Chapter 5 Stresses in Beam (Basic Topics)

5.1 Introduction
Beam : loads acting transversely to the longitudinal axis

the loads create shear forces and bending

AP
moments, stresses and strains due to V A B
and M are discussed in this chapter (@)
lateral loads acting on a beam cause the
."'> vV
beam to bend, thereby deforming the axis of P,
. . . [— i
the beam into curve line, this is known as | T

the deflection curve of the beam

the beams are assumed to be symmetric about x-y plane, i.e. y-axis
Is an axis of symmetric of the cross section, all loads are assumed to act in
the x-y plane, then the bending deflection occurs in the same plane, it is
known as the plane of bending

the deflection of the beam is the displacement of that point from its

original position, measured in 'y direction

5.2 Pure Bending and Nonuniform Bending

pure bending :
M = constant V = dM/dx = 0

pure bending in simple beam and cantilever beam are shown
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nonuniform bending :

M =+ constant
V = dM/dx = 0

simple beam with central region in pure
bending and end regions in nonuniform

bending is shown

5.3 Curvature of a Beam

consider a cantilever beam subjected to a

load P

choose 2 points m; and m, on the
deflection curve, their normals intersect at
O', is called the center of curvature,
m; O’

and the curvature x IS

point
the distance is called radius of

curvature p,
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defined as
(b)
k = 1lp |
and we have pdf = ds ®
if the deflection is small ds =~ dx, then Posiive
1 de de (a)
K = —_— = —_— = —_— k
p ds dx ' B
| | g
sign convention for curvature Negative
curvature
+ : beam is bent concave upward (convex downward)
[
- . beam is bent concave downward (convex upward) b)



5.4 Longitudinal Strains in Beams

consider a portion ab of a beam in pure bending produced by a
positive bending moment M, the cross section may be of any shape
provided it is symmetric about y-axis i
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under the moment M, its axis is bent into a circular curve, cross
section mn and pg remain plane and normal to longitudinal lines
(plane remains plane can be established by experimental result)

" the symmetry of the beam and loading, it requires that all elements of
the beam deform in an identical manner (.". the curve is circular), this are

valid for any material (elastic or inelastic)

due to bending deformation, cross sections mn and pq rotate w.r.t.
each other about axes perpendicular to the xy plane

longitudinal lines on the convex (lower) side (nqg) are elongated, and on
the concave (upper) side (mp) are shortened

the surface ss in which longitudinal lines do not change in length is
called the neutral surface, its intersection with the cross-sectional plane is
called neutral axis, for instance, the z axis is the neutral axis of the cross
section

in the deformed element, denote p the distance from O' to N.S. (or
N.A.), thus

pdf = dx



consider the longitudinal line ef,

Ll =

then

and the strain of line ef is

& =

Aef

the length L; after bending is

(p-y)dd = dx - —dx
P P- | :m |
o S
= 1 - - T M, | e 7 M
p (({,\ --T_.“.-Q-S--l'\-l-u - __,_-‘4|II )
[T
At y
= -2 = -gy
dx p)

& vary linear with y (the distance from N.S.)

y >

0 (aboveN.S.) e = -

y < 0 (belowN.S.) e = +

the longitudinal strains in a beam are accompanied by transverse strains

inthe y and z directions because of the effects of Poisson's ratio
Example 5-1
a simply supported beam AB, ' o
ply supp ('A: o B'\
L=49m h=300mm A f &
bentby Mgy into a circular arc i L |
Gootom = & = 0.00125 w
determine p, xk, and & (midpoint
deflection)
y - 150 . L u
p = -— = -— ' L
&x 0.00125 [ A
_ il &l 72 \s
= 120 m e e = %
L L L
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K o= = 833x10°m*
P
o0 = p(l-cosb)
p islarge, .". the deflection curve is very flat
_ L/2 8x12
then sinf = — = — = 0.020
p 2 X 2,400

0 = 002rad = 1.146°
then 5 = 120x10%(1-cos1.146°) = 24 mm

5.4 Normal Stress in Beams (Linear Elastic Materials)

& occurs due to bending, .". the longitudinal line of the beam is

subjected only to tension or compression, if the material is linear elastic

y y

then = Ee& = -E
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o vary linear with distance y | - \M “@ nd\\ {
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from the neutral surface ) / . ;_‘ff S \\_
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consider a positive bending
moment M applied, stresses are i W
positive below N.S. and negative
above N.S.

