDA number,s ;if (number < 0)

000C 0E0016 BRGE endIf

000F C30000 LDA number,s ; number = -number

0012 1A NEGA

0013 E30000 STA number,s

0016 3B0000 endIf: DECO number,s ;cout << number

0019 600002 ADDSP 2,i ;deallocate local

001C 00 STOP

001D .END

Figure 6.6
The if statement at level HOL6 and
level Asmb5.

244 Chapter 6 Compiling to the Assembly Level

instructions at level Asmb5. The dot following C1 represents the conditional
branch, BRGE.

The braces { and } for delimiting a compound statement have no counterpart in
assembly language. The sequence

Statement 1
if (number >= 0) {

Statement 2
Statement 3

}

Statement 4

translates to

Statement 1
if: LDA number,d

BRLT endIf

Statement 2
Statement 3

endIf: Statement 4

Optimizing Compilers

You may have noticed an extra load statement that was not strictly required in Fig-
ure 6.6. You can eliminate the LDA at 000F because the value of number will still
be in the accumulator from the previous load at 0009.

The question is, what would a compiler do? The answer is that it depends on
the compiler. A compiler is a program that must be written and debugged. Imagine
that you must design a compiler to translate from C++ to assembly language. When
the compiler detects an assignment statement, you program it to generate the fol-
lowing sequence: (a) load accumulator, (b) evaluate expression if necessary, (c)
store result to variable. Such a compiler would generate the code of Figure 6.6, with
the LDA at 000F.

Imagine how difficult your compiler program would be if you wanted it to
eliminate the unnecessary load. When your compiler detected an assignment state-
ment, it would not always generate the initial load. Instead, it would analyze the
previous instructions generated and remember the content of the accumulator. If it
determined that the value in the accumulator was the same as the value that the ini-
tial load put there, it would not generate the initial load. In Figure 6.6, the compiler
would need to remember that the value of number was still in the accumulator from
the code generated for the if statement.

A compiler that expends extra effort to make the object program shorter and
faster is called an optimizing compiler. You can imagine how much more difficult
an optimizing compiler is to design than a nonoptimizing one. Not only are opti-

The purpose of an optimizing
compiler

6.2 Branching Instructions and Flow of Control 245

The advantages and disadvantages
of an optimizing compiler

The CPr instruction

mizing compilers more difficult to write, they also take longer to compile because
they must analyze the source program in much greater detail.

Which is better, an optimizing or a nonoptimizing compiler? That depends on
the use to which you put the compiler. If you are developing software, a process
that requires many compiles for testing and debugging, then you would want a
compiler that translates quickly, that is, a nonoptimizing compiler. If you have a
large fixed program that will be executed repeatedly by many users, you would
want fast execution of the object program, hence, an optimizing compiler. Fre-
quently, software is developed and debugged with a nonoptimizing compiler and
then translated one last time with an optimizing compiler for the users.

Real compilers come in all shades of gray between these two extremes. The
examples in this chapter occasionally present object code that is partially optimized.
Most assignment statements, such as the one in Figure 6.6, are presented in nonop-
timized form.

Translating the If/Else Statement

Figure 6.8 illustrates the translation of the if/else statement. The C++ program is
identical to the one in Figure 2.9. The if body requires an extra unconditional
branch around the else body. If the compiler omitted the BR at 0015 and the input
were 127, the output would be highlow.

Unlike Figure 6.6, the if statement in Figure 6.8 does not compare a variable’s
value with zero. It compares it with another nonzero value using CPA, which stands
for compare accumulator. CPA subtracts the operand from the accumulator and sets
the NZVC status bits accordingly. CPr is identical to SUBr except that SUBr stores
the result of the subtraction in register r (accumulator or index register), whereas
CPr ignores the result of the subtraction. The RTL specification of CPr is

where T represents a temporary value.
This program computes num - limit and sets the NZVC bits. BRLT tests the N

bit, which is set if

num - limit < 0

that is, if

num < limit

That is the condition under which the else part must execute.

T r Oprnd; N T , Z T V , C← − ← < ← = ← { } ← { }0 0, overflow carry

246 Chapter 6 Compiling to the Assembly Level

Figure 6.9 shows the structure of the control statements at the two levels. Part a
shows the level-HOL6 control statement, and part b shows the level-Asmb5 transla-
tion for this program.

High-Order Language

#include <iostream>

using namespace std;

int main () {

const int limit = 100;

int num;

cin >> num;

if (num >= limit) {

cout << "high";

}

else {

cout << "low";

}

return 0;

}

Assembly Language

0000 040003 BR main

limit: .EQUATE 100 ;constant

num: .EQUATE 0 ;local variable

;

0003 680002 main: SUBSP 2,i ;allocate local

0006 330000 DECI num,s ;cin >> num

0009 C30000 if: LDA num,s ;if (num >= limit)

000C B00064 CPA limit,i

000F 080018 BRLT else

0012 41001F STRO msg1,d ; cout << "high"

0015 04001B BR endIf ;else

0018 410024 else: STRO msg2,d ; cout << "low"

001B 600002 endIf: ADDSP 2,i ;deallocate local

001E 00 STOP

001F 686967 msg1: .ASCII "high\x00"

6800

0024 6C6F77 msg2: .ASCII "low\x00"

00

0028 .END

Figure 6.8
The if/else statement at level
HOL6 and level Asmb5.

6.2 Branching Instructions and Flow of Control 247

S1
if (C1) {
 S2
}
else
 S3
}
S4

S1
C1

S2

S3
S4

(a) The structure at Level HOL6. (b) The structure at level Asmb5
 for Figure 6.8.

Figure 6.9
The structure of the if/else state-
ment at level Asmb5.

Translating the While Loop

Translating a loop requires branches to previous instructions. Figure 6.10 shows the
translation of a while statement. The C++ program is identical to the one in Figure
2.12. It echoes ASCII input characters to the output, using the sentinel technique
with * as the sentinel. If the input is happy*, the output is happy.

The test for a while statement is made with a conditional branch at the top of
the loop. This program tests a character value, which is a byte quantity. The load
instruction at 0007 clears both bytes in the accumulator, so the most significant byte
will be 00 (hex) after the load byte instruction at 000A executes. You must guaran-
tee that the most significant byte is 0 because the compare instruction compares a
whole word.

Every while loop ends with an unconditional branch to the test at the top of
the loop. The branch at 0019 brings control back to the initial test. Figure 6.11
shows the structure of the while statement at the two levels.

High-Order Language

#include <iostream>

using namespace std;

char letter;

int main () {

cin >> letter;

while (letter != '*') {

cout << letter;

cin >> letter;

}

return 0;

}

Figure 6.10
The while statement at level HOL6
and level Asmb5.

248 Chapter 6 Compiling to the Assembly Level

S1
while (C1) {
 S2
}
S3

S1
C1

S2

S3

(a) The structure at level HOL6. (b) The structure at level
Asmb5 for Figure 6.10.

Figure 6.11
The structure of the while
statement at level Asmb5.

Assembly Language

0000 040004 BR main

0003 00 letter: .BLOCK 1 ;global variable

;

0004 490003 main: CHARI letter,d ;cin >> letter

0007 C00000 LDA 0x0000,i

000A D10003 while: LDBYTEA letter,d ;while (letter != '*')

000D B0002A CPA '*',i

0010 0A001C BREQ endWh

0013 510003 CHARO letter,d ; cout << letter

0016 490003 CHARI letter,d ; cin >> letter

0019 04000A BR while

001C 00 endWh: STOP

001D .END

Figure 6.10
(Continued)

Translating the Do Loop

A highway patrol officer parks behind a sign. A driver passes by, traveling 20
meters per second, which is faster than the speed limit. When the driver is 40
meters down the road, the officer gets his car up to 25 meters per second to pur-
sue the offender. How far from the sign does the officer catch up to the
speeder?

The program in Figure 6.12 solves the problem by simulation. It is identical to
the one in Figure 2.13. The values of cop and driver are the positions of the two
motorists, initialized to 0 and 40, respectively. Each execution of the do loop repre-
sents one second of elapsed time, during which the officer travels 25 meters and the
driver 20, until the officer catches the driver.

A do statement has its test at the bottom of the loop. In this program, the com-
piler translates the while test to the sequence LDA, CPA, BRLT. BRLT executes the
branch if N is set to 1. Because CPA computes the difference, cop - driver, N will
be 1 if

cop - driver < 0

6.2 Branching Instructions and Flow of Control 249

High-Order Language

#include <iostream>

using namespace std;

int cop;

int driver;

int main () {

cop = 0;

driver = 40;

do {

cop += 25;

driver += 20;

}

while (cop < driver);

cout << cop;

return 0;

}

Assembly Language

0000 040007 BR main

0003 0000 cop: .BLOCK 2 ;global variable

0005 0000 driver: .BLOCK 2 ;global variable

;

0007 C00000 main: LDA 0,i ;cop = 0

000A E10003 STA cop,d

000D C00028 LDA 40,i ;driver = 40

0010 E10005 STA driver,d

0013 C10003 do: LDA cop,d ; cop += 25

0016 700019 ADDA 25,i

0019 E10003 STA cop,d

001C C10005 LDA driver,d ; driver += 20

001F 700014 ADDA 20,i

0022 E10005 STA driver,d

0025 C10003 while: LDA cop,d ;while (cop < driver)

0028 B10005 CPA driver,d

002B 080013 BRLT do

002E 390003 DECO cop,d ;cout << cop

0031 00 STOP

0032 .END

Figure 6.12
The do statement at level HOL6 and
level Asmb5.

250 Chapter 6 Compiling to the Assembly Level

S1
do {
 S2
}
while (C1)
S3

S1
S2
C1

S3

(a) The structure at level HOL6. (b) The structure at level
Asmb5 for Figure 6.12.

Figure 6.13
The structure of the do statement at
level Asmb5.

Translating the For Loop

for statements are similar to while statements because the test for both is at the
top of the loop. The compiler must generate code to initialize and to increment the
control variable. The program in Figure 6.14 shows how a compiler would generate
code for the for statement. It translates the for statement into the following
sequence at level Asmb5:

■ Initialize the control variable.

■ Test the control variable.

■ Execute the loop body.

■ Increment the control variable.

■ Branch to the test.

High-Order Language

#include <iostream>

using namespace std;

int main () {

int i;

for (i = 0; i < 3; i++) {

cout << "i = " << i << endl;

}

cout << "i = " << i << endl;

return 0;

}

Figure 6.14
The for statement at level HOL6
and level Asmb5.

that is, if

cop < driver

That is the condition under which the loop should repeat. Figure 6.13 shows the
structure of the do statement at levels 6 and 5.

Figure 6.15
A flow of control not possible
directly in many HOL6 languages.

S1

S2

C1

S3
C2

S4

6.2 Branching Instructions and Flow of Control 251

Assembly Language

0000 040003 BR main

i: .EQUATE 0 ;local variable

;

0003 680002 main: SUBSP 2,i ;allocate local

0006 C00000 LDA 0,i

0009 E30000 STA i,s

000C B00003 for: CPA 3,i

000F 0E0027 BRGE endFor

0012 410034 STRO msg,d ; cout << "i = "

0015 3B0000 DECO i,s ; << i

0018 50000A CHARO '\n',i ; << endl

001B C30000 LDA i,s

001E 700001 ADDA 1,i

0021 E30000 STA i,s

0024 04000C BR for

0027 410034 endFor: STRO msg,d ;cout << "i = "

002A 3B0000 DECO i,s ; << i

002D 50000A CHARO '\n',i ; << endl

0030 600002 ADDSP 2,i ;deallocate local

0033 00 STOP

0034 69203D msg: .ASCII "i = \x00"

2000

0039 .END

In this program, CPA computes the difference, i - 3. BRGE branches out of the
loop if N is 0, that is, if

i - 3 >= 0

or, equivalently,

i >= 3

The body executes once each for i having the values 0, 1, and 2. The last time
through the loop, i increments to 3, which is the value written by the output state-
ment following the loop.

Spaghetti Code

At the assembly level, a programmer can write control structures that do not corre-
spond to the control structures in C++. Figure 6.15 shows one possible flow of con-
trol that is not directly possible in many level-HOL6 languages. Condition C1 is

Figure 6.14
(Continued)

252 Chapter 6 Compiling to the Assembly Level

tested, and if it is true, a branch is taken to the middle of a loop whose test is C2.
This control flow cannot be written directly in C++.

Assembly language programs generated by a compiler are usually longer than
programs written by humans directly in assembly language. Not only that, but they
often execute more slowly. If human programmers can write shorter, faster assem-
bly language programs than compilers, why does anyone program in a high-order
language? One reason is the ability of the compiler to perform type checking, as
mentioned in Chapter 5. Another is the additional burden of responsibility that is
placed on the programmer when given the freedom of using primitive branching
instructions. If you are not careful when you write programs at level Asmb5, the
branching instructions can get out of hand, as the next program shows.

The program in Figure 6.16 is an extreme example of the problem that can occur
with unbridled use of primitive branching instructions. It is difficult to understand
because of its lack of comments and indentation and its inconsistent branching style.
Actually, the program performs a very simple task. Can you discover what it does?

0000 040009 BR main

0003 0000 n1: .BLOCK 2

0005 0000 n2: .BLOCK 2

0007 0000 n3: .BLOCK 2

;

0009 310005 main: DECI n2,d

000C 310007 DECI n3,d

000F C10005 LDA n2,d

0012 B10007 CPA n3,d

0015 08002A BRLT L1

0018 310003 DECI n1,d

001B C10003 LDA n1,d

001E B10007 CPA n3,d

0021 080074 BRLT L7

0024 040065 BR L6

0027 E10007 STA n3,d

002A 310003 L1: DECI n1,d

002D C10005 LDA n2,d

0030 B10003 CPA n1,d

0033 080053 BRLT L5

0036 390003 DECO n1,d

0039 390005 DECO n2,d

003C 390007 L2: DECO n3,d

003F 00 STOP

0040 390005 L3: DECO n2,d

0043 390007 DECO n3,d

0046 040081 BR L9

Figure 6.16
A mystery program.

6.2 Branching Instructions and Flow of Control 253

Structured flow of control

Spaghetti code

0049 390003 L4: DECO n1,d

004C 390005 DECO n2,d

004F 00 STOP

0050 E10003 STA n1,d

0053 C10007 L5: LDA n3,d

0056 B10003 CPA n1,d

0059 080040 BRLT L3

005C 390005 DECO n2,d

005F 390003 DECO n1,d

0062 04003C BR L2

0065 390007 L6: DECO n3,d

0068 C10003 LDA n1,d

006B B10005 CPA n2,d

006E 080049 BRLT L4

0071 04007E BR L8

0074 390003 L7: DECO n1,d

0077 390007 DECO n3,d

007A 390005 DECO n2,d

007D 00 STOP

007E 390005 L8: DECO n2,d

0081 390003 L9: DECO n1,d

0084 00 STOP

0085 .END

The body of an if statement or a loop in C++ is a block of statements, sometimes
contained in a compound statement delimited by braces {}. Additional if statements
and loops can be nested entirely within these blocks. Figure 6.17(a) pictures this situa-
tion schematically. A flow of control that is limited to nestings of the if/else,
switch, while, do, and for statements is called structured flow of control.

The branches in the mystery program do not correspond to the structured con-
trol constructs of C++. Although the program’s logic is correct for performing its
intended task, it is difficult to decipher because the branching statements branch all
over the place. This kind of program is called spaghetti code. If you draw an arrow
from each branch statement to the statement to which it branches, the picture looks
rather like a bowl of spaghetti, as shown in Figure 6.17(b).

It is often possible to write efficient programs with unstructured branches. Such
programs execute faster and require less memory for storage than if they were writ-
ten in a high-order language with structured flow of control. Some specialized
applications require this extra measure of efficiency and are therefore written
directly in assembly language.

Balanced against this savings in execution time and memory space is difficulty
in comprehension. When programs are hard to understand, they are hard to write,
debug, and modify. The problem is economic. Writing, debugging, and modifying

Advantages and disadvantages of
programming at level Asmb5

Figure 6.16
(Continued)

254 Chapter 6 Compiling to the Assembly Level

Spaghetti code.Structured flow. (b)(a)

Figure 6.17
Two different styles of flow of
control.

are all human activities, which are labor intensive and, therefore, expensive. The
question you must ask is whether the extra efficiency justifies the additional
expense.

Flow of Control in Early Languages

Computers had been around for many years before structured flow of control was
discovered. In the early days there were no high-order languages. Everyone pro-
grammed in assembly language. Computer memories were expensive, and CPUs
were slow by today’s standards. Efficiency was all-important. Because a large body
of software had not yet been generated, the problem of program maintenance was
not appreciated.

