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Chapter 321 

Logistic Regression  
Introduction 
Logistic regression analysis studies the association between a categorical dependent variable and a set of 
independent (explanatory) variables. The name logistic regression is used when the dependent variable has only 
two values, such as 0 and 1 or Yes and No. The name multinomial logistic regression is usually reserved for the 
case when the dependent variable has three or more unique values, such as Married, Single, Divorced, or 
Widowed. Although the type of data used for the dependent variable is different from that of multiple regression, 
the practical use of the procedure is similar.  

Logistic regression competes with discriminant analysis as a method for analyzing categorical-response variables. 
Many statisticians feel that logistic regression is more versatile and better suited for modelling most situations 
than is discriminant analysis. This is because logistic regression does not assume that the independent variables 
are normally distributed, as discriminant analysis does.  

This program computes binary logistic regression and multinomial logistic regression on both numeric and 
categorical independent variables. It reports on the regression equation as well as the goodness of fit, odds ratios, 
confidence limits, likelihood, and deviance. It performs a comprehensive residual analysis including diagnostic 
residual reports and plots. It can perform an independent variable subset selection search, looking for the best 
regression model with the fewest independent variables. It provides confidence intervals on predicted values and 
provides ROC curves to help determine the best cutoff point for classification. It allows you to validate your 
results by automatically classifying rows that are not used during the analysis. 

The Logit and Logistic Transformations 
In multiple regression, a mathematical model of a set of explanatory variables is used to predict the mean of a 
continuous dependent variable. In logistic regression, a mathematical model of a set of explanatory variables is 
used to predict a logit transformation of the dependent variable. 

Suppose the numerical values of 0 and 1 are assigned to the two outcomes of a binary variable. Often, the 0 
represents a negative response and the 1 represents a positive response. The mean of this variable will be the 
proportion of positive responses. If p is the proportion of observations with an outcome of 1, then 1-p is the 
probability of a outcome of 0. The ratio p/(1-p) is called the odds and the logit is the logarithm of the odds, or just 
log odds. Mathematically, the logit transformation is written 
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The following table shows the logit for various values of p. 

P Logit(P) P Logit(P) 

0.001 -6.907 0.999 6.907 
0.01 -4.595 0.99 4.595 
0.05 -2.944 0.95 2.944 
0.10 -2.197 0.90 2.197 
0.20 -1.386 0.80 1.386 
0.30 -0.847 0.70 0.847 
0.40 -0.405 0.60 0.405 
0.50 0.000 

Note that while p ranges between zero and one, the logit ranges between minus and plus infinity. Also note that 
the zero logit occurs when p is 0.50.  

The logistic transformation is the inverse of the logit transformation. It is written 
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The Log Odds Ratio Transformation 
The difference between two log odds can be used to compare two proportions, such as that of males versus 
females. Mathematically, this difference is written 
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This difference is often referred to as the log odds ratio. The odds ratio is often used to compare proportions 
across groups. Note that the logistic transformation is closely related to the odds ratio. The reverse relationship is 
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The Logistic Regression and Logit Models 
In logistic regression, a categorical dependent variable Y having G (usually G = 2) unique values is regressed on a 
set of p independent variables X X X p1 2, ,..., . For example, Y may be presence or absence of a disease, condition 
after surgery, or marital status. Since the names of these partitions are arbitrary, we often refer to them by 
consecutive numbers. That is, in the discussion below, Y will take on the values 1, 2, … G. In fact, NCSS allows 
Y to have both numeric and text values, but the notation is much simpler if integers are used. 

Let 
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The logistic regression model is given by the G equations 
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Here, pg  is the probability that an individual with values X X X p1 2, ,...,  is in outcome g. That is, 

( )X|Pr gYpg ==  

Usually 11 ≡X  (that is, an intercept is included), but this is not necessary.  

The quantities GPPP ,...,, 21  represent the prior probabilities of outcome membership. If these prior probabilities 
are assumed equal, then the term ( )1/ln PPg  becomes zero and drops out. If the priors are not assumed equal, they 
change the values of the intercepts in the logistic regression equation. 

Outcome one is called the reference value. The regression coefficients p11211 ,,, βββ   for the reference value are 
set to zero. The choice of the reference value is arbitrary. Usually, it is the most frequent value or a control 
outcome to which the other outcomes are to be compared. This leaves G-1 logistic regression equations in the 
logistic model. 

The s'β  are population regression coefficients that are to be estimated from the data. Their estimates are 
represented by b’s. The s'β  represents unknown parameters to be estimated, while the b’s are their estimates. 

These equations are linear in the logits of p. However, in terms of the probabilities, they are nonlinear. The 
corresponding nonlinear equations are  
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since 11X =Βe  because all of its regression coefficients are zero. 

A note on the names of the models. Often, all of these models are referred to as logistic regression models. 
However, when the independent variables are coded as ANOVA type models, they are sometimes called logit 
models. 
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A note about the interpretation of eXΒ  may be useful. Using the fact that ( )( )baba eee =+ , ΒXe  may be re-
expressed as follows  
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This shows that the final value is the product of its individual terms. 

Solving the Likelihood Equations 
To improve notation, let 
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The likelihood for a sample of N observations is then given by 
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where ygj  is one if the j th  observation is in outcome g and zero otherwise. 

Using the fact that ygj
g
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1 , the log likelihood, L, is given by 
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Maximum likelihood estimates of the β 's  are those values that maximize this log likelihood equation. This is 
accomplished by calculating the partial derivatives and setting them to zero. The resulting likelihood equations 
are 
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for g = 1, 2, …, G and k = 1, 2, …, p. Actually, since all coefficients are zero for g = 1, the effective range of g is 
from 2 to G.  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
Logistic Regression 

321-5 
 © NCSS, LLC. All Rights Reserved. 

Because of the nonlinear nature of the parameters, there is no closed-form solution to these equations, and they 
must be solved iteratively. The Newton-Raphson method as described in Albert and Harris (1987) is used to solve 
these equations. This method makes use of the information matrix, ( )βI , which is formed from the matrix of 
second partial derivatives. The elements of the information matrix are given by 
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The information matrix is used because the asymptotic covariance matrix of the maximum likelihood estimates is 
equal to the inverse of the information matrix. That is,  

( ) ( ) 1ˆ −= ββ IV  

This covariance matrix is used in the calculation of confidence intervals for the regression coefficients, odds 
ratios, and predicted probabilities. 

Interpretation of Regression Coefficients 
The interpretation of the estimated regression coefficients is not as easy as in multiple regression. In logistic 
regression, not only is the relationship between X and Y nonlinear, but also, if the dependent variable has more 
than two unique values, there are several regression equations.  

Consider the usual case of a binary dependent variable, Y, and a single independent variable, X. Assume that Y is 
coded so it takes on the values 0 and 1. In this case, the logistic regression equation is 
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Now consider impact of a unit increase in X. The logistic regression equation becomes 
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We can isolate the slope by taking the difference between these two equations. We have 
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That is, β1  is the log of the ratio of the odds at X+1 and X. Removing the logarithm by exponentiating both sides 
gives 

odds
sodde
′

=1β  

The regression coefficient β1  is interpreted as the log of the odds ratio comparing the odds after a one unit 
increase in X to the original odds. Note that, unlike multiple regression, the interpretation of β1  depends on the 
particular value of X since the probability values, the p’s, will vary for different X. 

Binary X 
When X can take on only two values, say 0 and 1, the above interpretation becomes even simpler. Since there are 
only two possible values of X, there is a unique interpretation for β1  given by the log of the odds ratio. In 
mathematical terms, the meaning of β1  is then 
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To understand this equation further, consider first what the odds are. The odds is itself the ratio of two 
probabilities, p and 1-p. Consider the following table of odds values for various values of p. Note that 9:1 is read 
‘9 to 1.’ 

Value of p Odds of p 
0.9 9:1 
0.8 4:1 
0.6 1.5:1 
0.5 1:1 
0.4 0.67:1 
0.2 0.25:1 
0.1 0.11:1 
 
Now, using a simple example from horse racing, if one horse has 8:1 odds of winning and a second horse has 4:1 
odds of winning, how do you compare these two horses? One obvious way is to look at the ratio of their odds. 
The first horse has twice the odds of winning as the second.  

Consider a second example of two slow horses whose odds of winning are 0.1:1 and 0.05:1. Here again, their 
odds ratio is 2. The message here: the odds ratio gives a relative number. Even though the first horse is twice as 
likely to win as the first, it is still a long shot. 

To completely interpret β1 , we must take the logarithm of the odds ratio. It is difficult to think in terms of 
logarithms. However, we can remember that the log of one is zero. So, a positive value of β1  indicates that the 
odds of the numerator are larger, while a negative value indicates that the odds of the denominator are larger.  

It is may easiest to think in terms of eβ1  rather than β1 , because eβ1  is the odds ratio while β1  is the log of the 
odds ratio. Both quantities are displayed in the reports. 

Multiple Independent Variables  
When there are multiple independent variables, the interpretation of each regression coefficient becomes more 
difficult, especially if interaction terms are included in the model. In general, however, the regression coefficient 
is interpreted the same as above, except that the caveat ‘holding all other independent variables constant’ must be 
added. The question becomes, can the value of this independent variable be increased by one without changing 
any of the other variables. If it can, then the interpretation is as before. If not, then some type of conditional 
statement must be added that accounts for the values of the other variables. 
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Multinomial Dependent Variable  
When the dependent variable has more than two values, there will be more than one regression equation. In fact, 
the number of regression equations is equal to one less than the number of outcomes. This makes interpretation 
more difficult because there are several regression coefficients associated with each independent variable. In this 
case, care must be taken to understand what each regression equation is predicting. Once this is understood, 
interpretation of each of the G - 1 regression coefficients for each variable can proceed as above. 

Consider the following example in which there are two independent variables, X1 and X2, and the dependent 
variable has three groups: A, B, and C.  

Row Y X1 X2 GA GB GC 
1 A 3.2 5.8 1 0 0 
2 A 4.7 6.1 1 0 0 
3 B 2.8 3.5 0 1 0 
4 B 3.3 4.6 0 1 0 
5 B 3.9 5.2 0 1 0 
6 C 4.2 3.7 0 0 1 
7 C 7.3 4.4 0 0 1 
8 C 5.3 5.1 0 0 1 
9 C 6.8 4.5 0 0 1 

Look at the three indicator variables: GA, GB, and GC. They are set to one or zero depending on whether Y takes 
on the corresponding value. Two regression equations will be generated corresponding to any two of these 
indicator variables. The value that is not used is called the reference value. Suppose the reference value is C. The 
two regression equations would be 
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The two coefficients for X1 in these equations, βA1  and βB1 , give the change in the log odds of A versus C and B 
versus C for a one unit change in X1, respectively. 
 

Statistical Tests and Confidence Intervals 
Inferences about individual regression coefficients, groups of regression coefficients, goodness-of-fit, mean 
responses, and predictions of group membership of new observations are all of interest. These inference 
procedures can be treated by considering hypothesis tests and/or confidence intervals. The inference procedures in 
logistic regression rely on large sample sizes for accuracy.  

Two procedures are available for testing the significance of one or more independent variables in a logistic 
regression: likelihood ratio tests and Wald tests. Simulation studies usually show that the likelihood ratio test 
performs better than the Wald test. However, the Wald test is still used to test the significance of individual 
regression coefficients because of its ease of calculation.  

These two testing procedures will be described next. 
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Likelihood Ratio and Deviance 
The Likelihood Ratio test statistic is -2 times the difference between the log likelihoods of two models, one of 
which is a subset of the other. The distribution of the LR statistic is closely approximated by the chi-square 
distribution for large sample sizes. The degrees of freedom (DF) of the approximating chi-square distribution is 
equal to the difference in the number of regression coefficients in the two models. The test is named as a ratio 
rather than a difference since the difference between two log likelihoods is equal to the log of the ratio of the two 
likelihoods. That is, if Lfull   is the log likelihood of the full model and Lsubset  is the log likelihood of a subset of 
the full model, the likelihood ratio is defined as 
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Note that the -2 adjusts LR so the chi-square distribution can be used to approximate its distribution.  

The likelihood ratio test is the test of choice in logistic regression. Various simulation studies have shown that it is 
more accurate than the Wald test in situations with small to moderate sample sizes. In large samples, it performs 
about the same. Unfortunately, the likelihood ratio test requires more calculations than the Wald test, since it 
requires that two maximum-likelihood models must be fit.  

Deviance 
When the full model in the likelihood ratio test statistic is the saturated model, LR is referred to as the deviance. A 
saturated model is one which includes all possible terms (including interactions) so that the predicted values from 
the model equal the original data. The formula for the deviance is 

[ ]SaturatedReduced2 LLD −−=  

The deviance may be calculated directly using the formula for the deviance residuals (discussed below). This 
formula is 
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This expression may be used to calculate the log likelihood of the saturated model without actually fitting a 
saturated model. The formula is 

2ReducedSaturated
DLL +=  

The deviance in logistic regression is analogous to the residual sum of squares in multiple regression. In fact, 
when the deviance is calculated in multiple regression, it is equal to the sum of the squared residuals. Deviance 
residuals, to be discussed later, may be squared and summed as an alternative way to calculate the deviance, D. 

