
Chapter 3. Double and triple integrals
This material is covered in Thomas (chapter 15 in the 11th edition, or chapter 12 in the 10th
edition).

3.1 Remark. What we will do is in some ways similar to integrals in one variable, definite in-
tegrals (which evaluate to a number) rather than indefinite integrals (which are essentially an-
tiderivatives, and are functions).

There are 3 ways to approach definite integrals
∫ b

a
f(x) dx in one variable and we recall them

briefly as we will develop something similar for functions f(x, y) of two variables and f(x, y, z)
of three variables.

(i)
∫ b

a
f(x) dx = a limit of certain Riemann sums

lim
n∑

i=1

f(ci)∆xi

where [a, b] is divided into n segments [a, x1] = [x0, x1], [x1, x2], . . . , [xn−1, xn] = [xn−1, b]
by choosing division points a < x1 < x2 < · · · < xn−1 < b. By ∆xi we mean the width
xi − xi−1 of the ith interval. We also have to choose c1, c2, . . . , cn with xi−1 ≤ ci ≤ xi

(1 ≤ i ≤ n) before we can calculate the Riemann sum. We take the limit as the number n
of intervals tends to ∞ and the widths ∆xi all tend to 0.

The idea is summarised by the following picture

The Riemann sum corresponds to the sum of the widths times heights of the rectangles (and
approximates the ‘area’ of the region under the curve, which represents the graph y = f(x)
for a ≤ x ≤ b). In this picture n = 8, all the widths ∆xi are the same and the points ci are
the middle points of the allowed interval for them.
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The idea of the limit can be explained like this. We are likely to get a better approximation
if we use more and narrower rectangles. It is a bit hard to really justify it properly, but
the integral notation we use

∫ b

a
f(x) dx is supposed to represent the limiting case where

we have unbelievably narrow rectangles of width dx (and then we need an unbelievably
large number of them). The problem is we don’t want to take dx to be quite 0 as then the
products f(x) dx would be all 0. There is an explanation where we take the dx to be so-
called ‘infinitesimal’ numbers — that is smaller than any positive number you can imagine
but somehow still not 0.

(ii) We can say graphically that
∫ b

a
f(x) dx means the ‘area’ of the part of the plane between

the graph y = f(x) (a ≤ x ≤ b) and the x-axis.

This picture is good for case f(x) ≥ 0. When f(x) < 0 some or all of the time, we
count those parts of the region trapped between the graph and the x-axis where f(x) < 0
as negative (that is we subtract the total area where f(x) < 0 from the total area where
f(x) > 0). If you look at the Riemann sums, you see f(ci)∆xi and you’ll see that comes
out negative if f(ci) < 0
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(iii)
∫ b

a
f(x) dx = [F (x)]bx=a = F (b) − F (a) where F (x) is an antiderivative of f(x), that is a

function where F ′(x) = f(x) (a ≤ x ≤ b).

This connection of integrals with derivatives is so familiar that we are inclined to take it
for granted. In fact it is an important result discovered early on in the subject, called the
‘Fundamental Theorem of Integral Calculus’ that makes the connection between limits of
Riemann sums and antiderivatives.

3.2 Double integrals. We are now going to give a brief definition of what a double integral is.
We write double integrals as

∫∫
R

f(x, y) dx dy

where f(x, y) is a function of tow variables that makes sense for (x, y) ∈ R, and R is a part
of the (x, y)-plane. We should not allow R to be too complicated and we might picture R as
something like this:
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We could visualise the situation via the graph z = f(x, y) over the part of the horizontal plane
indicated by R.
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At least in the case where f(x, y) ≥ 0 always, we can imagine the graph as a roof over a floor
area R. The graphical interpretation of the double integral will be that it is the volume of the part
of space under the roof. (So think of a wall around the perimeter of the floor area R, reaching up
the the edge of the ‘roof’ or graph. At least in this picture the solid part of space enclosed by the
floor, the walls and the roof would look like some sort of irregular cake.)

So this is the version for double integrals of the explanation in Remark 3.1 (ii) of ordinary
single integrals. To make it more accurate, we have to cater for functions f(x, y) that are some-
times negative, so that the ‘roof’ or graph is below the floor at times! In this case we have to
subtract the volumes where the roof is below the floor, add the parts where the roof is above (that
is the parts where f(x, y) > 0 are counted positive, and the parts where f(x, y) < 0 are counted
negative).

So far what we have is a graphical or intuitive explanation, but its is not very useful if we
want to compute the double integral. It is also unsatisfactory because it assumes we know what
we mean by the volume and part of the reason for being at a loss for a way to compute the volume
of such a strange ‘cake’ is that we don’t have a very precise definition of what the volume is.

