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Chapter 2  
Simple Comparative Experiments 

Solutions 
 
 

2-1 The breaking strength of a fiber is required to be at least 150 psi. Past experience has indicated that 
the standard deviation of breaking strength is  = 3 psi. A random sample of four specimens is tested.  The 
results are y1=145, y2=153, y3=150 and y4=147. 
 
(a) State the hypotheses that you think should be tested in this experiment. 
 
 H0:   = 150          H1:   > 150 
 
(b) Test these hypotheses using  = 0.05.  What are your conclusions? 
 
 n = 4,    = 3, y = 1/4  (145 + 153 + 150 + 147) = 148.75 
 
 148.75 150 1.25 0.8333
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 Since z0.05 = 1.645, do not reject.   
 
(c) Find the P-value for the test in part (b). 
 
 From the z-table:  20140796707995032796701 ....P  
 
(d) Construct a 95 percent confidence interval on the mean breaking strength. 
 
The 95% confidence interval is 

 

2396.175.1482396.175.148

22 n
zy

n
zy  

 
 145 81 151 69. .  
 
 
2-2 The viscosity of a liquid detergent is supposed to average 800 centistokes at 25 C.  A random 
sample of 16 batches of detergent is collected, and the average viscosity is 812.  Suppose we know that the 
standard deviation of viscosity is  = 25 centistokes. 
 
(a) State the hypotheses that should be tested. 
 
 H0:   = 800   H1:    800 
 
(b) Test these hypotheses using  = 0.05.  What are your conclusions? 
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  Since z /2 = z0.025 = 1.96, do not reject.   

 
 (c) What is the P-value for the test?        P 2 0 0274 0 0549( . ) .  
 
(d) Find a 95 percent confidence interval on the mean. 
   

The 95% confidence interval is  
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2-3 The diameters of steel shafts produced by a certain manufacturing process should have a mean 
diameter of 0.255 inches.  The diameter is known to have a standard deviation of  = 0.0001 inch.  A 
random sample of 10 shafts has an average diameter of 0.2545 inches. 
 
(a) Set up the appropriate hypotheses on the mean . 
 
 H0:   = 0.255  H1:    0.255 
 
(b) Test these hypotheses using  = 0.05.  What are your conclusions? 
 

n = 10,    = 0.0001,  y = 0.2545 
 

0.2545 0.255 15.810.0001
10

o
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Since z0.025 = 1.96, reject H0.   
 
(c) Find the P-value for this test.  P=2.6547x10-56 
 
(d) Construct a 95 percent confidence interval on the mean shaft diameter. 
 

The 95% confidence interval is  

n
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0.0001 0.00010.2545 1.96 0.2545 1.96
10 10

 

 
0 254438 0 254562. .  

 
 
2-4 A normally distributed random variable has an unknown mean  and a known variance 2 = 9.  Find 
the sample size required to construct a 95 percent confidence interval on the mean, that has total width of 
1.0. 
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 Since y  N( ,9), a 95% two-sided confidence interval on  is 
 

 y z
n
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 If the total interval is to have width 1.0, then the half-interval is 0.5.  Since z�/2 = z0.025 = 1.96, 
 

 

139301387611

7611503961

503961
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2-5 The shelf life of a carbonated beverage is of interest.  Ten bottles are randomly selected and tested, 
and the following results are obtained: 
 
 Days 
 108 138 
 124 163 
 124 159 
 106 134 
 115 139 
 
(a) We would like to demonstrate that the mean shelf life exceeds 120 days.  Set up appropriate 

hypotheses for investigating this claim. 
 
 H0:   = 120  H1:   > 120 
 
(b) Test these hypotheses using  = 0.01.  What are your conclusions? 
 
 y = 131 
 s2 = [ (108 - 131)2  + (124 - 131)2 + (124 - 131)2 + (106 - 131)2 + (115 - 131)2 + (138 - 131)2 
  + (163 - 131)2 + (159 - 131)2 + (134 - 131)2 + ( 139 - 131)2 ] / (10 - 1) 
 
 s2 = 3438 / 9 = 382 
 s 382 19 54.  
 

 t
y
s no

o 131 120
19 54 10

1 78
.

.  

 
 since t0.01,9 = 2.821; do not reject H0 
  
Minitab Output 
T-Test of the Mean 
 
Test of mu = 120.00 vs mu > 120.00 
 
Variable     N      Mean    StDev   SE Mean        T          P 
Shelf Life  10    131.00    19.54      6.18     1.78      0.054 
 
T Confidence Intervals 
 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

2-4 

Variable     N      Mean    StDev  SE Mean       99.0 % CI 
Shelf Life  10    131.00    19.54     6.18  (  110.91,  151.09) 
 
 
(c) Find the P-value for the test in part (b).  P=0.054 
 
(d) Construct a 99 percent confidence interval on the mean shelf life. 

The 95% confidence interval is 
n
sty

n
sty n,n, 1212

 

 
1954 1954131 3.250 131 3.250

10 10
 

 
110 91 15109. .  

 
 
2-6 Consider the shelf life data in Problem 2-5.  Can shelf life be described or modeled adequately by a 
normal distribution?  What effect would violation of this assumption have on the test procedure you used in 
solving Problem 2-5? 
 
A normal probability plot, obtained from Minitab, is shown.  There is no reason to doubt the adequacy of 
the normality assumption.  If shelf life is not normally distributed, then the impact of this on the t-test in 
problem 2-5 is not too serious unless the departure from normality is severe. 
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2-7 The time to repair an electronic instrument is a normally distributed random variable measured in 
hours.  The repair time for 16 such instruments chosen at random are as follows: 
 
 Hours 
 159 280 101 212 
 224 379 179 264 
 222 362 168 250 
 149 260 485 170 
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(a) You wish to know if the mean repair time exceeds 225 hours.  Set up appropriate hypotheses for 
investigating this issue. 

 H0:   = 225  H1:   > 225 
 
(b) Test the hypotheses you formulated in part (a). What are your conclusions?  Use  = 0.05. 
 

y = 247.50 
s2 =146202 / (16 - 1) = 9746.80 

 
s 9746 8 98 73. .  

 
241.50 225 0.6798.73

16

o
o

yt s
n

 

 
since t0.05,15 = 1.753; do not reject H0 

 
Minitab Output 
T-Test of the Mean 
 
Test of mu = 225.0 vs mu > 225.0 
 
Variable     N      Mean    StDev   SE Mean        T          P 
Hours       16     241.5     98.7      24.7     0.67       0.26 
 
T Confidence Intervals 
 
Variable     N      Mean    StDev  SE Mean       95.0 % CI 
Hours       16     241.5     98.7     24.7  (   188.9,   294.1) 
 
(c) Find the P-value for this test.  P=0.26 
 
(d) Construct a 95 percent confidence interval on mean repair time. 
 

 The 95% confidence interval is 
n
sty

n
sty n,n, 1212

 

 
98.73 98.73241.50 2.131 241.50 2.131

16 16
 

 
12949188 ..  

 
 
2-8 Reconsider the repair time data in Problem 2-7.  Can repair time, in your opinion, be adequately 
modeled by a normal distribution? 
 
The normal probability plot below does not reveal any serious problem with the normality assumption. 
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2-9 Two machines are used for filling plastic bottles with a net volume of 16.0 ounces.  The filling 
processes can be assumed to be normal, with standard deviation of 1 = 0.015 and 2 = 0.018.  The quality 
engineering department suspects that both machines fill to the same net volume, whether or not this volume 
is 16.0 ounces.  An experiment is performed by taking a random sample from the output of each machine. 
 
 Machine 1 Machine 2 
 16.03 16.01 16.02 16.03 
 16.04 15.96 15.97 16.04 
 16.05 15.98 15.96 16.02 
 16.05 16.02 16.01 16.01 
 16.02 15.99 15.99 16.00 
 
(a) State the hypotheses that should be tested in this experiment.  
 
 H0:  1 = 2  H1:  1  2 
 
(b) Test these hypotheses using =0.05.  What are your conclusions?  
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 z0.025 = 1.96; do not reject 
 
(c) What is the P-value for the test?  P=0.1770 
 
(d) Find a 95 percent confidence interval on the difference in the mean fill volume for the two machines. 
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The 95% confidence interval is 
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2-10 Two types of plastic are suitable for use by an electronic calculator manufacturer.  The breaking 
strength of this plastic is important.  It is known that 1 = 2 = 1.0 psi.  From random samples of n1 = 10 
and n2 = 12 we obtain y 1 = 162.5 and y 2 = 155.0.  The company will not adopt plastic 1 unless its 
breaking strength exceeds that of plastic 2 by at least 10 psi.  Based on the sample information, should they 
use plastic 1?  In answering this questions, set up and test appropriate hypotheses using  = 0.01.  
Construct a 99 percent confidence interval on the true mean difference in breaking strength. 
 
 H0:  1 - 2 =10    H1:   1 - 2 >10 
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 z0.01 = 2.225; do not reject 
 
The  99 percent confidence interval is 
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2-11 The following are the burning times of chemical flares of two different formulations. The design 
engineers are interested in both the means and variance of the burning times. 
 
 Type 1 Type 2 
 65 82 64 56 
 81 67 71 69 
 57 59 83 74 
 66 75 59 82 
 82 70 65 79 
 
(a)  Test the hypotheses that the two variances are equal.  Use  = 0.05.  
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(b)  Using the results of (a), test the hypotheses that the mean burning times are equal.  Use  = 0.05.  

What is the P-value for this test?  
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t0 025 18 2101. , .    Do not reject. 
 
From the computer output, t=0.05; do not reject.  Also from the computer output P=0.96 
 
Minitab Output 
Two Sample T-Test and Confidence Interval 
 
Two sample T for Type 1 vs Type 2 
 
         N      Mean     StDev   SE Mean 
Type 1  10     70.40      9.26       2.9 
Type 2  10     70.20      9.37       3.0 
 
95% CI for mu Type 1 - mu Type 2: ( -8.6,  9.0) 
T-Test mu Type 1 = mu Type 2 (vs not =): T = 0.05  P = 0.96  DF = 18 
Both use Pooled StDev = 9.32 
 
(c)  Discuss the role of the normality assumption in this problem.  Check the assumption of normality for 

both types of flares. 
 
The assumption of normality is required in the theoretical development of the t-test.  However, moderate 
departure from normality has little impact on the performance of the t-test.  The normality assumption is 
more important for the test on the equality of the two variances.  An indication of nonnormality would be 
of concern here.  The normal probability plots shown below indicate that burning time for both 
formulations follow the normal distribution. 
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2-12 An article in Solid State Technology, "Orthogonal Design of Process Optimization and Its 
Application to Plasma Etching" by G.Z. Yin and D.W. Jillie (May, 1987) describes an experiment to 
determine the effect of C2F6 flow rate on the uniformity of the etch on a silicon wafer used in integrated 
circuit manufacturing.  Data for two flow rates are as follows: 
 
 C2F6  Uniformity Observation   
 (SCCM) 1 2 3 4 5 6  
 125 2.7 4.6 2.6 3.0 3.2 3.8 
 200 4.6 3.4 2.9 3.5 4.1 5.1 
  
(a) Does the C2F6 flow rate affect average etch uniformity?  Use  = 0.05. 
 
No, C2F6 flow rate does not affect average etch uniformity. 
 
Minitab Output 
Two Sample T-Test and Confidence Interval 
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Two sample T for Uniformity 
 
Flow Rat    N      Mean     StDev   SE Mean 
125         6     3.317     0.760      0.31 
200         6     3.933     0.821      0.34 
 
95% CI for mu (125) - mu (200): ( -1.63,  0.40) 
T-Test mu (125) = mu (200) (vs not =): T = -1.35  P = 0.21  DF = 10 
Both use Pooled StDev = 0.791 
 
(b) What is the P-value for the test in part (a)?  From the computer printout, P=0.21 
 
(c) Does the C2F6 flow rate affect the wafer-to-wafer variability in etch uniformity?  Use  = 0.05. 
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Do not reject; C2F6 flow rate does not affect wafer-to-wafer variability. 
 
(d)  Draw box plots to assist in the interpretation of the data from this experiment. 
 
The box plots shown below indicate that there is little difference in uniformity at the two gas flow rates.  
Any observed difference is not statistically significant.  See the t-test in part (a). 
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2-13 A new filtering device is installed in a chemical unit.  Before its installation, a random sample 
yielded the following information about the percentage of impurity:  y 1 = 12.5, S1

2  =101.17, and n
1
 = 8.  

After installation, a random sample yielded y 2 = 10.2, S2
2  = 94.73, n

2
 = 9. 

 
(a) Can you concluded that the two variances are equal?  Use  = 0.05. 
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Do Not Reject.  Assume that the variances are equal. 
 
(b) Has the filtering device reduced the percentage of impurity significantly?  Use  = 0.05. 
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Do not reject.  There is no evidence to indicate that the new filtering device has affected the mean  
 
 
2-14 Twenty observations on etch uniformity on silicon wafers are taken during a qualification 
experiment for a plasma etcher.  The data are as follows: 
 
 5.34 6.65 4.76 5.98 7.25 
 6.00 7.55 5.54     5.62 6.21 
 5.97 7.35 5.44 4.39 4.98 
 5.25 6.35 4.61 6.00 5.32 
 
(a) Construct a 95 percent confidence interval estimate of 2. 
 

2 2
2

2 2
, 1 (1 ), 12 2

2 2
2

2

1 1

20 1 0.88907 20 1 0.88907
32.852 8.907

0.457 1.686

n n

n S n S

 

 
(b)  Test the hypothesis that 2 = 1.0.  Use  = 0.05.  What are your conclusions?  
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Do not reject.  There is no evidence to indicate that 1
2 1  

 
(c)  Discuss the normality assumption and its role in this problem. 
 
The normality assumption is much more important when analyzing variances then when analyzing means.  
A moderate departure from normality could cause problems with both statistical tests and confidence 
intervals.  Specifically, it will cause the reported significance levels to be incorrect. 
 
(d)  Check normality by constructing a normal probability plot.  What are your conclusions? 
 
The normal probability plot indicates that there is not any serious problem with the normality assumption. 
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2-15 The diameter of a ball bearing was measured by 12 inspectors, each using two different kinds of 
calipers.  The results were: 
 

Inspector Caliper 1 Caliper 2 Difference Difference^2 
1 0.265 0.264 .001 .000001 
2 0.265 0.265 .000 0 
3 0.266 0.264 .002 .000004 
4 0.267 0.266 .001 .000001 
5 0.267 0.267 .000 0 
6 0.265 0.268 -.003 .000009 
7 0.267 0.264 .003 .000009 
8 0.267 0.265 .002 .000004 
9 0.265 0.265 .000 0 
10 0.268 0.267 .001 .000001 
11 0.268 0.268 .000 0 
12 0.265 0.269 -.004 .000016 
   0 003.  0 000045.  

 
(a) Is there a significant difference between the means of the population of measurements represented by 

the two samples?  Use  = 0.05. 
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Minitab Output 
Paired T-Test and Confidence Interval 
 
Paired T for Caliper 1 - Caliper 2 
 
                  N      Mean     StDev   SE Mean 
Caliper          12  0.266250  0.001215  0.000351 
Caliper          12  0.266000  0.001758  0.000508 
Difference       12  0.000250  0.002006  0.000579 
 
95% CI for mean difference: (-0.001024, 0.001524) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.43  P-Value = 0.674 
 
(b) Find the P-value for the test in part (a).  P=0.674 
 
(c) Construct a 95 percent confidence interval on the difference in the mean diameter measurements for 

the two types of calipers. 
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2-16 An article in the Journal of Strain Analysis (vol.18, no. 2, 1983) compares several procedures for 
predicting the shear strength for steel plate girders.  Data for nine girders in the form of the ratio of 
predicted to observed load for two of these procedures, the Karlsruhe and Lehigh methods, are as follows: 
 

Girder Karlsruhe Method Lehigh Method Difference Difference^2 
S1/1 1.186 1.061 0.125 0.015625 
S2/1 1.151 0.992 0.159 0.025281 
S3/1 1.322 1.063 0.259 0.067081 
S4/1 1.339 1.062 0.277 0.076729 
S5/1 1.200 1.065 0.135 0.018225 
S2/1 1.402 1.178 0.224 0.050176 
S2/2 1.365 1.037 0.328 0.107584 
S2/3 1.537 1.086 0.451 0.203401 
S2/4 1.559 1.052 0.507 0.257049 
  Sum = 2.465 0.821151 
  Average =  0.274  

 
(a)  Is there any evidence to support a claim that there is a difference in mean performance between the two 

methods?  Use  = 0.05. 
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.tt ,.n, , reject the null hypothesis. 

Minitab Output 
Paired T-Test and Confidence Interval 
 
Paired T for Karlsruhe - Lehigh 
 
                  N      Mean     StDev   SE Mean 
Karlsruh          9    1.3401    0.1460    0.0487 
Lehigh            9    1.0662    0.0494    0.0165 
Difference        9    0.2739    0.1351    0.0450 
 
95% CI for mean difference: (0.1700, 0.3777) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 6.08  P-Value = 0.000 
 
(b) What is the P-value for the test in part (a)?  P=0.0002 
 
(c) Construct a 95 percent confidence interval for the difference in mean predicted to observed load. 
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(d)  Investigate the normality assumption for both samples. 
 

P-Value:   0.537
A-Squared: 0.286

Anderson-Darling Normality  Test
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P-Value:   0.028
A-Squared: 0.772

Anderson-Darling Normality  Test

N: 9
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(e)  Investigate the normality assumption for the difference in ratios for the two methods. 
 

P-Value:   0.464
A-Squared: 0.318

Anderson-Darling Normality  Test
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Av erage: 0.273889
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(f)  Discuss the role of the normality assumption in the paired t-test. 
 
As in any t-test, the assumption of normality is of only moderate importance.  In the paired t-test, the 
assumption of normality applies to the distribution of the differences.  That is, the individual sample 
measurements do not have to be normally distributed, only their difference. 
 
 
2-17 The deflection temperature under load for two different formulations of ABS plastic pipe is being 
studied.  Two samples of 12 observations each are prepared using each formulation, and the deflection 
temperatures (in F) are reported below: 
 

 Formulation 1    Formulation 2  
212 199 198  177 176 198 
194 213 216  197 185 188 
211 191 200  206 200 189 
193 195 184  201 197 203 
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(a) Construct normal probability plots for both samples.  Do these plots support assumptions of normality 
and equal variance for both samples? 

 

P-Value:   0.227
A-Squared: 0.450

Anderson-Darling Normality  Test

N: 12
StDev : 10.1757
Av erage: 200.5
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P-Value:   0.236
A-Squared: 0.443

Anderson-Darling Normality  Test

N: 12
StDev : 9.94949
Av erage: 193.083
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(b) Do the data support the claim that the mean deflection temperature under load for formulation 1 
exceeds that of formulation 2?  Use  = 0.05. 

 
Minitab Output 
Two Sample T-Test and Confidence Interval 
 
Two sample T for Form 1 vs Form 2 
 
         N      Mean     StDev   SE Mean 
Form 1  12     200.5      10.2       2.9 
Form 2  12    193.08      9.95       2.9 
 
95% CI for mu Form 1 - mu Form 2: ( -1.1,  15.9) 
T-Test mu Form 1 = mu Form 2 (vs >): T = 1.81  P = 0.042  DF = 22 
Both use Pooled StDev = 10.1 
 
(c) What is the P-value for the test in part (a)?  P = 0.042 
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2-18 Refer to the data in problem 2-17.  Do the data support a claim that the mean deflection temperature 
under load for formulation 1 exceeds that of formulation 2 by at least 3 F? 
Yes, formulation 1 exceeds formulation 2 by at least 3 F. 
 