The change in deviance, ∆D , due to excluding (or including) one or more variables is used in logistic regression 
just as the partial F test is used in multiple regression. Many texts use the letter G to represent ∆D , but we have 
already used G to represent the number of groups in Y. Instead of using the F distribution, the distribution of the 
change in deviance is approximated by the chi-square distribution. Note that since the log likelihood for the 
saturated model is common to both deviance values, ∆D  is calculated without actually estimating the saturated 
model. This fact becomes very important during subset selection. The formula for ∆D  for testing the significance 
of the regression coefficient(s) associated with the independent variable X1 is 
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Note that this formula looks identical to the likelihood ratio statistic. Because of the similarity between the change 
in deviance test and the likelihood ratio test, their names are often used interchangeably.  

Wald Test 
The Wald test will be familiar to those who use multiple regression. In multiple regression, the common t-test for 
testing the significance of a particular regression coefficient is a Wald test. In logistic regression, the Wald test is 
calculated in the same manner. The formula for the Wald statistic is 

jb

j
j s

b
z =  

where sb j
 is an estimate of the standard error of bj  provided by the square root of the corresponding diagonal 

element of the covariance matrix, ( )β̂V .  

With large sample sizes, the distribution of z j  is closely approximated by the normal distribution. With small and 
moderate sample sizes, the normal approximation is described as ‘adequate.’  

The Wald test is used in NCSS to test the statistical significance of individual regression coefficients. 

Confidence Intervals 
Confidence intervals for the regression coefficients are based on the Wald statistics. The formula for the limits of 
a ( )%1100 α−  two-sided confidence interval is  

jbj szb 2/α±  

R-Squared 
The following discussion summarizes the material on this subject in Hosmer and Lemeshow (1989). In multiple 
regression, 2

MR  represents the proportion of variation in the dependent variable accounted for by the independent 
variables. (The subscript “M” emphasizes that this statistic is for multiple regression.) It is the ratio of the 
regression sum of squares to the total sum of squares. When the residuals from the multiple regression can be 
assumed to be normally distributed, 2

MR  can be calculated as 

0

02

L
LL

R p
M

−
=  

where 0L  is the log likelihood of the intercept-only model and pL  is the log likelihood of the model that includes 

the independent variables. Note that pL  varies from L0  to 0. 2
MR  varies between zero and one. 

This quantity has been proposed for use in logistic regression. Unfortunately, when 2
LR  (the R-squared for logistic 

regression) is calculated using the above formula, it does not necessarily range between zero and one. This is 
because the maximum value of pL  is not always 0 as it is in multiple regression. Instead, the maximum value of 

pL  is SL , the log likelihood of the saturated model. To allow 2
LR  to vary from zero to one, it is calculated as 

follows 
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The introduction of SL  into this formula causes a degree of ambiguity with 2
LR  that does not exist with 2

MR . This 
ambiguity is due to the fact that the value of SL  depends on the configuration of independent variables. The 
following example will point out the problem. 

Consider a logistic regression problem consisting of a binary dependent variable and a pool of four independent 
variables. The data for this example are given in the following table. 

Y X1 X2 X3 X4 
0 1 1 2.3 5.9 
0 1 1 3.6 4.8 
1 1 1 4.1 5.6 
0 1 2 5.3 4.1 
0 1 2 2.8 3.1 
1 1 2 1.9 3.7 
1 1 2 2.5 5.4 
1 2 1 2.3 2.6 
1 2 1 3.9 4.6 
0 2 1 5.6 4.9 
0 2 2 4.2 5.9 
0 2 2 3.8 5.7 
0 2 2 3.1 4.5 
1 2 2 3.2 5.5 
1 2 2 4.5 5.2 

Notice that if only X1 and X2 are included in the model, the dataset may be collapsed because of the number of 
repeats. In this case, the value of SL  will be less than zero. However, if X3 or X4 are used there are no repeats 
and the value of SL  will be zero. Hence, the denominator of 2

LR  depends on which of the independent variables is 
used. This is not the case for 2

MR . This ambiguity comes into play especially during subset selection. It means that 
as you enter and remove independent variables, the target value SL  can change. 

Hosmer and Lemeshow (1989) recommend against the use 2
LR  as a goodness of fit measure. However, we have 

included it in our output because it does provide a comparative measure of the proportion of the log likelihood 
that is accounted for by the model. Just remember than an 2

LR  value of 1.0 indicates that the logistic regression 
model achieves the same log likelihood as the saturated model. However, this does not mean that it fits the data 
perfectly. Instead, it means that it fits the data as well as could be hoped for.  

Residual Diagnostics 
Residuals are the discrepancies between the data values and their predicted values from the fitted model. A 
residual analysis detects outliers, identifies influential observations, and diagnoses the appropriateness of the 
logistic model. An analysis of the residuals should be conducted before a regression model is used. 

Unfortunately, the residuals are more difficult to define in logistic regression than in regular multiple regression 
because of the nonlinearity of the logistic model and because more than one regression equation is used. The 
discussion that follows provides an introduction to the residuals that are produced by the logistic regression 
procedure. Pregibon (1981) presented this material for the case of the two-outcome logistic regression. Extensions 
of Pregibon’s results to the multiple-group case are provided in an article by Lesaffre and Albert (1989) and in the 
book by Hosmer and Lemeshow (1989). Lesaffre and Albert provide formulas for these extensions. On the other 
hand, Hosmer and Lemeshow recommend that individual logistic regressions be run in which the each group is 
treated separately. Hence, if you have three outcomes A, B, and C, you would run outcome A versus outcomes B 
and C, outcome B versus outcomes A and C, and outcome C versus outcomes and A and B. You would conduct a 
residual analysis for each of these regressions using Pregibon’s two-outcome formulas. In NCSS, we have 
adopted the approach of Hosmer and Lemeshow. 
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Data Configuration 
When dealing with residuals, it is important to understand the data configuration. Often, residual formulations are 
presented for the case when each observation has a different combination of values of the independent variables. 
When some observations have identical independent variables or when you have specified a frequency variable, 
these observations are combined to form a single row of data. The N original observations are combined to form J 
unique rows. The response indicator variables gjy  for the original observations are replaced by two variables: gjw  
and jn . The variable jn  is the total number of observations with this independent variable configuration. The 
variable gjw  is the number of the jn  observations that are in outcome-group g.  

NCSS automatically collapses the dataset of N observations into a combined dataset of J rows for analysis. The 
residuals are calculated using this last formula. However, the residuals are reported in the original observation 
order. Thus, if two identical observations have been combined, the residual is shown for each. If corrective action 
needs to be taken because a residual is too large, both observations must be deleted. Also, if you want to calculate 
the deviance or Pearson chi-square from the corresponding residuals, care must be taken that you use only the J 
collapsed rows, not the N original observations. 

Simple Residuals 
Each of the G logistic regression equations can be used to estimate the probabilities that an observation of 
independent variable values given by X j  belongs to the corresponding outcome-group. The actual values of these 
probabilities were defined earlier as 

( )jgj gY X|Prob= =π  

The estimated values of these probabilities are called pgj . If the hat symbol is used to represent an estimated 
parameter, then 

gjgjp π̂=  

These estimated probabilities can be compared to the actual probabilities occurring in the database by subtracting 
the two quantities, forming a residual. The actual values were defined as the indicator variables ygj . Thus, simple 
residuals may be defined as 

gjgjgj pyr −=  

Note that, unlike multiple regression, there are g residuals for each observation instead of just one. This makes 
residual analysis much more difficult. If the logistic regression model fits an observation closely, all of its 
residuals will be small. Hence, when gjy  is one, gjp  will be close to one and when gjy  is zero, gjp  will be close 
to zero. 

Unfortunately, the simple residuals have unequal variance equal to ( )gjgjjn ππ −1 , where jn  is the number of 
observations with the same values of the independent variables as observation j. This unequal variance makes 
comparisons among the simple residuals difficult and alternative types of residuals are necessary. 
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Pearson Residuals 
One popular alternative to the simple residuals are the Pearson residuals which are so named because they give 
the contribution of each observation to the Pearson chi-square goodness of fit statistic. When the values of the 
independent variables of each observation are unique, the formula this residual is 

( )
Nj

p
pyG

g gj

gjgj
j ,,2,1   ,

1

2

=
−

±=′ ∑
=

χ  

The negative sign is used when 0=gjy  and the positive sign is used when 1=gjy . 

When some of the observations are duplicates and the database has been collapsed (see Data Configuration above) 
the formula is 
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χ  

where the plus (minus) is used if jgj nw /  is greater (less) than gjp . Note that this is the formula used by NCSS. 

By definition, the sum of the squared Pearson residuals is the Pearson chi-square goodness of fit statistics. That is, 

χ χ2 2

1

=
=
∑ j
j

J

 

Deviance Residuals 
Remember that the deviance is -2 times the difference between log likelihoods of a reduced model and the 
saturated model. The deviance is calculated using 
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This formula uses the fact that the saturated model reproduces the original data exactly and that, in these sums, the 
value of 0 ln(0) is defined as 0 and that the ln(1) is also 0. 

The deviance residuals are the square roots of the contribution of each observation to the overall deviance. Thus, 
the formula for the deviance residual is 
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The negative sign is used when 0=gjy  and the positive sign is used when 1=gjy .  
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When some of the observations are duplicates and the database has been collapsed (see Data Configuration above) 
the formula is 

Jj
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gjj ,,2,1    ,ln2
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=

 

where the plus (minus) is used if jjgREF nw /),(  is greater (less) than jgREFp ),( . Note that this is the formula used 
by NCSS. 

By definition, the sum of the squared deviance residuals is the deviance. That is, 

∑
=

=
J

j
jdD

1

2  

Hat Matrix Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. These are often called leverage design points. The larger the value of this statistic, the more the observation 
influences that estimates of the regression coefficients. An observation that is discrepant, but has low leverage, 
should not cause much concern. However, an observation with a large leverage and a large residual should be 
checked very carefully. The use of these hat diagonals is discussed further in the multiple regression chapter.  

The formula for the hat diagonal associated with the jth observation and gth outcome is   

( ) JjVXXppnh
p

i

p

k
gikkjijgjgjjgj ,,2,1    ,ˆ1

1 1

=−= ∑∑
= =

 

where gikV̂  is the portion of the covariance matrix of the regression coefficients associated with the gth regression 
equation. The interpretation of this diagnostic is not as clear in logistic regression as in multiple regression 
because it involves the predicted values which in turn involve the dependent variable. In multiple regression, the 
hat diagonals only involve the independent variables. 

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

DFBETA 
One way to study the impact of an observation on each regression coefficient is to determine how much that 
coefficient changes when the observation is deleted. The DFBETA statistic is the standardized difference between 
a regression coefficient before and after the removal of the jth observation.  

The formula for DFBETA is approximated by 
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where gikV̂  is the portion of the covariance matrix associated with the gth regression equation. 

Note that this formula matches Pregibon (1981) in the two-outcome case, but is different from Lesaffre (1989) in 
the multi-group case. 
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Cooks Distance: C and Cbar 
C and Cbar are extensions of Cooks distance for logistic regression. Quoting from Pregibon (1981), page 719: 

“Cbar measures the overall change in fitted logits due to deleting the lth observation for all points excluding the 
one deleted. Conversely, C includes the deleted point. Although C will usually be the preferred diagnostic to 
measure overall coefficients changes, in the examples examined to date, the one-step approximations were more 
accurate for Cbar than C.” 

The formulas for C and Cbar are 
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Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

DFDEV and DFCHI2 
DFDEV and DFCHI2 are statistics that measure the change in deviance and in Pearson’s chi-square, respectively, 
that occurs when an observation is deleted from the dataset. Large values of these statistics indicate observations 
that have not been fitted well. 

The formulas for these statistics are 

JjCdDFDEV gjjgj ,,2,1    ,2 =+=  
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gj
gj ,,2,1    ,2 ==  

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

 

Predicted Probabilities 
This section describes how to calculate the predicted probabilities of outcome-group membership and associated 
confidence intervals. Recall that the regression equation is linear when expressed in logit form. That is,  
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The adjustment for the prior probabilities changes the value of the intercepts, so this expression may be simplified 
to 
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if we assume that the intercepts have been appropriately adjusted. Assuming that the estimated matrix of 
regression coefficients is distributed asymptotically as a multivariate normal, the point estimates of this quantity 
for a specific set of X values is given by 

gj
g

j B
p
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l ˆXX|ln j
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=
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




=  

and the corresponding confidence interval is given by 

( )jgj2/ XVX′± αzl j  

where gV  is that portion of the covariance matrix ( )BV ˆ  that deals with the gth regression equation.  

When there are only two groups, these confidence limits can be inverted to give confidence limits on the predicted 
probabilities as 
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where 

jgj XVX′=Bσ  

When there are more than two groups, the confidence limits on the logits are still given by 

( )jgj2/ XVX′± αzl j  

However, this set of confidence limits of the logits cannot be inverted to give confidence limits for the predicted 
probabilities. We have found no presentation that gives an appropriate set of confidence limits. In order to provide 
an approximate answer, we provide approximate confidence limits by applying the inversion as if there were only 
two groups. This method ignores the correlation between the coefficients of the individual equations. However, 
we hope that it provides a useful approximation to the confidence intervals. 