The first widespread high-order language was FORTRAN, developed in the
1950s. Because people were used to dealing with branch instructions, they included
them in the language. An unconditional branch in FORTRAN is

GOTO 260

where 260 is the statement number of another statement. It is called a goto state-
ment. A conditional branch is

IF (NUMBER .GE. 100) GOTO 500

where .GE. means “is greater than or equal to.” This statement compares the value
of variable NUMBER with 100. If it is greater than or equal to 100, the next statement
executed is the one with a statement number of 500. Otherwise the statement after
the IF is executed.

FORTRAN’s conditional IF is a big improvement over level-Asmb5 branch
instructions. It does not require a separate compare instruction to set the status bits.
But notice how the flow of control is similar to level-Asmb5 branching: If the test is
true, do the GOTO. Otherwise continue to the next statement.

As people developed more software, they noticed that it would be convenient
to group statements into blocks for use in if statements and loops. The most

A goto statement at level HOL6

6.2 Branching Instructions and Flow of Control 255

1. Corrado Bohm and Giuseppe Jacopini, “Flow-Diagrams, Turing Machines and Languages with Only
Two Formation Rules,” Communications of the ACM 9 (May 1966): 366–371.

2. Edsger W. Dijkstra, “Goto Statement Considered Harmful,” Communications of the ACM 11 (March
1968): 147–648. Reprinted by permission.

notable language to make this advance was ALGOL-60, developed in 1960. It was
the first widespread block-structured language, although its popularity was limited
mainly to Europe.

The Structured Programming Theorem

The preceding sections show how high-level structured control statements translate
into primitive branch statements at a lower level. They also show how you can
write branches at the lower level that do not correspond to the structured constructs.
That raises an interesting and practical question: Is it possible to write an algorithm
with goto statements that will perform some processing that is impossible to per-
form with structured constructs? That is, if you limit yourself to structured flow of
control, are there some problems you will not be able to solve that you could solve
if unstructured goto’s were allowed?

Corrado Bohm and Giuseppe Jacopini answered this important question in a
computer science journal article in 1966.1 They proved mathematically that any
algorithm containing goto’s, no matter how complicated or unstructured, can be
written with only nested if statements and while loops. Their result is called the
structured programming theorem.

Bohm and Jacopini’s paper was highly theoretical. It did not attract much
attention at first because programmers generally had no desire to limit the freedom
they had with goto statements. Bohm and Jacopini showed what could be done with
nested if statements and while loops, but left unanswered why programmers
would want to limit themselves that way.

People experimented with the concept anyway. They would take an algorithm
in spaghetti code and try to rewrite it using structured flow of control without goto
statements. Usually the new program was much clearer than the original. Occasion-
ally it was even more efficient.

The Goto Controversy

Two years after Bohm and Jacopini’s paper appeared, Edsger W. Dijkstra of the
Technological University at Eindhoven, the Netherlands, wrote a letter to the editor
of the same journal in which he stated his personal observation that good program-
mers used fewer goto’s than poor programmers.2

The structured programming
theorem

256 Chapter 6 Compiling to the Assembly Level

Edsger Dijkstra

Born to a Dutch chemist in Rotter-
dam in 1930, Dijkstra grew up with
a formalist predilection toward the
world. While studying at the Uni-
versity of Leiden in the Nether-
lands, Dijkstra planned to take up
physics as his career. But his father
heard about a summer course on
computing in Cambridge, England,
and Dijkstra jumped aboard the
computing bandwagon just as it
was gathering speed around 1950.

One of Dijkstra’s most famous
contributions to programming was
his strong advocacy of structured
programming principles, as exem-
plified by his famous letter that dis-
paraged the goto statement. He
developed a reputation for speaking
his mind, often in inflammatory or
dramatic ways that most of us
couldn’t get away with. For exam-
ple, Dijkstra once remarked that
“the use of COBOL cripples the
mind; its teaching should therefore
be regarded as a criminal offence.”
Not one to single out only one lan-

guage for his criticism, he also said
that “it is practically impossible to
teach good programming to stu-
dents that have had a prior exposure
to BASIC; as potential program-
mers they are mentally mutilated
beyond hope of regeneration.”

Besides his work in language
design, Dijkstra is also noted for his

work in proofs of program correct-
ness. The field of program correctness
is an application of mathematics to
computer programming. Researchers
are trying to construct a language and
proof technique that might be used to
certify unconditionally that a pro-
gram will perform according to its
specifications—entirely free of bugs.
Needless to say, whether your appli-
cation is customer billing or flight
control systems, this would be an
extremely valuable claim to make
about a program.

Dijkstra worked in practically
every area within computer science.
He invented the semaphore, de-
scribed in Chapter 8 of this book,
and invented a famous algorithm to
solve the shortest path problem. In
1972 the Association for Computing
Machinery acknowledged Dijkstra’s
rich contributions to the field by
awarding him the distinguished Tur-
ing Award. Dijkstra died after a long
struggle with cancer in 2002 at his
home in Nuenen, the Netherlands.

In his opinion, a high density of goto’s in a program indicated poor quality. He
stated in part:

For a number of years I have been familiar with the observation that the quality
of programmers is a decreasing function of the density of goto statements in the
programs they produce. More recently I discovered why the use of the goto state-

An excerpt from Dijkstra’s famous
letter

“The question of whether computers can think is like the question of whether submarines can swim.”
—Edsger Dijkstra

6.2 Branching Instructions and Flow of Control 257

ment has such disastrous effects, and I became convinced that the goto statement
should be abolished from all “higher level” programming languages (i.e., every-
thing except, perhaps, plain machine code). . . . The goto statement as it stands is
just too primitive; it is too much an invitation to make a mess of one’s program.

To justify these statements, Dijkstra developed the idea of a set of coordinates
that are necessary to describe the progress of the program. When a human tries to
understand a program, he must maintain this set of coordinates mentally, perhaps
unconsciously. Dijkstra showed that the coordinates to be maintained with struc-
tured flow of control were vastly simpler than those with unstructured goto’s.
Thus he was able to pinpoint the reason that structured flow of control is easier to
understand.

Dijkstra acknowledged that the idea of eliminating goto’s was not new. He
mentioned several people who influenced him on the subject, one of whom was
Niklaus Wirth, who had worked on the ALGOL-60 language.

Dijkstra’s letter set off a storm of protest, now known as the famous goto con-
troversy. To theoretically be able to program without goto was one thing. But to
advocate that goto be abolished from high-order languages such as FORTRAN was
altogether something else.

Old ideas die hard. However, the controversy has died down and it is now gen-
erally recognized that Dijkstra was, in fact, correct. The reason is cost. When soft-
ware managers began to apply the structured flow of control discipline, along with
other structured design concepts, they found that the resulting software was much
less expensive to develop, debug, and maintain. It was usually well worth the addi-
tional memory requirements and extra execution time.

FORTRAN 77 is a more recent version of FORTRAN standardized in 1977.
The goto controversy influenced its design. It contains a block style IF statement
with an ELSE part similar to C++. For example,

IF (NUMBER .GE. 100) THEN

Statement 1
ELSE

Statement 2
ENDIF

You can write the IF statement in FORTRAN 77 without goto.
One point to bear in mind is that the absence of goto’s in a program does not

guarantee that the program is well structured. It is possible to write a program with
three or four nested if statements and while loops when only one or two are nec-
essary. Also, if a language at any level contains only goto statements to alter the
flow of control, they can always be used in a structured way to implement if state-
ments and while loops. That is precisely what a C++ compiler does when it trans-
lates a program from level HOL6 to level Asmb5.

258 Chapter 6 Compiling to the Assembly Level

6.3 Procedure Calls and Parameters

A C++ procedure call changes the flow of control to the first executable statement
in the procedure. At the end of the procedure, control returns to the statement fol-
lowing the procedure call. The compiler implements procedure calls with the CALL
instruction, which has a mechanism for storing the return address on the run-time
stack. It implements the return to the calling statement with RETn, which uses the
saved return address on the run-time stack to determine which instruction to exe-
cute next.

Translating a Procedure Call

Figure 6.18 shows how a compiler translates a procedure call without parameters.
The program outputs three triangles of asterisks.

The CALL instruction pushes the content of the program counter onto the run-
time stack, and then loads the operand into the program counter. Here is the RTL
specification of the CALL instruction:

In effect, the return address for the procedure call is pushed onto the stack and a
branch to the procedure is executed.

As with the branch instructions, CALL usually executes in the immediate
addressing mode, in which case the operand is the operand specifier. If you do not
specify the addressing mode, the Pep/8 assembler will assume immediate addressing.

Figure 5.2 shows that the RETn instruction has a three-bit nnn field. In general,
a procedure can have any number of local variables. There are eight versions of the
RETn instruction, namely RET0, RET1, . . ., RET7, where n is the number of bytes
occupied by the local variables in the procedure. Procedure printTri in Figure
6.18 has no local variables. That is why the compiler generated the RET0 instruction
at 0015. Here is the RTL specification of RETn:

First, the instruction deallocates storage for the local variables by adding n to the
stack pointer. After the deallocation, the return address should be on top of the run-
time stack. Then, the instruction moves the return address from the top of the stack
into the program counter. Finally, it adds two to the stack pointer, which completes
the pop operation. Of course, it is possible for a procedure to have more than seven
bytes of local variables. In that case, the compiler would generate an ADDSP instruc-
tion to deallocate the storage for the local variables.

In Figure 6.18,

BR main

SP SP n; PC Mem[SP]; SP SP← + ← ← + 2

SP SP ; Mem[SP] PC; PC Opernd← − ← ←2

The CALL instruction

The default addressing mode for
CALL is immediate.

The RETn instruction

6.3 Procedure Calls and Parameters 259

High-Order Language

#include <iostream>

using namespace std;

void printTri () {

cout << "*" << endl;

cout << "**" << endl;

cout << "***" << endl;

cout << "****" << endl;

}

int main () {

printTri ();

printTri ();

printTri ();

return 0;

}

Assembly Language

0000 04001F BR main

;

;******* void printTri ()

0003 410016 printTri:STRO msg1,d ;cout << "*"

0006 50000A CHARO '\n',i ; << endl

0009 410018 STRO msg2,d ;cout << "**"

000C 50000A CHARO '\n',i ; << endl

000F 41001B STRO msg3,d ;cout << "***"

0012 50000A CHARO '\n',i ; << endl

0015 58 RET0

0016 2A00 msg1: .ASCII "*\x00"

0018 2A2A00 msg2: .ASCII "**\x00"

001B 2A2A2A msg3: .ASCII "***\x00"

00

;

;******* int main ()

001F 160003 main: CALL printTri ;printTri ()

0022 160003 CALL printTri ;printTri ()

0025 160003 CALL printTri ;printTri ()

0028 00 STOP

0029 .END

Figure 6.18
A procedure call at level HOL6 and
level Asmb5.

260 Chapter 6 Compiling to the Assembly Level

0022PC

FBCFSP

FBCD

FBCF

?

?

(a) Before execution of the first CALL.

0003PC

FBCDSP

FBCD

FBCF

0022

?

(b) After execution of the first CALL.

Figure 6.19
Execution of the first CALL instruc-
tion in Figure 6.18.

(a) Before the first execution of RET0. (b) After the first execution of RET0.

0016PC

FBCDSP

FBCD

FBCF

0022

?

0022PC

FBCFSP

FBCD

FBCF

0022

?

Figure 6.20
The first execution of the RET0
instruction in Figure 6.18.

The operations of CALL and RETn crucially depend on the von Neumann execu-
tion cycle: fetch, decode, increment, execute, repeat. In particular, the increment step
happens before the execute step. As a consequence, the statement that is executing is
not the statement whose address is in the program counter. It is the statement that was
fetched before the program counter was incremented and that is now contained in the
instruction register. Why is that so important in the execution of CALL and RETn?

Figure 6.19(a) shows the content of the program counter as 0022 before execu-
tion of the first CALL instruction. It is not the address of the first CALL instruction,
which is 001F. Why not? Because the program counter was incremented to 0022
before execution of the CALL. Therefore, during execution of the first CALL instruc-
tion the program counter contains the address of the instruction in main memory
located just after the first CALL instruction.

What happens when the first CALL executes? First, SP ← SP – 2 subtracts two
from SP, giving it the value FBCD. Then, Mem[SP] ← PC puts the value of the pro-
gram counter, 0022, into main memory at address FBCD, that is, on top of the run-time
stack. Finally, PC ← Oprnd puts 0003 into the program counter, because the operand
specifier is 0003 and the addressing mode is immediate. The result is Figure 6.19(b).

The von Neumann cycle continues with the next fetch. But now the program
counter contains 0003. So, the next instruction to be fetched is the one at address
0003, which is the first instruction of the printTri procedure. The output instruc-
tions of the procedure execute, producing the pattern of a triangle of asterisks.

Eventually the RET0 instruction at 0015 executes. Figure 6.20(a) shows the
content of the program counter as 0016 just before execution of RET0. This might

puts 001F into the program counter. The next statement to execute is, therefore, the
one at 001F, which is the first CALL instruction. The discussion of the program in
Figure 6.1 explains how the stack pointer is initialized to FBCF. Figure 6.19 shows
the runtime stack before and after execution of the first CALL statement. As usual,
the initial value of the stack pointer is FBCF.

6.3 Procedure Calls and Parameters 261

The reason increment must come
before execute in the von Neumann
execution cycle

seem strange, because 0016 is not even the address of an instruction. It is the
address of the string "*\x00". Why? Because RET0 is a unary instruction and the
CPU incremented the program counter by one. The first step in the execution of
RET0 is SP ← SP + n, which adds zero to SP because n is zero. Then, PC ←
Mem[SP] puts 0022 into the program counter. Finally, SP ← SP + 2 changes the
stack pointer back to FBCF.

The von Neumann cycle continues with the next fetch. But now the program
counter contains the address of the second CALL instruction. The same sequence of
events happens as with the first call, producing another triangle of asterisks in the
output stream. The third call does the same thing, after which the STOP instruction
executes. Note that the value of the program counter after the STOP instruction exe-
cutes is 0029 and not 0028, which is the address of the STOP instruction.

Now you should see why increment comes before execute in the von Neumann
execution cycle. To store the return address on the run-time stack, the CALL instruc-
tion needs to store the address of the instruction following the CALL. It can only do
that if the program counter has been incremented before the CALL statement executes.

Translating Call-By-Value Parameters with
Global Variables

The allocation process when you call a void function in C++ is

■ Push the actual parameters.

■ Push the return address.

■ Push storage for the local variables.

At level HOL6, the instructions that perform these operations on the stack are
hidden. The programmer simply writes the function call, and during execution the
stack allocation occurs automatically.

At the assembly level, however, the translated program must contain explicit
instructions for the allocation. The program in Figure 6.21, which is identical to the
program in Figure 2.15, is a level-HOL6 program that prints a bar chart, and the
program’s corresponding level-Asmb5 translation. It shows the level-Asmb5 state-
ments, not explicit at level HOL6, that are required to push the parameters.

High-Order Language

#include <iostream>

using namespace std;

int numPts;

int value;

int i;

Figure 6.21
Call-by-value parameters with
global variables.

262 Chapter 6 Compiling to the Assembly Level

void printBar (int n) {

int j;

for (j = 1; j <= n; j++) {

cout << '*';

}

cout << endl;

}

int main () {

cin >> numPts;

for (i = 1; i <= numPts; i++) {

cin >> value;

printBar (value);

}

return 0;

}

Assembly Language

0000 04002B BR main

0003 0000 numPts: .BLOCK 2 ;global variable

0005 0000 value: .BLOCK 2 ;global variable

0007 0000 i: .BLOCK 2 ;global variable

;

;******* void printBar (int n)

n: .EQUATE 4 ;formal parameter

j: .EQUATE 0 ;local variable

0009 680002 printBar:SUBSP 2,i ;allocate local

000C C00001 LDA 1,i ;for (j = 1

000F E30000 STA j,s

0012 B30004 for1: CPA n,s ;j <= n

0015 100027 BRGT endFor1

0018 50002A CHARO '*',i ; cout << '*'

001B C30000 LDA j,s ;j++)

001E 700001 ADDA 1,i

0021 E30000 STA j,s

0024 040012 BR for1

0027 50000A endFor1: CHARO '\n',i ;cout << endl

002A 5A RET2 ;deallocate local, pop retAddr

Figure 6.21
(Continued)

6.3 Procedure Calls and Parameters 263

;

;******* main ()

002B 310003 main: DECI numPts,d ;cin >> numPts

002E C00001 LDA 1,i ;for (i = 1

0031 E10007 STA i,d

0034 B10003 for2: CPA numPts,d ;i <= numPts

0037 100058 BRGT endFor2

003A 310005 DECI value,d ; cin >> value

003D C10005 LDA value,d ; call by value

0040 E3FFFE STA -2,s

0043 680002 SUBSP 2,i ; push parameter

0046 160009 CALL printBar ; push retAddr

0049 600002 ADDSP 2,i ; pop parameter

004C C10007 LDA i,d ;i++)

004F 700001 ADDA 1,i

0052 E10007 STA i,d

0055 040034 BR for2

0058 00 endFor2: STOP

0059 .END

The calling procedure is responsible for pushing the actual parameters and exe-
cuting CALL, which pushes the return address onto the stack. The called procedure
is responsible for allocating storage on the stack for its local variables. After the
called procedure executes, it must deallocate the storage for the local variables, and
then pop the return address by executing RETn. Before the calling procedure can
continue, it must deallocate the storage for the actual parameters.