For single integrals this ‘precise’ explanation proceeds by the notion of a Riemann sum. Even
if you did not think much of it, and indeed I’m sure there was not much attempt to cross the i’s
and dot the t’s in the explanation of what Riemann sums are, and the explanation of how to deal
with them, they are actually the basis for practical methods of calculating integrals numerically.
(You’ve hear of the trapezoidal rule and Simpsons rule, which are based on rather similar ideas
to Riemann sums. As engineers, you may well end up doing numerical simulations of designs
and techniques like these are bread and butter of such simulations.)

Anyhow, to sketch how double integrals are really defined we need a two dimensional version
of a Riemann sum. What we do is think in terms of dividing up the region R (the floor in our
picture) into a grid of rectangles (or squares). You could think of tiles on the floor, maybe better
to think of very small tiles like mosaic tiles. We take the grid lines to be parallel to the x and y
axes. Here is a picture of a grid, though this one has rather large rectangles.
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One drawback we will see no matter how small we make the grid is that there will be irregular
shapes at the edge. These do cause a bit of bother, but the idea is that if the grid is fine enough,
the total effect of these incomplete rectangles around the edge should not matter much. Let’s say
we agree to omit any incomplete rectangles altogether.

No concentrate on just one of the grid rectangles (or tiles on our floor), like the one marked in
black in the picture. The part of the total volume under the roof that is above this one rectangle
will make a sort of pillar, and it will be the analogue for the three dimensional picture of the
graph z = f(x, y) of the rectangles we had in the Remark 3.1 (i) for functions of one variable.

You might look in the book to see nicely drawn artistic picture of what is going on here. We
estimate the total volume under the ‘roof’ z = f(x, y) by adding up the volumes of the pillars we
have just described. We square off the top of each pillar to make it a flat topped pillar of a height
f(x, y) the same as the height of the graph at some point (x, y) inside our chosen grid rectangle
(or floor tile). We get the volume of the pillar as the height f(x, y) times the area of the grid
rectangle. If the side of the rectangle are ∆x along the x-direction and ∆y along the y-direction,
that gives us a volume

f(x, y) ∆x ∆y

for that one pillar. We add all these up top get an estimate of the total volume ‘under the graph’.
To get a better estimate, we should use more smaller grid rectangles. The integral is defined

as the limit of the values we get by taking grids with smaller and smaller spacing between the
grid lines.

3.3 Fubini’s theorem. What we have so far is fairly theoretical or conceptual. It is in fact
possible to make it practical with a computer program to calculate the sums we’ve been talking
about, but for pencil and paper calculations we need something like Remark 3.1 (ii). The fact that
works like that is called Fubini’s theorem and we try to explain it first taking R to be a rectangle
with sides parallel to the axes: say

R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ x ≤ d}
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(where a < b and c < d are numbers).

If we go back to thinking of the picture we had above, we now have a nice regular (rectan-
gular) floor, though the roof above (the graph z = f(x, y) could be very irregular. Or maybe we
should think of a cake (or loaf of bread) baked in a rectangular cake tin. We might need to be a
bit imaginative about how the cake rose so as to allow for very strange shapes for the top of the
cake according to a graph z = f(x, y).

Now, you could explain our earlier strategy to estimate the volume of the solid object like
this. First slice the cake into thin slices one way (say along the x-direction first) and then slice
it in the perpendicular direction. We end of with rectangular ‘fingers’ of cake and we add up the
volumes of each one. But we estimate the volume of the finger by treating it as a box with a fixed
height, even though it will in fact have a slightly irregular top. (Not too irregular though if we
make many cuts.)

To get some sort of explanation of why Fubini’s theorem works, we think of only slicing in
one direction. Say we slice along the x-direction, perpendicular to the y-axis. That means y is
constant along each slice. Think of cutting up the bread into slices, preferably very thing slices.
(In our picture, if we cut in the x-direction we will be cutting down the length of the bread, rather
than across. We would be allowed to cut the other way, keeping x-fixed, if we wanted, but let’s
stick to the choice of cutting along the x-direction keeping y-fixed). We can thing then of a thin
slice and we could imagine finding its volume by area and multiplying by its thickness.

Say we call the thickness dy (for a very thin slice). How about the area of the face of the
slice? Well we are looking at a profile of the slice as given by a graph z = f(x, y) with y fixed
and x varying between a and b. So it has an area given by a single integral∫ x=b

x=a

f(x, y) dx

(where y is kept fixed, or treated as a constant, while we do this integral). We had some similar
ideas when dealing with ∂f/∂x. We kept y fixed and differentiated with respect to x. Or we took
the graph of the function of one variable (x variable in fact) that arises by chopping the graph
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z = f(x, y) in the x-direction, and looked at the slope of that. Anyhow, what we are doing now
is integrating that function of x rather than differentiating it.