" no axial force acts on the cross section, the only resultant is M,

thus two equations must satisfy for static equilibrium condition
ie. XF, = §odA = - fExkydA = 0

E and x are constants at the cross section, thus we have



SydA = 0

we conclude that the neutral axis passes through the controid of the cross
section, also for the symmetrical condition in y axis, the y axis must
pass through the centroid, hence, the origin of coordinates O s located at
the centroid of the cross section

the moment resultant of stress o, is

dM = = O-X y dA
then M = - §So,ydA = SExy*dA = Ex Sy dA
M = Exl
where | = §y*dA isthe moment of inertia of the cross-sectional
areaw.r.t. z axis ¥ Positive
bending
1 M +M_ moment _+M
thus x = — = — " —)
P E I Positive
curvature
this is the moment-curvature equation, 0 *
and EI is called flexural rigidity _ ,
) Negative
+M => +curvature Heacing
moment
-M => -curvature C&Z::
N Negative
curvature
the normal stress is 9, o
M My
oy = -EKy = -Ey(_) = -
El I

this is called the flexure formula, the stress o, is called bending

stresses or flexural stresses
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Compressive stresses
A

. . z

ox vary linearly with y 7

5] < Positive bending

1 moment
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Oy = M Oy = 1 / | | Cnd ) x
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the maximum tensile and compressive o 2

(a)

stresses occur at the points located farthest

from the N.A. v
Tensile stresses
M c, M 7
o = - - j Negative bendi
I S; )
M ¢, M ﬁ————(—;-; 4
gy = = — | i '.__.01 :
I Sz Compr-essive stresses
(b
| | _ _
where S, = — , S, = — are known as the section moduli
C1 Co

if the cross section is symmetric w.r.t. z axis (double symmetric cross

section),then ¢; = ¢, = ¢

thusS; = S, and 097 = -0, = -— = -—

for rectangular cross section

L _ bi il
12 6
for circular cross section | y T :
| = n_d4 — ”_d?’ LRIJ | ‘
64 32 (@

the preceding analysis of normal stress in beams concerned pure bending,
no shear force
in the case of nonuniform bending (V + 0), shear force produces warping



(out of plane distortion), plane section no longer remain plane after bending,
but the normal stress o calculated from the flexure formula are not
significantly altered by the presence of shear force and warping

we may justifiably use the theory of pure bending for calculating oy
even when we have nonuniform bending

the flexure formula gives results in the beam where the stress distribution
is not disrupted by irregularities in the shape, or by discontinuous in loading

(otherwise, stress concentration occurs)

example 5-2

a steel wire of diameter d = 4 mm
is bent around a cylindrical drum of radius
Ro = 05m .

E = 200GPa oy = 1200MPa /

determine M and o

the radius of curvature of the wire is

d
p = R + —
2
El 2 El nEd*
M = — = — — @ = @ —
p 2Ry +d 32(2R, + d)
7 (200 x 10°) 4*

= = 5007 N-mm = 5.007 N-m
32 (2x500 + 4)

1/ (dI2) 21 21 (2 Ry +d) 2Ry +d

O max

M M M d 2Eld Ed
S



200 x 10% x 4

796.8 MPa < 1,200 MPa (OK)

2x500+4
Example 5-3 ’W 41P= 12k
9 fi
a simple beam AB of length L = 6.7 m TTT11 ffl‘"nfml
Al |
q = 22kN/m P = S50kN — y
b = 220mm  h = 700mm o |
determine the maximum tensile and
v 23.59
compressive stresses due to bending & ﬁmﬂg
‘ —I.QIL\‘"HE‘ J
firstly, construct the V-dia and M-dia \“_‘LI
(c
Omax OCCUrS at the section of Myax }
Mpsx = 193.9 kN-m oy ke
the section modulus S of the sectionis | ~ N
b h? 0.22 x 0.7 ; «@
S = = = 0.018 m
6 6
M 139.9 kN-m
o = 6, = — = ——————— = 10.8MPa
S 0.018 m®
M
oc = o = -— = -10.8MPa
S
) g =3.2kN/m
EERRNEERN
_ AfE— - lc
Example 5-4 N AN
an overhanged beam ABC subjected 3.0m 1.5 m—
4.8 kN

uniform load of intensity g =3.2 kN/m

for the cross section (channel section)