Minitab Output 
Two-Sample T-Test and CI: Form1, Form2 
 
Two-sample T for Form1 vs Form2 
 
        N      Mean     StDev   SE Mean 
Form1  12     200.5      10.2       2.9 
Form2  12    193.08      9.95       2.9r 
Difference = mu Form1 - mu Form2 
Estimate for difference:  7.42 
95% lower bound for difference: 0.36 
T-Test of difference = 3 (vs >): T-Value = 1.08  P-Value = 0.147  DF = 22 
Both use Pooled StDev = 10.1 
 
 
2-19 In semiconductor manufacturing, wet chemical etching is often used to remove silicon from the 
backs of wafers prior to metalization.  The etch rate is an important characteristic of this process.  Two 
different etching solutionsare being evaluated.  Eight randomly selected wafers have been etched in each 
solution and the observed etch rates (in mils/min) are shown below: 
 

 Solution 1    Solution 2  
9.9  10.6  10.2  10.6 
9.4  10.3  10.0  10.2 

10.0    9.3  10.7  10.4 
10.3    9.8  10.5  10.3 

 
(a) Do the data indicate that the claim that both solutions have the same mean etch rate is valid?  Use  = 

0.05 and assume equal variances. 
 
See the Minitab output below. 
 
Minitab Output 
Two Sample T-Test and Confidence Interval 
 
Two sample T for Solution 1 vs Solution 2 
 
          N      Mean     StDev   SE Mean 
Solution  8     9.925     0.465      0.16 
Solution  8    10.362     0.233     0.082 
 
95% CI for mu Solution - mu Solution: ( -0.83,  -0.043) 
T-Test mu Solution = mu Solution (vs not =):T = -2.38 P = 0.032 DF = 14 
Both use Pooled StDev = 0.368 
 
(b) Find a 95% confidence interval on the difference in mean etch rate. 
 
From the Minitab output, -0.83 to –0.043. 

 
(c) Use normal probability plots to investigate the adequacy of the assumptions of normality and equal 

variances. 
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P-Value:   0.743
A-Squared: 0.222

Anderson-Darling Normality  Test

N: 8
StDev : 0.465219
Av erage: 9.925
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P-Value:   0.919
A-Squared: 0.158

Anderson-Darling Normality  Test

N: 8
StDev : 0.232609
Av erage: 10.3625
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Both the normality and equality of variance assumptions are valid. 
 
 
2-20 Two popular pain medications are being compared on the basis of the speed of absorption by the 
body.  Specifically, tablet 1 is claimed to be absorbed twice as fast as tablet 2.  Assume that 2

1  and 2
2  

are known.  Develop a test statistic for  
 
 H0:  2 1 = 2 
 H1:  2 1  2 

 

 
2 2

1 2
1 2 1 2

1 2

42 ~ 2 ,y y N
n n

, assuming that the data is normally distributed.   

 The test statistic is:   z
y y

n n

o
2

4
1 2

1
2

1

2
2

2

, reject if z zo 2
 

 
2-21 Suppose we are testing  
 
 H0:  1 = 2 
 H1:  1  2 
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where 2

1   and 2
2  are known.  Our sampling resources are constrained such that n1 + n2 = N.  How should 

we allocate the N observations between the two populations to obtain the most powerful test? 
 
 The most powerful test is attained by the n1 and n2 that maximize zo for given y y1 2 .  

 Thus, we chose n1 and n2 to   max z
y y

n n

o
1 2

1
2

1

2
2

2

, subject to n1 + n2 = N.   

 This is equivalent to min L
n n n N n

1
2

1

2
2

2

1
2

1

2
2

1
, subject to n1 + n2 = N.   

 Now 
2 2
1 2

22
1 1 1

0dL
dn n N n

,  implies that n1 / n2 = 1 / 2.   

 Thus n1 and n2 are assigned proportionally to the ratio of the standard deviations.  This has  
 intuitive appeal, as it allocates more observations to the population with the greatest variability. 
 
 
2-22 Develop Equation 2-46 for a 100(1 - ) percent confidence interval for the variance of a normal 
distribution. 
 

 2
12 ~ n

SS   .  Thus, 2 2

1 , 1 , 1
2 2

2 1
n n

SSP  .  Therefore,  

 
2 2

, 1 1 , 1
2 2

2 1
n n

SS SSP ,  

 so 
2 2

, 1 1 , 1
2 2

,
n n

SS SS  is the 100(1 - )% confidence interval on 2. 

 
 
2-23 Develop Equation 2-50 for a 100(1 - ) percent confidence interval for the ratio 1

2  / 2
2 , where 2

1  

and 2
2  are the variances of two normal distributions. 

 
 

2 1

2 2
2 2

1, 12 2
1 1

~ n n
S F
S

 

 
2 12

2

2 2
2 2

1 , 1, 1 2 2 , 1, 12 11 1

1n n n n

SP F F
S

  or 

 
2 12 2

2 2 2
1 1 1

1 , 1, 12 2 2 , 1, 12 12 2 2

1n n n n

S SP F F
S S

 

 
 
2-24 Develop an equation for finding a 100(1 - ) percent confidence interval on the difference in the 
means of two normal distributions where 2

1   2
2 .  Apply your equation to the portland cement 

experiment data, and find a 95% confidence interval. 
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Using the data from Table 2-1 
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1 21.426 0.889  

 
This agrees with the result in Table 2-2. 
 
 
 
2-25 Construct a data set for which the paired t-test statistic is very large, but for which the usual two-
sample or pooled t-test statistic is small.  In general, describe how you created the data.  Does this give you 
any insight regarding how the paired t-test works? 
 
      A B delta  
 7.1662 8.2416 1.07541 
 2.3590 2.4555 0.09650 
 19.9977 21.1018 1.10412 
 0.9077 2.3401 1.43239 
 -15.9034 -15.0013 0.90204 
 -6.0722 -5.5941 0.47808 
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 9.9501 10.6910 0.74085 
 -1.0944 -0.1358 0.95854 
 -4.6907 -3.3446 1.34615 
 -6.6929 -5.9303 0.76256 
 
Minitab Output 
Paired T-Test and Confidence Interval 
 
Paired T for A - B 
                  N      Mean     StDev   SE Mean 
A                10      0.59     10.06      3.18 
B                10      1.48     10.11      3.20 
Difference       10    -0.890     0.398     0.126 
 
95% CI for mean difference: (-1.174, -0.605) 
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.07  P-Value = 0.000 
 
Two Sample T-Test and Confidence Interval 
 
Two sample T for A vs B 
 
    N      Mean     StDev   SE Mean 
A  10       0.6      10.1       3.2 
B  10       1.5      10.1       3.2 
 
95% CI for mu A - mu B: ( -10.4,  8.6) 
T-Test mu A = mu B (vs not =): T = -0.20  P = 0.85  DF = 18 
Both use Pooled StDev = 10.1 
 
These two sets of data were created by making the observation for A and B moderately different within 
each pair (or block), but making the observations between pairs very different.  The fact that the difference 
between pairs is large makes the pooled estimate of the standard deviation large and the two-sample t-test 
statistic small.  Therefore the fairly small difference between the means of the two treatments that is present 
when they are applied to the same experimental unit cannot be detected.  Generally, if the blocks are very 
different, then this will occur.  Blocking eliminates the variabiliy associated with the nuisance variable that 
they represent. 
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Chapter 3  
Experiments with a Single Factor:  The Analysis of Variance 

Solutions 
 
 
3-1 The tensile strength of portland cement is being studied.  Four different mixing techniques can be 
used economically.  The following data have been collected: 
 
 Mixing Technique         Tensile Strength (lb/in2)   
 1    3129 3000 2865 2890 
 2    3200 3300 2975 3150 
 3    2800 2900 2985 3050 
 4    2600 2700 2600 2765 
 
(a)  Test the hypothesis that mixing techniques affect the strength of the cement.  Use  = 0.05. 
 
Design Expert Output 
Response: Tensile Strengthin lb/in^2 
    ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 4.897E+005 3 1.632E+005 12.73 0.0005          significant 
 A 4.897E+005 3 1.632E+005 12.73  0.0005 
 Residual 1.539E+005 12 12825.69 
 Lack of Fit 0.000 0 
 Pure Error 1.539E+005 12 12825.69 
 Cor Total 6.436E+005 15 
 
 The Model F-value of 12.73 implies the model is significant.  There is only 
 a 0.05% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 2971.00  56.63 
  2-2 3156.25  56.63 
  3-3 2933.75  56.63 
  4-4 2666.25  56.63 
 
  Mean  Standard t for H0 
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -185.25 1 80.08 -2.31 0.0392 
   1 vs  3 37.25 1 80.08 0.47 0.6501 
   1 vs  4 304.75 1 80.08 3.81 0.0025 
   2 vs  3 222.50 1 80.08 2.78 0.0167 
   2 vs  4 490.00 1 80.08 6.12 < 0.0001 
   3 vs  4 267.50 1 80.08 3.34 0.0059 
 
The F-value is 12.73 with a corresponding P-value of .0005.  Mixing technique has an effect. 
 
(b)  Construct a graphical display as described in Section 3-5.3 to compare the mean tensile strengths for 

the four mixing techniques.  What are your conclusions?  
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Based on examination of the plot, we would conclude that 1  and 3  are the same; that 4 differs from  

1 and 3 , that 2  differs from 1  and 3 , and that  2 and 4  are different. 
 
(c)  Use the Fisher LSD method with =0.05 to make comparisons between pairs of means. 
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Treatment 2 vs. Treatment 4 = 3156.250 - 2666.250 = 490.000 > 174.495  
Treatment 2 vs. Treatment 3 = 3156.250 - 2933.750 = 222.500 > 174.495 
Treatment 2 vs. Treatment 1 = 3156.250 - 2971.000 = 185.250 > 174.495 
Treatment 1 vs. Treatment 4 = 2971.000 - 2666.250 = 304.750 > 174.495 
Treatment 1 vs. Treatment 3 = 2971.000 - 2933.750 =   37.250 < 174.495 
Treatment 3 vs. Treatment 4 = 2933.750 - 2666.250 = 267.500 > 174.495 

 
The Fisher LSD method is also presented in the Design-Expert computer output above.  The results agree 
with graphical method for this experiment. 
 
(d)  Construct a normal probability plot of the residuals.  What conclusion would you draw about the 

validity of the normality assumption?   
 
There is nothing unusual about the normal probability plot of residuals. 
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(e)  Plot the residuals versus the predicted tensile strength.  Comment on the plot. 
 
There is nothing unusual about this plot. 
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(f)  Prepare a scatter plot of the results to aid the interpretation of the results of this experiment. 
 
Design-Expert automatically generates the scatter plot.  The plot below also shows the sample average for 
each treatment and the 95 percent confidence interval on the treatment mean. 
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3-2 Rework part (b) of Problem 3-1 using the Duncan's multiple range test.  Does this make any 
difference in your conclusions? 
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Treatment 2 vs. Treatment 4 = 3156.250 - 2666.250 = 490.000 > 188.562 (R4) 
Treatment 2 vs. Treatment 3 = 3156.250 - 2933.750 = 222.500 > 182.900 (R3) 
Treatment 2 vs. Treatment 1 = 3156.250 - 2971.000 = 185.250 > 174.406 (R2) 
Treatment 1 vs. Treatment 4 = 2971.000 - 2666.250 = 304.750 > 182.900 (R3) 
Treatment 1 vs. Treatment 3 = 2971.000 - 2933.750 =   37.250 < 174.406 (R2) 
Treatment 3 vs. Treatment 4 = 2933.750 - 2666.250 = 267.500 > 174.406 (R2) 

 
Treatment 3 and Treatment 1 are not different.  All other pairs of means differ.  This is the same result 
obtained from the Fisher LSD method and the graphical method. 
 
(b)  Rework part (b) of Problem 3-1 using Tukey’s test with  = 0.05.  Do you get the same conclusions 

from Tukey’s test that you did from the graphical procedure and/or Duncan’s multiple range test? 
 
Minitab Output 
Tukey's pairwise comparisons 
 
    Family error rate = 0.0500 
Individual error rate = 0.0117 
Critical value = 4.20 
 
Intervals for (column level mean) - (row level mean) 
 
                 1           2           3 
 
       2        -423 
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                  53 
 
       3        -201         -15 
                 275         460 
 
       4          67         252          30 
                 543         728         505 
 
No, the conclusions are not the same.  The mean of Treatment 4 is different than the means of Treatments 
1, 2, and 3.  However, the mean of Treatment 2 is not different from the means of Treatments 1 and 3 
according to the Tukey method, they were found to be different using the graphical method and Duncan’s 
multiple range test. 
 
(c)  Explain the difference between the Tukey and Duncan procedures. 
 
A single critical value is used for comparison with the Tukey procedure where a – 1 critical values are 
used with the Duncan procedure.  Tukey’s test has a type I error rate of  for all pairwise comparisons 
where Duncan’s test type I error rate varies based on the steps between the means.  Tukey’s test is more 
conservative and has less power than Duncan’s test. 
 
 
3-3 Reconsider the experiment in Problem 3-1.  Find a 95 percent confidence interval on the mean 
tensile strength of the portland cement produced by each of the four mixing techniques.  Also find a 95 
percent confidence interval on the difference in means for techniques 1 and 3.  Does this aid in 
interpreting the results of the experiment? 
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3-4 An experiment was run to determine whether four specific firing temperatures affect the density of 
a certain type of brick.  The experiment led to the following data: 
 
 Temperature      Density    
 100 21.8 21.9 21.7 21.6 21.7 
 125 21.7 21.4 21.5 21.4 
 150 21.9 21.8 21.8 21.6 21.5 
 175  21.9 21.7  21.8  21.4 
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(a)  Does the firing temperature affect the density of the bricks?  Use  = 0.05.   
 
No, firing temperature does not affect the density of the bricks.  Refer to the Design-Expert output below. 
 
Design Expert Output 
 Response: Density 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.16 3 0.052 2.02 0.1569 not significant 
 A 0.16 3 0.052 2.02 0.1569 
 Residual 0.36 14 0.026 
 Lack of Fit 0.000 0 
 Pure Error 0.36 14 0.026 
 Cor Total 0.52 17 
 
 The "Model F-value" of 2.02 implies the model is not significant relative to the noise.  There is a 
 15.69 % chance that a "Model F-value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-100 21.74  0.072 
  2-125 21.50  0.080 
  3-150 21.72  0.072 
  4-175 21.70  0.080 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.24 1 0.11 2.23 0.0425 
   1 vs  3 0.020 1 0.10 0.20 0.8465 
   1 vs  4 0.040 1 0.11 0.37 0.7156 
   2 vs  3 -0.22 1 0.11 -2.05 0.0601 
   2 vs  4 -0.20 1 0.11 -1.76 0.0996 
   3 vs  4 0.020 1 0.11 0.19 0.8552 
 
(b)  Is it appropriate to compare the means using Duncan’s multiple range test in this experiment?   
 
The analysis of variance tells us that there is no difference in the treatments.  There is no need to proceed 
with Duncan’s multiple range test to decide which mean is difference. 
 
(c) Analyze the residuals from this experiment.  Are the analysis of variance assumptions satisfied?  

There is nothing unusual about the residual plots. 
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 (d) Construct a graphical display of the treatments as described in Section 3-5.3.  Does this graph 

adequately summarize the results of the analysis of variance in part (b).  Yes. 
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3-5 Rework Part (d) of Problem 3-4 using the Fisher LSD method.  What conclusions can you draw?  
Explain carefully how you modified the procedure to account for unequal sample sizes. 

 
When sample sizes are unequal, the appropriate formula for the LSD is 
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Treatment 1 vs. Treatment 2 = 21.74 – 21.50 = 0.24 > 0.2320  
Treatment 1 vs. Treatment 3 = 21.74 – 21.72 = 0.02 < 0.2187 
Treatment 1 vs. Treatment 4 = 21.74 – 21.70 = 0.04 < 0.2320 
Treatment 3 vs. Treatment 2 = 21.72 – 21.50 = 0.22 < 0.2320 
Treatment 4 vs. Treatment 2 = 21.70 – 21.50 = 0.20 < 0.2446 
Treatment 3 vs. Treatment 4 = 21.72 – 21.70 = 0.02 < 0.2320 
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Treatment 1, temperature of 100, is different than Treatment 2, temperature of 125.  All other pairwise 
comparisons do not identify differences.  Notice something very interesting has happened here.  The 
analysis of variance indicated that there were no differences between treatment means, yet the LSD 
procedure found a difference; in fact, the Design-Expert output indicates that the P-value if slightly less 
that 0.05.  This illustrates a danger of using multiple comparison procedures without relying on the results 
from the analysis of variance.  Because we could not reject the hypothesis of equal means using the 
analysis of variance, we should never have performed the Fisher LSD (or any other multiple comparison 
procedure, for that matter).  If you ignore the analysis of variance results and run multiple comparisons, 
you will likely make type I errors. 
 
The LSD calculations utilized Equation 3-32, which accommodates different sample sizes.  Equation 3-32 
simplifies to Equation 3-33 for a balanced design experiment. 
 
 
3-6 A manufacturer of television sets is interested in the effect of tube conductivity of four different 
types of coating for color picture tubes.  The following conductivity data are obtained: 
 
 Coating Type Conductivity  
 1 143 141 150 146 
 2 152 149 137 143 
 3 134 136 132 127 
 4 129 127 132 129 
 
(a)  Is there a difference in conductivity due to coating type?  Use  = 0.05.   
 
Yes, there is a difference in means.  Refer to the Design-Expert output below.. 
 
Design Expert Output 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 844.69 3 281.56 14.30 0.0003 significant 
 A 844.69 3 281.56 14.30 0.0003 
 Residual 236.25 12 19.69 
 Lack of Fit 0.000 0 
 Pure Error 236.25 12 19.69 
 Cor Total 1080.94 15 
 
 The Model F-value of 14.30 implies the model is significant.  There is only 
 a 0.03% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 145.00  2.22 
  2-2 145.25  2.22 
  3-3 132.25  2.22 
  4-4 129.25  2.22 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.25 1 3.14 -0.080 0.9378 
   1 vs  3 12.75 1 3.14 4.06 0.0016 
   1 vs  4 15.75 1 3.14 5.02 0.0003 
   2 vs  3 13.00 1 3.14 4.14 0.0014 
   2 vs  4 16.00 1 3.14 5.10 0.0003 
   3 vs  4 3.00 1 3.14 0.96 0.3578 
 
(b)  Estimate the overall mean and the treatment effects. 
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(c)  Compute a 95 percent interval estimate of the mean of coating type 4.  Compute a 99 percent interval 

estimate of the mean difference between coating types 1 and 4. 
 

Treatment 4: 
4
6919179225129 ...  

08451344155124 4 ..  

Treatment 1 - Treatment 4: 
4

69192055325129145 ...  

336251646 41 ..  
 
(d) Test all pairs of means using the Fisher LSD method with =0.05. 
 
Refer to the Design-Expert output above.  The Fisher LSD procedure is automatically included in the 
output. 
 
The means of Coating Type 2 and Coating Type 1 are not different. The means of Coating Type 3 and 
Coating Type 4 are not different.  However, Coating Types 1 and 2 produce higher mean conductivity that 
does Coating Types 3 and 4.  
 
(e)  Use the graphical method discussed in Section 3-5.3 to compare the means.  Which coating produces 

the highest conductivity?  
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(f)  Assuming that coating type 4 is currently in use, what are your recommendations to the 
manufacturer?  We wish to minimize conductivity.   

 
Since coatings 3 and 4 do not differ, and as they both produce the lowest mean values of conductivity, use 
either coating 3 or 4.  As type 4 is currently being used, there is probably no need to change. 
 
 
3-7 Reconsider the experiment in Problem 3-6.  Analyze the residuals and draw conclusions about 
model adequacy.   
 