The integral above is the area of one slice. To get its volume we should multiply by the
thickness dy (∫ x=b

x=a

f(x, y) dx

)
dy

And then to get the total volume we should ‘add’ the volumes of the thin slices. Well, in the end
we get an integral with respect to y and what Fubini’s theorem says is that

∫∫
R

f(x, y) dx dy =

∫ y=d

y=c

(∫ x=b

x=a

f(x, y) dx

)
dy

(when R is the rectangle R = [a, b]× [c, d] we chose earlier).

Fubini’s theorem also allows us to do the integral with respect to y first (keeping x fixed) and
then the integral with respect to x.

∫∫
R

f(x, y) dx dy =

∫ x=b

x=a

(∫ y=d

y=c

f(x, y) dy

)
dx

In our explanation of why the theorem is true, this is what would happen if we sliced the other
way. It may seem overkill to have two versions of the theorem, but there are examples where the
calculations are much nicer if you do the dx integral first that if you do the dy integral first (and
vice versa).

That was all for the case when R is a rectangle, but a similar idea will work even when R is
more complicated. We can either integrate dy first and then dx or vice versa. But we need to take
care that we cover all the points (x, y) in R. If we keep y constant at some value and then we
have to figure out which x-values give (x, y) inside R. That range of x-values will now depend
on which y we have fixed. In the picture that range of x values is a(y) ≤ x ≤ b(y).
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d

R
y

a(y)

b(y)
c

∫∫
R

f(x, y) dx dy =

∫ y=d

y=c

(∫ x=b(y)

x=a(y)

f(x, y) dx

)
dy

The range c ≤ y ≤ d has to be so as to include all of R (and no more).

If we do the dy integral first, keeping x fixed, we need to figure out limits c(x) ≤ y ≤ d(x)
for y. The idea should be clear from the following picture and the formula below.
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a

R

x

c(x)

d(x)

b

∫∫
R

f(x, y) dx dy =

∫ x=b

x=a

(∫ y=d(x)

y=c(x)

f(x, y) dy

)
dx

3.4 Example. Find
∫∫

R
x2 dx dy when R = {(x, y) : x2 + 4y2 ≤ 1}.

It could help to draw R (it is the interior of an ellipse meeting the x-axis at (±1, 0) and the
y-axis at (0,±1/2)) but perhaps it is not really necessary to rely on the picture.
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If we fix y and we want to know which x-values to integrate over (for that y) it is is not hard to
figure it out:

x2 + 4y2 ≤ 1

x2 ≤ 1− 4y2

−
√

1− 4y2 ≤ ≤
√

1− 4y2

So the first integral to work out should be

∫ x=
√

1−4y2

x=−
√

1−4y2

x2 dx.

Then we have to integrate that over all y values for which there are any points. But it is fairly
clear that there are points only when that square root is a square root of something that is positive.
So we need

1− 4y2 ≥ 0

1 ≥ 4y2

1

4
≥ y2

−1

2
≤ y ≤ 1

2
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We get ∫∫
R

x2 dx dy =

∫ y=1/2

y=−1/2

(∫ x=
√

1−4y2

x=−
√

1−4y2

x2 dx

)
dy

=

∫ y=1/2

y=−1/2

[
x3

3

]x=
√

1−4y2

x=−
√

1−4y2

dy

=

∫ y=1/2

y=−1/2

2(1− 4y2)
√

1− 4y2

3
dy

Let 2y = sin θ, 2 dy = cos θ dθ. For y = −1/2, we get −1 = sin θ and so θ = −π/2. For
y = 1/2, we get 1 = sin θ and so θ = π/2.

So, after the substitution, the integral we want becomes∫ θ=π/2

θ=−π/2

2

3
(1− sin2 θ)

√
1− sin2 θ

1

2
cos θ dθ

=

∫ π/2

−π/2

1

3
cos4 θ dθ

=

∫ π/2

−π/2

1

3

(
1

2
(1 + cos 2θ

)2

dθ

=
1

12

∫ π/2

−π/2

(1 + 2 cos 2θ + cos2 2θ) dθ

=
1

12

∫ π/2

−π/2

(
(1 + 2 cos 2θ +

1

2
(1 + cos 4θ)

)
dθ

=
1

12

∫ π/2

−π/2

(
3

2
+ 2 cos 2θ +

1

2
(1 + cos 4θ)

)
dθ

=
1

12

[
3

2
θ + sin 2θ +

1

8
sin 4θ

]π/2

−π/2

=
π

8

3.5 Applications of Double integrals.

(i) If we take the case of the constant function 1, f(x, y) = 1,∫∫
R

f(x, y) dx dy =

∫∫
R

1 dx dy

= volume between the graph z = 1 and
the region R in the x-y (horizontal) plane

= (area of R)× (height = 1)

= area(R)

In short, we have
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∫∫
R

1 dx dy = area(R)

(ii) If R represents the shape of a thin (flat) plate, it will have a surface density σ(x, y). By
‘surface density’ we mean mass per unit area and if the plate is the same thickness and the
same material throughout that will be a constant

σ =
mass
area

.