Subset Selection 
Subset selection refers to the task of finding a small subset of the available independent variables that does a good 
job of predicting the dependent variable. Because logistic regression must be solved iteratively, the task of finding 
the best subset can be very time consuming. Hence, techniques that search all possible combinations of the 
independent variables are not feasible. Instead, algorithms that add or remove a variable at each step must be 
used. Two such searching algorithms are available in this module: forward selection and forward selection with 
switching.  

Before discussing the details of these two algorithms, it is important to comment on a couple of issues that can 
come up. First of all, since there is more than one regression equation when there are more than two categories in 
the dependent variable, it is possible that a variable is important in one of the equations and not in the others. The 
algorithms presented here are based on the overall likelihood. This means that if an independent variable is 
important in at least one of the regression equations, it will be kept. 

A second issue is what to do with the individual-degree of freedom variables that are generated for a categorical 
independent variable. If such a variable has six categories, five binary variables are generated. You can see that 
with two or three categorical variables, a large number of binary variables may result, which greatly increases the 
total number of variables that must be searched. To avoid this problem, the algorithms search on model terms 
rather than on the individual binary variables. Thus, the whole set of binary variables associated with a given term 
are considered together for inclusion in, or deletion from, the model. It is all or none. Because of the time 
consuming nature of the algorithm, this is the only feasible way to deal with categorical variables. If you want the 
subset algorithm to deal with them individually, you can generate the set of binary variables manually and 
designate them as Numeric Variables. 
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Hierarchical Models 
A third issue is what to do with interactions. Usually, an interaction is not entered in the model unless the 
individual terms that make up that interaction are also in the model. For example, the interaction term A*B*C is 
not included unless the terms A, B, C, A*B, A*C, and B*C are already in the model. Such models are said to be 
hierarchical. You have the option during the search to force the algorithm to consider only hierarchical models 
during its search. Thus, if C is not in the model, interactions involving C are not even considered. Even though the 
option for non-hierarchical models is available, we recommend that you only consider hierarchical models. 

Forward Selection 
The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of the log likelihood. Enter this 
term into the model. 

3.  Continue adding terms until a target value for the log-likelihood is achieved or until a preset limit on the 
maximum number of terms in the model is reached. Note that these terms can be limited to those keeping 
the model hierarchical. 

This method is comparatively fast, but it does not guarantee that the best model is found except for the first step 
when it finds the best single term. You might use it when you have a large number of observations and terms so 
that other, more time consuming, methods are not feasible. 

Forward Selection with Switching 
This method is similar to the method of Forward Selection discussed above. However, at each step when a term is 
added, all terms in the model are switched one at a time with all candidate terms not in the model to determine if 
they increase the value of the log likelihood. If a switch can be found, it is made and the pool of terms is again 
searched to determine if another switch can be made. Note that this switching can be limited to those keeping the 
model hierarchical. 

When the search for possible switches does not yield a candidate, the subset size is increased by one and a new 
search is begun. The algorithm is terminated when a target subset size is reached or all terms are included in the 
model. 

Discussion 
These algorithms usually require two runs. In the first run, you set the maximum subset size to a large value such 
as 10. By studying the Subset Selection reports from this run, you can quickly determine the optimum number of 
terms. You reset the maximum subset size to this number and make the second run. This two-step procedure 
works better than relying on some F-to-enter and F-to-remove tests whose properties are not well understood to 
begin with. 
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Data Structure 
The data given below are the first few rows of a set of data about leukemia patients published in Lee (1980). The 
dependent variable is whether leukemia remission occurred (Remiss). The independent variables are cellularity of 
the marrow clot section (Cell), smear differential percentage of blasts (Smear), percentage of absolute marrow 
leukemia cell infiltrate (Infil), percentage labeling index of the bone marrow leukemia cells (LI), absolute number 
of blasts in the peripheral blood (Blast), and the highest temperature prior to start of treatment (Temp). This 
dataset is stored in the Leukemia dataset in the Example Data directory. 

Leukemia dataset (subset) 

Remiss Cell Smear Infil LI Blast Temp 
1 80 83 66 190 11.6 996 
1 90 36 32 140 4.5 992 
0 80 88 70 80 0.5 982 
0 100 87 87 70 10.3 986 
1 90 75 68 130 2.3 980 
0 100 65 65 60 2.3 982 
1 95 97 92 100 16.0 992 
0 95 87 83 190 21.6 1020 

Missing Values 
If missing values are found in any of the independent variables being used, the row is omitted. If only the 
dependent variable is missing, the row will not be used in the estimation of the regression coefficients, but a 
predicted value will be generated for that row. 
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Example 1 – Logistic Regression Analysis 
This section presents an introductory example of how to run a logistic regression analysis. The data used are 
stored in the Leukemia dataset. In this analysis, a logistic regression will be run to determine the relationship 
between Cell, LI, and Temp on the binary dependent variable Remiss.  

Setup 
To run this example, complete the following steps: 

1 Open the Leukemia example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Leukemia and click OK. 

2 Specify the Logistic Regression procedure options 
• Find and open the Logistic Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings template. To load 

this template, click Open Example Template in the Help Center or File menu. 

Option Value 
Variables, Model Tab 
Y ............................................................. Remiss 
Numeric X's ............................................ Cell, LI, Temp 

Reports Tab 
All Reports .............................................. Checked 
Row Classification Report ...................... All Rows 
Row Classification Probs Report ............ All Rows 
Simple Residuals Report ........................ All Rows 

Plots Tab 
All Plots ................................................... Checked 

Report Options (in the Toolbar) 
Variable Labels ....................................... Column Names 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Run Summary  
 
Run Summary ────────────────────────────────────────────────────────────── 
 
Item Value Item Value 
Y Variable Remiss Rows Processed 29 
Reference Value 0 Rows Used 27 
Number of Y-Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 0 
Numeric X Variables 3 Rows Freq Miss. or 0 0 
Categorical X Variables 0 Rows Prediction Only 2 
Final Log Likelihood -10.97669 Unique Rows (Y and X's) 26 
Model R² 0.36130 Sum of Frequencies 27 
Actual Convergence 2.94261E-07 Likelihood Iterations 7 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 4 Completion Status Normal Completion 
Priors Equal 
 

This report provides useful information about the reports to follow. It should be studied to make sure that the data 
were read in properly and that the logistic regression procedure terminated normally. We will only discuss those 
parameters that need special explanation. 

Reference Value 
The reference value is that category of the Y variable that is defined implicitly in terms of the other categories. 
This is the category that is skipped on much of the output. If you did not specify the reference value with the Y 
Variable, the reference value is chosen according to the 'Default Reference Value setting. This value is critical to 
interpretation of the rest of the output.  

Number of Y-Values 
This is the number of unique categories that were found for the Y variable. Check this count to make certain it 
agrees with what you anticipated. 

Final Log Likelihood 
This is the log likelihood of the model that is reported on here.  

Model R2 
This is the R2 that was achieved by your regression. Read the discussion of R2 that was given earlier to better 
understand how to interpret R2 in the case of logistic regression.  

Actual and Target Convergence 
The Target Convergence is the amount that is used to stop the iterative fitting of the maximum likelihood 
algorithm. If the Actual Convergence amount is larger than the Target amount, the algorithm ended before 
converging and care must be taken in using any of the results. If this happens, the usual remedy is to increase the 
maximum number of iterations. If this does not solve the problem, you will have to change the variables in the 
model. 

Rows Processed, Used, etc. 
These values record how many of each type of observation were encountered when the database was read. You 
should make sure that these amounts are what you expect. 

Unique Rows (Y and X’s) 
This gives the number of unique patterns found in the variables. Both the dependent and independent variables are 
considered in forming this count. 
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Likelihood and Maximum Iterations 
The Likelihood Iterations are the number of iterations necessary to solve the likelihood equations. Usually, fewer 
than ten iterations are necessary. If the number of Likelihood Iterations is equal to the Maximum Iterations, the 
maximum likelihood algorithm did not converge and you should take some remedial action such as increasing the 
Maximum Iterations or changing the regression model. 

Completion Status 
This is the message that was returned when the maximum likelihood algorithm ended. Unless the message 
“Normal Completion” is received, you should take appropriate corrective action. 

Model D.F. 
This is the number of degrees of freedom in the G-1 logistic regression models. 

Y Variable Summary 
 
Y Variable Summary ────────────────────────────────────────────────────────── 
 
  Unique   R² Percent 
Y  Rows Y Y (Y vs Pred. Correctly 
Remiss Count (Y and X's) Proportion Prior Probability) Classified 
0 18 17 0.66667 0.50000 0.40318 83.333 
1 9 9 0.33333 0.50000 0.40318 77.778 
Total 27 26    81.481 
 

This report describes the dependent variable. Use it to understand the dependent variable and how well the 
regression model approximates it. 

Y 
These are the unique values found for the dependent variable. Check to make sure that no unexpected outcomes 
were found.  

Count 
This is the sum of the frequencies (counts) for each outcome of the Y variable.  

Unique Rows (Y and X’s) 
This is the number of unique rows in each outcome as determined by the values of the Y and X variables.  

Y Proportion 
This is the proportion of each outcome. 

Prior 
This is the prior probability of each Y-value as given by the user in the Prior Y-Value Probabilities section. 

R2 (Y vs Pred. Probability) 
This is the R2 that is achieved when the indicator variable for this Y-value is regressed on the predicted probability 
of being in this category.  

Percent Correctly Classified 
This is the percent of the observations from this outcome that were correctly classified as such by the multinomial 
logistic regression model.  
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Coefficient Significance Tests  
 
Coefficient Significance Tests ─────────────────────────────────────────────────── 
 
Independent Regression Standard Wald  Odds 
Variable Coefficient Error Z-Value Wald Ratio 
X b(i) Sb(i) H0: β=0 P-Value Exp(b(i)) 
Intercept 68.32696 56.88604 1.201 0.22970 10000+ 
Cell 9.65213 7.75107 1.245 0.21303 10000+ 
LI 3.86710 1.77828 2.175 0.02966 47.80336 
Temp -82.07365 61.71233 -1.330 0.18354 0.00000 
 

This report gives the estimated logistic regression equation and associated significance tests. The reference value 
of the dependent variable is shown in the title. If the dependent variable has more than two categories, the 
appropriate information is displayed for each of the G-1 equations. 

Independent Variable X 
This is the variable from the model that is displayed on this line. If the variable is continuous, it is displayed 
directly. If the variable is discrete, the definition of the binary variable that was generated is given. For example, 
suppose that a discrete independent GRADE variable has three values: A, B, and C. The name shown here would 
be something like GRADE=B. This refers to a binary variable that is one for those rows in which GRADE  was B 
and zero otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report Options 
tab. 

Regression Coefficient b(i) 
This is the estimated value of the corresponding regression coefficient, sometimes referred to as B or Beta. The 
interpretation of the regression coefficients is difficult. We refer you to the discussion given at that beginning of 
this chapter for more details. 

Standard Error Sb(i) 
This is sb j

, the large-sample estimate of the standard error of the regression coefficient. This is an estimate of the 

precision of the regression coefficient. It is used as the denominator of the Wald test. 

Wald Z-Value H0: β=0 
This is the z value of the Wald test used for testing the hypothesis that βgj = 0  against the alternative βgj ≠ 0 . 
The Wald test is calculated using the formula  

z
b
sgj

gj

bgj

=  

The distribution of the Wald statistic is closely approximated by the normal distribution in large samples. 
However, in small samples, the normal approximation may be poor. For small samples, the deviance tests should 
be used instead to test significance since they perform better. 

One problem that occurs in multiple-group logistic regression is that the test may be significant for the regression 
coefficient associated with one category, but not for the same coefficient associated with another category. In this 
case, we recommend that the independent variable be kept in the model if it is significant in at least one of the G-1 
regression equations.  

Wald P-Value 
This is the significance level of the Wald test. If this value is less than some predefined alpha level, say 0.05, the 
variable is said to be statistically significant. Otherwise, the variable is not significant. 
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Odds Ratio Exp(b(i)) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for binary independent 
variables in which the two values are zero and one. These are the values that are generated for categorical 
independent variables. The formula used is 

OR eb=   

Because of formatting limitations, the value is not displayed if it is larger than 10000. 

Coefficient Confidence Intervals  
 
Coefficient Confidence Intervals ────────────────────────────────────────────────── 
 
Independent Regression Standard Lower 95% Upper 95% Odds 
Variable Coefficient Error Confidence Confidence Ratio 
X b(i) Sb(i) Limit Limit Exp(b(i)) 
Intercept 68.32696 56.88604 -43.16763 179.82155 10000+ 
Cell 9.65213 7.75107 -5.53968 24.84394 10000+ 
LI 3.86710 1.77828 0.38174 7.35245 47.80336 
Temp -82.07365 61.71233 -203.02760 38.88029 0.00000 
 

This report gives the estimated logistic regression equation and associated confidence limits. The reference value 
of the dependent variable is shown in parentheses in the page title. If the dependent variable has more than two 
outcomes, the information is displayed for each of the G-1 equations. 

Independent Variable X 
This is the independent variable that is displayed on this line. If the variable is continuous, it is displayed directly. 
If the variable is discrete, the definition of the binary variable that was generated is given. For example, suppose 
that a discrete independent GRADE variable has three values: A, B, and C. The name shown here would be 
something like GRADE=B. This refers to a binary variable that is one for those rows in which GRADE was B and 
zero otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report Options 
tab. 