There is nothing unusual in the normal probability plot.  A funnel shape is seen in the plot of residuals 
versus predicted conductivity indicating a possible non-constant variance. 
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3-8 An article in the ACI Materials Journal (Vol. 84, 1987. pp. 213-216) describes several experiments 
investigating the rodding of concrete to remove entrapped air.  A 3” x 6” cylinder was used, and the 
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number of times this rod was used is the design variable.  The resulting compressive strength of the 
concrete specimen is the response.  The data are shown in the following table. 
 
  Rodding Level Compressive Strength  
 10  1530 1530 1440 
 15  1610 1650 1500 
 20  1560 1730 1530 
 25  1500 1490 1510 
 
(a)  Is there any difference in compressive strength due to the rodding level?  Use  = 0.05.  
 
There are no differences. 
 
Design Expert Output 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 28633.33 3 9544.44 1.87 0.2138 not significant 
 A 28633.33 3 9544.44 1.87 0.2138 
 Residual 40933.33 8 5116.67 
 Lack of Fit 0.000 0 
 Pure Error 40933.33 8 5116.67 
 Cor Total 69566.67 11 
 
 The "Model F-value" of 1.87 implies the model is not significant relative to the noise.  There is a 
 21.38 % chance that a "Model F-value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
 Estimated Standard 
 Mean Error 
  1-10 1500.00 41.30 
  2-15 1586.67 41.30 
  3-20 1606.67 41.30 
  4-25 1500.00 41.30 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -86.67 1 58.40 -1.48 0.1761 
   1 vs  3 -106.67 1 58.40 -1.83 0.1052 
   1 vs  4 0.000 1 58.40 0.000 1.0000 
   2 vs  3 -20.00 1 58.40 -0.34 0.7408 
   2 vs  4 86.67 1 58.40 1.48 0.1761 
   3 vs  4 106.67 1 58.40 1.83 0.1052 
 
(b)  Find the P-value for the F statistic in part (a).  From computer output, P=0.2138. 
 
(c)  Analyze the residuals from this experiment.  What conclusions can you draw about the underlying 

model assumptions?   
 
There is nothing unusual about the residual plots.   
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(d)  Construct a graphical display to compare the treatment means as describe in Section 3-5.3. 
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3-9 An article in Environment International (Vol. 18, No. 4, 1992) describes an experiment in which 
the amount of radon released in showers was investigated.  Radon enriched water was used in the 
experiment and six different orifice diameters were tested in shower heads.  The data from the experiment 
are shown in the following table. 
 
 Orifice Dia. Radon Released (%)  
 0.37  80 83 83 85 

0.51   75 75 79 79 
 0.71  74 73 76 77 
 1.02  67 72 74 74 
 1.40  62 62 67 69 
 1.99  60 61 64 66 
 
(a)  Does the size of the orifice affect the mean percentage of radon released?  Use  = 0.05.   
 
Yes. There is at least one treatment mean that is different. 
 
Design Expert Output 
 Response: Radon Released in % 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1133.38 5 226.68 30.85 < 0.0001 significant 
 A 1133.38 5 226.68 30.85 < 0.0001 
 Residual 132.25 18 7.35 
 Lack of Fit 0.000 0 
 Pure Error 132.25 18 7.35 
 Cor Total 1265.63 23 
 
 The Model F-value of 30.85 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  EstimatedStandard 
  Mean Error 
   1-0.37 82.75 1.36 
  2-0.51 77.00 1.36 
  3-0.71 75.00 1.36 
  4-1.02 71.75 1.36 
  5-1.40 65.00 1.36 
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  6-1.99 62.75 1.36 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
 1 vs  2 5.75 1 1.92 3.00 0.0077 
 1 vs  3 7.75 1 1.92 4.04 0.0008 
 1 vs  4 11.00 1 1.92 5.74 < 0.0001 
 1 vs  5 17.75 1 1.92 9.26 < 0.0001 
 1 vs  6 20.00 1 1.92 10.43 < 0.0001 
 2 vs  3 2.00 1 1.92 1.04 0.3105 
 2 vs  4 5.25 1 1.92 2.74 0.0135 
 2 vs  5 12.00 1 1.92 6.26 < 0.0001 
 2 vs  6 14.25 1 1.92 7.43 < 0.0001 
 3 vs  4 3.25 1 1.92 1.70 0.1072 
 3 vs  5 10.00 1 1.92 5.22 < 0.0001 
 3 vs  6 12.25 1 1.92 6.39 < 0.0001 
 4 vs  5 6.75 1 1.92 3.52 0.0024 
 4 vs  6 9.00 1 1.92 4.70 0.0002 
 5 vs  6 2.25 1 1.92 1.17 0.2557 
 
(b)  Find the P-value for the F statistic in part (a).  P=3.161 x 10-8 
 
(c)  Analyze the residuals from this experiment.  
 
There is nothing unusual about the residuals. 
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(d) Find a 95 percent confidence interval on the mean percent radon released when the orifice diameter is 

1.40. 

Treatment 5 (Orifice =1.40):  
4
35710126 ..  

8486715262 ..  
 
(e) Construct a graphical display to compare the treatment means as describe in Section 3-5.3.  What 

conclusions can you draw? 

6 0 6 5 7 0 7 5 8 0

C o n d u c tiv ity

S c a le d  t  D is tr ib u tio n

(6 )      (5 ) (3 )    (2 ) (1 )(4 )

 
Treatments 5 and 6 as a group differ from the other means; 2, 3, and 4 as a group differ from the other 
means, 1 differs from the others. 
 
 
3-10 The response time in milliseconds was determined for three different types of circuits that could be 
used in an automatic valve shutoff mechanism.  The results are shown in the following table. 
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 Circuit Type   Response Time  
 1 9 12 10 8 15 
 2 20 21 23 17 30 
 3 6 5 8 16 7 
 
(a)  Test the hypothesis that the three circuit types have the same response time.  Use  = 0.01.   
 
From the computer printout, F=16.08, so there is at least one circuit type that is different. 
 
Design Expert Output 
 Response: Response Time in ms 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 543.60 2 271.80 16.08 0.0004 significant 
 A 543.60 2 271.80 16.08 0.0004 
 Residual 202.80 12 16.90 
 Lack of Fit 0.000 0 
 Pure Error 202.80 12 16.90 
 Cor Total 746.40 14 
 
 The Model F-value of 16.08 implies the model is significant.  There is only 
 a 0.04% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 10.80  1.84 
  2-2 22.20  1.84 
  3-3 8.40  1.84 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -11.40 1 2.60 -4.38 0.0009 
   1 vs  3 2.40 1 2.60 0.92 0.3742 
   2 vs  3 13.80 1 2.60 5.31 0.0002 
 
(b)  Use Tukey’s test to compare pairs of treatment means.  Use  = 0.01. 
 

83851
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045123010 .q ,,.  
2669045838510 ...t  

1 vs. 2:  10.8-22.2 =11.4 > 9.266 
1 vs. 3:  10.8-8.4 =2.4 < 9.266 

2 vs. 3:  22.2-8.4 =13.8 > 9.266 
1 and 2 are different.  2 and 3 are different. 

 
Notice that the results indicate that the mean of treatment 2 differs from the means of both treatments 1 
and 3, and that the means for treatments 1 and 3 are the same.  Notice also that the Fisher LSD procedure 
(see the computer output) gives the same results. 
 
(c)  Use the graphical procedure in Section 3-5.3 to compare the treatment means.  What conclusions can 

you draw? How do they compare with the conclusions from part (a).  
 
The scaled-t plot agrees with part (b).  In this case, the large difference between the mean of treatment 2 
and the other two treatments is very obvious. 
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(d)  Construct a set of orthogonal contrasts, assuming that at the outset of the experiment you suspected 

the response time of circuit type 2 to be different from the other two. 
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Type 2 differs from the average of type 1 and type 3. 

 
(e)  If you were a design engineer and you wished to minimize the response time, which circuit type 

would you select?  
 
 Either type 1 or type 3 as they are not different from each other and have the lowest response time. 
 
(f)  Analyze the residuals from this experiment.  Are the basic analysis of variance assumptions satisfied?   
 
The normal probability plot has some points that do not lie along the line in the upper region.  This may 
indicate potential outliers in the data. 
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3-11 The effective life of insulating fluids at an accelerated load of 35 kV is being studied.  Test data 
have been obtained for four types of fluids.  The results were as follows: 
 
 Fluid Type    Life (in h) at 35 kV Load    
 1  17.6 18.9 16.3 17.4 20.1     21.6 
 2  16.9 15.3 18.6 17.1 19.5     20.3 
 3  21.4 23.6 19.4 18.5 20.5     22.3 
 4  19.3 21.1 16.9 17.5 18.3     19.8 
 
(a)  Is there any indication that the fluids differ?  Use  = 0.05.   
 
At  = 0.05 there are no difference, but at since the P-value is just slightly above 0.05, there is probably a 
difference in means. 
 
Design Expert Output 
 Response: Life in in h 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

3-19 

         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 30.17 3 10.06 3.05 0.0525 not significant 
 A 30.16 3 10.05 3.05 0.0525 
 Residual 65.99 20 3.30 
 Lack of Fit 0.000 0 
 Pure Error 65.99 20 3.30 
 Cor Total 96.16 23 
 
 The Model F-value of 3.05 implies there is a 5.25% chance that a "Model F-Value"  
 this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 18.65  0.74 
  2-2 17.95  0.74 
  3-3 20.95  0.74 
  4-4 18.82  0.74 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.70 1 1.05 0.67 0.5121 
   1 vs  3 -2.30 1 1.05 -2.19 0.0403 
   1 vs  4 -0.17 1 1.05 -0.16 0.8753 
   2 vs  3 -3.00 1 1.05 -2.86 0.0097 
   2 vs  4 -0.87 1 1.05 -0.83 0.4183 
   3 vs  4 2.13 1 1.05 2.03 0.0554 
 
(b)  Which fluid would you select, given that the objective is long life?   
 
Treatment 3.  The Fisher LSD procedure in the computer output indicates that the fluid 3 is different from 
the others, and it’s average life also exceeds the average lives of the other three fluids. 
 
(c)  Analyze the residuals from this experiment. Are the basic analysis of variance assumptions satisfied?  

There is nothing unusual in the residual plots. 
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3-12 Four different designs for a digital computer circuit are being studied in order to compare the 
amount of noise present. The following data have been obtained: 
 
 Circuit Design   Noise Observed   
 1  19 20 19 30 8 
 2  80 61 73 56 80 
 3  47 26 25 35 50 
 4  95 46 83 78 97 
 
(a)  Is the amount of noise present the same for all four designs? Use  = 0.05.   
 
No, at least one treatment mean is different. 
 
Design Expert Output 
 Response: Noise 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 12042.00 3 4014.00 21.78 < 0.0001 significant 
 A 12042.00 3 4014.00 21.78 < 0.0001 
 Residual 2948.80 16 184.30 
 Lack of Fit 0.000 0 
 Pure Error 2948.80 16 184.30 
 Cor Total 14990.80 19 
 
 The Model F-value of 21.78 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 19.20  6.07 
  2-2 70.00  6.07 
  3-3 36.60  6.07 
  4-4 79.80  6.07 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -50.80 1 8.59 -5.92 < 0.0001 
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   1 vs  3 -17.40 1 8.59 -2.03 0.0597 
   1 vs  4 -60.60 1 8.59 -7.06 < 0.0001 
   2 vs  3 33.40 1 8.59 3.89 0.0013 
   2 vs  4 -9.80 1 8.59 -1.14 0.2705 
   3 vs  4 -43.20 1 8.59 -5.03 0.0001 
 
(b)  Analyze the residuals from this experiment. Are the basic analysis of variance assumptions satisfied?  

There is nothing unusual about the residual plots. 
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(c)  Which circuit design would you select for use?  Low noise is best.   
 
From the Design Expert Output, the Fisher LSD procedure comparing the difference in means identifies 
Type 1 as having lower noise than Types 2 and 4.  Although the LSD procedure comparing Types 1 and 3 
has a P-value greater than 0.05, it is less than 0.10.  Unless there are other reasons for choosing Type 3, 
Type 1 would be selected. 
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3-13 Four chemists are asked to determine the percentage of methyl alcohol in a certain chemical 
compound.  Each chemist makes three determinations, and the results are the following: 
 
 Chemist  Percentage of Methyl Alcohol   
 1 84.99 84.04 84.38 
 2 85.15 85.13 84.88 
 3 84.72 84.48 85.16 
 4 84.20 84.10 84.55 
 
(a)  Do chemists differ significantly?  Use  = 0.05.   
 
There is no significant difference at the 5% level, but chemists differ significantly at the 10% level. 
 
Design Expert Output 
 Response: Methyl Alcohol in % 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1.04 3 0.35 3.25 0.0813 not significant 
 A 1.04 3 0.35 3.25 0.0813 
 Residual 0.86 8 0.11 
 Lack of Fit 0.000 0 
 Pure Error 0.86 8 0.11 
 Cor Total 1.90 11 
 
 The Model F-value of 3.25 implies there is a 8.13% chance that a "Model F-Value"  
 this large could occur due to noise. 
  
 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 84.47  0.19 
  2-2 85.05  0.19 
  3-3 84.79  0.19 
  4-4 84.28  0.19 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.58 1 0.27 -2.18 0.0607 
   1 vs  3 -0.32 1 0.27 -1.18 0.2703 
   1 vs  4 0.19 1 0.27 0.70 0.5049 
   2 vs  3 0.27 1 0.27 1.00 0.3479 
   2 vs  4 0.77 1 0.27 2.88 0.0205 
   3 vs  4 0.50 1 0.27 1.88 0.0966 
 
(b)  Analyze the residuals from this experiment.   
 
There is nothing unusual about the residual plots. 
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(c)  If chemist 2 is a new employee, construct a meaningful set of orthogonal contrasts that might have 

been useful at the start of the experiment. 
 

Chemists Total C1 C2 C3 
1 253.41 1 -2 0 
2 255.16 -3 0 0 
3 254.36 1 1 -1 
4 252.85 1 1 1 
 Contrast Totals: -4.86 0.39 -1.51 
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Only contrast 1 is significant at 5%. 

 
 
3-14 Three brands of batteries are under study.  It is s suspected that the lives (in weeks) of the three 
brands are different.  Five batteries of each brand are tested with the following results: 
 
  Weeks of Life 
 Brand 1  Brand 2     Brand 3 
 100      76 108 
 96    80 100 
 92    75 96 
 96    84 98 
 92    82 100 
 
(a)  Are the lives of these brands of batteries different?   
 
Yes, at least one of the brands is different. 
 
Design Expert Output 
 Response: Life in Weeks 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1196.13 2 598.07 38.34 < 0.0001 significant 
 A 1196.13 2 598.07 38.34 < 0.0001 
 Residual 187.20 12 15.60 
 Lack of Fit 0.000 0 
 Pure Error 187.20 12 15.60 
 Cor Total 1383.33 14 
 
 The Model F-value of 38.34 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 95.20  1.77 
  2-2 79.40  1.77 
  3-3 100.40  1.77 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 15.80 1 2.50 6.33 < 0.0001 
   1 vs  3 -5.20 1 2.50 -2.08 0.0594 
   2 vs  3 -21.00 1 2.50 -8.41 < 0.0001 
 
 
(b)  Analyze the residuals from this experiment.   
 
There is nothing unusual about the residuals. 
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(c)  Construct a 95 percent interval estimate on the mean life of battery brand 2.  Construct a 99 percent 
interval estimate on the mean difference between the lives of battery brands 2 and 3. 
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(d)  Which brand would you select for use?  If the manufacturer will replace without charge any battery 

that fails in less than 85 weeks, what percentage would the company expect to replace? 
 
Chose brand 3 for longest life.  Mean life of this brand in 100.4 weeks, and the variance of life is 
estimated by 15.60 (MSE).  Assuming normality, then the probability of failure before 85 weeks is: 
 

000050903
6015

410085 ..
.

.  

 
That is, about 5 out of 100,000 batteries will fail before 85 week. 
 
3-15 Four catalysts that may affect the concentration of one component in a three component liquid 
mixture are being investigated.  The following concentrations are obtained: 
 

       Catalyst 
 1 2 3        4 
 58.2     56.3 50.1    52.9 
 57.2     54.5 54.2     49.9 
 58.4     57.0 55.4     50.0 
 55.8     55.3          51.7 
 54.9     
 
(a)  Do the four catalysts have the same effect on concentration? 
 
No, their means are different. 
 
Design Expert Output 
 Response: Concentration 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 85.68 3 28.56 9.92 0.0014 significant 
 A 85.68 3 28.56 9.92 0.0014 
 Residual 34.56 12 2.88 
 Lack of Fit 0.000 0 
 Pure Error 34.56 12 2.88 
 Cor Total 120.24 15 
 
 The Model F-value of 9.92 implies the model is significant.  There is only 
 a 0.14% chance that a "Model F-Value" this large could occur due to noise. 
  
 
 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 56.90  0.76 
  2-2 55.77  0.85 
  3-3 53.23  0.98 
  4-4 51.13  0.85 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 1.13 1 1.14 0.99 0.3426 
   1 vs  3 3.67 1 1.24 2.96 0.0120 
   1 vs  4 5.77 1 1.14 5.07 0.0003 
   2 vs  3 2.54 1 1.30 1.96 0.0735 
   2 vs  4 4.65 1 1.20 3.87 0.0022 
   3 vs  4 2.11 1 1.30 1.63 0.1298 
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(b)  Analyze the residuals from this experiment. 
 
There is nothing unusual about the residual plots. 
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(c)  Construct a 99 percent confidence interval estimate of the mean response for catalyst 1. 
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3-16 An experiment was performed to investigate the effectiveness of five insulating materials.  Four 
samples of each material were tested at an elevated voltage level to accelerate the time to failure.  The 
failure times (in minutes) is shown below. 
 
 Material  Failure Time (minutes)  
 1    110 157  194 178 
 2    1 2 4 18 
 3    880 1256 5276 4355 
 4   495  7040 5307 10050 
 5 7 5 29 2 
 
(a)  Do all five materials have the same effect on mean failure time? 
 
No, at least one material is different. 
 
Design Expert Output 
 Response: Failure Time in Minutes 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1.032E+008 4 2.580E+007 6.19 0.0038 significant 
 A 1.032E+008 4 2.580E+007 6.19 0.0038 
 Residual 6.251E+007 15 4.167E+006 
 Lack of Fit 0.000 0 
 Pure Error 6.251E+00715 4.167E+006 
 Cor Total 1.657E+008 19 
 
 The Model F-value of 6.19 implies the model is significant.  There is only 
 a 0.38% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 159.75  1020.67 
  2-2 6.25  1020.67 
  3-3 2941.75  1020.67 
  4-4 5723.00  1020.67 
  5-5 10.75  1020.67 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 153.50 1 1443.44 0.11 0.9167 
   1 vs  3 -2782.00 1 1443.44 -1.93 0.0731 
   1 vs  4 -5563.25 1 1443.44 -3.85 0.0016 
   1 vs  5 149.00 1 1443.44 0.10 0.9192 
   2 vs  3 -2935.50 1 1443.44 -2.03 0.0601 
   2 vs  4 -5716.75 1 1443.44 -3.96 0.0013 
   2 vs  5 -4.50 1 1443.44 -3.118E-003 0.9976 
   3 vs  4 -2781.25 1 1443.44 -1.93 0.0732 
   3 vs  5 2931.00 1 1443.44 2.03 0.0604 
   4 vs  5 5712.25 1 1443.44 3.96 0.0013 
 
(b)  Plot the residuals versus the predicted response.  Construct a normal probability plot of the residuals.  

What information do these plots convey?    
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The plot of residuals versus predicted has a strong outward-opening funnel shape, which indicates the 
variance of the original observations is not constant.  The residuals plotted in the normal probability plot 
also imply that the normality assumption is not valid.  A data transformation is recommended. 
 
(c)  Based on your answer to part (b) conduct another analysis of the failure time data and draw 

appropriate conclusions. 
 
A natural log transformation was applied to the failure time data.  The analysis identifies that there exists 
at least one difference in treatment means. 
 