But if it is not constant, we find the density at (x, y) by taking a very tiny sample of the
plate at (x, y) and taking the mass per unit area of that. So if the sample is a rectangular
piece of (infinitesimally short) sides dx in the x-direction times dy in the y-direction, then
it has area dx dy. Say we call its mass dm (for a tiny bit of mass), then the surface density
is

σ(x, y) =
dm

dx dy

To get the total mass we should add up the little small masses dm, or actually integrate
them. We get

total Mass =

∫∫
R

dm =

∫∫
R

σ(x, y) dx dy

The centre of mass of such a plate is at a point (x̄, ȳ) which is also computed with double
integrals. The formulae are:

x̄ =

∫∫
R

x dm

mass
=

∫∫
R

xσ(x, y) dx dy∫∫
R

σ(x, y) dx dy
, ȳ =

∫∫
R

y dm

mass
=

∫∫
R

yσ(x, y) dx dy∫∫
R

σ(x, y) dx dy

where σ(x, y) denotes the surface density as above. These formulae are arrived at by start-
ing with the condition for the centre of mass to be along the y-axis (so x̄ = 0). The
condition is a moment condition, that the total moment of the body around the axis should
be 0. The total moment about the y-axis is

∫∫
R

x dm. We will not go into detail on this
derivation of the formula for x̄.

3.6 Triple integrals. We now give a brief explanation of what a triple integral∫∫∫
D

f(x, y, z) dx dy dz
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of a function f(x, y, z) of 3 variables over a region D in R3 (space) means.
As we already know we cannot visualise the graph of a function of 3 variables in any realistic

way (as it would require looking at 4 dimensional space) we cannot be guided by the same sort
of graphical pictures as we had in the case of single integrals and double integrals. (Remember
Remark 3.1 (ii) and the ‘volume under the graph’ idea of 3.2.)

We can proceed to think of Riemann sums, without the graphical back up. We think of D
as a shape (solid shape) in space and we imagine chopping D up into a lot of small boxes with
sides parallel to the axes. Think of slicing D first parallel to the x-y plane, then parallel to the
y-z plane and finally parallel to the x-z plane. Preferably we should use very thin separations
between the places where we make the slices, but we have to balance that against the amount of
work we have to do if we end up with many tiny boxes.

Look at one of the boxes we get from D. Say it has a corner at (x, y, , z) and side lengths
∆x, ∆y and ∆z. We take the product

f(x, y, z) ∆x ∆y ∆z = f(x, y, z)× Volume.

We do this for each little box and add up the results to get a Riemann sum∑
f(x, y, z) ∆x ∆y ∆z

(We should agree some policy about what to do with the edges. If there are boxes that are not
fully inside D we could agree to exclude them from the sum, say.) We now define the integral∫∫∫

D

f(x, y, z) dx dy dz = lim (Riemann sums)

where we take the limit as the Riemann sums get finer and finer (in the sense that the maximum
side length of the little boxes is becoming closer and closer to 0). If we are lucky, this limit
makes sense — and there is a theorem that says the limit will make sense if D is bounded, not
too badly behaved and f is a continuous function. So we will take it that the limit makes sense.

As for a picture to think about, we can think maybe of the example we used of mass. If
f(x, y, z) is the density (= mass per unit volume) of a solid object occupying the region D of
space, then

f(x, y, z) dx dy dz = density × volume = mass = dm

(mass of a little tiny piece of the solid) and we get the total mass by adding these up. So∫∫∫
D

(density function) dx dy dz = total mass.

At least in the case where f(x, y, z) ≥ 0 always, we can interpret triple integrals this way.
An even simpler situation is where we take f(x, y, z) ≡ 1 to be the constant function 1. Then

f(x, y, z) dx dy dz = dx dy dz = volume = dV



Double and triple integrals 15

is just the volume of the little tiny piece. When we add these up (or integrate the constant function
1) we get

∫∫∫
D

1 dx dy dz = total volume.

As for double integrals, there is a Fubini Theorem for triple integrals that allows us to
work out

∫∫∫
D

f(x, y, z) dx dy dz by working out three single integrals. The first integral (or
inner integral) should be with respect to one of the variables, keeping the other two constant.
Say we integrate dz first, keeping (x, y) fixed. We should integrate over all z that give points
(x, y, z) ∈ D. At least in simple cases, that will be a range of z from a smallest we might call
z0(x, y) to a largest z1(x, y).