In summary, the calling and called procedures do the following:

■ Calling pushes actual parameters (executes SUBSP).

■ Calling pushes return address (executes CALL).

■ Called allocates local variables (executes SUBSP).

■ Called executes its body.

■ Called deallocates local variables and pops return address (executes RETn).

■ Calling pops actual parameters (executes ADDSP).

Note the symmetry of the operations. The last two operations undo the first three
operations in reverse order. That order is a consequence of the last-in, first-out
property of the stack.

The global variables in the level-HOL6 main program—numPts, value, and
i—correspond to the identical level-Asmb5 symbols, whose symbol values are
0003, 0005, and 0007, respectively. These are the addresses of the memory cells
that will hold the run-time values of the global variables. Figure 6.22(a) shows the

Figure 6.21
(Continued)

264 Chapter 6 Compiling to the Assembly Level

12numPts

13value

1i

12numPts

13value

1

0

2

4in–2

(a) After cin >> value.

j

0049 retAddr

3 n

(b) After allocation with SUBSP in printBar.

SP

SP

Figure 6.22
Call-by-value parameters with
global variables.

global variables on the left with their symbols in place of their addresses. The val-
ues for the global variables are the ones after

cin >> value;

executes for the first time.
What do the formal parameter, n, and the local variable, j, correspond to at

level Asmb5? Not absolute addresses, but stack-relative addresses. Procedure
printBar defines them with

n: .EQUATE 4

j: .EQUATE 0

Remember that .EQUATE does not generate object code. The assembler does not
reserve storage for them at translation time. Instead, storage for n and j is allocated
on the stack at run time. The decimal numbers 4 and 0 are the stack offsets appro-
priate for n and j during execution of the procedure, as Figure 6.22(b) shows. The
procedure refers to them with stack-relative addressing.

The statements that correspond to the procedure call in the calling procedure are

LDA value,d

STA -2,s

SUBSP 2,i

CALL printBar

ADDSP 2,i

Because the parameter is a global variable that is called by value, LDA uses direct
addressing. That puts the run-time value of variable value in the accumulator,
which STA then pushes onto the stack. The offset is –2 because value is a two-byte
integer quantity, as Figure 6.22(a) shows.

The statements that correspond to the procedure call in the called procedure are

SUBSP 2,i

.

.

.

RET2

The SUBSP subtracts 2 because the local variable, j, is a two-byte integer quan-
tity. Figure 6.22(a) shows the run-time stack just after the first input of global

6.3 Procedure Calls and Parameters 265

variable value and just before the first procedure call. It corresponds directly to
Figure 2.16(d) (page 49). Figure 6.22(b) shows the stack just after the procedure
call and corresponds directly to Figure 2.16(g). Note that the return address,
which is labeled ra1 in Figure 2.16, is here shown to be 0049, which is the assem-
bly language address of the instruction following the CALL instruction.

The stack address of n is 4 because both j and the return address occupy two
bytes on the stack. If there were more local variables, the stack address of n would
be correspondingly greater. The compiler must compute the stack addresses from
the number and size of the quantities on the stack.

In summary, to translate call-by-value parameters with global variables the
compiler generates code as follows:

■ To push the actual parameter, it generates a load instruction with direct
addressing.

■ To access the formal parameter, it generates instructions with stack-relative
addressing.

Translating Call-By-Value Parameters
with Local Variables

The program in Figure 6.23 is identical to the one in Figure 6.21 except that the vari-
ables in main() are local instead of global. Although the program behaves like the one
in Figure 6.21, the memory model and the translation to level Asmb5 are different.

High-Order Language

#include <iostream>

using namespace std;

void printBar (int n) {

int j;

for (j = 1; j <= n; j++) {

cout << '*';

}

cout << endl;

}

int main () {

int numPts;

int value;

int i;

The translation rules for call-by-
value parameters with global
variables

Figure 6.23
Call-by-value parameters with local
variables.

266 Chapter 6 Compiling to the Assembly Level

cin >> numPts;

for (i = 1; i <= numPts; i++) {

cin >> value;

printBar (value);

}

return 0;

}

Assembly Language

0000 040025 BR main

;

;******* void printBar (int n)

n: .EQUATE 4 ;formal parameter

j: .EQUATE 0 ;local variable

0003 680002 printBar:SUBSP 2,i ;allocate local

0006 C00001 LDA 1,i ;for (j = 1

0009 E30000 STA j,s

000C B30004 for1: CPA n,s ;j <= n

000F 100021 BRGT endFor1

0012 50002A CHARO '*',i ; cout << '*'

0015 C30000 LDA j,s ;j++)

0018 700001 ADDA 1,i

001B E30000 STA j,s

001E 04000C BR for1

0021 50000A endFor1: CHARO '\n',i ;cout << endl

0024 5A RET2 ;deallocate local,

;pop retAddr

;

;******* main ()

numPts: .EQUATE 4 ;local variable

value: .EQUATE 2 ;local variable

i: .EQUATE 0 ;local variable

0025 680006 main: SUBSP 6,i ;allocate locals

0028 330004 DECI numPts,s ;cin >> numPts

002B C00001 LDA 1,i ;for (i = 1

002E E30000 STA i,s

0031 B30004 for2: CPA numPts,s ;i <= numPts

0034 100055 BRGT endFor2

0037 330002 DECI value,s ; cin >> value

003A C30002 LDA value,s ; call by value

003D E3FFFE STA -2,s

0040 680002 SUBSP 2,i ; push parameter

0043 160003 CALL printBar ; push retAddr

0046 600002 ADDSP 2,i ; pop parameter

Figure 6.23
(Continued)

6.3 Procedure Calls and Parameters 267

0049 C30000 LDA i,s ;i++)

004C 700001 ADDA 1,i

004F E30000 STA i,s

0052 040031 BR for2

0055 600006 endFor2: ADDSP 6,i ;deallocate locals

0058 00 STOP

0059 .END

You can see that the versions of void function printTri at level HOL6 are
identical in Figure 6.21 and Figure 6.23. Hence, it should not be surprising that the
compiler generates identical object code for the two versions of printTri at level
Asmb5. The only difference between the two programs is in the definition of
main(). Figure 6.24(a) shows the allocation of numPts, value, and i on the run-
time stack in the main program. Figure 6.24(b) shows the stack after printTri is
called for the first time. Because value is a local variable, the compiler generates
LDA value,s with stack-relative addressing to push the actual value of value into
the stack cell of formal parameter n.

In summary, to translate call-by-value parameters with local variables the com-
piler generates code as follows:

■ To push the actual parameter, it generates a load instruction with stack-
relative addressing.

■ To access the formal parameter, it generates instructions with stack-relative
addressing.

Translating Non-Void Function Calls

The allocation process when you call a function is

■ Push storage for the returned value.

■ Push the actual parameters.

■ Push the return address.

■ Push storage for the local variables.

The translation rules for call-by-
value parameters with local
variables

0 ? i

2 ? value

–2 ? n

4 ? numPts

(a) After cin >> value.

1 i

3 value

4 3 n

2 0043 retAddr

0 j

12 numPts

(b) After allocation with SUBSP in printBar.

SP

SP Figure 6.24
The first execution of the RET0
instruction in Figure 6.23.

Figure 6.23
(Continued)

268 Chapter 6 Compiling to the Assembly Level

Allocation for a non-void function call differs from that for a procedure (void func-
tion) call by the extra value that you must allocate for the returned function value.

Figure 6.25 shows a program that computes a binomial coefficient recursively
and is identical to the one in Figure 2.24. It is based on Pascal’s triangle of coeffi-
cients, shown in Figure 2.25. The recursive definition of the binomial coefficient is

The function tests for the base cases with an if statement, using the OR boolean
operator. If neither base case is satisfied, it calls itself recursively twice—once to com-
pute b(n – 1, k) and once to compute b(n – 1, k – 1). Figure 6.26 shows the run-time
stack produced by a call from the main program with actual parameters (3, 1). The
function is called twice more with parameters (2, 1) and (1, 1), followed by a return.
Then a call with parameters (1, 0) is executed, followed by a second return, and so on.
Figure 6.26 shows the run-time stack at the assembly level immediately after the sec-
ond return. It corresponds directly to the level-HOL6 diagram of Figure 2.28(g) (page
65). The return address labeled ra2 in Figure 2.28(g) is 0031 in Figure 6.26, the address
of the instruction after the first CALL in the function. Similarly, the address labeled ra1
in Figure 2.28 is 007A in Figure 6.26.

High-Order Language

#include <iostream>

using namespace std;

int binCoeff (int n, int k) {

int y1, y2;

if ((k == 0) || (n == k)) {

return 1;

}

else {

y1 = binCoeff (n - 1, k); // ra2

y2 = binCoeff (n - 1, k - 1); // ra3

return y1 + y2;

}

}

int main () {

cout << "binCoeff (3, 1) = " << binCoeff (3, 1); // ra1

cout << endl;

return 0;

}

b n

b k k

b n k b n k b n k k n

,

,

, , (,)

0 1

1

1 1 1 0

() =
() =
() = −() + − − ≤ ≤

⎧
⎨
⎪

⎩
⎪ for

Figure 6.25
A recursive nonvoid function at
level HOL6 and level Asmb5.

6.3 Procedure Calls and Parameters 269

Assembly Language

0000 040065 BR main

;

;******* int binomCoeff (int n, int k)

retVal: .EQUATE 10 ;returned value

n: .EQUATE 8 ;formal parameter

k: .EQUATE 6 ;formal parameter

y1: .EQUATE 2 ;local variable

y2: .EQUATE 0 ;local variable

0003 680004 binCoeff:SUBSP 4,i ;allocate locals

0006 C30006 if: LDA k,s ;if ((k == 0)

0009 0A0015 BREQ then

000C C30008 LDA n,s ;|| (n == k))

000F B30006 CPA k,s

0012 0C001C BRNE else

0015 C00001 then: LDA 1,i ;return 1

0018 E3000A STA retVal,s

001B 5C RET4 ;deallocate locals, pop retAddr

001C C30008 else: LDA n,s ;push n - 1

001F 800001 SUBA 1,i

0022 E3FFFC STA -4,s

0025 C30006 LDA k,s ;push k

0028 E3FFFA STA -6,s

002B 680006 SUBSP 6,i ;push params and retVal

002E 160003 CALL binCoeff ;binomCoeff (n - 1, k)

0031 600006 ra2: ADDSP 6,i ;pop params and retVal

0034 C3FFFE LDA -2,s ;y1 = binomCoeff (n - 1, k)

0037 E30002 STA y1,s

003A C30008 LDA n,s ;push n - 1

003D 800001 SUBA 1,i

0040 E3FFFC STA -4,s

0043 C30006 LDA k,s ;push k - 1

0046 800001 SUBA 1,i

0049 E3FFFA STA -6,s

004C 680006 SUBSP 6,i ;push params and retVal

004F 160003 CALL binCoeff ;binomCoeff (n - 1, k - 1)

0052 600006 ra3: ADDSP 6,i ;pop params and retVal

0055 C3FFFE LDA -2,s ;y2 = binomCoeff (n - 1, k - 1)

0058 E30000 STA y2,s

005B C30002 LDA y1,s ;return y1 + y2

005E 730000 ADDA y2,s

0061 E3000A STA retVal,s

0064 5C endIf: RET4 ;deallocate locals, pop retAddr

Figure 6.25
(Continued)

Figure 6.26
The run-time stack of Figure 6.25
immediately after the second return.

1

1

0031

1

2

2

?

?

007A

1

3

?

SP 0

2

4

6

8

10

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

270 Chapter 6 Compiling to the Assembly Level

;

;******* main ()

0065 410084 main: STRO msg,d ;cout << "binCoeff (3, 1) = "

0068 C00003 LDA 3,i ;push 3

006B E3FFFC STA -4,s

006E C00001 LDA 1,i ;push 1

0071 E3FFFA STA -6,s

0074 680006 SUBSP 6,i ;push params and retVal

0077 160003 CALL binCoeff ;binomCoeff (3, 1)

007A 600006 ra1: ADDSP 6,i ;pop params and retVal

007D 3BFFFE DECO -2,s ;<< binCoeff (3, 1)

0080 50000A CHARO '\n',i ;cout << endl

0083 00 STOP

0084 62696E msg: .ASCII "binCoeff (3, 1) = \x00"

...

0097 .END

Figure 6.25
(Continued)

At the start of the main program when the stack pointer has its initial value, the
first actual parameter has a stack offset of –4, and the second has a stack offset of
–6. In a procedure call (a void function), these offsets would be –2 and –4, respec-
tively. Their magnitudes are greater by 2 because of the two-byte value returned on
the stack by the function. The SUBSP instruction at 0074 allocates six bytes, two
each for the actual parameters and two for the returned value.

When the function returns control to ADDSP at 007A, the value it returns will be
on the stack below the two actual parameters. ADDSP pops the parameters and
returned value by adding 6 to the stack pointer, after which it points to the cell
directly below the returned value. So DECO outputs the value with stack-relative
addressing and an offset of –2.

The function calls itself by allocating actual parameters according to the standard
technique. For the first recursive call, it computes n - 1 and k and pushes those values
onto the stack along with storage for the returned value. After the return, the sequence

ADDSP 6,i ;pop params and retVal

LDA -2,s ;y1 = binomCoeff (n - 1, k)

STA y1,s

pops the two actual parameters and returned value and assigns the returned value to
y1. For the second call, it pushes n – 1 and k – 1 and assigns the returned value to
y2 similarly.

6.3 Procedure Calls and Parameters 271

Translating Call-By-Reference
Parameters with Global Variables

C++ provides call-by-reference parameters so that the called procedure can change
the value of the actual parameter in the calling procedure. Figure 2.19 shows a pro-
gram at level HOL6 that uses call by reference to put two global variables a and b
in order. Figure 6.27 shows the same program together with the object program that
a compiler would produce.

High-Order Language

#include <iostream>

using namespace std;

int a, b;

void swap (int& r, int& s) {

int temp;

temp = r;

r = s;

s = temp;

}

void order (int& x, int& y) {

if (x > y) {

swap (x, y);

} // ra2

}

int main () {

cout << "Enter an integer: ";

cin >> a;

cout << "Enter an integer: ";

cin >> b;

order (a, b);

cout << "Ordered they are: " << a << ", " << b << endl; // ra1

return 0;

}

Figure 6.27
Call-by-reference parameters with
global variables.

272 Chapter 6 Compiling to the Assembly Level

Assembly Language

0000 04003C BR main

0003 0000 a: .BLOCK 2 ;global variable

0005 0000 b: .BLOCK 2 ;global variable

;

;******* void swap (int& r, int& s)

r: .EQUATE 6 ;formal parameter

s: .EQUATE 4 ;formal parameter

temp: .EQUATE 0 ;local variable

0007 680002 swap: SUBSP 2,i ;allocate local

000A C40006 LDA r,sf ;temp = r

000D E30000 STA temp,s

0010 C40004 LDA s,sf ;r = s

0013 E40006 STA r,sf

0016 C30000 LDA temp,s ;s = temp

0019 E40004 STA s,sf

001C 5A RET2 ;deallocate local, pop retAddr

;

;******* void order (int& x, int& y)

x: .EQUATE 4 ;formal parameter

y: .EQUATE 2 ;formal parameter

001D C40004 order: LDA x,sf ;if (x > y)

0020 B40002 CPA y,sf

0023 06003B BRLE endIf

0026 C30004 LDA x,s ; push x

0029 E3FFFE STA -2,s

002C C30002 LDA y,s ; push y

002F E3FFFC STA -4,s

0032 680004 SUBSP 4,i ; push params

0035 160007 CALL swap ; swap (x, y)

0038 600004 ADDSP 4,i ; pop params

003B 58 endIf: RET0 ;pop retAddr

;

;******* main ()

003C 41006D main: STRO msg1,d ;cout << "Enter an integer: "

003F 310003 DECI a,d ;cin >> a

0042 41006D STRO msg1,d ;cout << "Enter an integer: "

0045 310005 DECI b,d ;cin >> b

0048 C00003 LDA a,i ;push the address of a

004B E3FFFE STA -2,s

004E C00005 LDA b,i ;push the address of b

0051 E3FFFC STA -4,s

0054 680004 SUBSP 4,i ;push params

Figure 6.27
(Continued)

6.3 Procedure Calls and Parameters 273

The main program calls a procedure named order with two formal parameters
x and y that are called by reference. order in turn calls swap, which makes the
actual exchange. swap has call-by-reference parameters r and s. Parameter r refers
to s, and s refers to a. The programmer used call by reference so that when proce-
dure swap changes r it really changes a, because r refers to a (via s).