—06.0 kN

(b)

h=2Tin,



t=12 mm b =300 mm h =80 mm
determine the maximum tensile and

compressive stresses in the beam

construct the V-dia. and M-dia. first y 2,025 kN-m
we can find + Mpaxy = 2.205 kN-m g ‘/
1.125 m
-Mnax = -3.6 KN-m 3.6 KN
next, we want to find the N. A. of the section e
A(mm?)  y(mm) Ay (mm’) - e
Al 3312 6 19,872 - F > Tezom u#
A, 960 40 38,400 ) o
(a)
A; 960 40 38,400
total 5,232 96,672 B | e
Z—‘T e S
z Ai i 96,672 *T® (@ i h=
Cl = y = = 1848 mm Ar—t* 4[02 Id] AT Tm
> A 5,232 - .
¢c;c = h - ¢ = 6152mm G
moment of inertia of the section is
I = 1 + A d12
1 3 1 3 4
l,, = —((M-2)t° = —276x12° = 39744 mm
12 12
d = ¢ - t/2 = 12.48mm

39,744 + 3,312x12.48° 555,600 mm*

similary 1, = 1, = 956,000 mm*

10



then the centroidal moment of inertia 1|, is

, = 1, + 1, + 1, = 2469x10°mm*
Sy = — =133,600 mm S, = — = 40,100 mm
C1 C2

at the section of maximum positive moment

M 2.025 x 10° x 10°
of = 0, = — = = 50.5 MPa
S, 40,100
M 2.025 x 10° x 10°
o = 01 = -— = - = -15.2 MPa
S 133,600
at the section of maximum negative moment
M -3.6x10%x 10°
oo = 0 = -— = - = 26.9 MPa
S 133,600
M -3.6x10°x 10°
o. = o0 = — = - = -89.8 MPa
S, 40,100

thus (oymax Occurs at the section of maximum positive moment

(Gt)max = 50.5 MPa

and (oc)max OcCcurs at the section of maximum negative moment

(ac)max = - 898 Mpa

5.6 Design of Beams for Bending Stresses

design a beam : type of construction, materials, loads and environmental
conditions

11



beam shape and size : actual stresses do not exceed the allowable stress

for the bending stress, the section modulus S must be larger than M / o
I.e. Smin.® =  Mumax/ Gailow

gaow 1S based upon the properties of the material and magnitude of the
desired factor of safety

if oa0w are the same for tension and compression, doubly symmetric
section is logical to choose

if oa0n are different for tension and compression, unsymmetric cross
section such that the distance to the extreme fibers are in nearly the same
ratio as the respective allowable stresses

select a beam not only the required S, but also the smallest
cross-sectional area

Beam of Standardized Shapes and Sizes
steel, aluminum and wood beams are manufactured in standard sizes
steel : American Institute of Steel Construction (AISC)
Eurocode
e.g. wide-flange section W 30 x 211 depth =30 in, 211 Ib/ft
HE 1000 B depth = 1000 mm, 314 kgf/m etc
other sections : S shape (I beam), C shape (channel section)

L shape (angle section)

aluminum beams can be extruded in almost any desired shape since the

1y

dies are relatively easy to make

wood beam always made in rectangular cross |
section, such as 4" x 8" (100 mm x 200 mm), but its = . "
actual size is 3.5" x 7.25" (97 mm x 195 mm) after it '

b —‘I

(a)

o

1=

12



is surfaced

consider a rectangular of width b and depth h

b h? Ah

= = 0.167Ah
6 6

a rectangular cross section becomes more efficientas h increased, but

very narrow section may fail because of lateral bucking

v

for a circular cross section of diameter d : .f’/ \
- 0
nd? Ad L\ /J
S = = = 0.125Ad d
32 8

comparing the circular section to a square section of same area
h> = nd?/4=>h = /rd/2