In the following picture, there is an attempt to explain this. The curved surface is in fact the
part of the ellipsoid

(x− 4)2

32
+

(y − 2)2

22
+

z2

32
= 1

where z ≥ 0 and the flat part at the base is where z = 0. A quarter is cut away to allow us to see
inside the object

D =

{
(x, y, z) :

(x− 4)2

32
+

(y − 2)2

22
+

z2

32
≤ 1, z ≥ 0

}
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For each fixed (x, y) (like the one shown) we have to find the limits for z so that (x, y, z) ∈ D
and it is easy enough to see that the smallest z is z0(x, y) = 0, while the largest is

z1(x, y) = 3

√
1− (x− 4)2

32
− (y − 2)2

22

obtained by solving for z in terms of (x, y) when (x, y, z) is on the upper (curved) surface.
We can see that the values of (x, y) for which there are any possible z to worry about are

those (x, y) where the square root is a square root of something positive. So, those (x, y) where

(x− 4)2

32
+

(y − 2)2

22
≤ 1.

Another way to think of it is that this is the outline of the object when viewed along the z-
direction (from far away).

Anyhow our first integral (if we integrate dz first) is∫ z=3
√

1−(x−4)2/9−(y−2)2/4

z=0

f(x, y, z) dz
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Say we next integrate dx, keeping y fixed. The inequality to be satisfied by all the (x, y) we need
to worry about is above and it can be expressed as

−3

√
1− (y − 2)2

22
≤ x− 4 ≤ 3

√
1− (y − 2)2

22

so that our next integral should be∫ x=4+3
√

1−(y−2)2/4

x=4−3
√

1−(y−2)2/4

(∫ z=3
√

1−(x−4)2/9−(y−2)2/4

z=0

f(x, y, z) dz

)
dx

Finally we have to integrate this dy. The limits for y are those corresponding to the extreme
values of y for points in D. In this case the restriction on y is

1− (y − 2)2

22
≥ 0

and that turns out to be the same as

−2 ≤ y − 2 ≤ 2

or
0 ≤ y ≤ 4

So in this case
∫∫∫

D
f(x, y, z) dx dy dz is∫ y=4

y=0

(∫ x=4+3
√

1−(y−2)2/4

x=4−3
√

1−(y−2)2/4

(∫ z=3
√

1−(x−4)2/9−(y−2)2/4

z=0

f(x, y, z) dz

)
dx

)
dy

It is possible to do the integrals in a different order. Say dy first, then dx and finally dz. All
the limits will be changed if we do that and we would get∫ z=3

z=0

(∫ x=4+3
√

1−z2/9

x=4−3
√

1−z2/9

(∫ y=2+2
√

1−(x−4)2/9−z2/9

y=2−2
√

1−(x−4)2/9−z2/9

f(x, y, z) dy

)
dx

)
dz

An advantage of being able to choose the order is that sometimes the calculations are easier
in one order than another. A trick that is sometimes useful for working out an iterated integral
like the one we have just written is this:- figure out which D ⊂ R3 it corresponds to, write the
integral as

∫∫∫
D

f(x, y, z) dx dy dz, that is use Fubini’s theorem in reverse first, and then work
out
∫∫∫

D
f(x, y, z) dx dy dz with Fubini’s theorem using a different order for the single integrals.

Sometimes it turns a hard problem into one that is easier.

3.7 Change of variables in multiple integrals. We now come to a topic that goes by the name
‘substitution’ in the case of ordinary single integrals. You may recall that substitution for func-
tions of one variable can be justified using the chain rule

dy

dx
=

dy

du

du

dx
when y = y(u), u = u(x), y = y(u(x)).
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For indefinite integrals it allows us to say that∫
g(u(x)) dx =

∫
g(u)

dx

du
du

if we interpret the right hand side, a function of u, as a function of x by u = u(x). For definite
integrals we can change limits as well as variables and get an equation that says two numbers are
equal. ∫ x=b

x=a

g(u(x)) dx =

∫ u=u(b)

u=u(a)

g(u)
dx

du
du.

The point to remember from this is that when we change from integrating over the interval
[a, b] in x, we must not only change the range of integration to the corresponding range in the u
variable, we must also multiply the integrand by a factor dx/du.

For integrals in two variables (and similarly in three variables) we have to explain what that
factor is that works in a similar way. It is the absolute value of a certain determinant of partial
derivatives. Suppose we change from (x, y) to (u, v) say, we have to change dx dy into a multiple
of du dv and the multiple is∣∣∣∣det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)∣∣∣∣ =

∣∣∣∣∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣
The matrix inside the determinant is called a Jacobian matrix. Its rows are the gradient vectors
of x and y with respect to the u and v variables. The determinant itself is called a Jacobian
determinant.

The rule is then that we must change dx dy to

dx dy =

∣∣∣∣det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)∣∣∣∣ du dv

To change an integral ∫∫
R

f(x, y) dx dy

to an integral in (u, v) = (u(x, y), v(x, y)), we have to change R to the same set described in the
(u, v) variables and change dx dy as above.