Regression Coefficient b(i) 
This is the estimated value of the regression coefficient, sometimes referred to as B or Beta. The interpretation of 
the regression coefficients is difficult. We refer you to the discussion given at that beginning of this chapter for 
more details. 

Standard Error Sb(i) 
This is sb j

, the large-sample estimate of the standard error of the regression coefficient. This is an estimate of the 

precision of the regression coefficient. It is used as the denominator of the Wald test. 

Confidence Limits 
These are the lower and upper confidences limits for βgj  based on the Wald statistic. These confidence limits are 
use the formula  

b z sgj bgj
± −1 2α /  

Since they are based on the Wald test, they are only valid for large samples. 
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Odds Ratio Exp(b(i)) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for binary independent 
variables in which the two values are zero and one. These are the values that are generated for categorical 
independent variables. The formula used is 

OR eb=   

Because of formatting limitations, the value is not displayed if it is larger than 10000. 

Odds Ratios 
 
Odds Ratios ─────────────────────────────────────────────────────────────── 
 
Independent Regression Odds Lower 95% Upper 95% 
Variable Coefficient Ratio Confidence Confidence 
X b(i) Exp(b(i)) Limit Limit 
Intercept 68.32696 10000+ 0.00000 10000+ 
Cell 9.65213 10000+ 0.00393 10000+ 
LI 3.86710 47.80336 1.46483 1560.01770 
Temp -82.07365 0.00000 0.00000 10000+ 
 

This report presents estimates of the odds ratios and associated confidence limits associated with each variable in 
the model. 

Independent Variable X 
This is the independent variable that is displayed on this line. If the variable is continuous, it is displayed directly. 
If the variable is discrete, the definition of the binary variable that was generated is given. For example, suppose 
that a discrete independent GRADE variable has three values: A, B, and C. The name shown here would be 
something like GRADE=B. This refers to a binary variable that is one for those rows in which GRADE was B and 
zero otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report Options 
tab. 

This is the estimated value of the corresponding regression coefficient, sometimes referred to as B or Beta. The 
interpretation of the regression coefficients is difficult. We refer you to the discussion given at that beginning of 
this chapter for more details. 

Odds Ratio Exp(b(i)) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for binary independent 
variables in which the two values are zero and one. These are the values that are generated for categorical 
independent variables. The formula used is 

OR eb=   

Because of formatting limitations, the value is not displayed if it is larger than 10000. 

Confidence Limits 
The lower and upper confidence limits yield an interval estimate of the odds ratio. The confidence coefficient is 
one minus alpha. Thus, when alpha is 0.05, the confidence coefficient is 0.95 or 95%. The formula used is  

e b z Si bi( )/± −1 2α  

Since these confidence limits are based on Wald statistics, they are only valid for large samples. 
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Estimated Logistic Regression Model(s) 
 
Estimated Logistic Regression Model(s) in Reading Form ───────────────────────────────── 
 
 
Model for Logit(Remiss) = XB when Remiss = 1 
68.33 + 9.65 * Cell + 3.87 * LI - 82.07 * Temp 
 
Each model estimates XB (where Logit(Y) = XB) for a specific Y outcome. To calculate the Y-value probabilities 
when there are only 2 outcomes, transform the logit using Prob(Y = outcome) = 1/(1+Exp(-XB)) or Prob(Y ≠ 
outcome) = Exp(-XB)/(1+Exp(-XB)). For the calculation formula to use when there are more than 2 outcomes, see 
the help documentation. 
 
 
Estimated Logistic Regression Model(s) in Transformation Form ──────────────────────────── 
 
 
Model for Logit(Remiss) = XB when Remiss = 1 
68.3269603055094 + 9.65212973758021*Cell + 3.86709587172725*LI -82.0736535775649*Temp 
 
Each model estimates XB (where Logit(Y) = XB) for a specific Y outcome. To calculate the Y-value probabilities 
when there are only 2 outcomes, transform the logit using Prob(Y = outcome) = 1/(1+Exp(-XB)) or Prob(Y ≠ 
outcome) = Exp(-XB)/(1+Exp(-XB)). For the calculation formula to use when there are more than 2 outcomes, see 
the help documentation. 
 

This report gives the logistic regression model in a regular text format that can be used as a transformation 
formula. A separate model is displayed for each of the G-1 categories of the dependent variable. The regression 
coefficients are displayed in double precision because a single-precision formula does not include the accuracy 
necessary to calculate the scores (logits) and predicted probabilities. 
Note that a transformation must be less than 255 characters. Since these formulas are often greater than 255 
characters in length, you must use the FILE(filename) transformation. To do so, copy the formula to a text file 
using Notepad, Windows Write, or Word to receive the model text. Be sure to save the file as an unformatted text 
(ASCII) file. The transformation is FILE(filename) where filename is the name of the text file, including directory 
information. When the transformation is executed, it will load the file and use the transformation stored there. 

Analysis of Deviance  
 
Analysis of Deviance ───────────────────────────────────────────────────────── 
 
   Increase  
   From Model  
Term   Deviance  
Omitted DF Deviance (Chi²) P-Value 
All 3 34.37177 12.41839 0.00608 
Cell 1 24.64782 2.69445 0.10070 
LI 1 30.82856 8.87518 0.00289 
Temp 1 24.34072 2.38734 0.12232 
None(Model) 3 21.95337    
   

This report is the logistic regression analog of the analysis of variance table. It displays the results of a chi-square 
test used to test whether each of the individual terms in the regression are statistically significant after adjusting 
for all other terms in the model.  
This report is not produced during a subset selection run. 

Note that this report requires that a separate logistic regression be run for each line. Thus, if the running time is 
too long, you might consider omitting this report. 

Term Omitted 
This is the model term that is being tested. The test is formed by comparing the deviance statistic when the term is 
removed with the deviance of the complete model. Thus, the deviance when the term is left out of the model is 
shown. 
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The “All” line refers to the intercept-only model. This line tests the significance of the full model. The 
“None(Model)” refers to the complete model with no terms removed. 

Note that it is usually not advisable to include an interaction term in a model when one of the associated main 
effects is missing—which is what happens here. However, in this case, we believe this to be a useful test. 

Note that the name may become very long, especially for interaction terms. These long names may misalign the 
report. You can force the rest of the items to be printed on the next line by using the Stagger label and output 
option in the Report Options tab. This should create a better looking report when the names are extra long. 

DF 
This is the degrees of freedom of the chi-square test displayed on this line. DF is equal to (G-1)DFt where DFt is 
the degrees of freedom of the term. 

Deviance 
The deviance is equal to minus two times the log likelihood achieved by the model being described on this line of 
the report. See the discussion given earlier in this chapter for a technical discussion of the deviance. A useful way 
to interpret the deviance is as the analog of the residual sum of squares in multiple regression. This value is used 
to create the difference in deviance that is used in the chi-square test. 

Increase From Model Deviance (Chi2) 
This is the difference between the deviance for the model described on this line and the deviance of the complete 
model. This value follows the chi-square distribution in medium to large samples. See the discussion given earlier 
in this chapter for a technical discussion of this value. This value can be thought of as the analog of the residual 
sum of squares in multiple regression. Thus, you can think of this value as the increase in the residual sum of 
squares that occurs when this term is removed from the model. 

Another way to interpret this test is as a redundancy test because it tests whether this term is redundant after 
considering all of the other terms in the model. 

Note that the first line gives a test for the whole model. 

P-Value 
This is the significance level of the chi-square test. This is the probability that a chi-square value with degrees of 
freedom DF is equal to this value or greater. If this value is less than 0.05 (or other appropriate value), the term is 
said to be statistically significant. 
 

Log Likelihood & R2 
 
Log Likelihood & R² ────────────────────────────────────────────────────────── 
 
   R² of Reduction Reduction 
Term(s)  Log Remaining From From 
Omitted DF Likelihood Term(s) Model R² Saturated R² 
All 1 -17.18588 0.00000   
Cell 1 -12.32391 0.28290 0.07839 0.71710 
LI 1 -15.41428 0.10308 0.25821 0.89692 
Temp 1 -12.17036 0.29184 0.06946 0.70816 
None(Model) 3 -10.97669 0.36130 0.00000 0.63870 
None(Saturated) 28 0.00000 1.00000  0.00000 
 

This report provides the log likelihoods and R2 values of various models. This report is not produced during a 
subset selection run. 
Note that this report requires that a separate logistic regression be run for each line. Thus, if the running time is 
too long, you might consider omitting this report. 
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Term Omitted 
This is the term that is omitted from the model. The “All” line refers to the intercept-only model. The 
“None(Model)” refers to the complete model with no terms removed. The “None(Saturated)” line gives the results 
for the saturated model. 

Note that the name may become very long, especially for interaction terms. These long names may misalign the 
report. You can force the rest of the items to be printed on the next line by using the Stagger label and output 
option in the Format tab. This should create a better looking report when the names are extra long. 

DF 
This is the degrees of freedom of the term displayed on this line. DF is equal to (G-1)DFt where DFt is the 
degrees of freedom of the term. 

Log Likelihood 
This is the log likelihood of the model displayed on this line. Note that this is the log likelihood of the logistic 
regression without the term listed. 

R2 of Remaining Term(s) 
This is the R2 of the model displayed on this line, RL

2 . Note that the model does not include the term listed at the 
beginning of the line.  

This R2 is analogous to the R2 in multiple regression, but it is not the same. This value is discussed in detail under 
the heading R2 above. Refer to that section for more details about this statistic. We repeat the summary of the 
interpretation of R2 in logistic regression. 

Hosmer and Lemeshow (1989) recommend against the use RL
2  as a goodness of fit measure. However, we have 

included it in our output because it does provide a comparative measure of the proportion of the log likelihood 
that is accounted for by the model. Just remember than an RL

2  value of 1.0 indicates that the logistic regression 
model achieves the same log likelihood as the saturated model. However, this does not mean that it fits the data 
perfectly. Instead, it means that it fits the data as well as could be hoped for.  

Reduction From Model R2 
This is amount that R2 is reduced when the term is omitted from the regression model. This reduction is calculated 
from the R2 achieved by the full model. 

This quantity is used to determine if removing a term causes a large reduction in R2. If it does not, then the term 
can be safely removed from the model. 

Reduction From Saturated R2 
This is the amount that R2 is reduced when the term is omitted from the regression model. This reduction is 
calculated from the R2 achieved by the saturated model. This item is included because it shows how removal of 
this term impacts the best R-squared that is possible. 
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Classification Table 
 
Classification Table ────────────────────────────────────────────────────────── 
 
 Estimated 
Actual 0 1 Total 
0 15 3 18 
1 2 7 9 
Total 17 10 27 
 
Percent Correctly Classified = 81.5% 
 

This table displays the results of classifying the data based on the logistic regression equations. The table presents 
the counts for each outcome. 
The Percent Correctly Classified is also presented. This is the percent of the total count that fall on the diagonal of 
the table. 

ROC Report 
 
ROC Report for Value 0 ─────────────────────────────────────────────────────── 
 
Prob N(1|1) N(1|0) N(0|1) N(0|0) Sensitivity Specificity Sensitivity Proportion 
Cutoff A B C D A/(A+C) D/(B+D) +Specificity Correct 
0.03333 18 9 0 0 1.00000 0.00000 1.00000 0.66667 
0.06667 18 8 0 1 1.00000 0.11111 1.11111 0.70370 
0.10000 17 8 1 1 0.94444 0.11111 1.05556 0.66667 
0.13333 17 8 1 1 0.94444 0.11111 1.05556 0.66667 
0.16667 17 6 1 3 0.94444 0.33333 1.27778 0.74074 
0.20000 17 5 1 4 0.94444 0.44444 1.38889 0.77778 
0.23333 17 4 1 5 0.94444 0.55556 1.50000 0.81481 
0.26667 16 4 2 5 0.88889 0.55556 1.44444 0.77778 
0.30000 15 3 3 6 0.83333 0.66667 1.50000 0.77778 
0.33333 15 3 3 6 0.83333 0.66667 1.50000 0.77778 
0.36667 15 3 3 6 0.83333 0.66667 1.50000 0.77778 
0.40000 15 2 3 7 0.83333 0.77778 1.61111 0.81481 
0.43333 15 2 3 7 0.83333 0.77778 1.61111 0.81481 
0.46667 15 2 3 7 0.83333 0.77778 1.61111 0.81481 
0.50000 15 2 3 7 0.83333 0.77778 1.61111 0.81481 
0.53333 15 1 3 8 0.83333 0.88889 1.72222 0.85185 
0.56667 13 1 5 8 0.72222 0.88889 1.61111 0.77778 
0.60000 12 0 6 9 0.66667 1.00000 1.66667 0.77778 
0.63333 12 0 6 9 0.66667 1.00000 1.66667 0.77778 
0.66667 11 0 7 9 0.61111 1.00000 1.61111 0.74074 
0.70000 11 0 7 9 0.61111 1.00000 1.61111 0.74074 
0.73333 9 0 9 9 0.50000 1.00000 1.50000 0.66667 
0.76667 9 0 9 9 0.50000 1.00000 1.50000 0.66667 
0.80000 9 0 9 9 0.50000 1.00000 1.50000 0.66667 
0.83333 8 0 10 9 0.44444 1.00000 1.44444 0.62963 
0.86667 7 0 11 9 0.38889 1.00000 1.38889 0.59259 
0.90000 7 0 11 9 0.38889 1.00000 1.38889 0.59259 
0.93333 7 0 11 9 0.38889 1.00000 1.38889 0.59259 
0.96667 7 0 11 9 0.38889 1.00000 1.38889 0.59259 
 
Area Under ROC Curve = 0.88889  SE(AUC) = 0.07730  LCL(AUC) = 0.60103  UCL(AUC) = 0.97261 
 

A separate ROC report is generated for each outcome. Only the report for outcome 0 is displayed here. ROC 
curves can be used to determine appropriate cutoff values for classification by letting you compare the sensitivity 
and specificity of various cutoff values. When classifying, you usually classify a row into that category that has 
the highest membership probability. However, this is not always the optimum strategy. This table shows you what 
happens when various cutoff values are selected. 
Classifying an observation can have any one of four possible results. An observation from the outcome-group can 
be correctly classified as being from that outcome-group (state A) or incorrectly classified as being from another 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
Logistic Regression 

321-28 
 © NCSS, LLC. All Rights Reserved. 

outcome-group (state C). An observation from another outcome-group can be incorrectly classified as being from 
the outcome-group (state B) or correctly classified as being from another outcome-group (state D).  