Squae _ 0.167Ah 0167 /nd/2  0.148

= 1.184
Scirc|e 0.125 A d 0.125 d 0.125

". the square section is more efficient than circular section

the most favorable case for a given area A and depth h would

have to distribute A/2 atadistance h/2 from the neutral axis, then

A h, A h? _2r 4 ___;‘g::‘.m”gc
|l = —() x2 = — x|
2 2 4 - 'W’L‘h
I A h Yo h :—lp
S = h/2 = 2 = 05Ah —— __,-4_'_!""-1113;-

(c) (d)

| - section with most material in the
flanges would be the most efficient section

the wide-flange section or an

13



for standard wide-flange beams, S is approximately
S =~ 035Ah

wide-flange section is more efficient than rectangular section of the same
area and depth, °." much of the material in rectangular beam is located near
the neutral axis where it is unstressed, wide-flange section have most of the
material located in the flanges, in addition, wide-flange shape is wider and
therefore more stable with respect to sideways bucking

Example 5-5
a simply supported wood beam carries T y-iwis
uniform load ' m T
L = 3m q = 4 KN/m /F\HH R:‘QKKH‘_‘ ‘r
Galow =12 MPa  wood weights 5.4 kN/m® i o HH"

select the size of the beam

(a) calculate the required S

L2 4 kKN/m) (3 m)?
Mpax = q_ = ( ) ( ) = 4.5KkN-m
8 8

Mmax 4.5 kN'm 6 3
S = = = 0.375x10"mm

(b) select a trial size for the beam (with lightest weight)
choose 75 x 200 beam, S = 0.456 x 10° mm?® and weight 77.11 N/m

(c) now the uniform load on the beam is increased to 77.11 N/m

14



4.077

Srequies = (0.375 x 10° mm®) = 0.382x 10° mm’

4.0

(d) Srequires < S Of 75 x 200 beam (0.456 x 10° mm®) (O.K.)

Example 5-6
P=12kN P=12KkN
= G._,._i_
a vertical post 2.5 m high support a lateral J &
load P = 12KkN atits upper end sl e
(@) ganow forwood = 15 MPa
determine the diameter  d, aAlw - AN
(b) gaow for aluminum tube = 50 MPa (a) (b)
determine the outer diameter d, if t = d,/8
Mmax = Ph = 12x25 = 30kN-m
(a) wood post
nd;? Minax 30 x 10° x 10° o
S, = = = = 2x10°mm
32 Oallow 15
d, = 273 mm
(b) aluminum tube
T
l, = —[d} - (d-2t* = 0.03356d,"
64
I, 0.03356 d,* ;
S, = — = — = 0.06712d,
C d2 /2
Mnax 30 x 10° x 10°
S = = = 600 x 10° mm®
Oallow 50

solvefor d, => d, = 208 mm

15



Example 5-7

g = 2.000 Ib/ii q = 2.000 Ib/ft

asimple beam AB of length 7 m AR
T_- 12 ft <3 fire—6 fi -T
select a wide-flange shape Ryl TRH

(a)

-
F =~}

firstly, determine the support reactions 8650

Vv \"\
Ra =188.6 kN Rg=171.4 kN “b'[ B
0 ““\\I—l

—

5,140 T~
the shear forceVfor 0 <= x = 4m is L " ~17.140
(h)

V = Ry - gx
for V = 0, thedistance x; IS
Ra 188.6 kN

Xy = = —— = 3.143m
q 60 KN/m

and the maximum moment at the section is
Mmnax = 188.6x3.143/2 = 296.3 kN-m
the required section moudlus is
Minax 296.3 x 10° N-mm

S = = = 2.694x 10° mm®

from table E-1, select the HE 450 A section with S =2,896 cm®

the weight of the beam is 140 kg/m, now recalculate the reactions, Mpay,
and Srequired, we haVG