For the case of triple integrals, if we change from (x, y, z) coordinates to

(u, v, w) = (u(x, y, z), v(x, y, z), w(x, y, z))

we have to make a similar change

dx dy dz =

∣∣∣∣∣∣det

 ∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣ du dv dw

While this theory can be applied to any change of coordinates, the ones that appear most
often are polar coordinates in the plane, and cylindrical and spherical coordinates in space. So
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we work out what these Jacobian factors are in polar coordinates to start with. We can relate
cartesian (x, y) coordinates in R2 to polar coordinates (r, θ) via

x = r cos θ, y = r sin θ

and so we can work out the 4 partial derivatives we need for the Jacobian.

∂x

∂r
= cos θ

∂x

∂θ
= −r sin θ

∂y

∂r
= sin θ

∂y

∂θ
= r cos θ

Then the Jacobian matrix is (
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
.

The determinant is
r cos2 θ + r sin2 θ = r(cos2 θ + sin2 θ) = r.

The absolute value of the determinant is also r (as long as we keep r > 0 as we usually do for
polar coordinates). This gives us the relation

dx dy = r dr dθ

For the change from cartesian (x, y, z) coordinates in space to cylindrical (r, θ, z) coordinates
the calculation is not really much harder that what we have just done. We won’t give the details
but it comes to

dx dy dz = r dr dθ dz

For spherical coordinates (ρ, θ, φ) in space, the calculation is a little longer. Again we will
not work it out but just give the result:

dx dy dz = ρ2 sin φ dρ dθ dφ

As we have not given any details on how these Jacobian factors are justified, we look at a
picture relating to polar coordinates in the plane. The inner circle has radius 1, the next has radius
1.1, the next 4 and the outer one 4.1. The rays are at π/4 and π/4 + 0.1.
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You can see that the area of the ‘polar rectangle’ at (r, θ) = (1, π/4) is smaller than the area
of the polar rectangle at (4, π/4). Both rectangles of squares of side 0.1 in polar coordinates,
but it is reasonably clear that the outer one has 4 times the area of the inner one. In fact a polar
rectangle with one corner at (r, θ) and opposite corner at (r + dr, θ + dθ) is a (slightly bent)
rectangle in the plane with side lengths dr and r dθ. This is a way to see that the r dr dθ formula
is at least plausible.

3.8 Example. Find ∫∫
R

(
8− (x2 + y2)2

2

)
dx dy

where R = {(x, y) : x2 + y2 ≤ 2}.
This is a problem that works out rather more easily in polar coordinates. We can describe R

in polar coordinates as the points (r, θ) with 0 ≤ r ≤
√

2 and 0 ≤ θ < 2π. In this way we can
express the integral as ∫∫ (

8− (r2)2

2

)
r dr dθ
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Putting in the limits∫ θ=2π

θ=0

(∫ r=
√

2

r=0

(
8− (r2)2

2

)
r dr

)
dθ =

∫ θ=2π

θ=0

(∫ r=
√

2

r=0

8r − r5

2
dr

)
dθ

=

∫ θ=2π

θ=0

[
4r2 − r6

12

]r=
√

2

r=0

dθ

=

∫ θ=2π

θ=0

(
8− 8

12

)
dθ

=
23

3
(2π) =

46π

3

3.9 Applications of triple integrals. In fact we have already mentioned two applications (mass
and volume) but we repeat them here so as to have them on one place. Then there is centre of
mass (the formulae look similar to the ones we had for thin plates, but the 3 variable ones are
more realistic since massive objects are usually 3 dimensional). Finally we mention moments of
inertia.

(i) If D ⊂ R3, then

∫∫∫
D

1 dx dy dz = volume(D)

(ii) If D ⊂ R3 and f(x, y, z) makes sense for (x, y, z) ∈ D, then the average value of the
function f over D is defined as follows:

averageD(f) =

∫∫∫
D

f(x, y, z) dx dy dz

volume(D)
=

∫∫∫
D

f(x, y, z) dx dy dz∫∫∫
D

1 dx dy dz

(iii) If a solid object occupies a region D ⊂ R3 and has (possibly variable) density δ(x, y, z) at
(x, y, z) ∈ D, then∫∫∫

D

δ(x, y, z) dx dy dz =

∫∫∫
D

dm = mass of the object

The centre of mass of the solid is the point (x̄, ȳ, z̄) given by

x̄ =

∫∫∫
D

xδ(x, y, z) dx dy dz

mass
, ȳ =

∫∫∫
D

yδ(x, y, z) dx dy dz

mass
,

z̄ =

∫∫∫
D

zδ(x, y, z) dx dy dz

mass
.
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The moment of inertia I of a solid object about a fixed axis is a quantity that takes the place
of mass when we deal with rotating the object about a fixed axis as opposed to dealing
with unconstrained motion. It measures the resistance of the body to being set in rotational
motion about the axis in the same way that mass measure the resistance of a body to being
pushed along. One manifestation of that is in the formula for kinetic energy. For arbitrary
motion of a mass m with velocity vector v the kinetic energy is 1