Parameters called by reference differ from parameters called by value in C++
because the actual parameter provides a reference to a variable in the calling routine
instead of a value. At the assembly level, the code that pushes the actual parameter
onto the stack pushes the address of the actual parameter. When the actual parame-
ter is a global variable, its address is available as the value of its symbol. So, the
code to push the address of a global variable is a load instruction with immediate
addressing. In Figure 6.27, the code to push the address of a is

LDA a,i ;push the address of a

The value of the symbol a is 0003, the address of where the value of a is stored.
The machine code for this instruction is

C00003

C0 is the instruction specifier for the load accumulator instruction with addressing-
aaa field of 000 to indicate immediate addressing. With immediate addressing, the
operand specifier is the operand. Consequently, this instruction loads 0003 into the
accumulator. The following instruction pushes it onto the run-time stack.

Similarly, the code to push the address of b is

LDA b,i ;push the address of b

0057 16001D CALL order ;order (a, b)

005A 600004 ra1: ADDSP 4,i ;pop params

005D 410080 STRO msg2,d ;cout << "Ordered they are: "

0060 390003 DECO a,d ; << a

0063 410093 STRO msg3,d ; << ", "

0066 390005 DECO b,d ; << b

0069 50000A CHARO '\n',i ; << endl

006C 00 STOP

006D 456E74 msg1: .ASCII "Enter an integer: \x00"

...

0080 4F7264 msg2: .ASCII "Ordered they are: \x00"

...

0093 2C2000 msg3: .ASCII ", \x00"

0096 .END

Figure 6.27
(Continued)

274 Chapter 6 Compiling to the Assembly Level

Stack-relative addressing

The machine code for this instruction is

C00005

where 0005 is the address of b. This instruction loads 0005 into the accumulator
with immediate addressing, after which the next instruction puts it on the run-time
stack.

In Figure 6.27 at 0026, procedure order calls swap (x, y). It must push x
onto the run-time stack. x is called by reference. Consequently, the address of x is
on the run-time stack. The corresponding formal parameter r is also called by refer-
ence. Consequently, procedure swap expects the address of r to be on the run-time
stack. Procedure order simply transfers the address for swap to use. The statement

LDA x,s ;push x

at 0026 uses stack-relative addressing to put the address in the accumulator. The
next instruction puts it on the run-time stack.

In procedure order, however, the compiler must translate

temp = r

It must load the value of r into the accumulator, and then store it in temp. How
does the called procedure access the value of a formal parameter whose address is
on the run-time stack? It uses stack-relative deferred addressing.

Remember that the relation between the operand and the operand specifier with
stack-relative addressing is

Oprnd = Mem [SP + OprndSpec]

The operand is on the run-time stack. But with call-by-reference parameters, the
address of the operand is on the run-time stack. The relation between the operand
and the operand specifier with stack-relative deferred addressing is

Oprnd = Mem [Mem [SP + OprndSpec]]

In other words, Mem [SP + OprndSpec] is the address of the operand, rather than
the operand itself.

At lines 000A and 000D, the compiler generates the following object code to
translate the assignment statement:

LDA r,sf

STA temp,s

The letters sf with the load instruction indicate stack-relative deferred addressing.
The object code for the load instruction is

C40006

Stack-relative deferred addressing

6.3 Procedure Calls and Parameters 275

(a) The run-time stack at level HOL6.

ra1 reAddr

yb 4

r

s

ra2 retAddr

temp

xa 7

(b) The run-time stack at level Asmb5.

005A

0005

0003

retAddr

yb 4

r

s

0038

0005

0003

retAddr

temp

xa 7

0005

0003

SP 0

2

4

6

Figure 6.28
The run-time stack for Figure 6.27
at level HOL6 and level Asmb5.

0006 is the stack relative address of parameter r, as Figure 6.28(b) shows. It con-
tains 0003, the address of a. The load instruction loads 7, which is the value of a,
into the accumulator. The store instruction puts it in temp on the stack.

The next assignment statement in procedure swap

r = s;

has parameters on both sides of the assignment operator. The compiler generates LDA to
load the value of s and STA to store the value to r, both with stack-relative addressing.

LDA s,sf

STA r,sf

In summary, to translate call-by-reference parameters with global variables the
compiler generates code as follows:

■ To push the actual parameter, it generates a load instruction with immediate
addressing.

■ To access the formal parameter, it generates instructions with stack-relative
deferred addressing.

Translating Call-By-Reference
Parameters with Local Variables

Figure 6.29 shows a program that computes the perimeter of a rectangle given its
width and height. The main program prompts the user for the width and the height,
which it inputs into two local variables named width and height. A third local vari-
able is named perim. The main program calls a procedure (a void function) named
rect passing width and height by value and perim by reference. The figure
shows the input and output when the user enters 8 for the width and 5 for the height.

The translation rules for call-by-
reference parameters with global
variables

276 Chapter 6 Compiling to the Assembly Level

High-Order Language

#include <iostream>

using namespace std;

void rect (int& p, int w, int h) {

p = (w + h) * 2;

}

int main () {

int perim, width, height;

cout << "Enter width: ";

cin >> width;

cout << "Enter height: ";

cin >> height;

rect (perim, width, height);

// ra1

cout << "perim = " << perim << endl;

return 0;

}

Assembly Language

0000 04000E BR main

;

;******* void rect (int& p, int w, int h)

p: .EQUATE 6 ;formal parameter

w: .EQUATE 4 ;formal parameter

h: .EQUATE 2 ;formal parameter

0003 C30004 rect: LDA w,s ;p = (w + h) * 2

0006 730002 ADDA h,s

0009 1C ASLA

000A E40006 STA p,sf

000D 58 endIf: RET0 ;pop retAddr

;

;******* main ()

perim: .EQUATE 4 ;local variable

width: .EQUATE 2 ;local variable

height: .EQUATE 0 ;local variable

000E 680006 main: SUBSP 6,i ;allocate locals

0011 410046 STRO msg1,d ;cout << "Enter width: "

0014 330002 DECI width,s ;cin >> width

0017 410054 STRO msg2,d ;cout << "Enter height: "

Figure 6.29
Call-by-reference parameters with
local variables.

5

8

height

width

p

w

5

ra1

8

h

retAddr

perim

Figure 6.30
The run-time stack for Figure 6.29
at level HOL6.

6.3 Procedure Calls and Parameters 277

Figure 6.30 shows the run-time stack at level HOL6 for the program. Compare
it to Figure 6.28(a) for a program with global variables that are called by reference.
In that program, formal parameters x, y, r, and s refer to global variables a and b.
At level Asmb5, a and b are allocated at translation time with the .EQUATE dot
command. Their symbols are their addresses. However, Figure 6.30 shows perim
to be allocated on the run-time stack. The statement

main: SUBSP 6,i

at 000E allocates storage for perim, and its symbol is defined by

perim: .EQUATE 4

001A 330000 DECI height,s ;cin >> height

001D 02 MOVSPA ;push the address of perim

001E 700004 ADDA perim,i

0021 E3FFFE STA -2,s

0024 C30002 LDA width,s ;push the value of width

0027 E3FFFC STA -4,s

002A C30000 LDA height,s ;push the value of height

002D E3FFFA STA -6,s

0030 680006 SUBSP 6,i ;push params

0033 160003 CALL rect ;rect (perim, width, height)

0036 600006 ra1: ADDSP 6,i ;pop params

0039 410063 STRO msg3,d ;cout << "perim = "

003C 3B0004 DECO perim,s ; << perim

003F 50000A CHARO '\n',i ; << endl

0042 600006 ADDSP 6,i ;deallocate locals

0045 00 STOP

0046 456E74 msg1: .ASCII "Enter width: \x00"

...

0054 456E74 msg2: .ASCII "Enter height: \x00"

...

0063 706572 msg3: .ASCII "perim = \x00"

...

006C .END

Input/Output

Enter width: 8

Enter height: 5

perim = 26

278 Chapter 6 Compiling to the Assembly Level

SP 0 5 height

2 8 width

–2 p

–4 w

–6 h

4

FBC9

FBCB

FBCD perim

(a) Before the procedure call.

5 height

8 width

FBC9

6 FBCD pFBC7

4 8 wFBC5

2 5 hFBC3

SP 0 0036 retAddrFBC1

FBCB

FBCD perim

(b) After the procedure call.

Figure 6.31
The run-time stack for Figure 6.29
at level Asmb5.

Its symbol is not its absolute address. Its symbol is its address relative to the top of
the run-time stack, as Figure 6.31(a) shows. Its absolute address is FBCD. Why?
Because that is the location of the bottom of the application run-time stack, as the
memory map in Figure 4.39 shows.

So, the compiler cannot generate code to push parameter perim with

LDA perim,i

STA -2,s

as it does for global variables. If it generated those instructions, procedure rect
would modify the content of Mem [0004], and 0004 is not where perim is located.

The absolute address of perim is FBCD. Figure 6.31(a) shows that you could
calculate it by adding the value of perim, 4, to the value of the stack pointer. Fortu-
nately, there is a unary instruction MOVSPA that moves the content of the stack
pointer to the accumulator. The RTL specification of MOVSPA is

A ← SP

To push the address of perim the compiler generates the following instructions
at 001D in Figure 6.29:

MOVSPA

ADDA perim,i

STA -2,s

The first instruction moves the content of the stack pointer to the accumulator. The
accumulator then contains FBC9. The second instruction adds the value of perim,
which is 4, to the accumulator, making it FBCD. The third instruction puts the
address of perim in the cell for p, which procedure rect uses to store the perime-
ter. Figure 6.31(b) shows the result.

Procedure rect uses p as any procedure would use any call-by-reference param-
eter. Namely, at 000A it stores the value using stack-relative deferred addressing.

STA p,sf

The MOVSPA instruction

6.3 Procedure Calls and Parameters 279

Stack-relative deferred addressing

The translation rules for call-by-
reference parameters with local
variables

With stack-relative deferred addressing, the address of the operand is on the stack.
The operand is

Oprnd = Mem [Mem [SP + OprndSpec]]

This instruction adds the stack pointer FBC1 to the operand specifier 6 yielding
FBC7. Because Mem [FBC7] is FBCD, it stores the accumulator at Mem [FBCD].

In summary, to translate call-by-reference parameters with local variables the
compiler generates code as follows:

■ To push the actual parameter, it generates the unary MOVSPA instruction fol-
lowed by the ADDA instruction with immediate addressing.

■ To access the formal parameter, it generates instructions with stack-relative
deferred addressing.

Translating Boolean Types

Several schemes exist for storing boolean values at the assembly level. The one
most appropriate for C++ is to treat the values true and false as integer constants.
The values are

const int true = 1;

const int false = 0;

Figure 6.32 is a program that declares a boolean function named inRange. The
compiler translates the function as if true and false were declared as above.

High-Order Language

#include <iostream>

using namespace std;

const int LOWER = 21;

const int UPPER = 65;

bool inRange (int a) {

if ((LOWER <= a) && (a <= UPPER)) {

return true;

}

else {

return false;

}

}

Figure 6.32
Translation of a boolean type.

280 Chapter 6 Compiling to the Assembly Level

int main () {

int age;

cin >> age;

if (inRange (age)) {

cout << "Qualified\n";

}

else {

cout << "Unqualified\n";

}

return 0;

}

Assembly Language

0000 040023 BR main

true: .EQUATE 1

false: .EQUATE 0

;

LOWER: .EQUATE 21 ;const int

UPPER: .EQUATE 65 ;const int

;

;******* bool inRange (int a)

retVal: .EQUATE 4 ;returned value

a: .EQUATE 2 ;formal parameter

0003 C00015 inRange: LDA LOWER,i ;if ((LOWER <= a)

0006 B30002 if: CPA a,s

0009 10001C BRGT else

000C C30002 LDA a,s ; && (a <= UPPER))

000F B00041 CPA UPPER,i

0012 10001C BRGT else

0015 C00001 then: LDA true,i ; return true

0018 E30004 STA retVal,s

001B 58 RET0

001C C00000 else: LDA false,i ; return false

001F E30004 STA retVal,s

0022 58 RET0

;

;******* main ()

age: .EQUATE 0 ;local variable

0023 680002 main: SUBSP 2,i ;allocate local

0026 330000 DECI age,s ;cin >> age

Figure 6.32
(Continued)

0029 C30000 if2: LDA age,s ;if (

002C E3FFFC STA -4,s ;store the value of age

002F 680004 SUBSP 4,i ;push parameter and retVal

0032 160003 CALL inRange ; (inRange (age))

0035 600004 ADDSP 4,i ;pop parameter and retVal

0038 C3FFFE LDA -2,s ;load retVal

003B 0A0044 BREQ else2 ;branch if retVal == false (i.e., 0)

003E 41004B then2: STRO msg1,d ; cout << "Qualified\n"

0041 040047 BR endif2

0044 410056 else2: STRO msg2,d ; cout << "Unqualified\n"

0047 600002 endif2: ADDSP 2,i ;deallocate local

004A 00 STOP

004B 517561 msg1: .ASCII "Qualified\n\x00"

...

0056 556E71 msg2: .ASCII "Unqualified\n\x00"

...

0063 .END

6.3 Procedure Calls and Parameters 281

Representing false and true at the bit level as 0000 and 0001 (hex) has advan-
tages and disadvantages. Consider the logical operations on boolean quantities and
the corresponding assembly instructions ANDr, ORr, and NOTr. If p and q are global
boolean variables, then

p && q

translates to

LDA p,d

ANDA q,d

If you AND 0000 and 0001 with this object code, you get 0000 as desired. The OR
operation || also works as desired. The NOT operation is a problem, however,
because if you apply NOT to 0000, you get FFFF instead of 0001. Also, applying
NOT to 0001 gives FFFE instead of 0000. Consequently, the compiler does not
generate the NOT instruction when it translates the C++ assignment statement

p = !q

Instead, it uses the exclusive-or operation XOR, which has the mathematical sym-
bol �. It has the useful property that if you take the XOR of any bit value b with 0

Figure 6.32
(Continued)

282 Chapter 6 Compiling to the Assembly Level

you get b. And if you take the XOR of any bit value b with 1 you get the logical
negation of b. Mathematically,

b ⊕ 0 = b

b ⊕ 1 = ¬b

Unfortunately, the Pep/8 computer does not have an XORr instruction in its instruc-
tion set. If it did have such an instruction, the compiler would generate the follow-
ing code for the above assignment:

LDA q,d

XORA 0x0001,i

STA p,d

If q is false it has the representation 0000 (hex), and 0000 XOR 0001 equals 0001,
as desired. Also, if q is true it has the representation 0001 (hex), and 0001 XOR
0001 equals 0000.

The type bool was not included in the C++ language standard until 1996.
Older compilers use the convention that the boolean operators operate on inte-
gers. They interpret the integer value 0 as false and any nonzero integer value as
true. To preserve backward compatibility, current C++ compilers maintain this
convention.

6.4 Indexed Addressing and Arrays

A variable at level HOL6 is a memory cell at level ISA3. A variable at level HOL6
is referred to by its name, at level ISA3 by its address. A variable at level Asmb5
can be referred to by its symbolic name, but the value of that symbol is the address
of the cell in memory.

What about an array of values? An array contains many elements, and so con-
sists of many memory cells. The memory cells of the elements are contiguous; that
is, they are adjacent to one another. An array at level HOL6 has a name. At level
Asmb5, the corresponding symbol is the address of the first cell of the array. This
section shows how the compiler translates source programs that allocate and access
elements of one-dimensional arrays. It does so with several forms of indexed
addressing.

Figure 6.33 summarizes all the Pep/8 addressing modes. Previous programs
illustrate immediate, direct, stack-relative, and stack-relative deferred addressing.
Programs with arrays use indexed, stack-indexed, or stack-indexed deferred
addressing. The column labeled aaa shows the address-aaa field at level ISA3. The

At level Asmb5, the value of the
symbol of an array is the address of
the first cell of the array.

6.4 Indexed Addressing and Arrays 283

aaaAddressing Mode Letters

000
001
010
011
100
101
110
111

Immediate
Direct
Indirect
Stack-relative
Stack-relative deferred
Indexed
Stack-indexed
Stack-indexed deferred

i
d
n
s
sf
x
sx
sxf

Operand

OprndSpec
Mem [OprndSpec]
Mem [Mem [OprndSpec]]
Mem [SP + OprndSpec]
Mem [Mem [SP + OprndSpec]]
Mem [OprndSpec + X]
Mem [SP + OprndSpec + X]
Mem [Mem [SP + OprndSpec] + X]

Figure 6.33
The Pep/8 addressing modes.

column labeled Letters shows the assembly language designation for the addressing
mode at level Asmb5. The column labeled Operand shows how the CPU determines
the operand from the operand specifier (OprndSpec).