Ra = 1934kN Rg = 176.2kN
V = 0 at x; = 3151m
:> Mmax = 304.7 KN'm

16



Srequired = = 2,770cm® < 289%6cm®  (O.K)
Oallow
Example 5-8 4
i( 5
the vertical posts B are supported TIE
planks A of the dam ”L,T 8
post B are of square section bxb ’ ‘_ J .
the spacing of the posts s = 0.8 m A il
water level h = 2.0m — &
Ga"ow = 8.0 MPa =
. (a) Top view (b) Side view
determine b
the post B is subjected to the water :
pressure (triangularly distributed)
the maximum intensity qo is ol
h
Qo = 7yhs
the maximum bending moment occurs at o %
(¢} Loading diagram
the base is
Qh h yhs
Mmax = - =
2 3 6
M yhs b®
and S = ™= =
Oallow 6 Gailow 6
3 3
yh®s  9.81x2°x0.8
b®= = =0.007848 m® = 7.848 x 10° mm®

allow 8 x 10°

b = 199 mm use b = 200 mm

17



5.7 Nonprismatic Beams

nonprismatic beams are commonly used to reduce weight and improve
appearance, such beams are found in automobiles, airplanes, machinery,
bridges, building etc.

g = M/S, S varying with x, so we cannot assume that the

maximum stress occur at the section with May

Example 5-9

a tapered cantilever beam AB of solid circular cross section supports a
load P atthe freeendwith dg/dy = 2

determine oz and o
X
dx = dA + (dB - dA)_
L

nd’ x X 3
Sy = = — [da + (dg - da)—]
32 32 L

ES
1

P x, then the maximum bending stress at any cross section

M, 32 P x
S, 7 [da + (dg - d) (/L)

atsupport B, dg = 2da, x = L, then

4P L
og -—
T dA3
to find the maximum stress in the beam, take do;/ dx = 0

= x = L/2

18



at that section (x = L/2), the maximum is

128 P L PL
O-max = - = 4.741 -

27 7 d2 AN

it is 19% greater than the stress at the built-in end

Example 5-10

a cantilever beam of length L support

aload P atthe free end

cross section is rectangular with constant

b

width b, the height may vary such that
Omax = Oalow TOr €Very cross section
(fully stressed beam)

determine the height of the beam

b h,?
M = Px S =
6
M P x 6Px
O allow — = =
S bh?/6 b h,?

solving the height for the beam, we have

6 P X
hx - ( )1/2

b Oallow

at the fixedend (x=1)

6PL 1
hg = ( )

b Oallow

19



X 1/ the idealized beam has the
then hy = hg(—)

L parabolic shape

5-8 Shear Stress in Beam of Rectangular Cross Section

for a beam subjected to M and V with rectangular cross section
having width b and height h, the shear stress 7 acts parallel to the
shear force V

assume that 7 is uniform across the width of the beam

consider a beam section subjected the a
shear force V, we isolate a small )<
element mn, the shear stresses 7 act ‘ |
vertically and accompanied horizontally as J , l‘l

shown

" the top and bottom surfaces are free, , <

7l

then the shear stress must be vanish, i.e.
T = 0 at y = £h/2

() (c)
for two equal rectangular beams of l;»

height h subjected to a concentrated

load P, if no friction between the beams,
each beam will be in compression above its

N.A., the lower longitudinal line of the

upper beam will slide w.r.t. the upper line
of the lower beam (b)

for a solid beam of height 2h, shear stress must exist along N.A. to
prevent sliding, thus single beam of depth 2h will much stiffer and

stronger than two separate beams each of depth h

20



consider a small section of the beam |
/! V

M M+ vt
subjected M and V in left face and < I l)l
M+dM and V+dV inrightface . L | =

for the element mmyp;p, ¢ acts on AMeEn o
p;p andno stresson mmy o

if the beam is subjected to pure bending MCZ; ”;T M:<M 2 X
(M = constant), o, actingon mp and ; ; / i
m,;p; must be equal, then = = 0 on e

Kiing ol

PP: "

for nonuniform bending, M acts on mn and M + dM acts on

miny, consider dA atthedistance y form N.A., then onmn

m m

soda = Y ga T /%

I P—— P

hence the total horizontal forceon mp is

M y dA
/
F, = §{——dA sl [
I = T,\‘l |
0
E
similarly T
(M + dM) y Cross section nfl;j?m at subelement
F, = §—""dA
| m ny
Fle—— -« P
and the horizontal force on pp; s =" 7T, |2
3 3