The number of observations in each state is computed for each cutoff value between zero and one. A number of 
measures can be calculated from these values. The measures used in ROC analysis are called sensitivity and 
specificity. Sensitivity is the proportion of those from this group that are correctly identified as such. In terms of 
the four states, sensitivity = A/(A+C). Specificity is the proportion of those from other groups that are correctly 
identified as such. In terms of four states, specificity = D/(B+D). Thus, the optimum cutoff value is that one for 
which the sum of sensitivity and specificity is the maximum. This may be found be investigating the report. In 
this example, the cutoff is between 0.40000 and 0.50000. An ROC plot is also generated for each report that gives 
a graphical display of this report. 

An ROC analysis is most useful in the two-outcome case. In the multiple-outcome case, it is of only marginal 
usefulness, since a cutoff value is not specified. Rather, each observation is classified into that outcome-group 
which has the highest membership probability. 

Prob Cutoff 
This is the probability cutoff for classification into this outcome. If an observation’s predicted probability for 
membership in this outcome is greater than this amount, the observation is classified in this outcome. Otherwise, 
it is classified as being in some other outcome. 

A B C D 
The counts for each of the four states. These counts are represented using the notation N(i|j) where i is the 
classified outcome and j is the actual outcome. 

Sensitivity 
Sensitivity is the proportion of those from this outcome that are correctly identified as such. In terms of the four 
states, sensitivity = A/(A+C). 

Specificity 
Specificity is the proportion of those from other outcomes that are correctly identified as such. In terms of four 
states, specificity = D/(B+D). 

Sensitivity + Specificity 
A common rule for selecting an appropriate cutoff value is to choose the cutoff with the largest total of sensitivity 
and specificity. This column allows you to do this very quickly. 

Proportion Correct 
Another rule for selecting an appropriate cutoff value is to choose that cutoff which maximizes the number of 
observations that are correctly classified. This column of the report allows you to quickly find the optimum cutoff 
value. Unfortunately, when one outcome has many more rows than the others, this rule may not be useful since it 
will lead you to classify everyone into the most prevalent outcome. 

Area Under ROC Curve 
The area under the ROC curve is a popular measure associated with ROC curves. When applied to classification 
in logistic regression, its maximum value of one occurs when all rows are correctly classified. Its minimum value 
of zero occurs when all rows are incorrectly classified. Thus, the nearer this value is to one, the better the 
classification.  

The AUC’s value depends on the number selected in the Number Cutoffs option on the Plots tab. 
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The calculation of the standard error of AUC and its confidence interval proceeds as given by Hanley and McNeil 
(1982). Let AUC denote the sample AUC value. For large samples, the distribution of AUC is approximately 
normal. Hence, a 100(1 – α)% confidence interval for AUC may be computed using the standard normal 
distribution as follows 

𝐴𝐴𝐴𝐴𝐴𝐴 ± 𝑧𝑧𝛼𝛼/2𝑆𝑆𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴) 

The formula for SE(AUC) is 

𝑆𝑆𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴) = �
𝐴𝐴𝐴𝐴𝐴𝐴(1 − 𝐴𝐴𝐴𝐴𝐴𝐴) + (𝑁𝑁1 − 1)(𝑄𝑄1 − 𝐴𝐴𝐴𝐴𝐴𝐴2) + (𝑁𝑁2 − 1)(𝑄𝑄2 − 𝐴𝐴𝐴𝐴𝐴𝐴2)

𝑁𝑁1𝑁𝑁2
 

where 

𝑄𝑄1 =
𝐴𝐴𝐴𝐴𝐴𝐴

2 − 𝐴𝐴𝐴𝐴𝐴𝐴
 

𝑄𝑄2 =
2𝐴𝐴𝐴𝐴𝐴𝐴2

1 + 𝐴𝐴𝐴𝐴𝐴𝐴
 

Once estimates of AUC  and SE(AUC) are calculated, hypothesis tests and confidence intervals can be calculated 
using standard methods. However, following the advice of Zhou et al. (2002) page 125, we use the following 
transformation which results in statistics that are closer to normality and ensures confidence limits that are inside 
the zero-one range. The transformation is 

Ψ� = ln�
1 + 𝐴̂𝐴
1 − 𝐴̂𝐴

� 

The variance of ψ  is estimated using 

( )
( ) ( )V V


ψ =

A
A4

1 2 2
−

 

An ( )100 1−α %  confidence interval for ψ  may then be constructed as 

( )L U z,  /= −ψ ψα 1 2 V  

Using the inverse transformation, the confidence interval for A is given by the two limits 
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Row Classification Report 
 
Row Classification Report ────────────────────────────────────────────────────── 
 
   Estimated Lower 95% Upper 95% 
 Actual Estimated Remiss Confidence Confidence 
Row Remiss Remiss Probability Limit Limit 
1 1 1 0.83900 0.31617 0.98326 
2 1 1 0.73317 0.48928 0.88739 
3 0 0 0.81061 0.24565 0.98253 
4 0 0 0.55936 0.24511 0.83230 
5 1 1 0.83326 0.44347 0.96908 
6 0 0 0.57370 0.21384 0.86943 
7* 1 0 0.51337 0.32143 0.70145 
8* 0 1 0.75562 0.21175 0.97267 
9 0 0 0.71480 0.31903 0.93059 
10 0 0 0.99687 0.19043 1.00000 
. . . . . . 
. . . . . . 
. . . . . . 
 

This report displays the actual and predicted group and membership probability for each row of the report. It also 
provides confidence limits for the predicted group-membership probability. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Y 
This is the outcome to which this row belongs (if known).  

Estimated Y 
This is the outcome with the largest membership probability.  

Estimated Probability 
This is the estimated probability that the row belongs to the outcome listed in the Estimated Y column.  

These values allow you to determine how certain the classification is. When the value is near one (above 0.7), the 
logistic regression is convinced that the observation belongs in the designated group. When the value is near 0.5 
or less, the classification was not as clear. 

Lower and Upper Confidence Limits 
These values provide a confidence interval for the estimated membership probability. Note that this confidence 
interval is only approximate in the multiple-outcome case. Formulas and technical details are given above in the 
section entitled Predicted Probabilities. 
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Row Classification Probabilities 
 
Row Classification Probabilities ────────────────────────────────────────────────── 
 
  Estimated Estimated 
 Actual Prob. in Prob. in 
Row Remiss 0 1 
1 1 0.16100 0.83900 
2 1 0.26683 0.73317 
3 0 0.81061 0.18939 
4 0 0.55936 0.44064 
5 1 0.16674 0.83326 
6 0 0.57370 0.42630 
7* 1 0.51337 0.48663 
8* 0 0.24438 0.75562 
9 0 0.71480 0.28520 
10 0 0.99687 0.00313     
. . . .  
. . . .  
. . . .  
 

This report displays the actual group and the membership probabilities for each group and each row. This allows 
you investigate how certain each classification is. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Y 
This is the outcome to which this row belongs (if known).  

Estimated Prob. In Y 
This is the estimated probability that the row belongs in each outcome. These values allow you to determine how 
certain the classification is.  

Simple Residual Report 
 
Simple Residual Report ─────────────────────────────────────────────────────── 
 
  Residual Residual 
 Actual for Outcome for Outcome 
Row Remiss 0 1 
1 1 -0.16100 0.16100 
2 1 -0.26683 0.26683 
3 0 0.18939 -0.18939 
4 0 0.44064 -0.44064 
5 1 -0.16674 0.16674 
6 0 0.42630 -0.42630 
7* 1 -0.51337 0.51337 
8* 0 0.75562 -0.75562 
9 0 0.28520 -0.28520 
10 0 0.00313 -0.00313     
. . . .  
. . . .  
. . . .  
 

This report displays the simple residuals for each group. Each of the g logistic regression equations can be used to 
estimate the probabilities that each observation belongs to the corresponding group.  

Row 
This is the row from the database. Rows that are starred are misclassified. 
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Actual Y 
This is the outcome to which this row belongs (if known).  

Residual for Group 
These residuals are defined as 

r y pgj gj gj= −  

where pgj  is the estimated membership probability and ygj  is an indicator variable that is one if the actual group 
is g and zero otherwise. 
Note that, unlike multiple regression, there are g residuals for each observation instead of just one. This makes 
residual analysis much more difficult. If the logistic regression model fits an observation closely, all of its 
residuals will be small, but never zero.  

Unfortunately, the simple residuals have unequal variance equal to ( )n j gj gjπ π1− , where nj  is the number of 
observations with the same values of the independent variables as observation j. This unequal variance makes 
comparisons among the simple residuals difficult and alternative types of residuals are necessary. 

Residual Report 
 
Residual Report ──────────────────────────────────────────────────────────── 
 
 Actual Pearson  Deviance  Maximum  
Row Remiss Residual  Residual  Hat Diagonal  
1 1 0.43806 |.............. 0.59253 |||............ 0.20631 ||||........... 
2 1 0.60328 ||............. 0.78789 |||||.......... 0.05654 |.............. 
3 0 -0.48336 |.............. -0.64802 ||||........... 0.26518 ||||||......... 
4 0 -1.25520 |||||.......... -1.52442 |||||||||...... 0.23855 |||||.......... 
5 1 0.44733 |.............. 0.60400 |||............ 0.12192 ||............. 
6 0 -0.86201 |||............ -1.05417 ||||||......... 0.16277 |||............ 
7* 1 1.02710 ||||........... 1.20021 |||||||........ 0.04169 |.............. 
8* 0 -1.75843 |||||||........ -1.67872 ||||||||||..... 0.28695 ||||||......... 
9 0 -0.63166 ||............. -0.81945 |||||.......... 0.14925 |||............ 
10 0 -0.05607 |.............. -0.07923 |.............. 0.04227 |.............. 
. . . . . .   . .  
. . . . . .   . . 
. . . . . .   . . 
 

This report displays the Pearson residuals, the deviance residuals, and the hat diagonal for each row. These are the 
residuals that most textbooks on logistic regression recommend that you use.  

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Y 
This is the outcome to which this row belongs (if known).  

Pearson Residual 
The Pearson residuals give the contribution of each row to the Pearson chi-square goodness of fit statistic. When 
the values of the independent variables of each observation are unique, the formula for this residual is 

( )
χ j

gj j gj

j gjg

G w n p
n p

j J= ±
−

=
=
∑

2

1

1 2, , , ,  

where the plus (minus) is used if w ngj j/  is greater (less) than pgj . By definition, the sum of the squared Pearson 
residuals is the Pearson chi-square goodness of fit statistics.  
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Deviance Residuals 
Remember that the deviance is -2 times the difference between log likelihoods of a reduced model and the 
saturated model. The formula for a deviance residual is 

d w
w

n p
j Jj gj

g

G
gj

j gj

= ±








 =

=
∑2 1 2

1

ln , , , ,  

where the plus (minus) is used if w nREF g j j( ), /  is greater (less) than pREF g j( ), . By definition, the sum of the 
squared deviance residuals is the deviance.  

Maximum Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. These are often called leverage design points. The larger the value of the hat diagonal, the more the 
observation influences estimates of the regression coefficients. There is a separate hat diagonal defined for each 
category. The value reported here is the maximum of all G of the hat diagonals for each row. 

An observation that has a large residual, but has low leverage, does not cause much concern. However, an 
observation with a large leverage and a large residual should be checked very carefully. The formula for the hat 
diagonal associated with the jth observation and gth outcome is   

( )h n p p X X V j Jgj j gj gj ij kj gik
k

p

i

p

= − =
==
∑∑1 1 2

11

 , , , ,  

where Vgik  is the portion of the covariance matrix of the regression coefficients associated with the gth regression 
equation. The interpretation of this diagnostic is not as clear in logistic regression as in multiple regression 
because it involves the predicted values which in turn involve the dependent variable. In multiple regression, the 
hat diagonals only involve the independent variables. 

Note that this formula matches Pregibon (1981) in the two-outcome case. In the multiple-outcome case, the two-
outcome formula is applied to each outcome. 