Translating Global Arrays

Figure 6.34 shows a program at level HOL6 that declares a global array of four
integers named vector and a global integer named i. The main program inputs
four integers into the array with a for loop and outputs them in reverse order
together with their indexes.

High-Order Language

#include <iostream>

using namespace std;

int vector[4];

int i;

int main () {

for (i = 0; i < 4; i++) {

cin >> vector[i];

}

for (i = 3; i >= 0; i--) {

cout << i << ' ' << vector[i] << endl;

}

return 0;

}

Figure 6.34
A global array.

284 Chapter 6 Compiling to the Assembly Level

Assembly Language

0000 04000D BR main

0003 000000 vector: .BLOCK 8 ;global variable

000000

0000

000B 0000 i: .BLOCK 2 ;global variable

;

;******* main ()

000D C80000 main: LDX 0,i ;for (i = 0

0010 E9000B STX i,d

0013 B80004 for1: CPX 4,i ; i < 4

0016 0E0029 BRGE endFor1

0019 1D ASLX ; an integer is two bytes

001A 350003 DECI vector,x ; cin >> vector[i]

001D C9000B LDX i,d ; i++)

0020 780001 ADDX 1,i

0023 E9000B STX i,d

0026 040013 BR for1

0029 C80003 endFor1: LDX 3,i ;for (i = 3

002C E9000B STX i,d

002F B80000 for2: CPX 0,i ; i >= 0

0032 08004E BRLT endFor2

0035 39000B DECO i,d ; cout << i

0038 500020 CHARO ' ',i ; << ' '

003B 1D ASLX ; an integer is two bytes

003C 3D0003 DECO vector,x ; << vector[i]

003F 50000A CHARO '\n',i ; << endl

0042 C9000B LDX i,d ; i--)

0045 880001 SUBX 1,i

0048 E9000B STX i,d

004B 04002F BR for2

004E 00 endFor2: STOP

004F .END

Input

60 70 80 90

Output

3 90

2 80

1 70

0 60

Figure 6.34
(Continued)

0003 vector[0]

0005 vector[1]

0007 vector[2]

0009 vector[3]

000B i

Figure 6.35
Memory allocation for the global
array of Figure 6.34.

6.4 Indexed Addressing and Arrays 285

Figure 6.35 shows the memory allocation for integer i and array vector. As
with all global integers, the compiler translates

int i;

at level HOL6 as the following statement at level Asmb5:

i: .BLOCK 2

The two-byte integer is allocated at address 000B. The compiler translates

int vector[4];

at level HOL6 as the following statement at level Asmb5:

vector: .BLOCK 8

It allocates eight bytes because the array contains four integers, each of which is
two bytes. The .BLOCK statement is at 0003. Figure 6.35 shows that 0003 is the
address of the first element of the array. The second element is at 0005, and each
element is at an address two bytes greater than the previous element.

The compiler translates the first for statement

for (i = 0; i < 4; i++)

as usual. It accesses i with direct addressing because i is a global variable. But
how does it access vector[i]? It cannot simply use direct addressing, because the
value of symbol vector is the address of the first element of the array. If the value
of i is 2, it should access the third element of the array, not the first.

The answer is that it uses indexed addressing. With indexed addressing, the
CPU computes the operand as

Oprnd = Mem[OprndSpec + X]

It adds the operand specifier and the index register and uses the sum as the address
in main memory from which it fetches the operand.

In Figure 6.34, the compiler translates

cin >> vector[i];

at level HOL6 as

ASLX

DECI vector,x

at level Asmb5. This is an optimized translation. The compiler analyzed the previous
code generated and determined that the index register already contained the current
value of i. A nonoptimizing compiler would generate the following code:

LDX i,d

ASLX

DECI vector,x

Indexed addressing

286 Chapter 6 Compiling to the Assembly Level

The translation rules for global
arrays

Suppose the value of i is 2. LDX puts the value of i in the index register. (Or, an
optimizing compiler determines that the current value of i is already in the index
register.) ASLX multiplies the 2 times 2, leaving 4 in the index register. DECI uses
indexed addressing. So, the operand is computed as

Mem [OprndSpec + X]
Mem [0003 + 4]
Mem [0007]

which Figure 6.35 shows is vector[2]. Had the array been an array of characters,
the ASLX operation would be unnecessary because each character occupies only one
byte. In general, if each cell in the array occupies n bytes, the value of i is loaded
into the index register, multiplied by n, and the array element is accessed with
indexed addressing.

Similarly, the compiler translates the output of vector[i] as

ASLX

DECO vector,x

with indexed addressing.
In summary, to translate global arrays the compiler generates code as follows:

■ It allocates storage for the array with .BLOCK tot where tot is the total num-
ber of bytes occupied by the array.

■ It accesses an element of the array by loading the index into the index regis-
ter, multiplying it by the number of bytes per cell, and using indexed
addressing.

Translating Local Arrays

Like all local variables, local arrays are allocated on the run-time stack during pro-
gram execution. The SUBSP instruction allocates the array and the ADDSP instruc-
tion deallocates it. Figure 6.36 is a program identical to the one of Figure 6.34
except that the index i and the array vector are local to main().

High-Order Language

#include <iostream>

using namespace std;

int main () {

int vector[4];

int i;

Figure 6.36
A local array.

6.4 Indexed Addressing and Arrays 287

for (i = 0; i < 4; i++) {

cin >> vector[i];

}

for (i = 3; i >= 0; i--) {

cout << i << ' ' << vector[i] << endl;

}

return 0;

}

Assembly Language

0000 040003 BR main

;

;******* main ()

vector: .EQUATE 2 ;local variable

i: .EQUATE 0 ;local variable

0003 68000A main: SUBSP 10,i ;allocate locals

0006 C80000 LDX 0,i ;for (i = 0

0009 EB0000 STX i,s

000C B80004 for1: CPX 4,i ; i < 4

000F 0E0022 BRGE endFor1

0012 1D ASLX ; an integer is two bytes

0013 360002 DECI vector,sx ; cin >> vector[i]

0016 CB0000 LDX i,s ; i++)

0019 780001 ADDX 1,i

001C EB0000 STX i,s

001F 04000C BR for1

0022 C80003 endFor1: LDX 3,i ;for (i = 3

0025 EB0000 STX i,s

0028 B80000 for2: CPX 0,i ; i >= 0

002B 080047 BRLT endFor2

002E 3B0000 DECO i,s ; cout << i

0031 500020 CHARO ' ',i ; << ' '

0034 1D ASLX ; an integer is two bytes

0035 3E0002 DECO vector,sx ; << vector[i]

0038 50000A CHARO '\n',i ; << endl

003B CB0000 LDX i,s ; i--)

003E 880001 SUBX 1,i

0041 EB0000 STX i,s

0044 040028 BR for2

0047 60000A endFor2: ADDSP 10,i ;deallocate locals

004A 00 STOP

004B .END

288 Chapter 6 Compiling to the Assembly Level

FBC5 i

vector[0]

vector[1]

vector[2]

vector[3]

SP 0

FBC72

FBC94

FBCB6

FBCD8

Figure 6.37
Memory allocation for the local
array of Figure 6.36.

Figure 6.37 shows the memory allocation on the run-time stack for the program
of Figure 6.36. The compiler translates

int vector[4];

int i;

at level HOL6 as

main: SUBSP 10,i

at level Asmb5. It allocates eight bytes for vector and two bytes for i, for a total
of 10 bytes. It sets the values of the symbols with

vector: .EQUATE 2

i: .EQUATE 0

where 2 is the stack-relative address of the first cell of vector and 0 is the stack-
relative address of i as Figure 6.37 shows

How does the compiler access vector[i]? It cannot use indexed addressing,
because the value of symbol vector is not the address of the first element of the
array. It uses stack-indexed addressing. With stack-indexed addressing, the CPU
computes the operand as

Oprnd = Mem[SP + OprndSpec + X]

It adds the stack pointer plus the operand specifier plus the index register and uses
the sum as the address in main memory from which it fetches the operand.

In Figure 6.37, the compiler translates

cin >> vector[i];

at level HOL6 as

ASLX

DECI vector,sx

at level Asmb5. As in the previous program, this is an optimized translation. A
nonoptimizing compiler would generate the following code:

LDX i,d

ASLX

DECI vector,sx

Stack-indexed addressing

6.4 Indexed Addressing and Arrays 289

The translation rules for local
arrays

Suppose the value of i is 2. LDX puts the value of i in the index register. ASLX mul-
tiplies the 2 times 2, leaving 4 in the index register. DECI uses stack-indexed
addressing. So, the operand is computed as

Mem [SP + OprndSpec + X]
Mem [FBC5 + 2 + 4]
Mem [FBCB]

which Figure 6.37 shows is vector[2]. You can see how stack-indexed address-
ing is made for arrays on the run-time stack. SP is the address of the top of the
stack. OprndSpec is the stack-relative address of the first cell of the array, so SP +
OprndSpec is the absolute address of the first cell of the array. With i in the index
register (multiplied by the number of bytes per cell of the array) the sum SP +
OprndSpec + X is the address of cell i of the array.

In summary, to translate local arrays the compiler generates code as follows:

■ The array is allocated with SUBSP and deallocated with ADDSP.

■ An element of the array is accessed by loading the index into the index regis-
ter, multiplying it by the number of bytes per cell, and using stack-indexed
addressing.

Translating Arrays Passed as Parameters

In C++, the name of an array is the address of the first element of the array. When
you pass an array, even if you do not use the & designation in the formal parameter
list, you are passing the address of the first element of the array. The effect is as if
you call the array by reference. The designers of the C language, on which C++ is
based, reasoned that programmers almost never want to pass an array by value
because such calls are so inefficient. They require large amounts of storage on the
run-time stack because the stack must contain the entire array. And they require a
large amount of time because the value of every cell must be copied onto the stack.
Consequently, the default behavior in C++ is for arrays to be called as if by reference.

Figure 6.38 shows how a compiler translates a program that passes a local
array as a parameter. The main program passes an array of integers vector and an
integer numItms to procedures getVect and putVect. getVect inputs values into
the array and sets numItms to the number of items input. putVect outputs the
values of the array.

High-Order Language

#include <iostream>

using namespace std;

Figure 6.38
Passing a local array as a parameter.

290 Chapter 6 Compiling to the Assembly Level

void getVect (int v[], int& n) {

int i;

cin >> n;

for (i = 0; i < n; i++) {

cin >> v[i];

}

}

void putVect (int v[], int n) {

int i;

for (i = 0; i < n; i++) {

cout << v[i] << ' ';

}

cout << endl;

}

int main () {

int vector[8];

int numItms;

getVect (vector, numItms);

putVect (vector, numItms);

return 0;

}

Assembly Language

0000 040049 BR main

;

;******* getVect (int v[], int& n)

v: .EQUATE 6 ;formal parameter

n: .EQUATE 4 ;formal parameter

i: .EQUATE 0 ;local variable

0003 680002 getVect: SUBSP 2,i ;allocate local

0006 340004 DECI n,sf ;cin >> n

0009 C80000 LDX 0,i ;for (i = 0

000C EB0000 STX i,s

000F BC0004 for1: CPX n,sf ; i < n

0012 0E0025 BRGE endFor1

0015 1D ASLX ; an integer is two bytes

0016 370006 DECI v,sxf ; cin >> v[i]

0019 CB0000 LDX i,s ; i++)

001C 780001 ADDX 1,i

001F EB0000 STX i,s

0022 04000F BR for1

0025 5A endFor1: RET2 ;pop local and retAddr

Figure 6.38
(Continued)

6.4 Indexed Addressing and Arrays 291

;

;******* putVect (int v[], int n)

v2: .EQUATE 6 ;formal parameter

n2: .EQUATE 4 ;formal parameter

i2: .EQUATE 0 ;local variable

0026 680002 putVect: SUBSP 2,i ;allocate local

0029 C80000 LDX 0,i ;for (i = 0

002C EB0000 STX i2,s

002F BB0004 for2: CPX n2,s ; i < n

0032 0E0048 BRGE endFor2

0035 1D ASLX ; an integer is two bytes

0036 3F0006 DECO v2,sxf ; cout << v[i]

0039 500020 CHARO ' ',i ; << ' '

003C CB0000 LDX i2,s ; i++)

003F 780001 ADDX 1,i

0042 EB0000 STX i2,s

0045 04002F BR for2

0048 5A endFor2: RET2 ;pop local and retAddr

;

;******* main ()

vector: .EQUATE 2 ;local variable

numItms: .EQUATE 0 ;local variable

0049 680012 main: SUBSP 18,i ;allocate locals

004C 02 MOVSPA ;push address of vector

004D 700002 ADDA vector,i

0050 E3FFFE STA -2,s

0053 02 MOVSPA ;push address of numItms

0054 700000 ADDA numItms,i

0057 E3FFFC STA -4,s

005A 680004 SUBSP 4,i ;push params

005D 160003 CALL getVect ;getVect (vector, numItms)

0060 600004 ADDSP 4,i ;pop params

0063 02 MOVSPA ;push address of vector

0064 700002 ADDA vector,i

0067 E3FFFE STA -2,s

006A C30000 LDA numItms,s ;push value of numItms

006D E3FFFC STA -4,s

0070 680004 SUBSP 4,i ;push params

0073 160026 CALL putVect ;putVect (vector, numItms)

0076 600004 ADDSP 4,i ;pop params

0079 600012 ADDSP 18,i ;deallocate locals

007C 00 STOP

007D .END

Figure 6.38
(Continued)

292 Chapter 6 Compiling to the Assembly Level

vector[7]FBCD16

vector[6]FBCB14

vector[5]FBC912

vector[4]FBC710

vector[3]FBC58

vector[2]FBC36

vector[1]FBC14

vector[0]FBBF2

numItmsFBBD0

vFBBB–2

nFBB9–4

vector[7]FBCD

vector[6]FBCB

vector[5]FBC9

vector[4]FBC7

vector[3]FBC5

vector[2]FBC3

vector[1]FBC1

vector[0]FBBF

numItmsFBBD

vFBBB6

nFBB94

retAddrFBB7 0060

FBBD

FBBF

2

iFBB50

(a) Before calling getVect. (b) After calling getVect.

SP

SP

Figure 6.39
The run-time stack for the program
of Figure 6.38.

Input

5 40 50 60 70 80

Output

40 50 60 70 80

Figure 6.38 shows that the compiler translates the local variables

int vector[8];

int numItms;

as

vector: .EQUATE 2

numItms: .EQUATE 0

main: SUBSP 18,i

The SUBSP instruction allocates 18 bytes on the run-time stack, 16 bytes for the
eight integers of the array and 2 bytes for the integer. The .EQUATE dot commands
set the symbols to their stack offsets, as Figure 6.39(a) shows.

The compiler translates

getVect (vector, numItms);

Figure 6.38
(Continued)

6.4 Indexed Addressing and Arrays 293

by first generating code to push the address of the first cell of vector

MOVSPA

ADDA vector,i

STA -2,s

and then by generating code to push the address of numItms

MOVSPA

ADDA numItms,i

STA -4,s

Even though the signature of the function

void getVect (int v[], int& n)

does not have the & with parameter v[], the compiler writes code to push the
address of v with the MOVSPA and ADDA instructions. Because the signature does
have the & with parameter n, the compiler writes code to push the address of n in
the same way. Figure 6.39(b) shows v with FBBF, the address of vector[0] and n

with FBBD, the address of numItms.
Figure 6.39(b) also shows the stack offsets for the parameters and local vari-

ables in getVect. The compiler defines the symbols

v: .EQUATE 6

n: .EQUATE 4

i: .EQUATE 0

accordingly. It translates the input statement

cin >> n;

as

DECI n,sf

where stack-relative deferred addressing is used because n is called by reference
and the address of n is on the stack.

But how does the compiler translate

cin >> v[i];

It cannot use stack-indexed addressing, because the array of values is not in the
stack frame for getVect. The value of v is 6, which means that the address of the
first cell of the array is six bytes below the top of the stack. The array of values is in
the stack frame for main(). Stack-indexed deferred addressing is designed to
access the elements of an array whose address is in the top stack frame but whose
actual collection of values is not. With stack-indexed deferred addressing, the CPU
computes the operand as

Oprnd = Mem [Mem [SP + OprndSpec] + X] Stack-indexed deferred addressing

294 Chapter 6 Compiling to the Assembly Level

It adds the stack pointer plus the operand specifier and uses the sum as the address
of the first element of the array, to which it adds the index register. The compiler
translates the input statement as

ASLX

DECI v,sxf

where the letters sxf indicate stack-indexed deferred addressing, and the compiler
has determined that the index register will contain the current value of i.