Design Expert Output 
 Response: Failure Time in Minutes Transform: Natural log Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 165.06 4 41.26 37.66 < 0.0001 significant 
 A 165.06 4 41.26 37.66 < 0.0001 
 Residual 16.44 15 1.10 
 Lack of Fit 0.000 0 
 Pure Error 16.44 15 1.10 
 Cor Total 181.49 19 
 
 The Model F-value of 37.66 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 5.05  0.52 
  2-2 1.24  0.52 
  3-3 7.72  0.52 
  4-4 8.21  0.52 
  5-5 1.90  0.52 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 3.81 1 0.74 5.15 0.0001 
   1 vs  3 -2.66 1 0.74 -3.60 0.0026 
   1 vs  4 -3.16 1 0.74 -4.27 0.0007 
   1 vs  5 3.15 1 0.74 4.25 0.0007 
   2 vs  3 -6.47 1 0.74 -8.75 < 0.0001 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

3-30 

   2 vs  4 -6.97 1 0.74 -9.42 < 0.0001 
   2 vs  5 -0.66 1 0.74 -0.89 0.3856 
   3 vs  4 -0.50 1 0.74 -0.67 0.5116 
   3 vs  5 5.81 1 0.74 7.85 < 0.0001 
   4 vs  5 6.31 1 0.74 8.52 < 0.0001 
 
There is nothing unusual about the residual plots when the natural log transformation is applied. 
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3-17 A semiconductor manufacturer has developed three different methods for reducing particle counts 
on wafers.  All three methods are tested on five wafers and the after-treatment particle counts obtained.  
The data are shown below. 
 
 Method  Count  
 1    31 10  21 4 1 
 2    62 40 24 30 35 
 3    58 27 120 97 68 
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(a)  Do all methods have the same effect on mean particle count? 
 
No, at least one method has a different effect on mean particle count.   
 
Design Expert Output 
 Response: Count 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 8963.73 2 4481.87 7.91 0.0064 significant 
 A 8963.73 2 4481.87 7.91 0.0064 
 Residual 6796.00 12 566.33 
 Lack of Fit 0.000 0 
 Pure Error 6796.00 12 566.33 
 Cor Total 15759.73 14 
 
 The Model F-value of 7.91 implies the model is significant.  There is only 
 a 0.64% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 13.40  10.64 
  2-2 38.20  10.64 
  3-3 73.00  10.64 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -24.80 1 15.05 -1.65 0.1253 
   1 vs  3 -59.60 1 15.05 -3.96 0.0019 
   2 vs  3 -34.80 1 15.05 -2.31 0.0393 
 
(b)  Plot the residuals versus the predicted response.  Construct a normal probability plot of the residuals.  

Are there potential concerns about the validity of the assumptions? 
 
The plot of residuals versus predicted appears to be funnel shaped.  This indicates the variance of the 
original observations is not constant.  The residuals plotted in the normal probability plot do not fall along 
a straight line, which suggests that the normality assumption is not valid.  A data transformation is 
recommended. 
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(c)   Based on your answer to part (b) conduct another analysis of the particle count data and draw 
appropriate conclusions. 

 
For count data, a square root transformation is often very effective in resolving problems with inequality 
of variance.  The analysis of variance for the transformed response is shown below.  The difference 
between methods is much more apparent after applying the square root transformation. 
 
Design Expert Output 
 Response: Count Transform: Square root Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 63.90 2 31.95 9.84 0.0030 significant 
 A 63.90 2 31.95 9.84 0.0030 
 Residual 38.96 12 3.25 
 Lack of Fit 0.000 0 
 Pure Error 38.96 12 3.25 
 Cor Total 102.86 14 
 
 The Model F-value of 9.84 implies the model is significant.  There is only 
 a 0.30% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 3.26  0.81 
  2-2 6.10  0.81 
  3-3 8.31  0.81 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -2.84 1 1.14 -2.49 0.0285 
   1 vs  3 -5.04 1 1.14 -4.42 0.0008 
   2 vs  3 -2.21 1 1.14 -1.94 0.0767 
 
 
3-18 Consider testing the equality of the means of two normal populations, where the variances are 
unknown but are assumed to be equal.  The appropriate test procedure is the pooled t test. Show that the 
pooled t test is equivalent to the single factor analysis of variance. 
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3-19 Show that the variance of the linear combination 
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3-20 In a fixed effects experiment, suppose that there are n observations for each of four treatments.  Let 
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3-21 Use Bartlett's test to determine if the assumption of equal variances is satisfied in Problem 3-14.  
Use  = 0.05.  Did you reach the same conclusion regarding the equality of variance by examining the 
residual plots? 
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Cannot reject null hypothesis; conclude that the variance are equal.  This agrees with the residual plots in 
Problem 3-16. 
 
 
3-22 Use the modified Levene test to determine if the assumption of equal variances is satisfied on 
Problem 3-14.  Use  = 0.05.  Did you reach the same conclusion regarding the equality of variances by 
examining the residual plots? 
 
The absolute value of Battery Life – brand median is: 
 

 ij iy y  

 Brand 1  Brand 2  Brand 3 
 4      4 8 
 0  0 0 
 4  5 4 
 0  4 2 
 4  2 0 
 
The analysis of variance indicates that there is not a difference between the different brands and therefore 
the assumption of equal variances is satisfired. 
 
Design Expert Output 
 Response: Mod Levine 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
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  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.93 2 0.47 0.070 0.9328 
 A 0.93 2 0.47 0.070 0.9328 
Pure Error 80.00 12 6.67 
Cor Total 80.93 14 
 
 
3-23 Refer to Problem 3-10.  If we wish to detect a maximum difference in mean response times of 10 
milliseconds with a probability of at least 0.90, what sample size should be used?  How would you obtain a 
preliminary estimate of 2 ? 

 

2

2
2

2a
nD , use MSE from Problem 3-10 to estimate 2 . 

n.
.

n 9860
91632

10 2
2  

 
Letting 050. , P(accept) = 0.1 , 211 a  

 
Trial and Error yields: 

 
n 2   P(accept) 
5 12 2.22 0.17 
6 15 2.43 0.09 
7 18 2.62 0.04 

 
Choose n  6, therefore N  18 

 
Notice that we have used an estimate of the variance obtained from the present experiment.  This indicates 
that we probably didn’t use a large enough sample (n was 5 in problem 3-10) to satisfy the criteria 
specified in this problem.  However, the sample size was adequate to detect differences in one of the 
circuit types. 
 
When we have no prior estimate of variability, sometimes we will generate sample sizes for a range of 
possible variances to see what effect this has on the size of the experiment.  Often a knowledgeable expert 
will be able to bound the variability in the response, by statements such as “the standard deviation is going 
to be at least…” or “the standard deviation shouldn’t be larger than…”.   
 
 
3-24 Refer to Problem 3-14. 
 
(a) If we wish to detect a maximum difference in mean battery life of 0.5 percent with a probability of at 

least 0.90, what sample size should be used?  Discuss how you would obtain a preliminary estimate of 
2 for answering this question. 

 
                                                Use the MSE from Problem 3-14. 
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Trial and Error yields: 
 

n 2   P(accept) 
40 117 1.895 0.18 
45 132 2.132 0.10 
50 147 2.369 0.05 

 
Choose n  45, therefore N  135 

 
See the discussion from the previous problem about the estimate of variance. 
 
(b)  If the difference between brands is great enough so that the standard deviation of an observation is 

increased by 25 percent, what sample size should be used if we wish to detect this with a probability 
of at least 0.90? 

 
211 a     123152 aN     050.    10.)accept(P  

n..nP.n 56250112501011101011 22  
 

Trial and Error yields: 
 

n 2   P(accept) 
40 117 4.84 0.13 
45 132 5.13 0.11 
50 147 5.40 0.10 

 
Choose n  50, therefore N  150 

 
 
3-25 Consider the experiment in Problem 3-16.  If we wish to construct a 95 percent confidence interval 
on the difference in two mean battery lives that has an accuracy of 2 weeks, how many batteries of each 
brand must be tested? 
 

        050.        615.MS E  

n
MS

twidth E
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2
0250  

 
Trial and Error yields: 

 
n 2  t width 
5 12 2.179 5.44 

10 27 2.05 3.62 
31 90 1.99 1.996 
32 93 1.99 1.96 

 
Choose n  31, therefore N  93 

 
 
3-26 Suppose that four normal populations have means of 1=50, 2=60, 3=50, and 4=60.  How many 
observations should be taken from each population so that the probability or rejecting the null hypothesis 
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of equal population means is at least 0.90?  Assume that =0.05 and that a reasonable estimate of the 
error variance is 2 =25. 
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050143 21 .,n, , From the O.C. curves we can construct the following: 

 
n  2  1-  
4 2.00 12 0.18 0.82 
5 2.24 16 0.08 0.92 

 
Therefore, select n=5 

 
 

3-27 Refer to Problem 3-26. 
 
(a) How would your answer change if a reasonable estimate of the experimental error variance were 2 = 

36? 
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050143 21 .,n, , From the O.C. curves we can construct the following: 

 
n  2  1-  
5 1.863 16 0.24 0.76 
6 2.041 20 0.15 0.85 
7 2.205 24 0.09 0.91 

 
Therefore, select n=7 

 
(b) How would your answer change if a reasonable estimate of the experimental error variance were 2 = 

49? 
 

n.

n.n
a

n i

51020

51020
494

100
2

2
2

 

 
050143 21 .,n, , From the O.C. curves we can construct the following: 
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n  2  1-  
7 1.890 24 0.16 0.84 
8 2.020 28 0.11 0.89 
9 2.142 32 0.09 0.91 

 
Therefore, select n=9 

 
(c)  Can you draw any conclusions about the sensitivity of your answer in the particular situation about 

how your estimate of  affects the decision about sample size?   
 
As our estimate of variability increases the sample size must increase to ensure the same power of the test. 
 
(d)  Can you make any recommendations about how we should use this general approach to choosing n in 

practice? 
 
When we have no prior estimate of variability, sometimes we will generate sample sizes for a range of 
possible variances to see what effect this has on the size of the experiment.  Often a knowledgeable expert 
will be able to bound the variability in the response, by statements such as “the standard deviation is going 
to be at least…” or “the standard deviation shouldn’t be larger than…”.   
 
 
3-28 Refer to the aluminum smelting experiment described in Section 4-2.  Verify that ratio control 
methods do not affect average cell voltage.  Construct a normal probability plot of residuals.  Plot the 
residuals versus the predicted values.  Is there an indication that any underlying assumptions are violated? 
 
Design Expert Output 
 Response: Cell Average 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.746E-003 3 9.153E-004 0.20 0.8922 not significant 
 A 2.746E-003 3 9.153E-004 0.20 0.8922 
 Residual 0.090 20 4.481E-003 
 Lack of Fit 0.000 0 
 Pure Error 0.090 20 4.481E-003 
 Cor Total 0.092 23 
 
 The "Model F-value" of 0.20 implies the model is not significant relative to the noise.  There is a 
 89.22 % chance that a "Model F-value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 4.86  0.027 
  2-2 4.83  0.027 
  3-3 4.85  0.027 
  4-4 4.84  0.027 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.027 1 0.039 0.69 0.4981 
   1 vs  3 0.013 1 0.039 0.35 0.7337 
   1 vs  4 0.025 1 0.039 0.65 0.5251 
   2 vs  3 -0.013 1 0.039 -0.35 0.7337 
   2 vs  4 -1.667E-003 1 0.039 -0.043 0.9660 
   3 vs  4 0.012 1 0.039 0.30 0.7659 

 
The following residual plots are satisfactory. 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

3-39 

Res idual

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Normal plot of residuals

-0.11 -0.05625 -0.0025 0.05125 0.105

1

5
10

20
30

50

70
80

90
95

99

333

22

Predicted

R
es

id
ua

ls

Residuals vs. Predicted

-0.11

-0.05625

-0.0025

0.05125

0.105

4.833 4.840 4.847 4.853 4.860

 

333

22

Algorithm

R
es

id
ua

ls

Residuals vs. Algorithm

-0.11

-0.05625

-0.0025

0.05125

0.105

1 2 3 4

 
 

 
3-29 Refer to the aluminum smelting experiment in Section 3-8.  Verify the analysis of variance for pot 
noise summarized in Table 3-13.  Examine the usual residual plots and comment on the experimental 
validity. 
 
Design Expert Output  
 Response: Cell StDev Transform: Natural log Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 6.17 3 2.06 21.96 < 0.0001 significant 
 A 6.17 3 2.06 21.96 < 0.0001 
 Residual 1.87 20 0.094 
 Lack of Fit 0.000 0 
 Pure Error 1.87 20 0.094 
 Cor Total 8.04 23 
 
 The Model F-value of 21.96 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
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  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 -3.09  0.12 
  2-2 -3.51  0.12 
  3-3 -2.20  0.12 
  4-4 -3.36  0.12 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.42 1 0.18 2.38 0.0272 
   1 vs  3 -0.89 1 0.18 -5.03 < 0.0001 
   1 vs  4 0.27 1 0.18 1.52 0.1445 
   2 vs  3 -1.31 1 0.18 -7.41 < 0.0001 
   2 vs  4 -0.15 1 0.18 -0.86 0.3975 
   3 vs  4 1.16 1 0.18 6.55 < 0.0001 
 
The following residual plots identify the residuals to be normally distributed, randomly distributed 
through the range of prediction, and uniformly distributed across the different algorithms.  This validates 
the assumptions for the experiment. 
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3-30  Four different feed rates were investigated in an experiment on a CNC machine producing a 
component part used in an aircraft auxiliary power unit.  The manufacturing engineer in charge of the 
experiment knows that a critical part dimension of interest may be affected by the feed rate.  However, 
prior experience has indicated that only dispersion effects are likely to be present.  That is, changing the 
feed rate does not affect the average dimension, but it could affect dimensional variability.  The engineer 
makes five production runs at each feed rate and obtains the standard deviation of the critical dimension 
(in 10-3 mm).  The data are shown below.  Assume that all runs were made in random order. 
 

Feed Rate  Production Run   
(in/min) 1 2 3 4 5 

10 0.09 0.10 0.13 0.08 0.07 
12 0.06 0.09 0.12 0.07 0.12 
14 0.11 0.08 0.08 0.05 0.06 
16 0.19 0.13 0.15 0.20 0.11 

 
(a)  Does feed rate have any effect on the standard deviation of this critical dimension?   
 
Because the residual plots were not acceptable for the non-transformed data, a square root transformation 
was applied to the standard deviations of the critical dimension.  Based on the computer output below, the 
feed rate has an effect on the standard deviation of the critical dimension. 
 
Design Expert Output 
 Response: Run StDev Transform: Square root Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.040 3 0.013 7.05 0.0031 significant 
 A 0.040 3 0.013 7.05 0.0031 
 Residual 0.030 16 1.903E-003 
 Lack of Fit 0.000 0 
 Pure Error 0.030 16 1.903E-003 
 Cor Total 0.071 19 
 
 The Model F-value of 7.05 implies the model is significant.  There is only 
 a 0.31% chance that a "Model F-Value" this large could occur due to noise. 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-10 0.30  0.020 
  2-12 0.30  0.020 
  3-14 0.27  0.020 
  4-16 0.39  0.020 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 4.371E-003 1 0.028 0.16 0.8761 
   1 vs  3 0.032 1 0.028 1.15 0.2680 
   1 vs  4 -0.088 1 0.028 -3.18 0.0058 
   2 vs  3 0.027 1 0.028 0.99 0.3373 
   2 vs  4 -0.092 1 0.028 -3.34 0.0042 
   3 vs  4 -0.12 1 0.028 -4.33 0.0005 
 
(b)  Use the residuals from this experiment of investigate model adequacy.  Are there any problems with 

experimental validity? 
 
The residual plots are satisfactory. 
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3-31 Consider the data shown in Problem 3-10.   
 
(a) Write out the least squares normal equations for this problem, and solve them for  and i , using the 

usual constraint 
3

1
0

i iˆ .  Estimate 21 . 

 
ˆ15  15ˆ  25ˆ  35ˆ  =207 
ˆ5  15ˆ    =54 
ˆ5   25ˆ   =111 
ˆ15    35ˆ  =42 

 

Imposing 0
3

1i
iˆ , therefore 8013.ˆ , 0031 .ˆ , 4082 .ˆ , 4053 .ˆ  
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401140800321 ...ˆˆ  

 
(b)  Solve the equations in (a) using the constraint 03ˆ .  Are the estimators iˆ  and ˆ  the same as you 

found in (a)?  Why?  Now estimate 21 and compare your answer with that for (a).  What 
statement can you make about estimating contrasts in the i ? 

 
Imposing the constraint, 03ˆ  we get the following solution to the normal equations: 408.ˆ , 

4021 .ˆ , 8132 .ˆ , and 03ˆ .  These estimators are not the same as in part (a).  However, 
4011801340221 ...ˆˆ ,  is the same as in part (a).  The contrasts are estimable. 

 
(c)  Estimate 1 , 3212  and 21  using the two solutions to the normal equations.  

Compare the results obtained in each case. 
 

 Contrast Estimated from Part (a) Estimated from Part (b) 
1 1  10.80 10.80 
2 3212  -9.00 -9.00 
3 21  19.20 24.60 

 
Contrasts 1 and 2 are estimable, 3 is not estimable. 

 
 
3-32 Apply the general regression significance test to the experiment in Example 3-1.  Show that the 
procedure yields the same results as the usual analysis of variance. 
 
From Table 3-3: 
 

376..y  
 
from Example 3-1, we have: 
 

244566562
3602450415

543

21

.ˆ.ˆ.ˆ
.ˆ.ˆ.ˆ

 

5

1

5

1

2 6292
i j

ijy , with 25 degrees of freedom. 

801306
542441085668856277360492453760415

5

1

.,
..)....

yˆyˆ,R
i

.i..

 

 with 5 degrees of freedom. 
 

20161861306292
5

1

5

1

2 ..,RySS
i j

ijE  

 with 25-5 degrees of freedom. 
 
This is identical to the SSE found in Example 3-1. 
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The reduced model: 
 

0456553760415 ..yˆR .. , with 1 degree of freedom. 
 

7647504565586130 ...R,RR , with 5-1=4 degrees of freedom. 
 
Note:  TreatmentSSR  from Example 3-1. 
 
Finally, 
 

7614
068
94118

20

4
0 .

.
.

SS

tR

F
E

 

 
which is the same as computed in Example 3-1. 
 
 
3-33 Use the Kruskal-Wallis test for the experiment in Problem 3-11.  Are the results comparable to 
those found by the usual analysis of variance? 
 
From Design Expert Output of Problem 3-11 
 Response: Life in in h 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 30.17 3 10.06 3.05 0.0525 not significant 
 A 30.16 3 10.05 3.05 0.0525 
 Residual 65.99 20 3.30 
 Lack of Fit 0.000 0 
 Pure Error 65.99 20 3.30 
 Cor Total 96.16 23 
 

815124354040
12424

1213
1

12

1

2
..N

n
R

NN
H

a

i i

.i  

8172
3050 .,.  

 
Accept the null hypothesis; the treatments are not different.  This agrees with the analysis of variance. 
 
 
3-34 Use the Kruskal-Wallis test for the experiment in Problem 3-12.  Compare conclusions obtained 
with those from the usual analysis of variance? 
 
From Design Expert Output of Problem 3-12 
 Response: Noise 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 12042.00 3 4014.00 21.78 < 0.0001 significant 
 A 12042.00 3 4014.00 21.78 < 0.0001 
 Residual 2948.80 16 184.30 
 Lack of Fit 0.000 0 
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 Pure Error 2948.80 16 184.30 
 Cor Total 14990.80 19 
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Reject the null hypothesis because the treatments are different.  This agrees with the analysis of variance. 
 