2
m‖v‖2. For rotational

motion of a body around an axis, the different particles making up the body are rotating
in unison and all have a common angular velocity ω (= rate of change of angle around the
axis, ω = dθ

dt
). Those close to the axis have a smaller actual velocity than those farther away

(since the farther away ones go around a big circle in the same time the closer in points go
around a small circle). It comes down to a relation

‖v‖ = r⊥(x, y, z)ω

where r⊥(x, y, z) stands for the perpendicular distance from the point (x, y, z) in the body
to the axis. The formula for I is then

moment of inertia about axis

= I =

∫∫∫
D

(r⊥(x, y, z))2 dm =

∫∫∫
D

(r⊥(x, y, z))2δ(x, y, z) dm

As a special case we can work out the moments of inertia about the x-, y- and z-axes. We
get

Ix =

∫∫∫
D

(y2 + z2) dm =

∫∫∫
D

(y2 + z2)δ(x, y, z) dm

Iy =

∫∫∫
D

(x2 + z2) dm =

∫∫∫
D

(y2 + z2)δ(x, y, z) dm

Iz =

∫∫∫
D

(x2 + y2) dm =

∫∫∫
D

(y2 + z2)δ(x, y, z) dm

There is a theorem that allows one to work out the moment of inertia about any axis though
the centre of mass in terms of Ix, Iy, Iz and 3 other numbers that are also given by integrals.
These other numbers are denoted Ixy, Ixz and Ixy and are given by
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Ixy = −
∫∫∫

D

xy dm = −
∫∫∫

D

xyδ(x, y, z) dm

Ixz = −
∫∫∫

D

xz dm = −
∫∫∫

D

xzδ(x, y, z) dm

Iyz = −
∫∫∫

D

yz dm = −
∫∫∫

D

yzδ(x, y, z) dm

The 6 numbers are usually arranged as a 3× 3 matrix Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz


which is called the inertia matrix or inertia tensor of the body.

We need to assume that the origin is the centre of mass. Then we can work out the moment
of inertia of the body about any axis using the inertia matrix. The formula will not concern
us, but here it is anyhow. If u = (u1, u2, u3) is a unit vector parallel to the axis then the
moment of inertia is

(u1 u2 u3)
 Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz

 u1

u2

u3


This matrix product works out as a number (or 1× 1 matrix)

Ixu
2
1 + Iyu

2
2 + Izu

2
3 + 2Ixyu1u2 + 2Iyzu2u3 + 2Ixzu1u3

This seems to link in to linear algebra and it does. The eigenvectors of the inertia matrix
are called ‘principal axes’. Except in cases where the body is exceptionally symmetric,
there will be just 3 such axes. They have the following physical significance: if the body
is rotated about any axis other than a principal axis, then it will tend to vibrate at higher
rates of rotation. This applies to wheels, shafts, rotors in electric motors, propellers, fan
blades and anything that rotates. It is important that the wheel (or whatever it is) should
be designed so that the axis of rotation is one of the principal axes. If you’ve been at a
tyre shop when they change a tyre, you’ll notice that they will clip on small lead weights
around the rim to ‘balance’ the wheel. These weights are actually changing the inertia
matrix slightly to compensate for irregularities in the wheel rim, or the tyre, or the fact that
the valve stem has a small effect. A wheel rim (or a propeller) is not fully symmetric under
rotation about its axle. There are usually air holes or other shaping to the design. These
have to be designed so as to keep the axle as a principal axis.

So Mathematical things have their uses!
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3.10 Examples. (i) Find the volume of a solid ball of radius a.

This is a problem that is well suited to an integral in spherical coordinates. We can take the
ball to be centered at the origin, so that it is

D = {(x, y, z) ∈ R3 :
√

x2 + y2 + z2 ≤ a}.

We know
volume(D) =

∫∫∫
D

1 dx dy dz.

Although this integral is not quite impossible if we do it in x-y-z coordinates via Fubini’s
theorem, the calculations are fairly long. Using spherical coordinates we can describe D as

{(ρ, θ, φ) : 0 ≤ ρ ≤ a, 0 ≤ θ < 2π, 0 ≤ φ ≤ π}

and the integral for the volume becomes

volume =

∫ φ=π

φ=0

(∫ θ=2π

θ=0

(∫ ρ=a

ρ=0

ρ2 sin φ dρ

)
dθ

)
dφ

=

∫ φ=π

φ=0

(∫ θ=2π

θ=0

[
ρ3

3
sin φ

]ρ=a

ρ=0

dθ

)
dφ

=

∫ φ=π

φ=0

(∫ θ=2π

θ=0

a3

3
sin φ dθ

)
dφ

=

∫ φ=π

φ=0

(
2π

a3

3
sin φ

)
dφ

=

[
−2π

a3

3
cos φ

]φ=π

φ=0

= −2π
a3

3
cos π − (−2π

a3

3
cos 0)

= −2π
a3

3
(−1) + 2π

a3

3
=

4

3
πa3

Of course this is the answer we know all along.