For example, suppose the value of i is 2. The ASLX instruction doubles it to 4.
The computation of the operand is

Mem [Mem[SP + OprndSpec] + X]
Mem [Mem[FBB5 + 6] + 4]
Mem [Mem[FBBB] + 4]
Mem [FBBF + 4]
Mem [FBC3]

which is vector[2] as expected from Figure 6.39(b).
The formal parameters in procedures getVect and putVect in Figure 6.39

have the same names. At level HOL6, the scope of the parameter names is confined
to the body of the function. The programmer knows that a statement containing n in
the body of getVect refers to the n in the parameter list for getVect and not to
the n in the parameter list of putVect. The scope of a symbol name at level
Asmb5, however, is the entire assembly language program. The compiler cannot
use the same symbol for the n in putVect that it uses for the n in getVect, as
duplicate symbol definitions would be ambiguous. All compilers must have some
mechanism for managing the scope of name declarations in level-HOL6 programs
when they transform them to symbols at level Asmb5. The compiler in Figure 6.38
makes the identifiers unambiguous by appending the digit 2 to the symbol name.
Hence, the compiler translates variable name n in putVect at level HOL6 to sym-
bol n2 at level Asmb5. It does the same with v and i.

With procedure putVect, the array is passed as a parameter but n is called by
value. In preparation for the procedure call, the address of vector is pushed onto
the stack as before, but this time the value of numItms is pushed. In procedure
putVect, n2 is accessed with stack-relative addressing.

for2: CPX n2,s

because it is called by value. v2 is accessed with stack-indexed deferred addressing

ASLX

DECO v2,sxf

as it is in getVect.
In Figure 6.38, vector is a local array. If it were a global array, the transla-

tions of getVect and putVect would be unchanged. v[i] would be accessed with
stack-indexed deferred addressing, which expects the address of the first element of

6.4 Indexed Addressing and Arrays 295

Passing global arrays as
parameters

The translation rules for passing an
array as a parameter

the array to be in the top stack frame. The only difference would be in the code to
push the address of the first element of the array in preparation of the call. As in the
program of Figure 6.34, the value of the symbol of a global array is the address of
the first cell of the array. Consequently, to push the address of the first cell of the
array the compiler would generate a LDA instruction with immediate addressing fol-
lowed by a STA instruction with stack-relative addressing to do the push.

In summary, to pass an array as a parameter the compiler generates code as
follows:

■ The address of the first element of the array is pushed onto the run-time stack,
either (a) with MOVSPA followed by ADDA with immediate addressing for a
local array, or (b) with LDA with immediate addressing for a global array.

■ An element of the array is accessed by loading the index into the index regis-
ter, multiplying it by the number of bytes per cell, and using stack-indexed
deferred addressing.

Translating the Switch Statement

The program in Figure 6.40, which is also in Figure 2.11, shows how a compiler
translates the C++ switch statement. It uses an interesting combination of indexed
addressing with the unconditional branch, BR. The switch statement is not the same
as a nested if statement. If a user enters 2 for guess, the switch statement branches
directly to the third alternative without comparing guess to 0 or 1. An array is a ran-
dom access data structure because the indexing mechanism allows the programmer to
access any element at random without traversing all the previous elements. For
example, to access the third element of a vector of integers you can write vector[2]
directly without having to traverse vector[0] and vector[1] first. Main memory is
in effect an array of bytes whose addresses correspond to the indexes of the array. To
translate the switch statement the compiler allocates an array of addresses called a
jump table. Each entry in the jump table is the address of the first statement of a sec-
tion of code that corresponds to one of the cases of the switch statement. With
indexed addressing, the program can branch directly to case 2.

High-Order Language

#include <iostream>

using namespace std;

int main () {

int guess;

cout << "Pick a number 0..3: ";

cin >> guess;

Figure 6.40
Translation of a switch statement.

296 Chapter 6 Compiling to the Assembly Level

switch (guess) {

case 0: cout << "Not close"; break;

case 1: cout << "Close"; break;

case 2: cout << "Right on"; break;

case 3: cout << "Too high";

}

cout << endl;

return 0;

}

Assembly Language

0000 040003 BR main

;

;******* main ()

guess: .EQUATE 0 ;local variable

0003 680002 main: SUBSP 2,i ;allocate local

0006 410037 STRO msgIn,d ;cout << "Pick a number 0..3: "

0009 330000 DECI guess,s ;cin >> Guess

000C CB0000 LDX guess,s ;switch (Guess)

000F 1D ASLX ;addresses occupy two bytes

0010 050013 BR guessJT,x

0013 001B guessJT: .ADDRSS case0

0015 0021 .ADDRSS case1

0017 0027 .ADDRSS case2

0019 002D .ADDRSS case3

001B 41004C case0: STRO msg0,d ;cout << "Not close"

001E 040030 BR endCase ;break

0021 410056 case1: STRO msg1,d ;cout << "Close"

0024 040030 BR endCase ;break

0027 41005C case2: STRO msg2,d ;cout << "Right on"

002A 040030 BR endCase ;break

002D 410065 case3: STRO msg3,d ;cout << "Too high"

0030 50000A endCase: CHARO '\n',i ;count << endl

0033 600002 ADDSP 2,i ;deallocate local

0036 00 STOP

0037 506963 msgIn: .ASCII "Pick a number 0..3: \x00"

...

004C 4E6F74 msg0: .ASCII "Not close\x00"

...

0056 436C6F msg1: .ASCII "Close\x00"

...

005C 526967 msg2: .ASCII "Right on\x00"

...

Figure 6.40
(Continued)

6.4 Indexed Addressing and Arrays 297

The .ADDRSS pseudo-op

0065 546F6F msg3: .ASCII "Too high\x00"

...

006E .END

Figure 6.40 shows the jump table at 0013 in the assembly language program.
The code generated at 0013 is 001B, which is the address of the first statement of
case 0. The code generated at 0015 is 0021, which is the address of the first state-
ment of case 1, and so on. The compiler generates the jump table with .ADDRSS

pseudo-ops. Every .ADDRSS command must be followed by a symbol. The code
generated by .ADDRSS is the value of the symbol. For example, case2 is a symbol
whose value is 0027, the address of the code to be executed if guess has a value of
2. Therefore, the object code generated by

.ADDRSS case2

at 0017 is 0027.
Suppose the user enters 2 for the value of guess. The statement

LDX guess,s

puts 2 in the index register. The statement

ASLX

multiplies the 2, by two leaving 4 in the index register. The statement

BR guessJT,x

is an unconditional branch with indexed addressing. The value of the operand speci-
fier guessJT is 0013, the address of the first word of the jump table. For indexed
addressing, the CPU computes the operand as

Oprnd = Mem[OprndSpec + X]

Therefore, the CPU computes

Mem [OprndSpec + X]
Mem [0013 + 4]
Mem [0017]
0027

as the operand. The RTL specification for the BR instruction is

PC ← Oprnd

and so the CPU puts 0027 in the program counter. Because of the von Neumann
cycle, the next instruction to be executed is the one at address 0027, which is pre-
cisely the first instruction for case 2.

Indexed addressing

Figure 6.40
(Continued)

298 Chapter 6 Compiling to the Assembly Level

Abstraction of control

The break statement in C++ is translated as a BR instruction to branch to the
end of the switch statement. If you omit the break in your C++ program, the
compiler will omit the BR and control will fall through to the next case.

If the user enters a number not in the range 0..3, a run-time error will occur.
For example, if the user enters 4 for guess the ASLX instruction will multiply it by
2, leaving 8 in the index register, and the CPU will compute the operand as

Mem [OprndSpec + X]
Mem [0013 + 8]
Mem [001B]
4100

so the branch will be to memory location 4100 (hex). The problem is that the bits
001B were generated by the assembler for the STRO instruction and were never
meant to be interpreted as a branch address. To prevent such indignities from hap-
pening to the user, C++ specifies that nothing should happen if the value of guess
is not one of the cases. It also provides a default case for the switch statement to
handle any case not encountered by the previous cases. The compiler must generate
an initial conditional branch on guess to handle the values not covered by the other
cases. The problems at the end of the chapter explore this characteristic of the
switch statement.

6.5 Dynamic Memory Allocation

The purpose of a compiler is to create a high level of abstraction for the programmer.
For example, it lets the programmer think in terms of a single while loop instead of the
detailed conditional branches at the assembly level that are necessary to implement the
loop on the machine. Hiding the details of a lower level is the essence of abstraction.

But abstraction of program control is only one side of the coin. The other side
is abstraction of data. At the assembly and machine levels, the only data types are
bits and bytes. Previous programs show how the compiler translates character, inte-
ger, and array types. Each of these types can be global, allocated with .BLOCK, or
local, allocated with SUBSP on the run-time stack. But C++ programs can also con-
tain structures and pointers, the basic building blocks of many data structures. At
level HOL6, pointers access structures allocated from the heap with the new opera-
tor. This section shows the operation of a simple heap at level Asmb5 and how the
compiler translates programs that contain pointers and structures. It concludes with
a description of the translation of boolean values.

Translating Global Pointers

Figure 6.41 shows a C++ program with global pointers and its translation to Pep/8
assembly language. The C++ program is identical to the one in Figure 2.35, and

Abstraction of data

6.5 Dynamic Memory Allocation 299

Figure 2.36 shows the allocation from the heap as the program executes. The heap
is a region of memory different from the stack. The compiler, in cooperation with
the operating system under which it runs, must generate code to perform the alloca-
tion and deallocation from the heap.

High-Order Language

#include <iostream>

using namespace std;

int *a, *b, *c;

int main () {

a = new int;

*a = 5;

b = new int;

*b = 3;

c = a;

a = b;

*a = 2 + *c;

cout << "*a = " << *a << endl;

cout << "*b = " << *b << endl;

cout << "*c = " << *c << endl;

return 0;

}

Assembly Language

0000 040009 BR main

0003 0000 a: .BLOCK 2 ;global variable

0005 0000 b: .BLOCK 2 ;global variable

0007 0000 c: .BLOCK 2 ;global variable

;

;******* main ()

0009 C00002 main: LDA 2,i ;a = new int

000C 16006A CALL new

000F E90003 STX a,d

0012 C00005 LDA 5,i ;*a = 5

0015 E20003 STA a,n

0018 C00002 LDA 2,i ;b = new int

001B 16006A CALL new

001E E90005 STX b,d

0021 C00003 LDA 3,i ;*b = 3

0024 E20005 STA b,n

0027 C10003 LDA a,d ;c = a

Figure 6.41
Translation of global pointers.

002A E10007 STA c,d

002D C10005 LDA b,d ;a = b

0030 E10003 STA a,d

0033 C00002 LDA 2,i ;*a = 2 + *c

0036 720007 ADDA c,n

0039 E20003 STA a,n

003C 410058 STRO msg0,d ;cout << "*a = "

003F 3A0003 DECO a,n ; << *a

0042 50000A CHARO '\n',i ; << endl

0045 41005E STRO msg1,d ;cout << "*b = "

0048 3A0005 DECO b,n ; << *b

004B 50000A CHARO '\n',i ; << endl

004E 410064 STRO msg2,d ;cout << "*c = "

0051 3A0007 DECO c,n ; << *c

0054 50000A CHARO '\n',i ; << endl

0057 00 STOP

0058 2A6120 msg0: .ASCII "*a = \x00"

3D2000

005E 2A6220 msg1: .ASCII "*b = \x00"

3D2000

0064 2A6320 msg2: .ASCII "*c = \x00"

3D2000

;

;******* operator new

; Precondition: A contains number of bytes

; Postcondition: X contains pointer to bytes

006A C90074 new: LDX hpPtr,d ;returned pointer

006D 710074 ADDA hpPtr,d ;allocate from heap

0070 E10074 STA hpPtr,d ;update hpPtr

0073 58 RET0

0074 0076 hpPtr: .ADDRSS heap ;address of next free byte

0076 00 heap: .BLOCK 1 ;first byte in the heap

0077 .END

Output

*a = 7

*b = 7

*c = 5

300 Chapter 6 Compiling to the Assembly Level

When you program with pointers in C++, you allocate storage from the heap
with the new operator. When your program no longer needs the storage that was
allocated, you deallocate it with the delete operator. It is possible to allocate sev-

Figure 6.41
(Continued)

6.5 Dynamic Memory Allocation 301

Simplifications in the Pep/8 heap

eral cells of memory from the heap and then deallocate one cell from the middle.
The memory management algorithms must be able to handle that scenario. To keep
things simple at this introductory level, the programs that illustrate the heap do not
show the deallocation process. The heap is located in main memory at the end of the
application program. Operator new works by allocating storage from the heap, so
that the heap grows downward. Once memory is allocated it can never be deallo-
cated. This feature of the Pep/8 heap is unrealistic but easier to understand than if it
were presented more realistically.

The assembly language program in Figure 6.41 shows the heap starting at
address 0076, which is the value of the symbol heap. The allocation algorithm main-
tains a global pointer named hpPtr, which stands for heap pointer. The statement

hpPtr: .ADDRSS heap

at 0074 initializes hpPtr to the address of the first byte in the heap. The application
supplies the new operator with the number of bytes needed. The new operator
returns the value of hpPtr and then increments it by the number of bytes requested.
Hence, the invariant maintained by the new operator is that hpPtr points to the
address of the next byte to be allocated from the heap.

The calling protocol for operator new is different from the calling protocol for
functions. With functions, information is passed via parameters on the run-time
stack. With operator new, the application puts the number of bytes to be allocated in
the accumulator and executes the CALL statement to invoke the operator. The opera-
tor puts the current value of hpPtr in the index register for the application. So, the
precondition for the successful operation of new is that the accumulator contains the
number of bytes to be allocated from the heap. The postcondition is that the index
register contains the address in the heap of the first byte allocated by new.

The calling protocol for operator new is more efficient than the calling protocol
for functions. The implementation of new requires only four lines of assembly lan-
guage code including the RET0 statement. At 006A, the statement

new: LDX hpPtr,d

puts the current value of the heap pointer in the index register. At 006D, the state-
ment

ADDA hpPtr,d

adds the number of bytes to be allocated to the heap pointer, and at 0070, the state-
ment

STA hpPtr,d

updates hpPtr to the address of the first unallocated byte in the heap.
This efficient protocol is possible for two reasons. First, there is no long

parameter list as is possible with functions. The application only needs to supply
one value to operator new. The calling protocol for functions must be designed to
handle arbitrary numbers of parameters. If a parameter list had, say, four parameters

The calling protocol for operator
new

302 Chapter 6 Compiling to the Assembly Level

(a) Global pointers at level HOL6. (b) The global pointers at level Asmb5.

5

7

c

b

0078

0078

0076

a0003

0005

0007

0076

0078

b

c

a
5

7

Figure 6.42
Memory allocation for Figure 6.41
just before the first cout statement.

there would not be enough registers in the Pep/8 CPU to hold them all. But the run-
time stack can store an arbitrary number of parameters. Second, operator new does
not call any other function. Specifically, it makes no recursive calls. The calling
protocol for functions must be designed in general to allow for functions to call
other functions recursively. The run-time stack is essential for such calls but unnec-
essary for operator new.

Figure 6.42(a) shows the memory allocation for the C++ program at level
HOL6 just before the first cout statement. It corresponds to Figure 2.36(h). Figure
6.42(b) shows the same memory allocation at level Asmb5. Global pointers a, b,
and c are stored at 0003, 0005, and 0007. As with all global variables, they are allo-
cated with .BLOCK by the statements

a: .BLOCK 2

b: .BLOCK 2

c: .BLOCK 2

A pointer at level HOL6 is an address at level Asmb5. Addresses occupy two bytes.
Hence, each global pointer is allocated two bytes.

The compiler translates the statement

a = new int;

as

main: LDA 2,i

CALL new

STX a,d

The LDA instruction puts 2 in the accumulator The CALL instruction calls the new
operator, which allocates two bytes of storage from the heap, and puts the pointer to
the allocated storage in the index register. The STX instruction stores the returned
pointer in the global variable a. Because a is a global variable, STX uses direct
addressing. After this sequence of statements executes, a has the value 0076, and
hpPtr has the value 0078 because it has been incremented by two.

How does the compiler translate

*a = 5;

Pointers are addresses.

6.5 Dynamic Memory Allocation 303

At this point in the execution of the program, the global variable a has the address
of where the 5 should be stored. (This point does not correspond to Figure 6.42,
which is later.) The store instruction cannot use direct addressing, as that would
replace the address with 5, which is not the address of the allocated cell in the
heap. Pep/8 provides the indirect addressing mode, in which the operand is com-
puted as

Oprnd = Mem[Mem[OprndSpec]]

With indirect addressing, the operand specifier is the address in memory of the
address of the operand. The compiler translates the assignment statement as

LDA 5,i

STA a,n

where n in the STA instruction indicates indirect addressing. At this point in the pro-
gram, the operand is computed as

Mem [Mem[OprndSpec]]
Mem [Mem[0003]]
Mem [0076]

which is the first cell in the heap. The store instruction stores 5 in main memory at
address 0076.