DFBetas Report 
 
DFBetas Report For Remiss = 1 ────────────────────────────────────────────────── 
 
 Actual DFBeta  DFBeta  DFBeta  
Row Remiss Intercept  Cell  LI  
1 1 0.05383 |.............. -0.11561 |.............. 0.12403 |.............. 
2 1 0.06191 |.............. -0.03603 |.............. 0.07986 |.............. 
3 0 0.03248 |.............. 0.29680 |||............ 0.19367 ||............. 
4 0 -0.07853 |.............. -0.22408 ||............. 0.36761 |||||.......... 
5 1 0.15954 ||............. 0.02455 |.............. 0.11640 |.............. 
6 0 -0.10146 |.............. -0.11173 |.............. 0.16597 ||............. 
7* 1 -0.05201 |.............. -0.05264 |.............. -0.12518 |.............. 
8* 0 0.83713 ||||||||||||||| 0.10576 |.............. -0.19110 ||............. 
9 0 0.20605 |||............ 0.03081 |.............. 0.23153 |||............ 
10 0 0.01139 |.............. 0.00613 |.............. 0.01005 |.............. 
. . . . . .   . .  
. . . . . .   . . 
. . . . . .   . . 
 

One way to study the impact of an observation on each regression coefficient is to determine how much that 
coefficient changes when the observation is deleted. The DFBETA statistic is the standardized difference between 
a regression coefficient before and after the removal of the jth observation. 

Row 
This is the row from the database. Rows that are starred are misclassified. 
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Actual Y 
This is the outcome to which this row belongs (if known).  

DFBeta 
The DFBeta statistic is the standardized difference between a regression coefficient before and after the removal 
of the jth observation.  

The formula for DFBeta is approximated by 

( )
DFBetagij

gj j gj

gj gii

kj gik
k

pw n p

h V
X V j J=

−

−













 =

=
∑

1
1 2

1
 , , , ,  

where Vgik  is the portion of the covariance matrix associated with the gth regression equation. Note that this 
formula matches Pregibon (1981) in the two outcome case, but is different from Lesaffre (1989) in the multi-
outcome case. 

Influence Diagnostics Report 
 
Influence Diagnostics Report For Remiss = 1 ───────────────────────────────────────── 
 
    Cook's  Cook's  
 Actual Hat  Distance  Distance  
Row Remiss Diagonal  (C)  (CBar)  
1 1 0.20631 ||||........... 0.06285 |.............. 0.04988 |.............. 
2 1 0.05654 |.............. 0.02312 |.............. 0.02181 |.............. 
3 0 0.26518 ||||||......... 0.11474 |.............. 0.08432 |.............. 
4 0 0.23855 |||||.......... 0.64822 |||||.......... 0.49359 |||||.......... 
5 1 0.12192 ||............. 0.03164 |.............. 0.02778 |.............. 
6 0 0.16277 |||............ 0.17254 |.............. 0.14446 |.............. 
7* 1 0.04169 |.............. 0.04790 |.............. 0.04590 |.............. 
8* 0 0.28695 ||||||......... 1.74508 ||||||||||||||. 1.24433 ||||||||||||||| 
9 0 0.14925 |||............ 0.08228 |.............. 0.07000 |.............. 
10 0 0.04227 |.............. 0.00014 |.............. 0.00014 |.............. 
. . . . . .   . .  
. . . . . .   . . 
. . . . . .   . . 
 

This report gives two distance measures similar to Cook’s distance in multiple regression. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Y 
This is the outcome to which this row belongs (if known).  

Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. They are discussed in more detail in the Residual Report. 

Cook’s Distance (C) and (CBar) 
C and Cbar are extensions of Cooks distance for logistic regression. Quoting from Pregibon (1981), page 719: 

“Cbar measures the overall change in fitted logits due to deleting the lth observation for all points excluding the 
one deleted. Conversely, C includes the deleted point. Although C will usually be the preferred diagnostic to 
measure overall coefficients’ changes, in the examples examined to date, the one-step approximations were more 
accurate for Cbar than C.” 
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The formulas for C and Cbar are 
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Note that this formula matches Pregibon (1981) in the two-outcome case. In the multiple-outcome case, the two-
outcome formula is applied to each outcome. 

Residual Diagnostics Report 
 
Residual Diagnostics Report For Remiss = 1 ───────────────────────────────────────── 
 
    Deviance  Chi-Square  
 Actual Hat  Change  Change  
Row Remiss Diagonal  (DFDev)  (DFChi2)  
1 1 0.20631 ||||........... 0.40098 |.............. 0.24178 |.............. 
2 1 0.05654 |.............. 0.64257 |.............. 0.38576 |.............. 
3 0 0.26518 ||||||......... 0.50425 |.............. 0.31795 |.............. 
4 0 0.23855 |||||.......... 2.81743 ||||||......... 2.06910 ||............. 
5 1 0.12192 ||............. 0.39260 |.............. 0.22789 |.............. 
6 0 0.16277 |||............ 1.25574 ||............. 0.88752 |.............. 
7* 1 0.04169 |.............. 1.48639 |||............ 1.10084 |.............. 
8* 0 0.28695 ||||||......... 4.06243 |||||||||...... 4.33640 ||||........... 
9 0 0.14925 |||............ 0.74150 |.............. 0.46899 |.............. 
10 0 0.04227 |.............. 0.00642 |.............. 0.00328 |.............. 
. . . . . .   . .  
. . . . . .   . . 
. . . . . .   . . 
 

This report gives statistics that help detect observations that have not been fitted well by the model. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Y 
This is the outcome to which this row belongs (if known).  

Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the independent variable 
space. They are discussed in more detail in the Residual Report. 

Deviance Change (DFDev) and Chi-Square Change (DFChi2) 
DFDEV and DFCHI2 are statistics that measure the change in deviance and in Pearson’s chi-square, respectively, 
that occurs when an observation is deleted from the dataset. Large values of these statistics indicate observations 
that have not been fitted well. 

The formulas for these statistics are 

DFDEV d C j Jgj j gj= + =2 1 2, , , ,  

DFCHI
C
h

j Jgj
gj

gj

2 1 2= =, , , ,  
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Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, the two-group 
formula is applied to each group. 

Y versus X Plots 
  
Y vs X's Plots ────────────────────────────────────────────────────────────── 
    

      
 

    
 

This section shows scatter plots with the dependent variable on the vertical axis and each of the independent 
variables on the horizontal axis. The plot is useful for finding typos, outliers, and other anomalies in that data.   

Vertical Axis 
The categories of the dependent variable are shown on the vertical axis. Each category is assigned a whole 
number, beginning with the number one. The numbers are assigned in sorted order. Thus, if your dependent 
variable has values A, B, and C, it would be plotted on a numeric scale ranging from about 0.8 to 3.2. The groups 
would be plotted as the numbers 1, 2, and 3. 

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
Logistic Regression 

321-37 
 © NCSS, LLC. All Rights Reserved. 

Simple Residuals versus X Plots 
  
Simple Residuals vs X's Plots ─────────────────────────────────────────────────── 
   

      
 

 
 

This section shows scatter plots with the simple residuals on the vertical axis and each of the independent 
variables on the horizontal axis. The plots are useful for finding outliers and other anomalies in the data.   

Vertical Axis 
The residuals are displayed on the vertical axis. Note that the G residuals for each row corresponding to the 
simple residuals are displayed. Thus, if you have N rows, you will have GN points displayed on the plot. 

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  
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Deviance Residuals versus X Plots 
   
Deviance Residuals vs X's Plots ────────────────────────────────────────────────── 
 

     
 

   
 

This section shows scatter plots with the deviance residuals on the vertical axis and each of the independent 
variables on the horizontal axis. The plots are useful for finding outliers and other anomalies in the data.   

Vertical Axis 
The deviance residuals are displayed on the vertical axis.  

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  
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Pearson Residuals versus X Plots 
 

Pearson Residuals vs X's Plots ────────────────────────────────────────────────── 
 

      
 

  
 

This section shows scatter plots with the Pearson residuals on the vertical axis and each of the independent 
variables on the horizontal axis. The plots are useful for finding outliers and other anomalies in the data.   

Vertical Axis 
The Pearson residuals are displayed on the vertical axis.  

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is categorical, binary 
variables are generated for each of the categories and a separate scatter plot is generated for each binary variable.  
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ROC Curves - Combined and Separate 
 

ROC Curves (Combined and Separate) ───────────────────────────────────────────── 
 

      
 

   
 

This section displays the ROC curves that can be used to help you find the best cutoff points to use for 
classification. The cutoff point nearest the top-left corner of the plot is the optimum cutoff. You will have to refer 
to the ROC Report to determine the exact value of the cutoff.  

Vertical Axis 
The sensitivity is displayed on the vertical axis.  

Horizontal Axis 
One minus the specificity is displayed on the horizontal axis.  
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Prob Correct versus Cutoff Plot 
 

Prob Correct vs Cutoff Plot ───────────────────────────────────────────────────── 
 

  
 

This section displays a plot that shows the proportion correct versus the cutoff. It is useful to help determine the 
cutoff point used in classification. This plot may be difficult to use with three or more categories because of the 
ambiguity in the plot. 

Vertical Axis 
The proportion correctly classified for various cutoff values are displayed on the vertical axis.  

Horizontal Axis 
The cutoff values are displayed on the horizontal axis. These cutoff values are in terms of the estimated outcome-
membership probabilities. Thus, a cutoff of 0.4 means that any rows with a outcome-membership probability of 
0.4 or more are classified into this outcome. 
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Example 2 – Subset Selection 
This section presents an example of how to conduct a subset selection. The data used are stored in the Leukemia 
dataset. This analysis will search for the best model from among a pool of the six numeric variables. 

Setup 
To run this example, complete the following steps: 

1 Open the Leukemia example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Leukemia and click OK. 

2 Specify the Logistic Regression procedure options 
• Find and open the Logistic Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 2a settings template. To load 

this template, click Open Example Template in the Help Center or File menu. 

Option Value 
Variables, Model Tab 
Y ............................................................. Remiss 
Numeric X's ............................................ Cell, Smear, Infil, LI, Blast, Temp 
Terms ...................................................... 1-Way 

Subset Selection Tab 
Search for the Best Subset ..................... Checked 
from the X's 
Search Method ....................................... Hierarchical Forward Selection 
Stop search when number of .................. 6 
terms reaches 

Reports Tab 
Run Summary ......................................... Checked 
Subset Summary .................................... Checked 
Subset Detail .......................................... Checked 
Coefficient Significance Tests ................ Checked 
All Other Reports .................................... Unchecked 

Plots Tab 
All Plots ................................................... Unchecked 

Report Options (in the Toolbar) 
Variable Labels ....................................... Column Names 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Run Summary  
 

Run Summary ────────────────────────────────────────────────────────────── 
 
Item Value Item Value 
Y Variable Remiss Rows Processed 29 
Reference Value 0 Rows Used 27 
Number of Y-Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 2 
Numeric X Variables 6 Rows Freq Miss. or 0 0 
Categorical X Variables 0 Rows Prediction Only 0 
Final Log Likelihood -10.87752 Unique Rows (Y and X's) 27 
Model R² 0.36707 Sum of Frequencies 27 
Actual Convergence 2.081623E-06 Likelihood Iterations 9 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 6 Completion Status Quasi-Separation 
Priors Equal   
Subset Selection Method Hierarchical Forward Selection 
 
******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** 
Your dataset had QUASI-COMPLETE SEPARATION which means that the maximum likelihood routine did NOT 
converge so the statistical tests are not valid. Although the prediction equations correctly classified much of your 
data, they may not do so for other observations. Quasi-Complete Separation often occurs because your sample 
size is too small. 
******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** 
 

The first thing we notice is the warning message about quasi-separation. If quasi-separation occurs, the maximum 
likelihood estimates do not exist and all results are suspect. We note that 9 likelihood iterations occurred and the 
Actual Convergence is near the Target Convergence. We decide to rerun the analysis after resetting the Max 
Terms in Subset box from 6 to 5. Note that this error message often occurs when a small set of data is fit with a 
model with too many terms. 
At this point, reset the value for Stop search when number of terms reaches (on the Subset Selection tab) to 5 
manually or load the template Example2b. Now, rerun the analysis. 

Run Summary 
 
Run Summary ────────────────────────────────────────────────────────────── 
 
Item Value Item Value 
Y Variable Remiss Rows Processed 29 
Reference Value 0 Rows Used 27 
Number of Y-Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 2 
Numeric X Variables 6 Rows Freq Miss. or 0 0 
Categorical X Variables 0 Rows Prediction Only 0 
Final Log Likelihood -10.92900 Unique Rows (Y and X's) 27 
Model R² 0.36407 Sum of Frequencies 27 
Actual Convergence 7.136538E-07 Likelihood Iterations 7 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 5 Completion Status Normal Completion 
Priors Equal   
Subset Selection Method Hierarchical Forward Selection  
 

The warning message has disappeared and the algorithm finished normally. 
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Subset Selection Summary 
 
Subset Selection Summary ───────────────────────────────────────────────────── 
Subset Selection Method = Hierarchical Forward Selection 
 
No. No. Log R² R² 
Terms X's Likelihood Value Change 
1 1 -17.18588 0.00000 0.00000 
2 2 -13.03648 0.24144 0.24144 
3 3 -12.17036 0.29184 0.05040 
4 4 -10.97669 0.36130 0.06946 
5 5 -10.92900 0.36407 0.00277 
 

This report shows the best log-likelihood value for each subset size. In this example, it appears that four terms 
(the intercept and three variables) provides the best model. Note that adding the fifth variable does not increase 
the R-squared value very much. 