 
3-35 Consider the experiment in Example 3-1.  Suppose that the largest observation on tensile strength 
is incorrectly recorded as 50.  What effect does this have on the usual analysis of variance?  What effect 
does is have on the Kruskal-Wallis test?   
 
The incorrect observation reduces the analysis of variance F0 from 14.76 to 5.44.  It does not change the 
value of the Kruskal-Wallis test. 
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Chapter 4 
Randomized Blocks, Latin Squares, and Related Designs 

Solutions 
 
 
4-1 A chemist wishes to test the effect of four chemical agents on the strength of a particular type of 
cloth.  Because there might be variability from one bolt to another, the chemist decides to use a randomized 
block design, with the bolts of cloth considered as blocks.  She selects five bolts and applies all four 
chemicals in random order to each bolt.  The resulting tensile strengths follow.  Analyze the data from this 
experiment (use  = 0.05) and draw appropriate conclusions. 
 

   Bolt   
Chemical 1 2 3 4 5 

1 73 68 74 71 67 
2 73 67 75 72 70 
3 75 68 78 73 68 
4 73 71 75 75 69 

 
Design Expert Output 
 Response: Strength 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 157.00 4 39.25 
 Model 12.95 3 4.32 2.38 0.1211 not significant 
 A 12.95 3 4.32 2.38 0.1211 
 Residual 21.80 12 1.82 
 Cor Total 191.75 19 
 
 The "Model F-value" of 2.38 implies the model is not significant relative to the noise.  There is a 
 12.11 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 1.35  R-Squared 0.3727 
 Mean 71.75  Adj R-Squared 0.2158 
 C.V. 1.88  Pred R-Squared -0.7426 
 PRESS 60.56  Adeq Precision 10.558 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 70.60  0.60 
  2-2 71.40  0.60 
  3-3 72.40  0.60 
  4-4 72.60  0.60 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.80 1 0.85 -0.94 0.3665 
   1 vs  3 -1.80 1 0.85 -2.11 0.0564 
   1 vs  4 -2.00 1 0.85 -2.35 0.0370 
   2 vs  3 -1.00 1 0.85 -1.17 0.2635 
   2 vs  4 -1.20 1 0.85 -1.41 0.1846 
   3 vs  4 -0.20 1 0.85 -0.23 0.8185 
 
There is no difference among the chemical types at  = 0.05 level. 
 
 
4-2 Three different washing solutions are being compared to study their effectiveness in retarding 
bacteria growth in five-gallon milk containers.  The analysis is done in a laboratory, and only three trials 
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can be run on any day.  Because days could represent a potential source of variability, the experimenter 
decides to use a randomized block design.  Observations are taken for four days, and the data are shown 
here.  Analyze the data from this experiment (use  = 0.05) and draw conclusions. 
 

   Days  
Solution 1 2 3 4 

1 13 22 18 39 
2 16 24 17 44 
3 5 4 1 22 

 
Design Expert Output  
 Response: Growth 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 1106.92 3 368.97 
 Model 703.50 2 351.75 40.72 0.0003 significant 
 A 703.50 2 351.75 40.72 0.0003 
 Residual 51.83 6 8.64 
 Cor Total 1862.25 11 
 
 The Model F-value of 40.72 implies the model is significant.  There is only 
 a 0.03% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.94  R-Squared 0.9314 
 Mean 18.75  Adj R-Squared 0.9085 
 C.V. 15.68  Pred R-Squared 0.7255 
 PRESS 207.33  Adeq Precision 19.687 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 23.00  1.47 
  2-2 25.25  1.47 
  3-3 8.00  1.47 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -2.25 1 2.08 -1.08 0.3206 
   1 vs  3 15.00 1 2.08 7.22 0.0004 
   2 vs  3 17.25 1 2.08 8.30 0.0002 
 
There is a difference between the means of the three solutions.  The Fisher LSD procedure indicates that 
solution 3 is significantly different than the other two. 
 
 
4-3 Plot the mean tensile strengths observed for each chemical type in Problem 4-1 and compare them to 
a scaled t distribution.  What conclusions would you draw from the display? 
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There is no obvious difference between the means.  This is the same conclusion given by the analysis of 
variance. 
 
 
4-4 Plot the average bacteria counts for each solution in Problem 4-2 and compare them to an 
appropriately scaled t distribution.  What conclusions can you draw? 
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There is no difference in mean bacteria growth between solutions 1 and 2.  However, solution 3 produces 
significantly lower mean bacteria growth. This is the same conclusion reached from the Fisher LSD 
procedure in Problem 4-4. 
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4-5 An article in the Fire Safety Journal (“The Effect of Nozzle Design on the Stability and Performance 
of Turbulent Water Jets,” Vol. 4, August 1981) describes an experiment in which a shape factor was 
determined for several different nozzle designs at six levels of efflux velocity.  Interest focused on potential 
differences between nozzle designs, with velocity considered as a nuisance variable.  The data are shown 
below: 
 
 Jet Efflux Velocity (m/s) 

Nozzle 
Design 11.73 14.37 16.59 20.43 23.46 28.74 

1 0.78 0.80 0.81 0.75 0.77 0.78 
2 0.85 0.85 0.92 0.86 0.81 0.83 
3 0.93 0.92 0.95 0.89 0.89 0.83 
4 1.14 0.97 0.98 0.88 0.86 0.83 
5 0.97 0.86 0.78 0.76 0.76 0.75 

 
(a)  Does nozzle design affect the shape factor?  Compare nozzles with a scatter plot and with an analysis 

of variance, using  = 0.05. 
 
Design Expert Output 
 Response: Shape 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.063 5 0.013 
 Model 0.10 4 0.026 8.92 0.0003 significant 
 A 0.10 4 0.026 8.92 0.0003 
 Residual 0.057 20 2.865E-003 
 Cor Total 0.22 29 
 
 The Model F-value of 8.92 implies the model is significant.  There is only 
 a 0.03% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.054  R-Squared 0.6407 
 Mean 0.86  Adj R-Squared 0.5688 
 C.V. 6.23  Pred R-Squared 0.1916 
 PRESS 0.13  Adeq Precision 9.438 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 0.78  0.022 
  2-2 0.85  0.022 
  3-3 0.90  0.022 
  4-4 0.94  0.022 
  5-5 0.81  0.022 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.072 1 0.031 -2.32 0.0311 
   1 vs  3 -0.12 1 0.031 -3.88 0.0009 
   1 vs  4 -0.16 1 0.031 -5.23 < 0.0001 
   1 vs  5 -0.032 1 0.031 -1.02 0.3177 
   2 vs  3 -0.048 1 0.031 -1.56 0.1335 
   2 vs  4 -0.090 1 0.031 -2.91 0.0086 
   2 vs  5 0.040 1 0.031 1.29 0.2103 
   3 vs  4 -0.042 1 0.031 -1.35 0.1926 
   3 vs  5 0.088 1 0.031 2.86 0.0097 
   4 vs  5 0.13 1 0.031 4.21 0.0004 
 
Nozzle design has a significant effect on shape factor. 
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(b)  Analyze the residual from this experiment. 
 
The plots shown below do not give any indication of serious problems.  Thre is some indication of a mild 
outlier on the normal probability plot and on the plot of residualks versus the predicted velocity. 
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(c)  Which nozzle designs are different with respect to shape factor?  Draw a graph of average shape factor 

for each nozzle type and compare this to a scaled t distribution.  Compare the conclusions that you 
draw from this plot to those from Duncan’s multiple range test. 
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R2= r0.05(2,20) S yi .

= (2.95)(0.021852)= 0.06446 
R3= r0.05(3,20) S yi .

= (3.10)(0.021852)= 0.06774 
R4= r0.05(4,20) S yi .

= (3.18)(0.021852)= 0.06949 
R5= r0.05(5,20) S yi .

= (3.25)(0.021852)= 0.07102 
 

 Mean Difference  R  
1 vs 4 0.16167 > 0.07102 different 
1 vs 3 0.12000 > 0.06949 different 
1 vs 2 0.07167 > 0.06774 different 
1 vs 5 0.03167 < 0.06446  
5 vs 4 0.13000 > 0.06949 different 
5 vs 3 0.08833 > 0.06774 different 
5 vs 2 0.04000 < 0.06446  
2 vs 4 0.09000 > 0.06774 different 
2 vs 3 0.04833 < 0.06446  
3 vs 4 0.04167 < 0.06446  
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4-6 Consider the ratio control algorithm experiment described in Chapter 3, Section 3-8.  The 
experiment was actually conducted as a randomized block design, where six time periods were selected as 
the blocks, and all four ratio control algorithms were tested in each time period.  The average cell voltage 
and the standard deviation of voltage (shown in parentheses) for each cell as follows: 
 

Ratio Control    Time Period   

Algorithms 1 2 3 4 5 6 

1 4.93 (0.05) 4.86 (0.04) 4.75 (0.05) 4.95 (0.06) 4.79 (0.03) 4.88 (0.05) 

2 4.85 (0.04) 4.91 (0.02) 4.79 (0.03) 4.85 (0.05) 4.75 (0.03) 4.85 (0.02) 

3 4.83 (0.09) 4.88 (0.13) 4.90 (0.11) 4.75 (0.15) 4.82 (0.08) 4.90 (0.12) 

4 4.89 (0.03) 4.77 (0.04) 4.94 (0.05) 4.86 (0.05) 4.79 (0.03) 4.76 (0.02)  

 
(a)  Analyze the average cell voltage data.  (Use  = 0.05.)  Does the choice of ratio control algorithm 

affect the cell voltage? 
 
Design Expert Output  
 Response: Average 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.017 5 3.487E-003 
 Model 2.746E-003 3 9.153E-004 0.19 0.9014 not significant 
 A 2.746E-003 3 9.153E-004 0.19 0.9014 
 Residual 0.072 15 4.812E-003 
 Cor Total 0.092 23 
 
 The "Model F-value" of 0.19 implies the model is not significant relative to the noise.  There is a 
 90.14 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 0.069  R-Squared 0.0366 
 Mean 4.84  Adj R-Squared -0.1560 
 C.V. 1.43  Pred R-Squared -1.4662 
 PRESS 0.18  Adeq Precision 2.688 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 4.86  0.028 
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  2-2 4.83  0.028 
  3-3 4.85  0.028 
  4-4 4.84  0.028 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.027 1 0.040 0.67 0.5156 
   1 vs  3 0.013 1 0.040 0.33 0.7438 
   1 vs  4 0.025 1 0.040 0.62 0.5419 
   2 vs  3 -0.013 1 0.040 -0.33 0.7438 
   2 vs  4 -1.667E-003 1 0.040 -0.042 0.9674 
   3 vs  4 0.012 1 0.040 0.29 0.7748 
 
The ratio control algorithm does not affect the mean cell voltage. 
 
(b)  Perform an appropriate analysis of the standard deviation of voltage.  (Recall that this is called “pot 

noise.”)  Does the choice of ratio control algorithm affect the pot noise? 
 
Design Expert Output 
 Response: StDev Transform: Natural log Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.94 5 0.19 
 Model 6.17 3 2.06 33.26 < 0.0001 significant 
 A 6.17 3 2.06 33.26 < 0.0001 
 Residual 0.93 15 0.062 
 Cor Total 8.04 23 
 
 The Model F-value of 33.26 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.25  R-Squared 0.8693 
 Mean -3.04  Adj R-Squared 0.8432 
 C.V. -8.18  Pred R-Squared 0.6654 
 PRESS 2.37  Adeq Precision 12.446 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 -3.09  0.10 
  2-2 -3.51  0.10 
  3-3 -2.20  0.10 
  4-4 -3.36  0.10 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.42 1 0.14 2.93 0.0103 
   1 vs  3 -0.89 1 0.14 -6.19 < 0.0001 
   1 vs  4 0.27 1 0.14 1.87 0.0813 
   2 vs  3 -1.31 1 0.14 -9.12 < 0.0001 
   2 vs  4 -0.15 1 0.14 -1.06 0.3042 
   3 vs  4 1.16 1 0.14 8.06 < 0.0001 
 
A natural log transformatio was applied to the pot noise data.  The ratio control algorithm does affect the 
pot noise. 
 
(c)  Conduct any residual analyses that seem appropriate. 
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The normal probability plot shows slight deviations from normality; however, still acceptable. 

 
(d)  Which ratio control algorithm would you select if your objective is to reduce both the average cell 

voltage and the pot noise? 
 
 Since the ratio control algorithm has little effect on average cell voltage, select the algorithm that 
minimizes pot noise, that is algorithm #2.   
 
 
4-7 An aluminum master alloy manufacturer produces grain refiners in ingot form.  This company 
produces the product in four furnaces.  Each furnace is known to have its own unique operating 
characteristics, so any experiment run in the foundry that involves more than one furnace will consider 
furnace a nuisance variable.  The process engineers suspect that stirring rate impacts the grain size of the 
product.  Each furnace can be run at four different stirring rates.  A randomized block design is run for a 
particular refiner and the resulting grain size data is shown below. 
 
 
 Furnace 
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Stirring Rate 1 2 3 4 
5 8 4 5 6 
10 14 5 6 9 
15 14 6 9 2 
20 17 9 3 6 

 
(a)  Is there any evidence that stirring rate impacts grain size? 
 
Design Expert Output 
 Response: Grain Size 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 165.19 3 55.06 
 Model 22.19 3 7.40 0.85 0.4995 not significant 
 A 22.19 3 7.40 0.85 0.4995 
 Residual 78.06 9 8.67 
 Cor Total 265.44 15 
 
 The "Model F-value" of 0.85 implies the model is not significant relative to the noise.  There is a 
 49.95 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 2.95  R-Squared 0.2213 
 Mean 7.69  Adj R-Squared -0.0382 
 C.V. 38.31  Pred R-Squared -1.4610 
 PRESS 246.72  Adeq Precision 5.390 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-5 5.75  1.47 
  2-10 8.50  1.47 
  3-15 7.75  1.47 
  4-20 8.75  1.47 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -2.75 1 2.08 -1.32 0.2193 
   1 vs  3 -2.00 1 2.08 -0.96 0.3620 
   1 vs  4 -3.00 1 2.08 -1.44 0.1836 
   2 vs  3 0.75 1 2.08 0.36 0.7270 
   2 vs  4 -0.25 1 2.08 -0.12 0.9071 
   3 vs  4 -1.00 1 2.08 -0.48 0.6425 
 
The analysis of variance shown above indicates that there is no difference in mean grain size due to the 
different stirring rates. 
 
(b)  Graph the residuals from this experiment on a normal probability plot.  Interpret this plot. 
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The plot indicates that normality assumption is valid. 

 
(c)  Plot the residuals versus furnace and stirring rate.  Does this plot convey any useful information? 
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The variance is consistent at different stirring rates.  Not only does this validate the assumption of uniform 
variance, it also identifies that the different stirring rates do not affect variance. 

 
(d)  What should the process engineers recommend concerning the choice of stirring rate and furnace for 

this particular grain refiner if small grain size is desirable?   
 
There really isn’t any effect due to the stirring rate. 
 
 
4-8 Analyze the data in Problem 4-2 using the general regression significance test. 
 

: ˆ12  14ˆ  24ˆ  34ˆ  13 ˆ  23 ˆ  33 ˆ  43 ˆ  =225 
1 : ˆ4  14ˆ    1

ˆ  2
ˆ  3

ˆ  4
ˆ  =92 

2 : ˆ4   24ˆ   1
ˆ  2

ˆ  3
ˆ  4

ˆ  =101 
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3 : ˆ4    34ˆ  1
ˆ  2

ˆ  3
ˆ  4

ˆ  =32 
1 : ˆ3  1ˆ  2ˆ  3ˆ  13 ˆ     =34 
2 : ˆ3  1ˆ  2ˆ  3ˆ   23 ˆ    =50 
3 : ˆ3  1ˆ  2ˆ  3ˆ    33 ˆ   =36 
4 : ˆ3  1ˆ  2ˆ  3ˆ     43 ˆ  =105 

 
Applying the constraints 0ji

ˆˆ , we obtain: 
 

12
225ˆ , 

12
51

1ˆ , 
12
78

2ˆ , 
12
129

3ˆ , 
12
89

1
ˆ , 

12
25

2
ˆ , 

12
81

3
ˆ , 

12
195

4
ˆ  

50
12
2534

12
8932

12
129101

12
7892

12
51225

12
225,,R  

 176029105
12
19536

12
81 .  

60812
ijy , 835117602960812 ..,,RySS ijE  

 
Model Restricted to i 0 : 
 

: ˆ12  13 ˆ  23 ˆ  33 ˆ  43 ˆ  =225 

1 : ˆ3  13 ˆ     =34 

2 : ˆ3   23 ˆ    =50 

3 : ˆ3    33 ˆ   =36 

4 : ˆ3     43 ˆ  =105 
 
Applying the constraint 0j

ˆ , we obtain: 
 

12
225ˆ  , 12891 /ˆ , 

12
25

2
ˆ , 

12
81

3
ˆ , 

12
195

4
ˆ .  Now: 

675325105
12
19536

12
8150

12
2534

12
89225

12
225 .,R  

TreatmentsSS...,R,,R,R 50703675325176029  
 
Model Restricted to 0j : 
 

: ˆ12  14ˆ  24ˆ  34ˆ  =225 

1 : ˆ4  14ˆ    =92 

2 : ˆ4   24ˆ   =101 

3 : ˆ4    34ˆ  =32 
 
Applying the constraint 0iˆ , we obtain: 
 

12
225ˆ , 

12
51

1ˆ , 
12
78

2ˆ , 
12
129

3ˆ  
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25492232
12
129101

12
7892

12
51225

12
225 .,R  

BlocksSS...,R,,R,R 921106254922176029  
 
 
4-9 Assuming that chemical types and bolts are fixed, estimate the model parameters i and j in 
Problem 4-1. 
 
Using Equations 4-14, Applying the constraints, we obtain: 
 

20
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20
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1ˆ , 
20
7

2ˆ , 
20
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3ˆ ,
20
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4ˆ , 
20
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1
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2
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3
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20
20

4
ˆ ,
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65

5
ˆ  

 
 
4-10 Draw an operating characteristic curve for the design in Problem 4-2.  Does this test seem to be 
sensitive to small differences in treatment effects? 
 
Assuming that solution type is a fixed factor, we use the OC curve in appendix V.  Calculate 

 

6983

4 2

2

2
2

.a

b ii
 

 
using MSE to estimate 2.  We have: 
 

211 a     632112 ba . 
 
If EMSˆ

i

22 , then: 
 

151
13
4 . and 700.  

 
If Ei MSˆ 22 2 , then: 
 

631
23
4 . and 550. , etc. 

 
This test is not very sensitive to small differences. 
 
 
4-11 Suppose that the observation for chemical type 2 and bolt 3 is missing in Problem 4-1.  Analyze the 
problem by estimating the missing value.  Perform the exact analysis and compare the results. 
 

y23 is missing.  2575
34

136022752824
11

32
23 .

ba
ybyay

ŷ
'
..

'
.

'
.  

 
Thus, y2.=357.25, y.3=3022.25, and y..=1435.25 

 
Source SS DF MS F0 

Chemicals 12.7844 3 4.2615 2.154 
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Bolts 158.8875 4   
Error 21.7625 11 1.9784  
Total 193.4344 18   

 
F0.10,3,11=2.66, Chemicals are not significant. 

 
 
4-12 Two missing values in a randomized block.  Suppose that in Problem 4-1 the observations for 
chemical type 2 and bolt 3 and chemical type 4 and bolt 4 are missing. 
 
(a)  Analyze the design by iteratively estimating the missing values as described in Section 4-1.3. 
 

12
54 32

23

'
..

'
.

'
. yyyŷ  and 

12
54 44

44

'
..

'
.