The compiler translates the assignment of global pointers the same as it would
translate the assignment of any other type of global variable. It translates

c = a;

as

LDA a,d

STA c,d

using direct addressing. At this point in the program, a contains 0076, the address of
the first cell in the heap. The assignment gives c the same value, the address of the
first cell in the heap, so that c points to the same cell to which a points.

Contrast the access of a global pointer to the access of the cell to which it
points. The compiler translates

*a = 2 + *c;

as

LDA 2,i

ADDA c,n

STA a,n

Indirect addressing

304 Chapter 6 Compiling to the Assembly Level

The translation rules for global
pointers

where the add and store instructions use indirect addressing. Whereas access to a
global pointer uses direct addressing, access to the cell to which it points uses indi-
rect addressing. You can see that the same principle applies to the translation of the
cout statement. Because cout outputs *a, that is, the cell to which a points, the
DECO instruction at 003F uses indirect addressing.

In summary, to access a global pointer the compiler generates code as follows:

■ It allocates storage for the pointer with .BLOCK 2 because an address occu-
pies two bytes.

■ It accesses the pointer with direct addressing.

■ It accesses the cell to which the pointer points with indirect addressing.

Translating Local Pointers

The program in Figure 6.43 is the same as the program in Figure 6.41 except that
the pointers a, b, and c are declared to be local instead of global. There is no differ-
ence in the output of the program compared to the program where the pointers are
declared to be global. But, the memory model is quite different because the pointers
are allocated on the run-time stack.

High-Order Language

#include <iostream>

using namespace std;

int main () {

int *a, *b, *c;

a = new int;

*a = 5;

b = new int;

*b = 3;

c = a;

a = b;

*a = 2 + *c;

cout << "*a = " << *a << endl;

cout << "*b = " << *b << endl;

cout << "*c = " << *c << endl;

return 0;

}

Figure 6.43
Translation of local pointers.

6.5 Dynamic Memory Allocation 305

Assembly Language

0000 040003 BR main

;

;******* main ()

a: .EQUATE 4 ;local variable

b: .EQUATE 2 ;local variable

c: .EQUATE 0 ;local variable

0003 680006 main: SUBSP 6,i ;allocate locals

0006 C00002 LDA 2,i ;a = new int

0009 16006A CALL new

000C EB0004 STX a,s

000F C00005 LDA 5,i ;*a = 5

0012 E40004 STA a,sf

0015 C00002 LDA 2,i ;b = new int

0018 16006A CALL new

001B EB0002 STX b,s

001E C00003 LDA 3,i ;*b = 3

0021 E40002 STA b,sf

0024 C30004 LDA a,s ;c = a

0027 E30000 STA c,s

002A C30002 LDA b,s ;a = b

002D E30004 STA a,s

0030 C00002 LDA 2,i ;*a = 2 + *c

0033 740000 ADDA c,sf

0036 E40004 STA a,sf

0039 410058 STRO msg0,d ;cout << "*a = "

003C 3C0004 DECO a,sf ; << *a

003F 50000A CHARO '\n',i ; << endl

0042 41005E STRO msg1,d ;cout << "*b = "

0045 3C0002 DECO b,sf ; << *b

0048 50000A CHARO '\n',i ; << endl

004B 410064 STRO msg2,d ;cout << "*c = "

004E 3C0000 DECO c,sf ; << *c

0051 50000A CHARO '\n',i ; << endl

0054 600006 ADDSP 6,i ;deallocate locals

0057 00 STOP

0058 2A6120 msg0: .ASCII "*a = \x00"

3D2000

005E 2A6220 msg1: .ASCII "*b = \x00"

3D2000

0064 2A6320 msg2: .ASCII "*c = \x00"

3D2000

Figure 6.43
(Continued)

306 Chapter 6 Compiling to the Assembly Level

(a) Local pointers at level HOL6. (b) The local pointers at level Asmb5.

5

7

0076

0078

5

7
b

a

c

bFBCB 0078

0078

2

aFBCD 00764

cSP FBC90

Figure 6.44
Memory allocation for Figure 6.43
just before the cout statement.

Figure 6.44 shows the memory allocation for the program in Figure 6.43 just
before execution of the first cout statement. As with all local variables, a, b, and c
are allocated on the run-time stack. Figure 6.44(b) shows their offsets from the top
of the stack as 4, 2, and 0. Consequently, the compiler translates

int *a, *b, *c;

as

a: .EQUATE 4

b: .EQUATE 2

c: .EQUATE 0

Because a, b, and c are local variables, the compiler generates code to allocate stor-
age for them with SUBSP and deallocates storage with ADDSP.

The compiler translates

a = new int;

as

LDA 2,i

CALL new

STX a,s

The LDA instruction puts 2 in the accumulator in preparation for calling the new opera-
tor, because an integer occupies two bytes. The CALL instruction invokes the new

operator, which allocates the two bytes from the heap and puts their address in the

;

;******* operator new

; Precondition: A contains number of bytes

; Postcondition: X contains pointer to bytes

006A C90074 new: LDX hpPtr,d ;returned pointer

006D 710074 ADDA hpPtr,d ;allocate from heap

0070 E10074 STA hpPtr,d ;update hpPtr

0073 58 RET0

0074 0076 hpPtr: .ADDRSS heap ;address of next free byte

0076 00 heap: .BLOCK 1 ;first byte in the heap

0077 .END

Figure 6.43
(Continued)

6.5 Dynamic Memory Allocation 307

index register. In general, assignments to local variables use stack-relative addressing.
Therefore, the STX instruction uses stack-relative addressing to assign the address to a.

How does the compiler translate the assignment

*a = 5;

a is a pointer, and the assignment gives 5 to the cell to which a points. a is also a local
variable. This situation is identical to the one where a parameter is called by refer-
ence in the programs of Figures 6.27 and 6.29. Namely, the address of the operand is
on the run-time stack. The compiler translates the assignment statement as

LDA 5,i

STA a,sf

where the store instruction uses stack-relative deferred addressing.
The compiler translates the assignment of local pointers the same as it would

translate the assignment of any other type of local variable. It translates

c = a;

as

LDA a,s

STA c,s

using stack-relative addressing. At this point in the program, a contains 0076, the
address of the first cell in the heap. The assignment gives c the same value, the
address of the first cell in the heap, so that c points to the same cell to which a points.

The compiler translates

*a = 2 + *c;

as

LDA 2,i

ADDA c,sf

STA a,sf

where the add instruction uses stack-relative deferred addressing to access the cell to
which c points and the store instruction uses stack-relative deferred addressing to
access the cell to which a points. The same principle applies to the translation of cout
statements where the DECO instructions also use stack-relative deferred addressing.

In summary, to access a local pointer the compiler generates code as follows:

■ It allocates storage for the pointer on the run-time stack with SUBSP and
deallocates storage with ADDSP.

■ It accesses the pointer with stack-relative addressing.

■ It accesses the cell to which the pointer points with stack-relative deferred
addressing.

The translation rules for local
pointers

308 Chapter 6 Compiling to the Assembly Level

Translating Structures

Structures are the key to data abstraction at level HOL6, the high-order languages
level. They let the programmer consolidate variables with primitive types into a sin-
gle abstract data type. The compiler provides the struct construct at level HOL6.
At level Asmb5, the assembly level, a structure is a contiguous group of bytes,
much like the bytes of an array. However, all cells of an array must have the same
type and, therefore, the same size. Each cell is accessed by the numeric integer
value of the index.

With a structure, the cells can have different types and, therefore, different
sizes. The C++ programmer gives each cell, called a field, a field name. At level
Asmb5, the field name corresponds to the offset of the field from the first byte of
the structure. The field name of a structure corresponds to the index of an array. It
should not be surprising that the fields of a structure are accessed much like the ele-
ments of an array. Instead of putting the index of the array in the index register, the
compiler generates code to put the field offset from the first byte of the structure in
the index register. Apart from this difference, the remaining code for accessing a
field of a structure is identical to the code for accessing an element of an array.

Figure 6.45 shows a program that declares a struct named person that has
four fields named first, last, age, and gender. It is identical to the program in
Figure 2.37. The program declares a global variable name bill that has type per-

son. Figure 6.46 shows the storage allocation for the structure at levels HOL6 and
Asmb5. Fields first, last, and gender have type char and occupy one byte each.
Field age has type int and occupies two bytes. Figure 6.46(b) shows the address of
each field of the structure. To the left of the address is the offset from the first byte of
the structure. The offset of a structure is similar to the offset of an element on the
stack except that there is no pointer to the top of the structure that corresponds to SP.

High-Order Language

#include <iostream>

using namespace std;

struct person {

char first;

char last;

int age;

char gender;

};

person bill;

Figure 6.45
Translation of a structure.

int main () {

cin >> bill.first >> bill.last >> bill.age >> bill.gender;

cout << "Initials: " << bill.first << bill.last << endl;

cout << "Age: " << bill.age << endl;

cout << "Gender: ";

if (bill.gender == 'm') {

cout << "male\n";

}

else {

cout << "female\n";

}

return 0;

}

Assembly Language

0000 040008 BR main

first: .EQUATE 0 ;struct field

last: .EQUATE 1 ;struct field

age: .EQUATE 2 ;struct field

gender: .EQUATE 4 ;struct field

0003 000000 bill: .BLOCK 5 ;global variable

0000

;

;******* main ()

0008 C80000 main: LDX first,i ;cin >> bill.first

000B 4D0003 CHARI bill,x

000E C80001 LDX last,i ; >>bill.last

0011 4D0003 CHARI bill,x

0014 C80002 LDX age,i ; >>bill.age

0017 350003 DECI bill,x

001A C80004 LDX gender,i ; >>bill.gender

001D 4D0003 CHARI bill,x

0020 41005A STRO msg0,d ;cout << "Initials: "

0023 C80000 LDX first,i ; << bill.first

0026 550003 CHARO bill,x

0029 C80001 LDX last,i ; << bill.last

002C 550003 CHARO bill,x

002F 50000A CHARO '\n',i ; << endl

0032 410065 STRO msg1,d ;cout << "Age: "

0035 C80002 LDX age,i ; << bill.age

0038 3D0003 DECO bill,x

003B 50000A CHARO '\n',i ; << endl;

003E 41006B STRO msg2,d ;cout << "Gender: "

0041 C80004 LDX gender,i ;if (bill.gender == 'm')

0044 C00000 LDA 0,i

6.5 Dynamic Memory Allocation 309

Figure 6.45
(Continued)

0047 D50003 LDBYTEA bill,x

004A B0006D CPA 'm',i

004D 0C0056 BRNE else

0050 410074 STRO msg3,d ; cout << "male\n"

0053 040059 BR endIf

0056 41007A else: STRO msg4,d ; cout << "female\n"

0059 00 endIf: STOP

005A 496E69 msg0: .ASCII "Initials: \x00"

...

0065 416765 msg1: .ASCII "Age: \x00"

...

006B 47656E msg2: .ASCII "Gender: \x00"

...

0074 6D616C msg3: .ASCII "male\n\x00"

...

007A 66656D msg4: .ASCII "female\n\x00"

...

0082 .END

Input

bj 32 m

Output

Initials: bj

Age: 32

Gender: male

310 Chapter 6 Compiling to the Assembly Level

The compiler translates

struct person {

char first;

char last;

int age;

char gender;

};

with equate dot commands as

first: .EQUATE 0

last: .EQUATE 1

age: .EQUATE 2

gender: .EQUATE 4

The name of a field equates to the offset of that field from the first byte of the
structure. first equates to 0 because it is the first byte of the structure. last

Figure 6.45
(Continued)

6.5 Dynamic Memory Allocation 311

0005 32

j

2

0007 m4

00041

b00030

bill.age 32

j

bill.gender m

(a) A global structure at
 level HOL6.

(b) The global structure at
Asmb5.

bill.last

bbill.first Figure 6.46
Memory allocation for Figure 6.45
just after the cin statement.

equates to 1 because first occupies one byte. age equates to 2 because first

and last occupy a total of two bytes. And gender equates to 4 because first,
last, and age occupy a total of four bytes. The compiler translates the global
variable

person bill;

as

bill: .BLOCK 5

It reserves five bytes because first, last, age, and gender occupy a total of five
bytes.

To access a field of a global structure, the compiler generates code to load the
index register with the offset of the field from the first byte of the structure. It
accesses the field as it would the cell of a global array using indexed addressing.
For example, the compiler translates

cin >> bill.age

as

LDX age,i

DECI bill,x

The load instruction uses immediate addressing to load the offset of field age into
the index register. The decimal input instruction uses indexed addressing to access
the field.

The compiler translates

if (bill.gender == 'm')

similarly as

LDX gender,i

LDA 0,i

LDBYTEA bill,x

CPA 'm',i

The first load instruction puts the offset of the gender field into the index register.
The second load instruction clears the accumulator to ensure that its left-most byte
is all zeros for the comparison. The load byte instruction accesses the field of the

312 Chapter 6 Compiling to the Assembly Level

The translation rules for global
structures

The translation rules for local
structures

structure with indexed addressing and puts it into the right-most byte of the accu-
mulator. Finally, the compare instruction compares bill.gender with the let-
ter m.

In summary, to access a global structure the compiler generates code as follows:

■ It equates each field of the structure to its offset from the first byte of the
structure.

■ It allocates storage for the structure with .BLOCK tot where tot is the total
number of bytes occupied by the structure.

■ It accesses a field of the structure by loading the offset of the field into the
index register with immediate addressing followed by an instruction with
indexed addressing.

In the same way that accessing the field of a global structure is similar to
accessing the element of a global array, accessing the field of a local structure is
similar to accessing the element of a local array. Local structures are allocated on
the run-time stack. The name of each field equates to its offset from the first byte of
the structure. The name of the local structure equates to its offset from the top of the
stack. The compiler generates SUBSP to allocate storage for the structure and any
other local variables, and ADDSP to deallocate storage. It accesses a field of the
structure by loading the offset of the field into the index register with immediate
addressing followed by an instruction with stack-indexed addressing. Translating a
program with a local structure is a problem for the student at the end of this chapter.

Translating Linked Data Structures

Programmers frequently combine pointers and structures to implement linked data
structures. The struct is usually called a node, a pointer points to a node, and the
node has a field that is a pointer. The pointer field of the node serves as a link to
another node in the data structure. Figure 6.47 is a program that implements a
linked list data structure. It is identical to the program in Figure 2.38.

High-Order Language

#include <iostream>

using namespace std;

struct node {

int data;

node* next;

};

Figure 6.47
Translation of a linked list.

6.5 Dynamic Memory Allocation 313

int main () {

node *first, *p;

int value;

first = 0;

cin >> value;

while (value != -9999) {

p = first;

first = new node;

first->data = value;

first->next = p;

cin >> value;

}

for (p = first; p != 0; p = p->next) {

cout << p->data << ' ';

}

return 0;

}

Assembly Language

0000 040003 BR main

data: .EQUATE 0 ;struct field

next: .EQUATE 2 ;struct field

;

;******* main ()

first: .EQUATE 4 ;local variable

p: .EQUATE 2 ;local variable

value: .EQUATE 0 ;local variable

0003 680006 main: SUBSP 6,i ;allocate locals

0006 C00000 LDA 0,i ;first = 0

0009 E30004 STA first,s

000C 330000 DECI value,s ;cin >> value

000F C30000 while: LDA value,s ;while (value != -9999)

0012 B0D8F1 CPA -9999,i

0015 0A003F BREQ endWh

0018 C30004 LDA first,s ; p = first

001B E30002 STA p,s

001E C00004 LDA 4,i ; first = new node

0021 160067 CALL new

0024 EB0004 STX first,s

0027 C30000 LDA value,s ; first->data = value

002A C80000 LDX data,i

002D E70004 STA first,sxf

0030 C30002 LDA p,s ; first->next = p

0033 C80002 LDX next,i

Figure 6.47
(Continued)

314 Chapter 6 Compiling to the Assembly Level

0036 E70004 STA first,sxf

0039 330000 DECI value,s ; cin >> value

003C 04000F BR while

003F C30004 endWh: LDA first,s ;for (p = first

0042 E30002 STA p,s

0045 C30002 for: LDA p,s ; p != 0

0048 B00000 CPA 0,i

004B 0A0063 BREQ endIf

004E C80000 LDX data,i ; cout << p->data

0051 3F0002 DECO p,sxf

0054 500020 CHARO ' ',i ; << ' '

0057 C80002 LDX next,i ; p = p->next)

005A C70002 LDA p,sxf

005D E30002 STA p,s

0060 040045 BR for

0063 600006 endIf: ADDSP 6,i ;deallocate locals

0066 00 STOP

;

;******* operator new

; Precondition: A contains number of bytes

; Postcondition: X contains pointer to bytes

0067 C90071 new: LDX hpPtr,d ;returned pointer

006A 710071 ADDA hpPtr,d ;allocate from heap

006D E10071 STA hpPtr,d ;update hpPtr

0070 58 RET0

0071 0073 hpPtr: .ADDRSS heap ;address of next free byte

0073 00 heap: .BLOCK 1 ;first byte in the heap

0074 .END

Input

10 20 30 40 -9999

Output

40 30 20 10

The compiler equates the fields of the struct

struct node {

int data;

node* next;

};

Figure 6.47
(Continued)

6.5 Dynamic Memory Allocation 315

valueFBC9

007D

007B

0079

0077

0075

0073

0

10

0

20

0073

30

0077

–9999

0077

007B

SP

pFBCB2

firstFBCD4

–9999

30

value

p

first

(b) The linked list at level Asmb5.(a) The linked list at level HOL6.