No. Terms 
The number of terms. Note that this includes the intercept.  

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms matches the 
number of X’s. This would not be the case if some of the terms were categorical variables. 

Log Likelihood 
This is the value of the log likelihood function evaluated at the maximum likelihood estimates. Our goal is to find 
a subset size above which little is gained by adding more variables. 

R2 Value 
This is the value of R2 calculated using the formula 

R
L L
L LL

p

S

2 0

0

=
−
−

 

as discussed in the introduction. We are looking for the subset size at which this value does not increase by a 
meaningful amount. 

R2 
This is the increase in R2 that occurs when each new subset size is reached. Search for the subset size below which 
the R2 value does not increase by more than 0.02 for small samples or 0.01 for large samples.  

In this example, the optimum subset size appears to be four terms. 
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Subset Selection Detail  
 
Subset Selection Detail ──────────────────────────────────────────────────────── 
Subset Selection Method = Hierarchical Forward Selection 
 
  No. of No. of Log Term Term 
Step Action Terms X's Likelihood Entered Removed 
1 Add 1 1 -17.18588 Intercept  
2 Add 2 2 -13.03648 LI  
3 Add 3 3 -12.17036 Cell  
4 Add 4 4 -10.97669 Temp  
5 Add 5 5 -10.92900 Smear  
 

This report shows the highest log likelihood for each subset size. In this example, it appears that four terms (the 
intercept and three variables) provide the best model. Note that adding the fifth variable does not increase the R-
squared value very much. 

Action 
This item identifies the action that was taken at this step. A term was added, removed, or two were switched.  

No. Terms 
The number of terms. Note that this includes the intercept.  

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms matches the 
number of X’s. This would not be the case if some of the terms were categorical variables. 

Log Likelihood 
This is the value of the log likelihood function after the completion of this step. Our goal is to find a subset size 
above which little is gained by adding more variables. 

Terms Entered and Removed 
These columns identify the terms added, removed, or switched. 

Discussion of Example 2 
After considering these reports, it was decided to include Cell, LI, and Temp in the final logistic regression 
model. Another run should now take place using only these independent variables. A complete residual analysis is 
necessary before the equation is finally adopted. 
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Example 3 – One Categorical X Variable 
The independent variables in logistic regression may be categorical as well as numerical. This example is of the 
simplest categorical case of a binary response and a binary independent variable. More complicated examples will 
be shown below.  

In this example, a simple yes-no question is asked of each member of two groups. The following two-by-two 
table presents the results. The analyst wants to understand the relationship between group membership and 
response to the question. 

 Response 
Group Yes No Total 
A 91 9 100 
B 93 27 120 
Total 184 36 220 
These data would normally be analyzed using the methods for comparing two proportions such as Fisher’s exact 
test or the chi-square test for independence in a contingency table. The following table presents the results of this 
analysis. 

Two Proportions Output 
 
Counts and Proportions ─────────────────────────────────────────────────────── 
 
 Response 
 
Group No Yes Total  
 Count Count Count Proportion* 
A 9 91 100 p1 = 0.0900 
B 27 93 120 p2 = 0.2250 
 
* Proportion = No / Total 
 
 
Proportions Analysis ───────────────────────────────────────────────────────── 
 
Statistic Value 
Group 1 Event Rate (p1) 0.0900 
Group 2 Event Rate (p2) 0.2250 
Absolute Risk Difference |p1 - p2| 0.1350 
Number Needed to Treat 1/|p1 - p2| 7.41 
Relative Risk Reduction |p1 - p2|/p2 0.60 
Relative Risk p1/p2 0.40 
Odds Ratio o1/o2 0.34 
 
 
Two-Sided Tests of the Difference (P1 - P2) ────────────────────────────────────────── 
H0: P1 = P2 vs. Ha: P1 ≠ P2 
 
Test    Test  Reject 
Statistic   Difference Statistic Prob H0 at 
Name p1 p2 p1 - p2 Value Level α = 0.05? 
Wald Z 0.0900 0.2250 -0.1350 -2.695 0.0070 Yes 
Fisher's Exact 0.0900 0.2250 -0.1350 0.010 0.0097 Yes 
 

The conclusion of this analysis is to reject the null hypothesis that the two proportions are equal. The significance 
levels are 0.0097 using Fisher’s exact test and 0.0070 using the normal approximation which is equivalent to the 
chi-square test for independence. Note that the odds ratio is 0.34. 
We will now see how to analyze these data using logistic regression. The data must be entered into a database so 
that they can be processed. The following table shows how these data are rearranged and entered. These data have 
been entered into a database named 2BY2.  
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2By2 dataset (subset) 

Group Response Count 
A No 9 
A Yes 91 
B No 27 
B Yes 93 

Setup 
To run this example, complete the following steps: 

1 Open the 2By2 example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select 2By2 and click OK. 

2 Specify the Logistic Regression procedure options 
• Find and open the Logistic Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 3 settings template. To load 

this template, click Open Example Template in the Help Center or File menu. 

Option Value 
Variables, Model Tab 
Y ............................................................. Response 
Categorical X's ........................................ Group 
Default Recoding Scheme ...................... Binary 
Frequencies ............................................ Count 
Priors ...................................................... Equal across Y Values 

Reports Tab 
Run Summary ......................................... Checked 
Y Variable Summary ............................... Checked 
Coefficient Significance Tests ................ Checked 
Odds Ratios ............................................ Checked 
Analysis of Deviance .............................. Checked 
Log-Likelihood and R² ............................ Checked 
All Other Reports .................................... Unchecked 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Logistic Regression Output 
 
Run Summary ────────────────────────────────────────────────────────────── 
 
Item Value Item Value 
Y Variable Response Rows Processed 4 
Reference Value No Rows Used 4 
Number of Y-Values 2 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric X Variables 0 Rows Freq Miss. or 0 0 
Categorical X Variables 1 Rows Prediction Only 0 
Final Log Likelihood -94.23344 Unique Rows (Y and X's) 4 
Model R² 0.06908 Sum of Frequencies 220 
Actual Convergence 2.559022E-11 Likelihood Iterations 6 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 2 Completion Status Normal Completion 
Priors Equal 
 
  
Y Variable Summary ────────────────────────────────────────────────────────── 
 
  Unique   R² Percent 
Y  Rows Y Y (Y vs Pred. Correctly 
Response Count (Y and X's) Proportion Prior Probability) Classified 
No 36 2 0.16364 0.50000 0.03302 75.000 
Yes 184 2 0.83636 0.50000 0.03302 49.457 
Total 220 4    53.636 
 
 
Coefficient Significance Tests ─────────────────────────────────────────────────── 
 
Independent Regression Standard Wald  Odds 
Variable Coefficient Error Z-Value Wald Ratio 
X b(i) Sb(i) H0: β=0 P-Value Exp(b(i)) 
Intercept 0.68222 0.29814 2.288 0.02212 1.97826 
(Group="B") -1.07687 0.41218 -2.613 0.00898 0.34066 
 
 
Odds Ratios ─────────────────────────────────────────────────────────────── 
 
Independent Regression Odds Lower 95% Upper 95% 
Variable Coefficient Ratio Confidence Confidence 
X b(i) Exp(b(i)) Limit Limit 
Intercept 0.68222 1.97826 1.10282 3.54863 
(Group="B") -1.07687 0.34066 0.15187 0.76413 
 
 
Analysis of Deviance ───────────────────────────────────────────────────────── 
 
   Increase  
   From Model  
Term   Deviance  
Omitted DF Deviance (Chi²) P-Value 
All 1 196.08640 7.61951 0.00577 
Group 1 196.08640 7.61951 0.00577 
None(Model) 1 188.46689   
 
 
Log Likelihood & R² ────────────────────────────────────────────────────────── 
 
   R² of Reduction Reduction 
Term(s)  Log Remaining From From 
Omitted DF Likelihood Term(s) Model R² Saturated R² 
All 1 -98.04320 0.00000   
Group 1 -98.04320 0.00000 0.06908 1.00000 
None(Model) 1 -94.23344 0.06908 0.00000 0.93092 
None(Saturated) 4 -42.89226 1.00000  0.00000  
 

Although a casual comparison between this report and that of the Two Proportion procedure shows little in 
common, a more detailed report shows many similarities. First of all, notice that the significance level of the test 
of GROUP in the Analysis of Deviance Section of 0.00577 compares very closely with the 0.007037 from the 
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chi-square test. Also notice that the odds ratios from both reports round to 0.34066. The confidence limits of these 
two reports are not exactly the same, but they are close. 
To summarize the logistic regression analysis, we can conclude that there is a significant relationship between 
response and group. 
This example has shown the similarities between these two approaches to the analysis of two proportions. 
Usually, you would analyze these data using the two proportions approach. However, that approach is not as 
easily extended to the case of several independent variables including a mixture of categorical and numeric. 
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Example 4 – Logit Model Validation with BMDP PR 
This example will serve three purposes. First of all, it will be the first example of a dataset whose Y variable has 
more than two outcomes. Second, it will be an example of what the output looks like when all of the independent 
variables are categorical. And finally, it will validate the procedure by allowing the comparison of the NCSS 
output with that of the BMDP PR program which also performs multiple-group logistic regression. This example 
comes from the BMDP manual. The database containing the data used in this example is named NC Criminal 

The NC Criminal dataset contains data that will be used to study the relationship between a cases verdict and 
three factors: race, county, and type of offense. The variables that are on the database are as follows. 

Count contains the number of individuals with the characteristics specified on that row. 

Verdict is the response variable. Three outcomes are given in the database: G for guilty, NG for not guilty, and NP 
for not prosecuted. 

Race gives the race of the individual. It has two values: A and B. 

County refers to county in North Carolina in which the offense was considered. The possible values are: Durham 
and Orange. 

Offense contains the particular offense that the individual was accused of. These are Drunk, Violence, Property, 
Major Traffic, and Speeding. 

You can view the data by loading the NC Criminal dataset, so they will not be displayed here. 

Setup 
To run this example, complete the following steps: 

1 Open the NC Criminal example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select NC Criminal and click OK. 

2 Specify the Logistic Regression procedure options 
• Find and open the Logistic Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 4 settings template. To load 

this template, click Open Example Template in the Help Center or File menu. 

Option Value 
Variables, Model Tab 
Y ............................................................. Verdict 
Reference Value ..................................... NP 
Categorical X's ........................................ Race(B;A) County(B;Durham) Offense(B;Drunk) 
Frequencies ............................................ Count 
Priors ...................................................... Ni/N (Y-Value Proportions) 

Reports Tab 
Run Summary ......................................... Checked 
Y Variable Summary ............................... Checked 
Coefficient Significance Tests ................ Checked 
Analysis of Deviance .............................. Checked 
Log-Likelihood and R² ............................ Checked 
All Other Reports .................................... Unchecked 
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3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Logistic Regression Output 
 
Run Summary ────────────────────────────────────────────────────────────── 
 
Item Value Item Value 
Y Variable Verdict Rows Processed 60 
Reference Value NP Rows Used 57 
Number of Y-Values 3 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric X Variables 0 Rows Freq Miss. or 0 3 
Categorical X Variables 3 Rows Prediction Only 0 
Final Log Likelihood -408.29185 Unique Rows (Y and X's) 60 
Model R² 0.69779 Sum of Frequencies 615 
Actual Convergence 4.751915E-11 Likelihood Iterations 6 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 14 Completion Status Normal Completion 
Priors Ni/N   
 
 
Y Variable Summary ────────────────────────────────────────────────────────── 
 
  Unique   R² Percent 
Y  Rows Y Y (Y vs Pred. Correctly 
Verdict Count (Y and X's) Proportion Prior Probability) Classified 
G 445 20 0.72358 0.72358 0.17107 93.933 
NG 123 20 0.20000 0.20000 0.10397 20.325 
NP 47 20 0.07642 0.07642 0.06628 0.000 
Total 615 60    72.033 

 
 
Coefficient Significance Tests ─────────────────────────────────────────────────── 
 
Independent Regression Standard Wald  Odds 
Variable Coefficient Error Z-Value Wald Ratio 
X b(i) Sb(i) H0: β=0 P-Value Exp(b(i)) 
Intercept 
   G 2.82983 0.44457 6.365 0.00000 16.94253 
   NG 1.24012 0.48781 2.542 0.01102 3.45604 
(Race="B") 
   G 0.26083 0.33984 0.767 0.44279 1.29800 
   NG -0.10324 0.36248 -0.285 0.77579 0.90191 
(County="Orange") 
   G -0.89593 0.33719 -2.657 0.00788 0.40823 
   NG -0.12175 0.36036 -0.338 0.73547 0.88537 
(Offense="MjTraffic") 
   G -0.21380 0.62893 -0.340 0.73390 0.80751 
   NG 0.48012 0.67038 0.716 0.47387 1.61627 
(Offense="Property") 
   G -0.91853 0.57784 -1.590 0.11193 0.39911 
   NG 0.00928 0.61911 0.015 0.98804 1.00932 
(Offense="Speed") 
   G 0.49546 0.51245 0.967 0.33361 1.64126 
   NG -0.26697 0.57599 -0.463 0.64301 0.76570 
(Offense="Violence") 
   G -2.23014 0.51372 -4.341 0.00001 0.10751 
   NG -0.57863 0.53748 -1.077 0.28168 0.56067 
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Analysis of Deviance ───────────────────────────────────────────────────────── 
 