F3 = 7bdx i

equation of equilibrium

21



(M+dM)y My

thdx = §—dA - §——dA
I I
dM 1 Vv
t = —— fydA = — [ydA
dx 1Ib I b
denote Q = §ydA s the first moment of the cross section area

above the level y (area mm;p;p) at which the shear stress 7 acts, then

¥

VQ
7T = — shear stress formula A

I b Slf T

for V, I, b areconstants, 7~Q

for a rectangular cross section ST

(a)

h hi2 -y, b h
Q = b(—-y)i#+ ) = —(—-y1)
2 2 4
v.oho [; ;
then T = —(—-y1) 5
2I 4 _!— I-Illii‘
T = 0 at y; = *h/2, Tnax  OCCUIS f,—’ —
at yp = 0 (N.A) T
(b)
V h? V h? 3V 3
Tmax = = e = —— = —Tae
81 8 b h°/12 2A 2
Tmax 1S 50% larger than 7g.
V = resultant of shear stress, .. V and <t in the same
direction
Limitations

the shear formula are valid only for beams of linear elastic material with

22



small deflection

the shear formula may be consider to be exact for narrow beam (*." 7z is

assumed constant across b), when b = h, true <tm. IS about 13%

larger than the value given by the shear formula

Effects of Shear Strains

7 vary parabolically from top to

bottom, and y = <t/ G must vary in

the same manner

thus the cross sections were plane surfaces become warped, no
shear strains occur on the surfaces, and maximum shear strain occurs on
N.A.

Ymax = Tmax /! G, If 'V remains constant along the beam, the
warping of all sections is the same, ie. mm; = pp; = -, the

stretching or shortening of the longitudinal lines produced by the bending
moment is unaffected by the shear strain, and the distribution of the normal
stress ¢ isthe same as it is in pure bending

for shear force varies continuously along the beam, the warping of cross
sections due to shear strains does not substantially affect the longitudinal
strains by more experimental investigation

thus, it is quite justifiable to use the flexure formula in the case of
nonuniform bending, except the region near the concentrate load acts of

irregularly change of the cross section (stress concentration)

g = 160 Ib/in.

Example 5-11 Tt 1]
. ‘-'Hn. _'*tl-n — @ —f
ametal beam withspan L = 1m L ﬁ

g =28 kKN/m b=25mm h=100 mm

8in. |
e

e L=3ft ———
|

23 (a)



determine oc and <tc atpoint C

the shear force Vc and bending

moment Mc at the section through C i
"—;: 20in.| C —i
are found % y=10in
> 0
Mc = 2.24KkN-m g2t
VC = - 84 kN J:I.: ].D-i‘n.
the moment of inertia of the section is ®)
b h® 1 ; ;
| = — = —x25x100° = 2,083 x10° mm*
12 12
normal stressat C is
My 2.24 x 106 N-mm x 25 mm
oc=-—— =- = -26.9 MPa
| 2,083 x 10° mm*
shear stressat C, calculate Qc first e P

BbﬁluTﬁo psi
Ac=25x25=625mm* yc=37.5mm —

450 psi
Qc = Acyc = 23,400 mm°® s
Ve Qc 8,400 x 23,400
¢ = = = 3.8 MPa
| b 2,083 x 10° x 25
the stress element at point C is shown
Example 5-12 3 J"”
a wood beam AB  supporting two —_— _
A PDmMm . 1 R
concentrated loads P A ﬁg\;
b = 100mm h = 150 mm La. |

(a)
24



determine Py

the maximum shear force and bending moment are

the section modulus and area are 01 .
b h? | 4
S = —— A = bh h—b—]
6 (b)

maximum normal and shear stresses are

M max 6Pa 3 Vinax 3P
Omax — = Tmax = =
S b h? 2 A 2bh
Galiow b h? 11 x 100 x 150?
I:)bending = — = =8,250 N =8.25 kN
6a 6 x 500
2 Taow D 2x1.2x100 x 150
Pshear = —_— = = 12,000 N = 12 kN
3 3