'
. yyyŷ  

 
Data is coded y-70. As an initial guess, set 0

23y  equal to the average of the observations available for 

chemical 2.  Thus, 50
4
20

23 .y  .  Then , 

043
12

52565840
44 ..ŷ  

415
12

0428175241
23 ..ŷ  

632
12

413065841
44 ..ŷ  

445
12

6327175242
44 ..ŷ  

632
12

443065842
44 ..ŷ  

44523 .ŷ  63244 .ŷ  
 
Design Expert Output  
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 156.83 4 39.21 
 Model 9.59 3 3.20 2.08 0.1560 not significant 
 A 9.59 3 3.20 2.08 0.1560 
 Residual 18.41 12 1.53 
 Cor Total 184.83 19 
 
(b)  Differentiate SSE with respect to the two missing values, equate the results to zero, and solve for 

estimates of the missing values.  Analyze the design using these two estimates of the missing values. 
 

2
20
12

4
12

5
12

..j..iijE yyyySS  

Ryy.y.y.y.y.SSE 44234423
2
44

2
23 1073866060  

 

From 0
4423 y

SS
y
SS EE , we obtain: 
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732110
861021

4423

4423

.ŷ.ŷ.

.ŷ.ŷ.
    45523 .ŷ , 63244 .ŷ  

 
These quantities are almost identical to those found in part (a).  The analysis of variance using these new 
data does not differ substantially from part (a). 
 
(c)  Derive general formulas for estimating two missing values when the observations are in different 

blocks. 
 

ab
yyy

a
yyyy

b
yyyy

yySS kviu..kvv.iuu.kv.kiu.i
kviuE

22222
22  

 

From 0
4423 y

SS
y
SS EE , we obtain: 
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ŷ
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ab
ŷ
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ab
)b)(a(ŷ iu..v..k

kv
11  

 
whose simultaneous solution is: 
 

22

222222

11111

111111111

baba

baab'yabbab'yabbaa'y
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22 111 ba
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22 111
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kv  

 
(d)  Derive general formulas for estimating two missing values when the observations are in the same 

block.  Suppose that two observations yij and ykj are missing, i k (same block j). 
 

ab
yyy

a
yyy

b
yyyy

yySS kjij..kjijj.kj.kij.i
kjijE

2222
22  

 

From 0
4423 y

SS
y
SS EE , we obtain 
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ij  
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baŷ
ba

yybya
ŷ ij

..j..k
kj  

 
whose simultaneous solution is: 
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4-13 An industrial engineer is conducting an experiment on eye focus time.  He is interested in the effect 
of the distance of the object from the eye on the focus time.  Four different distances are of interest.  He has 
five subjects available for the experiment.  Because there may be differences among individuals, he decides 
to conduct the experiment in a randomized block design.  The data obtained follow.  Analyze the data from 
this experiment (use  = 0.05) and draw appropriate conclusions. 
 

   Subject   
Distance (ft) 1 2 3 4 5 

4 10 6 6 6 6 
6 7 6 6 1 6 
8 5 3 3 2 5 

10 6 4 4 2 3 
 
Design Expert Output 
 Response: Focus Time 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 36.30 4 9.07 
 Model 32.95 3 10.98 8.61 0.0025 significant 
 A 32.95 3 10.98 8.61 0.0025 
 Residual 15.30 12 1.27 
 Cor Total 84.55 19 
 
 The Model F-value of 8.61 implies the model is significant.  There is only 
 a 0.25% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.13  R-Squared 0.6829 
 Mean 4.85  Adj R-Squared 0.6036 
 C.V. 23.28  Pred R-Squared 0.1192 
 PRESS 42.50  Adeq Precision 10.432 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-4 6.80  0.50 
  2-6 5.20  0.50 
  3-8 3.60  0.50 
  4-10 3.80  0.50 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 1.60 1 0.71 2.24 0.0448 
   1 vs  3 3.20 1 0.71 4.48 0.0008 
   1 vs  4 3.00 1 0.71 4.20 0.0012 
   2 vs  3 1.60 1 0.71 2.24 0.0448 
   2 vs  4 1.40 1 0.71 1.96 0.0736 
   3 vs  4 -0.20 1 0.71 -0.28 0.7842 
 
Distance has a statistically significant effect on mean focus time. 
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4-14 The effect of five different ingredients (A, B, C, D, E) on reaction time of a chemical process is 
being studied.  Each batch of new material is only large enough to permit five runs to be made.  
Furthermore, each runs requires approximately 1 1/2 hours, so only five runs can be made in one day.  The 
experimenter decides to run the experiment as a Latin square so that day and batch effects can be 
systematically controlled.  She obtains the data that follow.  Analyze the data from this experiment (use  = 
0.05) and draw conclusions. 
 

   Day   
Batch 1 2 3 4 5 

1 A=8 B=7 D=1 C=7 E=3 
2 C=11 E=2 A=7 D=3 B=8 
3 B=4 A=9 C=10 E=1 D=5 
4 D=6 C=8 E=6 B=6 A=10 
5 E=4 D=2 B=3 A=8 C=8 

 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Batch    random      5 1 2 3 4 5 
Day      random      5 1 2 3 4 5 
Catalyst  fixed      5 A B C D E 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Catalyst    4    141.440    141.440     35.360   11.31  0.000 
Batch       4     15.440     15.440      3.860    1.23  0.348 
Day         4     12.240     12.240      3.060    0.98  0.455 
Error      12     37.520     37.520      3.127 
Total      24    206.640   
 
 
4-15 An industrial engineer is investigating the effect of four assembly methods (A, B, C, D) on the 
assembly time for a color television component.  Four operators are selected for the study.  Furthermore, 
the engineer knows that each assembly method produces such fatigue that the time required for the last 
assembly may be greater than the time required for the first, regardless of the method.  That is, a trend 
develops in the required assembly time.  To account for this source of variability, the engineer uses the 
Latin square design shown below.  Analyze the data from this experiment (  = 0.05) draw appropriate 
conclusions. 
 

Order of   Operator  
Assembly 1 2 3 4 

1 C=10 D=14 A=7 B=8 
2 B=7 C=18 D=11 A=8 
3 A=5 B=10 C=11 D=9 
4 D=10 A=10 B=12 C=14 

 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Order    random      4 1 2 3 4 
Operator random      4 1 2 3 4 
Method    fixed      4 A B C D 
 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
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Method      3     72.500     72.500     24.167   13.81  0.004 
Order       3     18.500     18.500      6.167    3.52  0.089 
Operator    3     51.500     51.500     17.167    9.81  0.010 
Error       6     10.500     10.500      1.750 
Total      15    153.000   
 
 
4-16 Suppose that in Problem 4-14 the observation from batch 3 on day 4 is missing.  Estimate the 
missing value from Equation 4-24, and perform the analysis using this value. 
 

y354 is missing. 583
43

14622415285
12

2
354 .

pp
yyyyp

ŷ ...k...j...i  

 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Batch    random      5 1 2 3 4 5 
Day      random      5 1 2 3 4 5 
Catalyst  fixed      5 A B C D E 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Catalyst    4    128.676    128.676     32.169   11.25  0.000 
Batch       4     16.092     16.092      4.023    1.41  0.290 
Day         4      8.764      8.764      2.191    0.77  0.567 
Error      12     34.317     34.317      2.860 
Total      24    187.849   
 
 
4-17 Consider a p x p Latin square with rows ( i), columns ( k), and treatments ( j) fixed.  Obtain least 
squares estimates of the model parameters i, k, j. 
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There are 3p+1 equations in 3p+1 unknowns.  The rank of the system is 3p-2.  Three side conditions are 

necessary.  The usual conditions imposed are: 0
111
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ˆˆˆ .  The solution is then: 
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4-18  Derive the missing value formula (Equation 4-24) for the Latin square design. 
 

2

2222
2 2

p
y

p
y

p
y

p
yySS ...k...j...i

ijkE  

 
Let yijk be missing.  Then 
 

R
p

yy

p

yy

p

yy

p

yy
ySS ijk...ijkk..ijk.j.ijk..i

ijkE 2

222

2
2

  

 

where R is all terms without yijk..  From 0
ijk

E

y
SS

, we obtain: 

 

22

221
p

'y'y'y'yp

p
pp

y ...k...j...i
ijk , or 

21
2

pp
'y'y'y'yp

y ...k...j...i
ijk  

 
 
4-19 Designs involving several Latin squares. [See Cochran and Cox (1957), John (1971).]  The p x p 
Latin square contains only p observations for each treatment.  To obtain more replications the experimenter 
may use several squares, say n.  It is immaterial whether the squares used are the same are different.  The 
appropriate model is 
 

ijkhjh)h(kj)h(ihijkh )(y      

n,...,,h
p,...,,k
p,...,,j
p,...,,i

21
21
21
21

 

 
where yijkh is the observation on treatment j in row i and column k of the hth square.  Note that i h( )  and 

k h( )  are row and column effects in the hth square, and h  is the effect of the hth square, and ( ) jh  is the 
interaction between treatments and squares. 
 
(a) Set up the normal equations for this model, and solve for estimates of the model parameters.  Assume 

that appropriate side conditions on the parameters are 0
h hˆ , 0

i hiˆ , and 0
k hk

ˆ  

for each h, 0
j jˆ , 0

j jhˆ for each h, and 0
h jhˆ  for each j. 
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....h.....j.h.j.
jh

^

h...kh..)h(k

h...h..i)h(i

......j.j

....h...h

....

yyyy

yyˆ
yyˆ

yyˆ
yyˆ

yˆ

 

 
(b) Write down the analysis of variance table for this design. 
 

Source SS DF 

Treatments 2

22

np
y

np
y ......j.  p-1 

Squares 2

2

2

2

np
y

p
y ....h...  n-1 

Treatment x Squares SquaresTreatments
....h.j. SSSS

np
y

p
y

2

22

 (p-1)(n-1) 

Rows 2

22

np
y

p
y h...h..i  n(p-1) 

Columns 2

22

np
y

p
y h...kh..  n(p-1) 

Error subtraction n(p-1)(p-2) 

Total 2

2
2

np
yy ....

ijkh  np2-1 

 
 
4-20 Discuss how the operating characteristics curves in the Appendix may be used with the Latin square 
design. 
 
For the fixed effects model use: 
 

2

2

2

2
2 jj

p

p
, 11 p     122 pp  

 
For the random effects model use: 
 

1
2

2
p , 1 1p     122 pp  

 
 
4-21 Suppose that in Problem 4-14 the data taken on day 5 were incorrectly analyzed and had to be 
discarded.  Develop an appropriate analysis for the remaining data. 
 
Two methods of analysis exist: (1) Use the general regression significance test, or (2) recognize that the 
design is a Youden square.  The data can be analyzed as a balanced incomplete block design with a=b=5, 
r=k=4 and =3.  Using either approach will yield the same analysis of variance. 
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Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Catalyst  fixed      5 A B C D E 
Batch    random      5 1 2 3 4 5 
Day      random      4 1 2 3 4 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Catalyst    4    119.800    120.167     30.042    7.48  0.008 
Batch       4     11.667     11.667      2.917    0.73  0.598 
Day         3      6.950      6.950      2.317    0.58  0.646 
Error       8     32.133     32.133      4.017 
Total      19    170.550   
 
 
4-22 The yield of a chemical process was measured using five batches of raw material, five acid 
concentrations, five standing times, (A, B, C, D, E) and five catalyst concentrations ( , , , , ).  The 
Graeco-Latin square that follows was used.  Analyze the data from this experiment (use  = 0.05) and draw 
conclusions.  
 

   Acid Concentration  
Batch 1 2 3 4 5 

1 A =26 B =16 C =19 D =16 E =13 
2 B =18 C =21 D =18 E =11 A =21 
3 C =20 D =12 E =16 A =25 B =13 
4 D =15 E =15 A =22 B =14 C =17 
5 E =10 A =24 B =17 C =17 D =14 

 
General Linear Model 

 
Factor     Type Levels Values 
Time      fixed      5 A B C D E 
Catalyst random      5 a b c d e 
Batch    random      5 1 2 3 4 5 
Acid     random      5 1 2 3 4 5 
 
Analysis of Variance for Yield, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Time        4    342.800    342.800     85.700   14.65  0.001 
Catalyst    4     12.000     12.000      3.000    0.51  0.729 
Batch       4     10.000     10.000      2.500    0.43  0.785 
Acid        4     24.400     24.400      6.100    1.04  0.443 
Error       8     46.800     46.800      5.850 
Total      24    436.000   
 
 
4-23 Suppose that in Problem 4-15 the engineer suspects that the workplaces used by the four operators 
may represent an additional source of variation.  A fourth factor, workplace ( , , , ) may be introduced 
and another experiment conducted, yielding the Graeco-Latin square that follows.  Analyze the data from 
this experiment (use  = 0.05) and draw conclusions. 
 

Order of   Operator  
Assembly 1 2 3 4 

1 C =11 B =10 D =14 A =8 
2 B =8 C =12 A =10 D =12 
3 A =9 D =11 B =7 C =15 
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4 D =9 A =8 C =18 B =6 
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Method    fixed      4 A B C D 
Order    random      4 1 2 3 4 
Operator random      4 1 2 3 4 
Workplac random      4 a b c d 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Method      3     95.500     95.500     31.833    3.47  0.167 
Order       3      0.500      0.500      0.167    0.02  0.996 
Operator    3     19.000     19.000      6.333    0.69  0.616 
Workplac    3      7.500      7.500      2.500    0.27  0.843 
Error       3     27.500     27.500      9.167 
Total      15    150.000   
 
However, there are only three degrees of freedom for error, so the test is not very sensitive. 
 
 
4-24 Construct a 5 x 5 hypersquare for studying the effects of five factors.  Exhibit the analysis of 
variance table for this design. 
 
Three 5 x 5 orthogonal Latin Squares are: 
 

ABCDE
BCDEA
CDEAB
DEABC
EABCD

            

12345
45123
23451
51234
34512

 

 
Let rows = factor 1, columns = factor 2, Latin letters = factor 3, Greek letters = factor 4 and numbers = 
factor 5.  The analysis of variance table is: 
 

Source DF 
Rows 4 
Columns 4 
Latin Letters 4 
Greek Letters 4 
Numbers  4 
Error 4 
Total 24 

 
 
4-25 Consider the data in Problems 4-15 and 4-23.  Suppressing the Greek letters in 4-23, analyze the data 
using the method developed in Problem 4-19. 
 

Square 1 - Operator 
Batch 1 2 3 4 Row Total 
1 C=10 D=14 A=7 B=8 (39) 
2 B=7 C=18 D=11 A=8 (44) 
3 A=5 B=10 C=11 D=9 (35) 
4 D=10 A=10 B=12 C=14 (46) 
 (32) (52) (41) (36) 164=y…1 
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Square 2 - Operator 

Batch 1 2 3 4 Row Total 
1 C=11 B=10 D=14 A=8 (43) 
2 B=8 C=12 A=10 D=12 (42) 
3 A=9 D=11 B=7 C=15 (42) 
4 D=9 A=8 C=18 B=6 (41) 
 (37) (41) (49) (41) 168=y…2 

 
Assembly Methods Totals 

A y.1..=65 
B y.2..=68 
C y.3..=109 
D y.4..=90 

 
Source SS DF MS F0 
Assembly Methods 159.25 3 53.08 14.00* 
Squares 0.50 1 0.50  
A x S 8.75 3 2.92 0.77 
Assembly Order (Rows) 19.00 6 3.17  
Operators (columns) 70.50 6 11.75  
Error 45.50 12 3.79  
Total 303.50 31   

 
Significant at 1%. 

 
 
4-26 Consider the randomized block design with one missing value in Table 4-7.  Analyze this data by 
using the exact analysis of the missing value problem discussed in Section 4-1.4.  Compare your results to 
the approximate analysis of these data given in Table 4-8. 
 

: 15  4 1  3 2  4 3  4 4  4 1  4 2  3 3  4 4  =17 

1 : 4  4 1     1  2  3  4  =3 

2 : 3   3 2    1  2   4  =1 

3 : 4    4 3   1  2  3  4  =-2 

4 : 4     4 4  1  2  3  4  =15 

1 : 4  1  2  3  4  4 1     =-4 

2 : 4  1  2  3  4   3 2    =-3 

3 : 3  1   3  4    4 3   =6 

4 : 4  1  2  3  4     4 4  =19 
 
Applying the constraints 0ji

ˆˆ , we obtain: 
 

36
41ˆ , 

36
14

1ˆ , 
36
24

2ˆ , 
36
59

3ˆ ,
36
94

4ˆ , 
36
77

1
ˆ , 

36
68

2
ˆ , 

36
24

3
ˆ , 

36
121

4
ˆ  
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4

1

4

1

78138
i j

j.j.ii.. .yˆyˆyˆ,,R  

 
With 7 degrees of freedom. 
 

001452 .yij , 22678138001452 ...,,RySS ijE  
 
which is identical to SSE obtained in the approximate analysis.  In general, the SSE in the exact and 
approximate analyses will be the same. 
 
To test Ho: 0i  the reduced model is  ijjijy .  The normal equations used are: 
 

: ˆ15  1̂4  2
ˆ4  3

ˆ3  4
ˆ4  =17 

1 : 4  1̂4     =-4 

2 : 4   2
ˆ4    =-3 

3 : 3    3
ˆ3   =6 

4 : 4     4
ˆ4  =18 

 
Applying the constraint 0j

ˆ , we obtain: 
 

16
19ˆ  , 

16
35

1
ˆ , 

16
31

2
ˆ , 

16
13

3
ˆ , 

16
53

4
ˆ .  Now  

4

1

2599
j

j.j.. .yˆyˆ,R  

 
with 4 degrees of freedom. 
 

TreatmentsSS...,R,,R,R 5339259978138  
 
with 7-4=3 degrees of freedom.  ,R is used to test Ho: i 0 . 
 
The sum of squares for blocks is found from the reduced model  ijiijy .  The normal equations 
used are: 
 
Model Restricted to 0j : 
 

: 15  4 1  3 2  4 3  4 4  =17 
1 : ˆ4  4 1     =3 
2 : ˆ3   3 2    =1 
3 : ˆ4    4 3   =-2 
4 : ˆ4     4 4  =15 

 
Applying the constraint ˆ 0i , we obtain: 
 

13ˆ
12

, 1
4ˆ

12
, 2

9ˆ
12

, 3
19ˆ

12
, 4

32ˆ
12
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4

1

8359
i

.ii.. .yˆyˆ,R  

 
with 4 degrees of freedom. 
 

BlocksSS...,R,,R,R 9578835978138  
 
with 7-4=3 degrees of freedom. 
 

Source DF SS(exact) SS(approximate) 
Tips 3 39.53 39.98 
Blocks 3 78.95 79.53 
Error 8 6.22 6.22 
Total 14 125.74 125.73 

 
Note that for the exact analysis, EBlocksTipsT SSSSSSSS . 
 
 
4-27 An engineer is studying the mileage performance characteristics of five types of gasoline additives.  
In the road test he wishes to use cars as blocks; however, because of a time constraint, he must use an 
incomplete block design.  He runs the balanced design with the five blocks that follow.  Analyze the data 
from this experiment (use  = 0.05) and draw conclusions. 
 

   Car   
Additive 1 2 3 4 5 

1  17 14 13 12 
2 14 14  13 10 
3 14  13 14 9 
4 13 11 11 12  
5 11 12 10  8 

 
There are several computer software packages that can analyze the incomplete block designs discussed in 
this chapter.  The Minitab General Linear Model procedure is a widely available package with this 
capability.  The output from this routine for Problem 4-27 follows.  The adjusted sums of squares are the 
appropriate sums of squares to use for testing the difference between the means of the gasoline additives.  
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Additive  fixed      5 1 2 3 4 5 
Car      random      5 1 2 3 4 5 
 
Analysis of Variance for Mileage, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Additive    4    31.7000    35.7333     8.9333    9.81  0.001 
Car         4    35.2333    35.2333     8.8083    9.67  0.001 
Error      11    10.0167    10.0167     0.9106 
Total      19    76.9500   
 
 
4-28 Construct a set of orthogonal contrasts for the data in Problem 4-27.  Compute the sum of squares 
for each contrast. 
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One possible set of orthogonal contrasts is: 
 
 21540 :H  (1) 
 210 :H  (2) 
 540 :H  (3) 
 215430 4:H  (4) 
 
The sums of squares and F-tests are: 
 

Brand -> 1 2 3 4 5    
Qi 33/4 11/4 -3/4 -14/4 -27/4 c Qi i  SS F0 
(1) -1 -1 0 1 1 -85/4 30.10 39.09 
(2) 1 -1 0 0 0 -22/4 4.03 5.23 
(3) 0 0 0 -1 1 -13/4 1.41 1.83 
(4) -1 -1 4 -1 -1 -15/4 0.19 0.25 

 
Contrasts (1) and (2) are significant at the 1% and 5% levels, respectively.  
 