(ii) Find the volume of an ellipsoid

x2

a2
+

y2

b2
+

z2

c2
≤ 1

We want the triple integral of the constant function 1 over the part of space defined above.
This is a case where an unusual change of variables saves a lot of pain. Say we define

u =
x

a
, v =

y

b
, w =

z

c
.
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In (u, v, w) coordinates we describe the ellipse as

u2 + v2 + w2 ≤ 1

(that is a unit ball centre the origin).

To change the integral for the volume

volume(ellipsoid) =

∫∫∫
ellipsoid

1 dx dy dz

into an integral in du dv dw we need to work out the Jacobian determinant. Using x = au,
v = ay, and z = cw we get

det

 ∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 =

 a 0 0
0 b 0
0 0 c

 .

The determinant of this matrix is abc and the absolute value of the determinant is also abc.
So ∫∫∫

ellipsoid
1 dx dy dz =

∫∫∫
u2+v2+w2≤1

abc du dv dw

= abc

∫∫∫
u2+v2+w2≤1

1 du dv dw.

We can bring the factor abc outside the integral because it is a constant. This latter integral
is the volume of the unit ball, and so it is 4

3
π. So the volume of the ellipse is

4

3
πabc

(iii) Find the centre of mass of a uniform solid half ball.

We can take the half ball to be the top hemisphere of a ball of some radius a centered at the
origin. So we can take the region of space occupied by the solid to be

D = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ a2, z ≥ 0}

The radius a will have to be part of the answer. Since we are told that the object is uniform,
it means that the density δ(x, y, z) is a constant δ throughout the object. That tell us that
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the value of δ will not come into the answer. For example

z̄ =

∫∫∫
D

zδ(x, y, z) dx dy dz

mass
.

=
δ
∫∫∫

D
z dx dy dz∫∫∫

D
δ dx dy dz

=
δ
∫∫∫

D
z dx dy dz∫∫∫

D
δ dx dy dz

=

∫∫∫
D

z dx dy dz∫∫∫
D

1 dx dy dz

=

∫∫∫
D

z dx dy dz

volume

This fact (that the density does not come in to the position of the centre of mass in the case
of constant density) is always true, but we don’t really need it. We could just work out z̄
and find that the value of δ cancels out in the end.

In the case of x̄ and ȳ, we have a similar fact that δ does not come into their values. So
the position of (x̄, ȳ, z̄) depends only on the shape of the object if it is made of a uniform
material. But the symmetry of the object around the z-axis then makes it fairly obvious that
the centre of mass is along the z-axis. In other words x̄ = ȳ = 0 in this case. We could go
about working out the integrals for x̄ and ȳ, but if we do it right we will get 0 both times.
So really the question is to find z̄ = the distance the centre of mass is away from the centre
along the central axis of the half-ball. We’ll do this in spherical coordinates (ρ, θ, φ) and
we need the ranges 0 ≤ ρ ≤ a, 0 ≤ θ < 2π and 0 ≤ φ ≤ π/2 to cover the half-ball. Recall

z = ρ cos φ, dx dy dz = ρ2 sin φ dρ dθ dφ
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and so we get∫∫∫
D

z dx dy dz =

∫∫
(ρ cos φ)ρ2 sin φ dρ dθ dφ

=

∫ ρ=a

ρ=0

(∫ θ=2π

θ=0

(∫ φ=π/2

φ=0

ρ3 cos φ sin φ dρ

)
dθ

)
dφ

=

∫ ρ=a

ρ=0

(∫ θ=2π

θ=0

(∫ φ=π/2

φ=0

ρ3

2
sin 2φ dρ

)
dθ

)
dφ

=

∫ ρ=a

ρ=0

(∫ θ=2π

θ=0

([
−ρ3

4
cos 2φ

]φ=π/2

φ=0

)
dθ

)
dφ

=

∫ ρ=a

ρ=0

(∫ θ=2π

θ=0

(
ρ3

2

)
dθ

)
dφ

=

∫ ρ=a

ρ=0

πρ3 dφ

=

[
ρ4

4

]ρ=a

ρ=0

=
a4

4

The volume of the half ball is 2πa3/3 and so we get

z̄ =
a4/4

2πa3/3
=

3

8
a

The centre of mass is at (0, 0, (3/8)a), or 3/8 of the way along the central radius from the
centre.

TO BE CHECKED

Richard M. Timoney (February 13, 2007)