20 10

Figure 6.48
Memory allocation for Figure 6.47
just after the third execution of the
while loop.

to their offsets from the first byte of the struct. data is the first field with an off-
set of 0. next is the second field with an offset of 2 because data occupies two
bytes. The translation is

data: .EQUATE 0

next: .EQUATE 2

The compiler translates the local variables

node *first, *p;

int value;

as it does all local variables. It equates the variable names with their offsets from
the top of the run-time stack. The translation is

first: .EQUATE 4

p: .EQUATE 2

value: .EQUATE 0

Figure 6.48(b) shows the offsets for the local variables. The compiler generates
SUBSP at 0003 to allocate storage for the locals and ADDSP at 0063 to deallocate
storage.

When you use the new operator in C++, the computer must allocate enough
memory from the heap to store the item to which the pointer points. In this pro-
gram, a node occupies four bytes. Therefore, the compiler translates

first = new node;

by allocating four bytes in the code it generates to call the new operator. The trans-
lation is

LDA 4,i

CALL new

STX first,s

316 Chapter 6 Compiling to the Assembly Level

The load instruction puts 4 in the accumulator in preparation for the call to new.
The call instruction calls the new operator, which puts the address of the first byte
of the allocated node in the index register. The store index instruction completes the
assignment to local variable first using stack-relative addressing.

How does the compiler generate code to access the field of a node to which a
local pointer points? Remember that a pointer is an address. A local pointer implies
that the address of the node is on the run-time stack. Furthermore, the field of a
struct corresponds to the index of an array. If the address of the first cell of an
array is on the run-time stack, you access an element of the array with stack-
indexed deferred addressing. That is precisely how you access the field of a node.
Instead of putting the value of the index in the index register, you put the offset of
the field in the index register. The compiler translates

first->data = value;

as

LDA value,s

LDX data,i

STA first,sxf

Similarly, it translates

first->next = p;

as

LDA p,s

LDX next,i

STA first,sxf

To see how stack-indexed deferred addressing works for a local pointer to a
node, remember that the CPU computes the operand as

Oprnd = Mem[Mem[SP + OprndSpec] + X]

It adds the stack pointer plus the operand specifier and uses the sum as the address
of the first field, to which it adds the index register. Suppose that the third node has
been allocated as shown in Figure 6.48(b). The call to new has returned the address
of the newly allocated node, 007B, and stored it in first. The LDA instruction
above has put the value of p, 0077 at this point in the program, in the accumulator.
The LDX instruction has put the value of next, offset 2, in the index register. The
STA instruction executes with stack-indexed addressing. The operand specifier is 4,
the value of first. The computation of the operand is

Mem[Mem[SP + OprndSpec] + X]
Mem[Mem[FBC9 + 4] + 2]
Mem[Mem[FBCD] + 2]
Mem[007B + 2]
Mem[007D]

Stack-indexed deferred addressing

SUMMARY 317

which is the next field of the node to which first points.
In summary, to access a field of a node to which a local pointer points the com-

piler generates code as follows:

■ The field name of the node equates to the offset of the field from the first
byte of the node. The offset is loaded into the index register.

■ The instruction to access the field of the node uses stack-indexed deferred
addressing.

You should be able to determine how the compiler translates programs with
global pointers to nodes. Formulation of the translation rules is an exercise for the
student at the end of this chapter. Translation of a C++ program that has global
pointers to nodes is also a problem for the student.

SUMMARY

A compiler uses conditional branch instructions at the machine level to translate if state-
ments and loops at the high-order languages level. An if/else statement requires a condi-
tional branch instruction to test the if condition and an unconditional branch instruction to
branch around the else part. The translation of a while or do loop requires a branch to a
previous instruction. The for loop requires, in addition, instructions to initialize and incre-
ment the control variable.

The structured programming theorem, proved by Bohm and Jacopini, states that any algo-
rithm containing goto’s, no matter how complicated or unstructured, can be written with only
nested if statements and while loops. The goto controversy was sparked by Dijkstra’s
famous letter, which stated that programs without goto’s were not only possible but desirable.

The compiler allocates global variables at a fixed location in main memory. Procedures
and functions allocate parameters and local variables on the run-time stack. Values are pushed
onto the stack by incrementing the stack pointer (SP) and popped off the stack by decrementing
SP. The subroutine call instruction pushes the contents of the program counter (PC), which acts
as the return address, onto the stack. The subroutine return instruction pops the return address
off the stack into the PC. Instructions access global values with direct addressing and values on
the run-time stack with stack-relative addressing. A parameter that is called by reference has its
address pushed onto the run-time stack. It is accessed with stack-relative deferred addressing.
Boolean variables are stored with a value of 0 for false and a value of 1 for true.

Array values are stored in consecutive main memory cells. You access an element of a
global array with indexed addressing, and an element of a local array with stack-indexed
addressing. In both cases, the index register contains the index value of the array element. An
array passed as a parameter always has the address of the first cell of the array pushed onto the
run-time stack. You access an element of the array with stack-indexed deferred addressing. The
compiler translates the switch statement with an array of addresses, each of which is the
address of the first statement of a case.

Pointer and struct types are common building blocks of data structures. A pointer is an
address of a memory location in the heap. The new operator allocates memory from the heap.
You access a cell to which a global pointer points with indirect addressing. You access a cell to
which a local pointer points with stack-relative deferred addressing. A struct has several
named fields and is stored as a contiguous group of bytes. You access a field of a global

The translation rules for accessing
the field of a node to which a local
pointer points

318 Chapter 6 Compiling to the Assembly Level

struct with indexed addressing with the index register containing the offset of the field from the
first byte of the struct. Linked data structures commonly have a pointer to a struct called
a node, which in turn contains a pointer to yet another node. If a local pointer points to a node,
you access a field of the node with stack-indexed deferred addressing.

EXERCISES

Section 6.1
1. Explain the difference in the memory model between global and local variables. How

are each allocated and accessed?

Section 6.2
2. What is an optimizing compiler? When would you want to use one? When would you

not want to use one? Explain.

*3. The object code for Figure 6.14 has a CPA at 000C to test the value of i. Because the
program branches to that instruction from the bottom of the loop, why doesn’t the
compiler generate a LDA i,d at that point before CPA?

4. Discover the function of the mystery program of Figure 6.16, and state in one short
sentence what it does.

5. Read the papers by Bohm and Jacopini and by Dijkstra that are referred to in this
chapter and write a summary of them.

Section 6.3
*6. Draw the values just before and just after the CALL at 0022 of Figure 6.18 executes as

they are drawn in Figure 6.19.

7. Draw the run-time stack, as in Figure 6.26, that corresponds to the time just before the
second return.

Section 6.4
*8. In the Pep/8 program of Figure 6.40, if you enter 4 for Guess, what statement exe-

cutes after the branch at 0010? Why?

9. Section 6.4 does not show how to access an element from a two-dimensional array.
Describe how a two-dimensional array might be stored and the assembly language
object code that would be necessary to access an element from it.

Section 6.5
10. What are the translation rules for accessing the field of a node to which a global

pointer points?

Problems 319

PROBLEMS

Section 6.2
11. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int main () {

int number;

cin >> number;

if (number % 2 == 0) {

cout << "Even\n";

}

else {

cout << "Odd\n";

}

return 0;

}

12. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

const int limit = 5;

int main () {

int number;

cin >> number;

while (number < limit) {

number++;

cout << number << ' ';

}

return 0;

}

13. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int main () {

char ch;

cin >> ch;

if ((ch >= 'A') && (ch <= 'Z')) {

cout << 'A';

}

else if ((ch >= 'a') && (ch <= 'z')) {

320 Chapter 6 Compiling to the Assembly Level

cout << 'a';

}

else {

cout << '$';

}

cout << endl;

return 0;

}

14. Translate the C++ program in Figure 6.12 to Pep/8 assembly language but with the do
loop test changed to

while (cop <= driver);

15. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int main () {

int numItms, i, data, sum;

cin >> numItms;

sum = 0;

for (i = 1; i <= numItms; i++) {

cin >> data;

sum += data;

}

cout << "Sum: " << sum << endl;

return 0;

}

Sample Input

4 8 -3 7 6

Sample Output

Sum: 18

Section 6.3
16. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int myAge;

void putNext (int age) {

int nextYr;

nextYr = age + 1;

cout << "Age: " << age << endl;

cout << "Age next year: " << nextYr << endl;

}

Problems 321

int main () {

cin >> myAge;

putNext (myAge);

putNext (64);

return 0;

}

17. Translate the C++ program in Problem 16 to Pep/8 assembly language, but declare
myAge to be a local variable in main().

18. Translate the following C++ program to Pep/8 assembly language. It multiplies two
integers using a recursive shift-and-add algorithm:

#include <iostream>

using namespace std;

int times (int mpr, int mcand) {

if (mpr == 0) {

return 0;

}

else if (mpr % 2 == 1) {

return mcand + times (mpr / 2, mcand * 2);

}

else {

return times (mpr / 2, mcand * 2);

}

}

int main () {

int n, m;

cin >> n >> m;

cout << "Product: " << times (n, m) << endl;

return 0;

}

19. (a) Write a C++ program that converts a lowercase character to an uppercase charac-
ter. Declare

char uppercase (char ch);

to do the conversion. If the actual parameter is not a lowercase character, the function
should return that character value unchanged. Test your function in a main program
with interactive I/O. (b) Translate your C++ program to Pep/8 assembly language.

20. (a) Write a C++ program that defines

int minimum (int i1, int i2)

which returns the smaller of i1 and i2, and test it with interactive input. (b) Translate
your C++ program to Pep/8 assembly language.

322 Chapter 6 Compiling to the Assembly Level

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 6.49
Trace of the run-time stack for
Figure 6.25

21. Translate to Pep/8 assembly language your C++ solution from Problem 2.14 that com-
putes a Fibonacci term using a recursive function.

22. Translate to Pep/8 assembly language your C++ solution from Problem 2.15 that out-
puts the instructions for the Towers of Hanoi puzzle.

23. The recursive binomial coefficient function in Figure 6.25 can be simplified by omit-
ting y1 and y2 as follows:

int binCoeff (int n, int k) {

if ((k == 0) || (n == k)) {

return 1;

}

else {

return binCoeff (n - 1, k) + binCoeff (n - 1, k - 1);

}

}

Write a Pep/8 assembly language program that calls this function. Keep the value
returned from the binCoeff (n - 1, k) call on the stack and allocate the actual
parameters for the binCoeff (n - 1, k - 1) call on top of it. Figure 6.49 shows
a trace of the run-time stack where the stack frame contains four words (for retVal,
n, k, and retAddr) and the shaded word is the value returned by a function call. The
trace is for a call of binCoeff (3,1) from the main program.

24. Translate the following C++ program to Pep/8 assembly language. It multiplies two
integers using an iterative shift-and-add algorithm.

#include <iostream>

using namespace std;

int product, n, m;

void times (int& prod, int mpr, int mcand) {

prod = 0;

while (mpr != 0) {

Problems 323

if (mpr % 2 == 1) {

prod = prod + mcand;

}

mpr /= 2;

mcand *= 2;

}

}

int main () {

cin >> n >> m;

times (product, n, m);

cout << "Product: " << product << endl;

return 0;

}

25. Translate the C++ program in Problem 24 to Pep/8 assembly language, but declare
product, n, and m to be local variables in main().

26. (a) Rewrite the C++ program of Figure 2.21 to compute the factorial recursively, but
use procedure times in Problem 24 to do the multiplication. Use one extra local vari-
able in fact to store the product. (b) Translate your C++ program to Pep/8 assembly
language.

Section 6.4
27. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int list[16];

int i, numItems;

int temp;

int main () {

cin >> numItems;

for (i = 0; i < numItems; i++) {

cin >> list[i];

}

temp = list[0];

for (i = 0; i < numItems - 1; i++) {

list[i] = list[i + 1];

}

list[numItems - 1] = temp;

for (i = 0; i < numItems; i++) {

cout << list[i] << ' ';

}

cout << endl;

return 0;

}

324 Chapter 6 Compiling to the Assembly Level

Sample Input

5

11 22 33 44 55

Sample Output

22 33 44 55 11

The test in the second for loop is awkward to translate because of the arithmetic
expression on the right side of the < operator. You can simplify the translation by
transforming the test to the following mathematically equivalent test.

i + 1 < numItems;

28. Translate the C++ program in Problem 27 to Pep/8 assembly language, but declare
list, i, numItems, and temp to be local variables in main().

29. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

void getList (int ls[], int& n) {

int i;

cin >> n;

for (i = 0; i < n; i++) {

cin >> ls[i];

}

}

void putList (int ls[], int n) {

int i;

for (i = 0; i < n; i++) {

cout << ls[i] << ' ';

}

cout << endl;

}

void rotate (int ls[], int n) {

int i;

int temp;

temp = ls[0];

for (i = 0; i < n - 1; i++) {

ls[i] = ls[i + 1];

}

ls[n - 1] = temp;

}

int main () {

int list[16];

int numItems;

Problems 325

getList (list, numItems);

putList (list, numItems);

rotate (list, numItems);

putList (list, numItems);

return 0;

}

Sample Input

5

11 22 33 44 55

Sample Output

11 22 33 44 55

22 33 44 55 11

30. Translate the C++ program in Problem 29 to Pep/8 assembly language but declare
list and numItems to be global variables.

31. Translate to Pep/8 assembly language the C++ program from Figure 2.23 that adds
four values in an array using a recursive procedure.

32. Translate to Pep/8 assembly language the C++ program from Figure 2.30 that reverses
the elements of an array using a recursive procedure.

33. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int main () {

int guess;

cout << "Pick a number 0..3: ";

cin >> guess;

switch (guess) {

case 0: case 1: cout << "Too low"; break;

case 2: cout << "Right on"; break;

case 3: cout << "Too high";

}

cout << endl;

return 0;

}

The program is identical to Figure 6.40 except that two of the cases execute the same
code. Your jump table must have exactly four entries, but your program must have
only three case symbols and three cases.

34. Translate the following C++ program to Pep/8 assembly language.

#include <iostream>

using namespace std;

int main () {

326 Chapter 6 Compiling to the Assembly Level

int guess;

cout << "Pick a number 0..3: ";

cin >> guess;

switch (guess) {

case 0: cout << "Not close"; break;

case 1: cout << "Too low"; break;

case 2: cout << "Right on"; break;

case 3: cout << "Too high"; break;

default: cout << "Illegal input";

}

cout << endl;

return 0;

}

Section 6.5
35. Translate to Pep/8 assembly language the C++ program from Figure 6.45 that accesses

the fields of a structure, but declare bill as a local variable in main().

36. Translate to Pep/8 assembly language the C++ program from Figure 6.47 that manipu-
lates a linked list, but declare first, p, and value as global variables.

37. Insert the following C++ code fragment in main() of Figure 6.47 just before the
return statement

sum = 0; p = first;

while (p != 0) {

sum += p->data;

p = p->next;

}

cout << "Sum: " << sum << endl;

and translate the complete program to Pep/8 assembly language. Declare sum to be a
local variable along with the other locals as follows:

node *first, *p;

int value, sum;

38. Insert the following C++ code fragment between the declaration of node and
main() in Figure 6.47

void reverse (node* list) {

if (list != 0) {

reverse (list->next);

cout << list->data << ' ';

}

}

and the following code fragment in main() just before the return statement.

cout << endl;

reverse (first);

Problems 327

Translate the complete C++ program to Pep/8 assembly language. The added code
outputs the linked list in reverse order.

39. Insert the following C++ code fragment in main() of Figure 6.47 just before the
return statement

first2 = 0; p2 = 0;

for (p = first; p != 0; p = p->next) {

p2 = first2;

first2 = new node;

first2->data = p->data;

first2->next = p2;

}

for (p2 = first2; p2 != 0; p2 = p2->next) {

cout << p2->data << ' ';

}

Declare first2 and p2 to be local variables along with the other locals as follows:

node *first, *p, *first2, *p2;

int value;

Translate the complete program to Pep/8 assembly language. The added code creates a
copy of the first list in reverse order and outputs it.

40. (a) Write a C++ program to input an unordered list of integers with –9999 as a sentinel
into a binary search tree, then output them with an inorder traversal of the tree.
(b) Translate your C++ program to Pep/8 assembly language.