 
4-29 Seven different hardwood concentrations are being studied to determine their effect on the strength 
of the paper produced.  However the pilot plant can only produce three runs each day.  As days may differ, 
the analyst uses the balanced incomplete block design that follows.  Analyze this experiment (use  = 0.05) 
and draw conclusions. 
 

Hardwood    Days    
Concentration (%) 1 2 3 4 5 6 7 

2 114    120  117 
4 126 120    119  
6  137 114    134 
8 141  129 149    

10  145  150 143   
12   120  118 123  
14    136  130 127 

 
There are several computer software packages that can analyze the incomplete block designs discussed in 
this chapter.  The Minitab General Linear Model procedure is a widely available package with this 
capability.  The output from this routine for Problem 4-29 follows.  The adjusted sums of squares are the 
appropriate sums of squares to use for testing the difference between the means of the hardwood 
concentrations.  
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Concentr  fixed      7  2  4  6  8 10 12 14 
Days     random      7 1 2 3 4 5 6 7 
 
Analysis of Variance for Strength, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Concentr    6    2037.62    1317.43     219.57   10.42  0.002 
Days        6     394.10     394.10      65.68    3.12  0.070 
Error       8     168.57     168.57      21.07 
Total      20    2600.29   
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4-30  Analyze the data in Example 4-6 using the general regression significance test. 
 

: 12  3 1  3 2  3 3  3 4  3 1  3 2  3 3  3 4  =870 

1 : 3  3 1     1   3  4  =218 

2 : 3   3 2     2  3  4  =214 

3 : 3    3 3   1  2  3   =216 

4 : 3     3 4  1  2   4  =222 

1 : 3  1   3  4  3 1     =221 

2 : 3   2  3  4   3 2    =207 

3 : 3  1  2  3     3 3   =224 

4 : 3  1  2   4     3 4  =218 
 
Applying the constraints i j 0 , we obtain: 
 

/870 12 , /1 9 8 , /2 7 8 , /3 4 8 , /4 20 8 , 

/1 7 8 , /2 31 8 , /3 24 8 , /4 0 8  

 

 with 7 degrees of freedom. 
 

yij
2 63156 00, .  

SS y RE ij
2 63156 00 63152 75 325( , , ) . . . . 

 
To test Ho: i 0  the reduced model is  yij j ij .  The normal equations used are: 
 

: 12  3 1  3 2  3 3  3 4  =870 

1 : 3  3 1     =221 

2 : 3   3 2    =207 

3 : 3    3 3   =224 

4 : 3     3 4  =218 
 
Applying the constraint 0j

ˆ , we obtain: 
 

12
870ˆ , 

6
7

1
ˆ , 

6
21

2
ˆ , 

6
13

3
ˆ , 

6
1

4
ˆ  

4

1

0013063
j

j.j.. .,yˆyˆ,R  

 
with 4 degrees of freedom. 
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TreatmentsSS...,R,,R,R 752200631307563152  
 
with 7-4=3 degrees of freedom.  ,R is used to test Ho: 0i . 
 
The sum of squares for blocks is found from the reduced model ijiijy .  The normal equations 
used are: 
 
Model Restricted to 0j : 
 

: 12  3 1  3 2  3 3  3 4  =870 
1 : 3  3 1     =218 
2 : 3   3 2    =214 
3 : 3    3 3   =216 
4 : 3     3 4  =222 

 
The sum of squares for blocks is found as in Example 4-6.  We may use the method shown above to find an 
adjusted sum of squares for blocks from the reduced model, ijiijy . 
 
 

4-31 Prove that 
a

Qk
a

i i1
2

 is the adjusted sum of squares for treatments in a BIBD. 

 
We may use the general regression significance test to derive the computational formula for the adjusted 
treatment sum of squares.  We will need the following: 
 

a
kQˆ i

i , 
b

i
j.ij.ii ynkykQ

1

 

a

i

b

j
j.j.ii.. yˆyˆyˆ,,R

1 1

 

 
and the sum of squares we need is: 
 

b

j

j.
a

i

b

j
j.j.ii.. k

y
yˆyˆyˆ,R

1

2

1 1

 

 
The normal equation for  is, from equation (4-35), 
 

a

i
j.jiij yˆkˆnˆk:

1

 

 
and from this we have: 
 

a

i
iijj.j.j.jj. ˆnyˆkyyˆky

1

2  
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therefore, 
 

a

i

b

j

j.

a

i
iijj.

j.j.
.ii.. k

y
k

ˆny

k
yˆk

k
y

yˆyˆ,R
1 1

2
1

2

 

 

)adjusted(Treatments

a

i

a

i
i

a

i

a

i
j.ij.ii SS

a
Q

k
a

kQQyn
k

yˆ),(R i

1

2

11 1

1  

 
 
4-32 An experimenter wishes to compare four treatments in blocks of two runs.  Find a BIBD for this 
experiment with six blocks. 
 

Treatment Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 
1 X X X    
2 X   X X  
3  X  X  X 
4   X  X X 

 
Note that the design is formed by taking all combinations of the 4 treatments 2 at a time.  The parameters of 
the design are  = 1, a=4, b=6, k=3, and r=2 
 
4-33 An experimenter wishes to compare eight treatments in blocks of four runs.  Find a BIBD with 14 
blocks and  = 3. 
 
The design has parameters a=8, b=14,  = 3, r=2 and k=4.  It may be generated from a 23 factorial design 
confounded in two blocks of four observations each, with each main effect and interaction successively 
confounded (7 replications) forming the 14 blocks.  The design is discussed by John (1971, pg. 222) and 
Cochran and Cox (1957, pg. 473).  The design follows: 
 
 

Blocks 1=(I) 2=a 3=b 4=ab 5=c 6=ac 7=bc 8=abc 
1 X  X  X  X  
2  X  X  X  X 
3 X  X   X  X 
4  X  X X  X  
5 X X   X X   
6   X X   X X 
7 X X     X X 
8   X X X X   
9 X X X X     
10     X X X X 
11 X   X  X X  
12  X X  X   X 
13 X   X X   X 
14  X X   X X  
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4-34 Perform the interblock analysis for the design in Problem 4-27. 
 
The interblock analysis for Problem 4-27 uses 7702 .ˆ and 1422 .ˆ .  A summary of the interblock, 
intrablock and  combined estimates is: 
 

Parameter Intrablock Interblock Combined 
1  2.20 -1.80 2.18 
2  0.73 0.20 0.73 
3  -0.20 -5.80 -0.23 
4  -0.93 9.20 -0.88 
5  -1.80 -1.80 -1.80 

 
 
4-35 Perform the interblock analysis for the design in Problem 4-29.  The interblock analysis for problem 

4-29 uses 07212 .ˆ  and 1219
27

607216865
1

12 ...
ra

bMSMS E)adj(Blocks .  A summary of 

the interblock, intrablock, and combined estimates is give below 
 

Parameter Intrablock Interblock Combined 
1  -12.43 -11.79 -12.38 
2  -8.57 -4.29 -7.92 
3  2.57 -8.79 1.76 
4  10.71 9.21 10.61 
5  13.71 21.21 14.67 
6  -5.14 -22.29 -6.36 
7  -0.86 10.71 -0.03 

 
 
4-36 Verify that a BIBD with the parameters a = 8, r = 8, k = 4, and b = 16 does not exist.  These 

conditions imply that r k
a
( ) ( )1

1
8 3

7
24
7

, which is not an integer, so a balanced design with these 

parameters cannot exist. 
 
 

4-37 Show that the variance of the intra block estimators { i } is 
2

21
a

)a(k
. 

 

Note that 
a

kQˆ i
i , and 

b

j
j.ij.ii yn

k
yQ

1

1 , and .i

b

j
j.ij.i

b

j
j.ij.ii yynykynkykQ

11

1  

 
yi .  contains r observations, and the quantity in the parenthesis is the sum of r(k-1) observations, not 

including treatment i. Therefore,  
 

2222 11 krkrQVkkQV ii  
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or 
 

k
krkkr

k
QV i

2
2

2
11111  

 
To find iˆV , note that: 

 

2
2

2
22 11

a
kkr

k
kr

a
kQV

a
kˆV ii  

 
However, since 11 kra , we have: 
 

2
2
1

a
akˆV i  

 

Furthermore, the iˆ  are not independent, this is required to show that 22
a
kˆˆV ji  

 
 
4-38 Extended incomplete block designs.  Occasionally the block size obeys the relationship a < k < 2a.  
An extended incomplete block design consists of a single replicate or each treatment in each block along 
with an incomplete block design with k* = k-a.  In the balanced case, the incomplete block design will have 
parameters k* = k-a, r* = r-b, and *.  Write out the statistical analysis.  (Hint:  In the extended incomplete 
block design, we have  = 2r-b+ *.) 
 
As an example of an extended incomplete block design, suppose we have a=5 treatments, b=5 blocks and 
k=9.  A design could be found by running all five treatments in each block, plus a block from the balanced 
incomplete block design with k* = k-a=9-5=4 and *=3.  The design is: 
 

Block Complete Treatment Incomplete Treatment 
1 1,2,3,4,5 2,3,4,5 
2 1,2,3,4,5 1,2,4,5 
3 1,2,3,4,5 1,3,4,5 
4 1,2,3,4,5 1,2,3,4 
5 1,2,3,4,5 1,2,3,5 

 
Note that r=9, since the augmenting incomplete block design has r*=4, and r= r* + b = 4+5=9, and  = 2r-
b+ *=18-5+3=16.  Since some treatments are repeated in each block it is possible to compute an error sum 
of squares between repeat observations.  The difference between this and the residual sum of squares is due 
to interaction.  The analysis of variance table is shown below: 
 

Source SS DF 
Treatments 
(adjusted) a

Q
k i

2

 a-1 

Blocks 
N
y

k
y ..j.

22

 b-1 

Interaction Subtraction (a-1)(b-1) 
Error [SS between repeat observations] b(k-a) 

Total 
N
y

y ..
ij

2
2  N-1 
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Chapter 5 
Introduction to Factorial Designs 

Solutions 
 
 
5-1 The yield of a chemical process is being studied.  The two most important variables are thought to 
be the pressure and the temperature.  Three levels of each factor are selected, and a factorial experiment 
with two replicates is performed.  The yield data follow: 
 

  Pressure  
Temperature 200 215 230 

150 90.4 90.7 90.2 
 90.2 90.6 90.4 

160 90.1 90.5 89.9 
 90.3 90.6 90.1 

170 90.5 90.8 90.4 
 90.7 90.9 90.1 

 
(a)  Analyze the data and draw conclusions.  Use  = 0.05. 
 
Both pressure (A) and temperature (B) are significant, the interaction is not. 
 
Design Expert Output 
Response:Surface Finish 
   ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1.14 8 0.14 8.00 0.0026 significant 
 A 0.77 2 0.38 21.59 0.0004 
 B 0.30 2 0.15 8.47 0.0085 
 AB 0.069 4 0.017 0.97 0.4700 
 Residual 0.16 9 0.018 
 Lack of Fit 0.000 0 
 Pure Error 0.16 9 0.018 
 Cor Total 1.30 17 
 
The Model F-value of 8.00 implies the model is significant.  There is only a 0.26% chance that a  
"Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
In this case A, B are significant model terms.   
Values greater than 0.1000 indicate the model terms are not significant.   
If there are many insignificant model terms (not counting those required to support hierarchy),   
model reduction may improve your model. 
 
(b)  Prepare appropriate residual plots and comment on the model’s adequacy. 
 
The residuals plot show no serious deviations from the assumptions. 
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(c)  Under what conditions would you operate this process?  
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DESIGN-EXPERT Plot
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Pressure set at 215 and Temperature at the high level, 170 degrees C, give the highest yield. 
 
The standard analysis of variance treats all design factors as if they were qualitative. In this case, both 
factors are quantitative, so some further analysis can be performed.  In Section 5-5, we show how response 
curves and surfaces can be fit to the data from a factorial experiment with at least one quantative factor.  
Since both factors in this problem are quantitative and have three levels, we can fit linear and quadratic 
effects of both temperature and pressure, exactly as in Example 5-5 in the text.  The Design-Expert 
output, including the response surface plots, now follows. 
 
Design Expert Output 
Response:Surface Finish 
   ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1.13 5 0.23 16.18 < 0.0001 significant 
 A 0.10 1 0.10 7.22 0.0198 
 B 0.067 1 0.067 4.83 0.0483 
 A2 0.67 1 0.67 47.74 < 0.0001 
 B2 0.23 1 0.23 16.72 0.0015 
 AB 0.061 1 0.061 4.38 0.0582 
 Residual 0.17 12 0.014 
 Lack of Fit 7.639E-003 3 2.546E-003 0.14 0.9314 not significant 
Pure Error  0.16 9 0.018 
Cor Total 1.30 17 
 
 The Model F-value of 16.18 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, A2, B2 are significant model terms.   
 Values greater than 0.1000 indicate the model terms are not significant.   
 If there are many insignificant model terms (not counting those required to support hierarchy),   
 model reduction may improve your model. 
 
 
 Std. Dev. 0.12 R-Squared 0.8708 
 Mean 90.41 Adj R-Squared 0.8170 
 C.V. 0.13 Pred R-Squared 0.6794 
 PRESS 0.42 Adeq Precision 11.968 
 
  Coefficient  Standard 95% CI 95% CI 
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 Factor Estimate DF Error Low High VIF 
  Intercept 90.52 1 0.062 90.39 90.66 
  A-Pressure -0.092 1 0.034 -0.17 -0.017 1.00 
  B-Temperature 0.075 1 0.034 6.594E-004 0.15 1.00 
  A2 -0.41 1 0.059 -0.54 -0.28 1.00 
  B2 0.24 1 0.059 0.11 0.37 1.00 
  AB -0.087 1 0.042 -0.18 3.548E-003 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
  Yield =  
 +90.52 
 -0.092 * A 
 +0.075 * B 
 -0.41 * A2 
 +0.24 * B2 
 -0.087 * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
 Yield = 
 +48.54630 
 +0.86759 * Pressure 
 -0.64042 * Temperature 
 -1.81481E-003 * Pressure2 
 +2.41667E-003 * Temperature2 
 -5.83333E-004 * Pressure * Temperature 
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5-2 An engineer suspects that the surface finish of a metal part is influenced by the feed rate and the 
depth of cut.  She selects three feed rates and four depths of cut.  She then conducts a factorial experiment 
and obtains the following data: 
 

  Depth of Cut (in)  
Feed Rate (in/min) 0.15 0.18 0.20 0.25 

 74 79 82 99 
0.20 64 68 88 104 

 60 73 92 96 
     
 92 98 99 104 
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0.25 86 104 108 110 
 88 88 95 99 
     
 99 104 108 114 

0.30 98 99 110 111 
 102 95 99 107 

 
(a)  Analyze the data and draw conclusions.  Use  = 0.05. 
 
The depth (A) and feed rate (B) are significant, as is the interaction (AB). 
 
Design Expert Output 
 Response: Surface Finish 
    ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 5842.67 11 531.15 18.49 < 0.0001 significant 
  A 2125.11 3 708.37 24.66 < 0.0001 
B 3160.50 2 1580.25 55.02 < 0.0001 
AB 557.06 6 92.84 3.23 0.0180 
Residual 689.33 24 28.72 
Lack of Fit 0.000 0 
Pure Error 689.33 24 28.72 
Cor Total 6532.00 35 
 
 The Model F-value of 18.49 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, AB are significant model terms.   
 
(b)  Prepare appropriate residual plots and comment on the model’s adequacy. 
 
The residual plots shown indicate nothing unusual. 
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(c)  Obtain point estimates of the mean surface finish at each feed rate. 
 

Feed Rate Average 
0.20 81.58 
0.25 97.58 
0.30 103.83 

 

DESIGN-EXPERT Plot

Surface Finish
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(d)  Find P-values for the tests in part (a). 
 
The P-values are given in the computer output in part (a). 
 
 
5-3 For the data in Problem 5-2, compute a 95 percent interval estimate of the mean difference in 
response for feed rates of 0.20 and 0.25 in/min. 
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We wish to find a confidence interval on 1 2 , where 1  is the mean surface finish for 0.20 in/min and 

2 is the mean surface finish for 0.25 in/min. 
 

n
MS

tyy
n

MS
tyy E

nab
E

nab
22

)1,2..2..1211,2..2..1  

032.916
3

)7222.28(2)064.2()5833.975833.81(  

Therefore, the 95% confidence interval for 1 2  is -16.000  9.032. 
 
 
5-4 An article in Industrial Quality Control (1956, pp. 5-8) describes an experiment to investigate the 
effect of the type of glass and the type of phosphor on the brightness of a television tube.  The response 
variable is the current necessary (in microamps) to obtain a specified brightness level.  The data are as 
follows: 
 

Glass  Phosphor Type  
Type 1 2 3 

 280 300 290 
1 290 310 285 
 285 295 290 
    
 230 260 220 
2 235 240 225 
 240 235 230 

 
(a)  Is there any indication that either factor influences brightness?  Use  = 0.05. 
 
Both factors, phosphor type (A) and Glass type (B) influence brightness. 
 
Design Expert Output 
 Response:  Current  in microamps 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 15516.67 5 3103.33 58.80 < 0.0001 significant 
 A  933.33 2 466.67 8.84 0.0044 
 B  14450.00 1 14450.00 273.79 < 0.0001 
 AB  133.33 2 66.67 1.26 0.3178 
 Residual  633.33 12 52.78 
 Lack of Fit 0.000 0 
 Pure Error 633.33 12 52.78 
 Cor Total16150.00 17 
 
 The Model F-value of 58.80 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
(b)  Do the two factors interact?  Use  = 0.05. 
 
There is no interaction effect. 
 
(c)  Analyze the residuals from this experiment. 
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The residual plot of residuals versus phosphor content indicates a very slight inequality of variance.  It is 
not serious enough to be of concern, however. 
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5-5 Johnson and Leone (Statistics and Experimental Design in Engineering and the Physical Sciences, 
Wiley 1977) describe an experiment to investigate the warping of copper plates.  The two factors studies 
were the temperature and the copper content of the plates.  The response variable was a measure of the 
amount of warping.  The data were as follows: 
 

  Copper Content (%)  
Temperature (°C) 40 60 80 100 

50 17,20 16,21 24,22 28,27 
75 12,9 18,13 17,12 27,31 
100 16,12 18,21 25,23 30,23 
125 21,17 23,21 23,22 29,31 
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(a)  Is there any indication that either factor affects the amount of warping?  Is there any interaction 
between the factors?  Use  = 0.05. 

 
Both factors, copper content (A) and temperature (B) affect warping, the interaction does not. 
 
Design Expert Output  
Response:   Warping 
     ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 968.22 15 64.55 9.52 < 0.0001                significant 
 A  698.34 3 232.78 34.33 < 0.0001 
 B  156.09 3 52.03 7.67 0.0021 
 AB  113.78 9 12.64 1.86 0.1327 
 Residual  108.50 16 6.78 
 Lack of Fit  0.000 0 
 Pure Error  108.50 16 6.78 
 Cor Total  1076.72 31 
 
The Model F-value of 9.52 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B are significant model terms.   
 