   Increase  
   From Model  
Term   Deviance  
Omitted DF Deviance (Chi²) P-Value 
All 12 925.59805 109.01434 0.00000 
Race 2 819.21845 2.63475 0.26784 
County 2 832.03780 15.45409 0.00044 
Offense 8 898.18115 81.59744 0.00000 
None(Model) 12 816.58371 
    
 
Log Likelihood & R² ────────────────────────────────────────────────────────── 
 
   R² of Reduction Reduction 
Term(s)  Log Remaining From From 
Omitted DF Likelihood Term(s) Model R² Saturated R² 
All 2 -462.79903 0.00000   
Race 2 -409.60923 0.68093 0.01686 0.31907 
County 2 -416.01890 0.59887 0.09892 0.40113 
Offense 8 -449.09057 0.17549 0.52230 0.82451 
None(Model) 12 -408.29185 0.69779 0.00000 0.30221 
None(Saturated) 120 -384.68551 1.00000  0.00000 
 

The output format is similar to previous examples. Notice in the analysis of deviance section that the variable 
Race is not significant. That is, in these data, the race of the defendant is not related to the verdict. 
The Coefficient Significance Tests report combines the two logistic regression equations on one report. This 
makes it a bit more complicated to read, but it allows a quick comparison to be made of the corresponding 
regression coefficients. For each independent variable, the regression coefficient from each equation is shown. 
Thus, 2.82983 is the intercept for the G equation and 1.24012 is the intercept for the NG equation. No coefficient 
is shown for NP because it is the reference value. 
Also note that the definition of the binary variables is as before. Thus the independent variable County=“Orange” 
refers to a binary variable that was generated from the County variable. This binary variable is one when the 
county value is Orange and zero otherwise. 

Validation 
In order to validate this module, the estimated regression coefficients and the log likelihood generated by the 
BMDP (refer to page 1165 of version 7.0 of the BMDP manual) are displayed below. 
Outcome: G Coefficient Std Error 
1 RACE 0.2608 0.340 
2 COUNTY -0.8959 0.337 
3 OFFENSE(1) -2.230 0.514 
4 OFFENSE(2) -0.9185 0.578 
5 OFFENSE(3) -0.2138 0.629 
6 OFFENSE(4) 0.4955 0.512 
7 CONST1 2.830 0.445 
 
Outcome: NG Coefficient Std Error 
8 RACE -0.1032 0.362 
9 COUNTY -0.1218 0.360 
10 OFFENSE(1) -0.5786 0.537 
11 OFFENSE(2) 0.9281E-02 0.619 
12 OFFENSE(3) 0.4801 0.670 
13 OFFENSE(4) -0.2670 0.576 
14 CONST1 1.240 0.488 

 
As you can see, these results match those displayed by NCSS exactly.  
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Example 5 – Logit Model with Interaction 
This example continues with the analysis of the data given in Example 4. In that example, no interactions were 
included in the model. This example will include the two-way interactions in the model.  

Setup 
To run this example, complete the following steps: 

1 Open the NC Criminal example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select NC Criminal and click OK. 

2 Specify the Logistic Regression procedure options 
• Find and open the Logistic Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 5 settings template. To load 

this template, click Open Example Template in the Help Center or File menu. 

Option Value 
Variables, Model Tab 
Y ............................................................. Verdict 
Reference Value ..................................... NP 
Categorical X's ........................................ Race(B;A) County(B;Durham) Offense(B;Drunk) 
Frequencies ............................................ Count 
Terms ...................................................... Up to 2-Way 
Priors ...................................................... Ni/N (Y-Value Proportions) 

Reports Tab 
Run Summary ......................................... Checked 
Y Variable Summary ............................... Checked 
Coefficient Significance Tests ................ Checked 
Analysis of Deviance .............................. Checked 
Log-Likelihood and R² ............................ Checked 
All Other Reports .................................... Unchecked 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Logistic Regression Output 
 
Coefficient Significance Tests ─────────────────────────────────────────────────── 
 
Independent Regression Standard Wald  Odds 
Variable Coefficient Error Z-Value Wald Ratio 
X b(i) Sb(i) H0: β=0 P-Value Exp(b(i)) 
Intercept 
   G 2.00583 0.50400 3.980 0.00007 7.43225 
   NG 0.72258 0.57465 1.257 0.20860 2.05975 
(Race="B") 
   G 1.44835 0.86924 1.666 0.09567 4.25608 
   NG -1.10628 1.08369 -1.021 0.30733 0.33079 
(County="Orange") 
   G 0.14731 1.15368 0.128 0.89840 1.15871 
   NG 1.83395 1.18755 1.544 0.12251 6.25854 
(Offense="MjTraffic") 
   G -0.30745 1.10221 -0.279 0.78029 0.73532 
   NG -0.25450 1.23436 -0.206 0.83665 0.77531 
(Offense="Property") 
   G -0.72178 0.83542 -0.864 0.38760 0.48589 
   NG 0.35757 0.89267 0.401 0.68874 1.42985 
(Offense="Speed") 
   G 1.93682 1.08041 1.793 0.07303 6.93666 
   NG 0.87254 1.19650 0.729 0.46586 2.39297 
(Offense="Violence") 
   G -0.15836 0.87409 -0.181 0.85624 0.85354 
   NG 1.07460 0.91294 1.177 0.23916 2.92882 
(Race="B")*(County="Orange") 
   G 0.19528 0.81517 0.240 0.81067 1.21566 
   NG 0.83286 0.85899 0.970 0.33225 2.29990 
(Race="B")*(Offense="MjTraffic") 
   G -1.17876 1.35078 -0.873 0.38285 0.30766 
   NG 1.16592 1.50638 0.774 0.43894 3.20886 
(Race="B")*(Offense="Property") 
   G -0.83367 1.27452 -0.654 0.51305 0.43445 
   NG 1.35214 1.42888 0.946 0.34400 3.86569 
(Race="B")*(Offense="Speed") 
   G -1.78987 1.25551 -1.426 0.15398 0.16698 
   NG 0.24862 1.45010 0.171 0.86387 1.28225 
(Race="B")*(Offense="Violence") 
   G -2.31322 1.19041 -1.943 0.05199 0.09894 
   NG 0.51640 1.30133 0.397 0.69150 1.67598 
(County="Orange")*(Offense="MjTraffic") 
   G 0.45137 1.52019 0.297 0.76653 1.57046 
   NG -0.53668 1.61710 -0.332 0.73998 0.58469 
(County="Orange")*(Offense="Property") 
   G 0.04871 1.41697 0.034 0.97258 1.04992 
   NG -2.10279 1.47544 -1.425 0.15410 0.12212 
(County="Orange")*(Offense="Speed") 
   G -1.39431 1.37573 -1.014 0.31082 0.24800 
   NG -2.66093 1.48387 -1.793 0.07294 0.06988 
(County="Orange")*(Offense="Violence") 
   G -2.42314 1.36627 -1.774 0.07614 0.08864 
   NG -3.93664 1.38198 -2.849 0.00439 0.01951 
 
 
Analysis of Deviance ───────────────────────────────────────────────────────── 
 
   Increase  
   From Model  
Term   Deviance  
Omitted DF Deviance (Chi²) P-Value 
All 30 925.59805 146.82239 0.00000 
Race 2 797.83870 19.06304 0.00007 
County 2 788.31126 9.53560 0.00850 
Offense 8 802.98614 24.21048 0.00211 
Race*County 2 780.53878 1.76312 0.41414 
Race*Offense 8 795.98619 17.21053 0.02799 
County*Offense 8 798.81172 20.03607 0.01020 
None(Model) 30 778.77566   
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Log Likelihood & R² ────────────────────────────────────────────────────────── 
 
   R² of Reduction Reduction 
Term(s)  Log Remaining From From 
Omitted DF Likelihood Term(s) Model R² Saturated R² 
All 2 -462.79903 0.00000   
Race 2 -398.91935 0.81778 0.12202 0.18222 
County 2 -394.15563 0.87877 0.06104 0.12123 
Offense 8 -401.49307 0.78483 0.15497 0.21517 
Race*County 2 -390.26939 0.92852 0.01129 0.07148 
Race*Offense 8 -397.99309 0.82964 0.11016 0.17036 
County*Offense 8 -399.40586 0.81155 0.12825 0.18845 
None(Model) 30 -389.38783 0.93980 0.00000 0.06020 
None(Saturated) 120 -384.68554 1.00000  0.00000 
 

Notice how the interactions are labeled. For example, the variable labeled (Race=“B”)*(Offense=“Violence”) is 
the interaction variable is generated by multiplying the binary variable defined by (Race=“B”) with the binary 
variable defined by (Offense=“Violence”). The resulting variable is one if both of these conditions are true and 
zero otherwise. 
Note that the R2 is now 0.93980, so this model is almost as good as the saturated model.  

Looking at the analysis of deviance table, we note that all terms are significant except for the Race*County 
interaction. 
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Example 6 – Odds Ratios for Categorical X’s 
Lachin (2000) pages 90, 91, and 257 presents an analysis of hypothetical data from an ulcer healing clinical trial 
conducted to study the effectiveness of a drug over a placebo. There were 100 patients assigned to the group 
receiving the drug and another 100 patients assigned to the group receiving the placebo. The ulcers were stratified 
into one of three types: 1. Acid-dependent, 2. Drug dependent, and 3. Intermediate. Each ulcer was followed for a 
period of time after which it was considered healed or not. The data for this experiment are given below. These 
data have been entered into a database named Lachin91.  

Lachin91 dataset (subset) 

Count Ulcer Drug Healed 
16 1 1 1 
26 1 1 0 
20 1 0 1 
27 1 0 0 
9 2 1 1 
3 2 1 0 
4 2 0 1 
5 2 0 0 
28 3 1 1 
18 3 1 0 
16 3 0 1 
28 3 0 0 

Setup 
To run this example, complete the following steps: 

1 Open the Lachin91 example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Lachin91 and click OK. 

2 Specify the Logistic Regression procedure options 
• Find and open the Logistic Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 6 settings template. To load 

this template, click Open Example Template in the Help Center or File menu. 

Option Value 
Variables, Model Tab 
Y ............................................................. Healed 
Categorical X's ........................................ Ulcer Drug 
Frequencies ............................................ Count 
Priors ...................................................... Equal across Y Values 

Reports Tab 
Run Summary ......................................... Checked 
Coefficient Significance Tests ................ Checked 
Odds Ratios ............................................ Checked 
Analysis of Deviance .............................. Checked 
All Other Reports .................................... Unchecked 
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3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Logistic Regression Output 
  
Run Summary ────────────────────────────────────────────────────────────── 
 
Item Value Item Value 
Y Variable Healed Rows Processed 12 
Reference Value 0 Rows Used 12 
Number of Y-Values 2 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric X Variables 0 Rows Freq Miss. or 0 0 
Categorical X Variables 2 Rows Prediction Only 0 
Final Log Likelihood -134.84531 Unique Rows (Y and X's) 12 
Model R² 0.54106 Sum of Frequencies 200 
Actual Convergence 1.10275E-10 Likelihood Iterations 4 
Target Convergence 1E-06 Maximum Iterations 20 
Model D.F. 4 Completion Status Normal Completion 
Priors Equal   
 
 
Coefficient Significance Tests ─────────────────────────────────────────────────── 
 
Independent Regression Standard Wald  Odds 
Variable Coefficient Error Z-Value Wald Ratio 
X b(i) Sb(i) H0: β=0 P-Value Exp(b(i)) 
Intercept -0.48951 0.21833 -2.242 0.02496 0.61293 
(Ulcer=2) 0.83527 0.50247 1.662 0.09645 2.30543 
(Ulcer=3) 0.32777 0.30424 1.077 0.28132 1.38787 
(Drug=1) 0.50234 0.28845 1.742 0.08159 1.65259 
 
 
Odds Ratios ─────────────────────────────────────────────────────────────── 
 
Independent Regression Odds Lower 95% Upper 95% 
Variable Coefficient Ratio Confidence Confidence 
X b(i) Exp(b(i)) Limit Limit 
Intercept -0.48951 0.61293 0.39955 0.94027 
(Ulcer=2) 0.83527 2.30543 0.86109 6.17243 
(Ulcer=3) 0.32777 1.38787 0.76451 2.51949 
(Drug=1) 0.50234 1.65259 0.93894 2.90864 
 
 
Analysis of Deviance ───────────────────────────────────────────────────────── 
 
   Increase  
   From Model  
Term   Deviance  
Omitted DF Deviance (Chi²) P-Value 
All 3 276.27807 6.58746 0.08628 
Ulcer 2 272.87155 3.18094 0.20383 
Drug 1 272.74521 3.05460 0.08051 
None(Model) 3 269.69061 
 

Note that neither Drug nor Ulcer is statistically significant at the 0.05 level using either the deviance tests in the 
Analysis of Deviance table or the Wald tests in the Coefficient Significance Tests section. From the Odds Ratios 
section, we see that the odds of healing are increased 1.65259 when the drug is administered. 
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