Pmax = 8.25KkN

8-9 Shear Stresses in Beam of Circular Cross Section

VQ r _ _
_— I = —— forsolid section
Ib 4

T =

the shear stress at the neutral axis
nr:  A4r 2r

Q = Ay = (—)(—) = — b = 2r
2 3= 3

25



v@erii3) 4V 4V 4
(nr'14)(2r) 3nr’ 3A 3

for a hollow circular cross section

VI8 2

| = —(@r'-nY Q = — (-
4 3

b = 2(r;-ry)

then the maximum shear stress at N.A. is

VQ AN 12+ 1o+,
Tmax = —— = (
I b 3A 2 + 1y
where A = (-1
Example 5-13

a vertical pole of a circular tube Jidie T
d,=100mm d;=80mm P =6,675N

(a) determine the 7, in the pole

dy
-

(b) for same P and same 74, Calculate dg

of a solid circular pole a L s
(a) The maximum shear stress of a circular ®
tube is

AP 2410 +r1

3x -’
for P=6,675N r, =50 mm ry =40 mm
Tmax = 4.68 MPa

(b) for a solid circular pole, Ty IS
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4P

Tmax - -
3 7 (do/2)?
, 16 P 16 x 6,675 _
d? = ——— = — = 242x10°%m
3 7T Tmax 37 X4.68

then dy = 49.21 mm

the solid circular pole has a diameter approximately 5/8 that of the

tubular pole

5-10 Shear Stress in the Webs of Beams with Flanges
for a beam of wide-flange shape
subjected to shear force V, shear stress mu,-l
is much more complicated é ““"“-“ﬂ““?
most of the shear force is carried by ' e calld
stresses in the web
consider the shear stress at ef, the same
(b

assumption as in the case in rectangular beam, i.e.

v /I 'y axisand uniformly distributed across t

VQ
T = —— isstillvalidwith b = t
I b

the first moment Q of _ |
the shaded area is divided |, [ . U} T E[ -

into two parts, ie the ° | | o 1 N —

upper flange and the area = N T
between bc and ef in the

web
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h h1 hl
AL = b(— - —) A, = t(— - y)
2 2 2

then the first momentof A; and A, w.r.t. N.A.Is

hl h/2 - h1/2 hl/2 -Y1
Q = Ai(— + ——) + Al + ——)
2 2 2
b t
= —((*-hd) + —(h’-4y))
8 8
VQ V. b t
T = — = —[—({0"-h) + —(h’-4y)]
I b 8It 8 8
b h® (b-1) h;® 1
where | = — - — 7% = —(h*-bh+thd
12 12 12
maximum shear stress in the web occursat N.A., y; = 0
V
Tmax = ——(Oh*> - bh?® + th}?
81t

minimum shear stress occurs where the web meets the flange, y; =+
h./2

the maximum stress in the web is from 10% to 60% greater than the
minimum stress

the shear force carried by the web consists two parts, a rectangle of area
h; 7min and a parabolic segment of area %5 h; (Tmax - Tmin)

Vaweb = hitmin + %N (Tmax - Tmin)
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th,
3

(2 Tmax T Tmin)

Vweo = 90% ~ 98% of total V

for design work, the approximation to calculate 7 IS

V <= total shear force

thy <= web area

Tmax —

for typical wide-flange beam, error is within  + 10%

when considering y in the flange, constant ¢ across b cannot
be made, eg. at y; = hy/2, t at ab and cd must be zero, but
on bc, 7 = i

actually the stress is very complicated here, the stresses would become

very large at the junction if the internal corners were square

Example 5-14
a beam of wide-flange shape with b = 165 mm, t = 7.5mm, h = 320 mm,
and h; = 290 mm, vertical shear force V =45kN

determine Tma Tmin  and total shear force in the web

v

T
o * | \min =
il 17.4 MPa
320 mm :
k=
9] 1
290 mm

T nmx=

ma
2 21.0 MPa
Sl t=75mm

_________________

L b= (b)
— 165 mm—»

(al

the moment of inertia of the cross section is

1
| = —(@Gh*-bh’+th?® = 130.45x 10° mm*
12
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the maximum and minimum shear stresses are

%

Tmx = ——((bh*=bh?+th) = 21.0MPa
81t
Vb
81t

the total shear force is

th;
Vweb = —— (2 Tmax + Tmin) = 43.0 kN
3

tnd the average shear stress in the web is

Vv
Tae = —— = 20.7MPa
thy

Example 5-15 . b=oin |
a beam having a T-shaped cross section |
b=100mm t=24mm h=200mm T B
V = 45kN | TS

determine 7., (top of the web) and  7pax

76 x 24 x 12 + 200 x 24 x 100

c, = = 75.77 mm
76 x 24 + 200 x 24

c, = 200 - ¢ = 124.33mm .  Tonas
I = Iaa = IACZ2 hy l L

bh®  (b-t)hd 1
la = — - — = 12856x10°mm° |

3 3

Ac? = 102.23 x10° mm?®
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| = 26.33x10°mm°
to find the shear stress 7 (znn), calculate Q; first

Q. = 100x24x(75.77-012) = 153 x10°mm°

vV Q, 45 x 10° x 153 x 10°
7, = = = 10.9 MPa

't 26.33 x 10°% x 24

to find 7ma, We wantto find Qnax at N.A.

Qmax = tCy(Cof2) =24x124.23x(124.23/2) = 185 x 10° mm®

V Qmax 45 x 10° x 185 x 10°
Trax = = = 13.2 MPa
't 26.33 x 10°

5.11 Built-up Beams and Shear Flow

5.12 Beams with Axial Loads | o P

beams may be subjected to the simultaneous 5 S
action of bending loads and axial forces, -

e.g. cantilever beam subjected to an inclined Y

force P, it may be resolved into two :1

components Q and S, then

M=Q(L-Xx) V=-Q N=S

_ © 0o © =
and the stresses in beams are ‘ d N 1‘ ' . '
My VQ N = R ESs
o= = s=— @ ® ® ® ©
I I b A (c) (d) (e) ”‘) (2)

the final stress distribution can be obtained by combining the stresses
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associated with each stress resultant

_My N

c =-— + —
I A

whenever bending and axial loads act simultaneously, the neutral axis no

longer passes through the centroid of the cross section

Eccentric Axial Loads

aload P acting at distance e from

y

(A B¢ P
e
| T .

the x axis, e iscalled eccentricity

N = P M = - Pe (@)
' ¥y
then the normal stress at any point is 4 5
1, A
Pey P 3 L. ) pe

c = — + —
I A

the position of the N.A.  nn can be obtained by setting o = 0
I

Yo = -—— minus sign shows the N.A. lies below z-axis
Ae
it e i d NA loser t .
if e increased, N.A. moves closer to - ”,
L 'ﬁé"‘}\\ e
the centroid, if e reduced, N.A. moves:—§ ¢ |
nxt- n n,
away from the centroid 4 é
(c) (d)
Example 5-15

a tubular beam ACB of length L = 15 m loaded by a inclined
force P at mid length
P=45KkN d =140 mm b =150 mm A = 12,500 mm?
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| = 33.86x10° mm*

[y

_—\g]m n!- — =30 in, l
l Ii] — ==
‘ LJ—H ;—b b =06in.
—
d=5. ﬁ n. _"I I‘_
£ = 1000 Ib .
k50 b =6in.

(a)

(b)
P, = Psin60° = 3,897 N
P, = Pcos60° = 2,250N
M, = P,d = 3897x140 = 5456 x10°N-mm

the axial force, shear force and bending moment diagrams are sketched
first

y Mg = 4760 Ib-in.
y % Pi1 = 866 Ih - 866 Ib
-— i T—=3
Ru LN\ 1) A 0
IR., Py =500~ i
Rp
T 2 i | ==30in } v 3291
= = | {J] ] :
Ry =866 1b -1711b
Ry=3291b Rp=1711b ©
(a)
. . 9870 Ib-in._, '
the maximum tensile stress occurs at " o |r;5_|_1_‘j_1h-l“-
0= ==
the bottom of the beam, y =- 75 mm (d)
N My 3,897 1,116.8 x 10% (-75)
(@)max = — - = - -
A I 12,500 33.86 x 10

= 0312 + 2474 = 2.79MPa

the maximum compressive stress occurs at the top of the beam, y = 75
mm
My 3,897 1,116.8 x 10° x 75

(et = — - —— = -

| 12,500 33.86 x 10°

33



= 0312 - 2474 = -2.16MPa

N My 571.2 10° x 75
(O'C)right = — - — = 0 -
A | 33.86 x 10°
= -1.265 MPa
thus (o¢omax = -2.16 MPa occurs at the top of the beam to the left of

point C

5.13 Stress Concentration in Beams
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