(b)  Analyze the residuals from this experiment. 
 
There is nothing unusual about the residual plots. 
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(c)  Plot the average warping at each level of copper content and compare them to an appropriately scaled 

t distribution.  Describe the differences in the effects of the different levels of copper content on 
warping.  If low warping is desirable, what level of copper content would you specify? 

 
Design Expert Output 
 Factor Name Level Low Level High Level 
 A Copper Content 40 40 100 
 B Temperature Average 50 125 
 
  Prediction SE Mean 95% CI low 95% CI high SE Pred 95% PI low 95% PI high 
 Warping15.50 1.84 11.60 19.40 3.19 8.74 22.26 
 
 Factor Name Level Low Level High Level 
 A Copper Content 60 40 100 
 B Temperature Average 50 125 
 
  Prediction SE Mean 95% CI low 95% CI high SE Pred 95% PI low 95% PI high 
 Warping18.88 1.84 14.97 22.78 3.19 12.11 25.64 
 
 Factor Name Level Low Level High Level 
 A Copper Content 80 40 100 
 B Temperature Average 50 125 
 
  Prediction SE Mean 95% CI low 95% CI high SE Pred 95% PI low 95% PI high 
 Warping21.00 1.84 17.10 24.90 3.19 14.24 27.76 
 
 Factor Name Level Low Level High Level 
 A Copper Content 100 40 100 
 B Temperature Average 50 125 
 
  Prediction SE Mean 95% CI low 95% CI high SE Pred 95% PI low 95% PI high 
 Warping28.25 1.84 24.35 32.15 3.19 21.49 35.01 
 
Use a copper content of 40 for the lowest warping. 
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(d)  Suppose that temperature cannot be easily controlled in the environment in which the copper plates 
are to be used.  Does this change your answer for part (c)? 
 
Use a copper of content of 40.  This is the same as for part (c). 
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5-6 The factors that influence the breaking strength of a synthetic fiber are being studied.  Four 
production machines and three operators are chosen and a factorial experiment is run using fiber from the 
same production batch.  The results are as follows: 
 

   Machine  
Operator 1 2 3 4 

1 109 110 108 110 
 110 115 109 108 
     
2 110 110 111 114 
 112 111 109 112 
     
3 116 112 114 120 
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 114 115 119 117 
 
(a)  Analyze the data and draw conclusions.  Use  = 0.05. 
 
Only the Operator (A) effect is significant. 
 
Design Expert Output  
Response:Stength 
        ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 217.46 11 19.77 5.21 0.0041 significant 
 A 160.33 2 80.17 21.14 0.0001 
 B 12.46 3 4.15 1.10 0.3888 
 AB 44.67 6 7.44 1.96 0.1507 
 Residual 45.50 12 3.79 
 Lack of Fit 0.000 0 
 Pure Error 45.50 12 3.79 
 Cor Total 262.96 23 
 
The Model F-value of 5.21 implies the model is significant. 
There is only a 0.41% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms aresignificant. 
In this case A are significant model terms.   
 
(b)  Prepare appropriate residual plots and comment on the model’s adequacy. 
 
The residual plot of residuals versus predicted shows that variance increases very slightly with strength. 
There is no indication of a severe problem. 
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5-7 A mechanical engineer is studying the thrust force developed by a drill press.  He suspects that the 
drilling speed and the feed rate of the material are the most important factors.  He selects four feed rates 
and uses a high and low drill speed chosen to represent the extreme operating conditions.  He obtains the 
following results.  Analyze the data and draw conclusions.  Use  = 0.05. 
 

(A)  Feed Rate 
(B) 

 

Drill Speed 0.015 0.030 0.045 0.060 
125 2.70 2.45 2.60 2.75 

 2.78 2.49 2.72 2.86 
     

200 2.83 2.85 2.86 2.94 
 2.86 2.80 2.87 2.88 

 
Design Expert Output 
Response:  Force 
        ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.28 7 0.040 15.53 0.0005 significant 
 A 0.15 1 0.15 57.01 < 0.0001 
 B 0.092 3 0.031 11.86 0.0026 
 AB 0.042 3 0.014 5.37 0.0256 
 Residual 0.021 8 2.600E-003 
 Lack of Fit 0.000 0 
 Pure Error 0.021 8 2.600E-003 
 Cor Total 0.30 15 
 
The Model F-value of 15.53 implies the model is significant. 
There is only a 0.05% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B, AB are significant model terms.   
 
The factors speed and feed rate, as well as the interaction is important.  
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The standard analysis of variance treats all design factors as if they were qualitative. In this case, both 
factors are quantitative, so some further analysis can be performed.  In Section 5-5, we show how response 
curves and surfaces can be fit to the data from a factorial experiment with at least one quantative factor.  
Since both factors in this problem are quantitative and have three levels, we can fit linear and quadratic 
effects of both temperature and pressure, exactly as in Example 5-5 in the text.  The Design-Expert 
output, including the response surface plots, now follows. 

 
Design Expert Output 
Response:  Force 
   ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.23 4 0.057 8.05 0.0027 significant 
 A 0.15 1 0.15 21.11 0.0008 
 B 0.019 1 0.019 2.74 0.1262 
 B2 0.058 1 0.058 8.20 0.0154 
 AB 1.125E-003 1 1.125E-003 0.16 0.6966 
 Residual 0.077 11 7.021E-003 
 Lack of Fit 0.056 3 0.019 7.23 0.0115 significant 
 Pure Error 0.021 8 2.600E-003 
 Cor Total 0.30 15 
 
 The Model F-value of 8.05 implies the model is significant.  There is only 
 a 0.27% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B2 are significant model terms.   
 Values greater than 0.1000 indicate the model terms are not significant.   
 If there are many insignificant model terms (not counting those required to support hierarchy),   
 model reduction may improve your model. 
 
 Std. Dev. 0.084 R-Squared 0.7455 
 Mean 2.77 Adj R-Squared 0.6529 
 C.V. 3.03 Pred R-Squared 0.4651 
 PRESS 0.16 Adeq Precision 7.835 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 2.69 1 0.034 2.62 2.76 
  A-Drill Speed 0.096 1 0.021 0.050 0.14 1.00 
  B-Feed Rate 0.047 1 0.028 -0.015 0.11 1.00 
  B2 0.13 1 0.047 0.031 0.24 1.00 
  AB -0.011 1 0.028 -0.073 0.051 1.00 
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  Final Equation in Terms of Coded Factors: 
 
 Force = 
 +2.69 
 +0.096 * A 
 +0.047 * B 
 +0.13 * B2 
 -0.011 * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
  Force = 
 +2.48917 
 +3.06667E-003 * Drill Speed 
 -15.76667 * Feed Rate 
 +266.66667 * Feed Rate2 
 -0.013333 * Drill Speed * Feed Rate 
 

Force

A: Drill Speed

B
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2 2

2 2

2 2
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  125.00

  143.75

  162.50

  181.25

  200.00

0.02  

0.03  

0.04  

0.05  

0.06  

  A: Drill Speed  
  B: Feed  Rate  

 
 
 
5-8 An experiment is conducted to study the influence of operating temperature and three types of face-
plate glass in the light output of an oscilloscope tube.  The following data are collected: 
 

  Temperature  
Glass Type 100 125 150 

 580 1090 1392 
1 568 1087 1380 
 570 1085 1386 
    
 550 1070 1328 
2 530 1035 1312 
 579 1000 1299 
    
 546 1045 867 
3 575 1053 904 
 599 1066 889 
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Use  = 0.05 in the analysis.  Is there a significant interaction effect?  Does glass type or temperature 
affect the response?  What conclusions can you draw?  Use the method discussed in the text to partition 
the temperature effect into its linear and quadratic components. Break the interaction down into 
appropriate components. 
 
Design Expert Output 
Response:  Light Output 
ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.412E+006 8 3.015E+005 824.77 < 0.0001 significant 
 A  1.509E+005 2 75432.26 206.37 < 0.0001 
 B  1.970E+006 2 9.852E+005 2695.26 < 0.0001 
 AB  2.906E+005 4 72637.93 198.73 < 0.0001 
 Residual 6579.33 18 365.52 
 Lack of Fit  0.000 0 
 Pure Error 6579.33 18 365.52 
 Cor Total  2.418E+006 26 
 
The Model F-value of 824.77 implies the model is significant. 
There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B, AB are significant model terms.   
 
Both factors, Glass Type (A) and Temperature (B) are significant, as well as the interaction (AB).  For 
glass types 1 and 2 the response is fairly linear, for glass type 3, there is a quadratic effect. 
 

DESIGN-EXPERT Plot

Light Output

X = B: Temperature
Y = A: Glass Type

Design Points

A1 1
A2 2
A3 3

G la s s  T y p e

In te ra c tio n  G ra p h

T e m p e ra tu re

L
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h
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u
tp

u
t

1 0 0 1 2 5 1 5 0

5 3 0

7 4 8 .0 9 9

9 6 6 .1 9 9

1 1 8 4 .3

1 4 0 2 .4

 
 

Design Expert Output 
Response: Light Output 
   ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.412E+006 8 3.015E+005 824.77 < 0.0001 significant 
 A 1.509E+005 2 75432.26 206.37 < 0.0001 
 B 1.780E+006 1 1.780E+006 4869.13 < 0.0001 
 B2 1.906E+005 1 1.906E+005 521.39 < 0.0001 
 AB 2.262E+005 2 1.131E+005 309.39 < 0.0001 
 AB2 64373.93 2 32186.96 88.06 < 0.0001 
 Pure Error 6579.33 18 365.52 
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 Cor Total 2.418E+006 26 
 
 The Model F-value of 824.77 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, B2, AB, AB2 are significant model terms.   
 Values greater than 0.1000 indicate the model terms are not significant.   
 If there are many insignificant model terms (not counting those required to support hierarchy),   
 model reduction may improve your model. 
 
 Std. Dev. 19.12 R-Squared 0.9973 
 Mean 940.19 Adj R-Squared 0.9961 
 C.V. 2.03 Pred R-Squared 0.9939 
 PRESS 14803.50 Adeq Precision 75.466 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
 Intercept 1059.00 1 6.37 1045.61 1072.39 
 A[1] 28.33 1 9.01 9.40 47.27 
 A[2] -24.00 1 9.01 -42.93 -5.07 
 B-Temperature 314.44 1 4.51 304.98 323.91 1.00 
 B2 -178.22 1 7.81 -194.62 -161.82 1.00 
 A[1]B 92.22 1 6.37 78.83 105.61 
 A[2]B 65.56 1 6.37 52.17 78.94 
 A[1]B2 70.22 1 11.04 47.03 93.41 
 A[2]B2 76.22 1 11.04 53.03 99.41 
 
  Final Equation in Terms of Coded Factors: 
 
 Light Output = 
 +1059.00 
 +28.33 * A[1] 
 -24.00 * A[2] 
 +314.44 * B 
 -178.22 * B2 
 +92.22 * A[1]B 
 +65.56 * A[2]B 
 +70.22 * A[1]B2 
 +76.22 * A[2]B2 
 
  Final Equation in Terms of Actual Factors: 
 
 Glass Type 1 
 Light Output = 
 -3646.00000 
 +59.46667 * Temperature 
 -0.17280 * Temperature2 
 
 Glass Type 2 
 Light Output = 
 -3415.00000 
 +56.00000 * Temperature 
 -0.16320 * Temperature2 
 
 Glass Type 3 
 Light Output = 
 -7845.33333 
 +136.13333 * Temperature 
 -0.51947 * Temperature2  
 
 
5-9 Consider the data in Problem 5-1.  Use the method described in the text to compute the linear and 
quadratic effects of pressure. 
 
See the alternative analysis shown in Problem 5-1 part (c). 
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5-10 Use Duncan’s multiple range test to determine which levels of the pressure factor are significantly 
different for the data in Problem 5-1. 
 

18903 .y ..  37901 .y ..  68902 .y ..  

05430
23

017770 ..
an

MSS E
y .j.

 

60492010 .,r .  86493010 .,r .  
24980054306042 ...R  26400054308643 ...R  

 
2 vs. 3 = 0.50 > 0.2640  (R3) 
2 vs. 1 = 0.31 > 0.2498  (R2) 
1 vs. 3 = 0.19 < 0.2498  (R2) 

Therefore, 2 differs from 1 and 3. 
 
 
5-11 An experiment was conducted to determine if either firing temperature or furnace position affects 
the baked density of a carbon anode.  The data are shown below. 
 

  Temperature (°C)  
Position 800 825 850 

 570 1063 565 
1 565 1080 510 
 583 1043 590 
    
 528 988 526 

2 547 1026 538 
 521 1004 532 

 
Suppose we assume that no interaction exists.  Write down the statistical model.  Conduct the analysis of 
variance and test hypotheses on the main effects.  What conclusions can be drawn?  Comment on the 
model’s adequacy. 
 
The model for the two-factor, no interaction model is ijkjiijky .  Both factors, furnace 

position (A) and temperature (B) are significant.  The residual plots show nothing unusual. 
 
Design Expert Output  
 Response:  Density 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 9.525E+005 3 3.175E+005 718.24 < 0.0001 significant 
 A  7160.06 1 7160.06 16.20 0.0013 
 B  9.453E+005 2 4.727E+005 1069.26 < 0.0001 
 Residual  6188.78 14 442.06 
 Lack of Fit 818.11 2 409.06 0.91 0.4271 not significant 
 Pure Error 5370.67 12 447.56 
 Cor Total  9.587E+005 17 
 
 The Model F-value of 718.24 implies the model is significant. 
 There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
 In this case A, B are significant model terms.   
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Predicted
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Residuals vs. Predicted
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5-12 Derive the expected mean squares for a two-factor analysis of variance with one observation per 
cell, assuming that both factors are fixed. 
 

 Degrees of Freedom 
a
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i
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5-13 Consider the following data from a two-factor factorial experiment.  Analyze the data and draw 
conclusions.  Perform a test for nonadditivity.  Use  = 0.05. 
 

  Column Factor  
Row Factor 1 2 3 4 

1 36 39 36 32 
2 18 20 22 20 
3 30 37 33 34 

 
Design Expert Output 
Response: data 
        ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 609.42 5 121.88 25.36 0.0006 significant 
 A 580.50 2 290.25 60.40 0.0001 
 B 28.92 3 9.64 2.01 0.2147 
 Residual 28.83 6 4.81 
 Cor Total 638.25 11 
 
The Model F-value of 25.36 implies the model is significant.  There is only 
a 0.06% chance that a "Model F-Value" this large could occur due to noise. 
 
The row factor (A) is significant. 
 
The test for nonadditivity is as follows: 
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Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

Row 580.50 2 290.25 57.3780 
Column 28.91667 3 9.63889 1.9054 
Nonadditivity 3.54051 1 3.54051 0.6999 
Error 25.29279 5 5.058558  
Total 638.25 11   

 
 
5-14 The shear strength of an adhesive is thought to be affected by the application pressure and 
temperature.  A factorial experiment is performed in which both factors are assumed to be fixed.  Analyze 
the data and draw conclusions.  Perform a test for nonadditivity. 
 

  Temperature (°F)  
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Pressure (lb/in2) 250 260 270 
120 9.60 11.28 9.00 
130 9.69 10.10 9.57 
140 8.43 11.01 9.03 
150 9.98 10.44 9.80 

 
Design Expert Output 
Response:  Strength 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 5.24 5 1.05 2.92 0.1124 not significant 
 A 0.58 3 0.19 0.54 0.6727 
 B 4.66 2 2.33 6.49 0.0316 
 Residual 2.15 6 0.36 
 Cor Total 7.39 11 
 
The "Model F-value" of 2.92 implies the model is not significant relative to the noise. 
There is a 11.24 % chance that a "Model F-value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case B are significant model terms. 
 
Temperature (B) is a significant factor. 
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Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

Row 0.5806917 3 0.1935639 0.5815 
Column 4.65765 2 2.328825 6.9960 
Nonadditivity 0.48948 1 0.48948 1.4704 
Error 1.6644 5 0.33288  
Total 7.392225 11   

 
 
5-15 Consider the three-factor model 

 

ijkjkijkjiijky   
c,...,,k
b,...,,j
a,...,,i

21
21
21
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Notice that there is only one replicate.  Assuming the factors are fixed, write down the analysis of variance 
table, including the expected mean squares.  What would you use as the “experimental error” in order to 
test hypotheses? 
 

Source Degrees of Freedom Expected Mean Square 

A a-1 
a
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i

a
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2
2

1
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Error (AC + ABC) b(a-1)(c-1) 2  
Total abc-1  

 
 
5-16  The percentage of hardwood concentration in raw pulp, the vat pressure, and the cooking time of 
the pulp are being investigated for their effects on the strength of paper.  Three levels of hardwood 
concentration, three levels of pressure, and two cooking times are selected.  A factorial experiment with 
two replicates is conducted, and the following data are obtained: 
 

Percentage Cooking  Time 3.0 Hours  Cooking Time 4.0  Hours 
of Hardwood  Pressure    Pressure  

Concentration 400 500 650  400 500 650 
2 196.6 197.7 199.8  198.4 199.6 200.6 
 196.0 196.0 199.4  198.6 200.4 200.9 
        
4 198.5 196.0 198.4  197.5 198.7 199.6 
 197.2 196.9 197.6  198.1 198.0 199.0 
        
8 197.5 195.6 197.4  197.6 197.0 198.5 
 196.6 196.2 198.1  198.4 197.8 199.8 

 
(a) Analyze the data and draw conclusions.  Use  = 0.05. 
 
Design Expert Output  
Response:  strength 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 59.73 17 3.51 9.61 < 0.0001 significant 
 A 7.76 2 3.88 10.62 0.0009 
 B 20.25 1 20.25 55.40 < 0.0001 
 C 19.37 2 9.69 26.50 < 0.0001 
 AB 2.08 2 1.04 2.85 0.0843 
 AC 6.09 4 1.52 4.17 0.0146 
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 BC 2.19 2 1.10 3.00 0.0750 
 ABC 1.97 4 0.49 1.35 0.2903 
 Residual 6.58 18 0.37 
 Lack of Fit 0.000 0 
 Pure Error 6.58 18 0.37 
 Cor Total 66.31 35 
 
The Model F-value of 9.61 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
In this case A, B, C, AC are significant model terms.   
 
All three main effects, concentration (A), pressure (C) and time (B), as well as the concentration x 
pressure interaction (AC) are significant at the 5% level.  The concentration x time (AB)  and pressure x 
time interactions (BC) are significant at the 10% level. 
 
(b)  Prepare appropriate residual plots and comment on the model’s adequacy. 
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There is nothing unusual about the residual plots. 
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(c)  Under what set of conditions would you run the process?  Why? 
 

DESIGN-EXPERT Plot

strength

X = B: Cooking Time
Y = C: Pressure

C1 400
C2 500
C3 650

Actual Factor
A: Hardwood = Average
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DESIGN-EXPERT Plot

strength

X = C: Pressure
Y = A: Hardwood

A1 2
A2 4
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B: Cooking Time = Average
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For the highest strength, run the process with the percentage of hardwood at 2, the pressure at 650, and 
the time at 4 hours. 
 
The standard analysis of variance treats all design factors as if they were qualitative. In this case, all three 
factors are quantitative, so some further analysis can be performed.  In Section 5-5, we show how response 
curves and surfaces can be fit to the data from a factorial experiment with at least one quantative factor.  
Since the factors in this problem are quantitative and two of them have three levels, we can fit linear and 
quadratic.  The Design-Expert output, including the response surface plots, now follows. 

 
Design Expert Output 
Response:  Strength 
   ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 58.02 13 4.46 11.85 < 0.0001 significant 
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 A 7.15 1 7.15 18.98 0.0003 
 B 3.42 1 3.42 9.08 0.0064 
 C 0.22 1 0.22 0.58 0.4559 
 A2 1.09 1 1.09 2.88 0.1036 
 C2 4.43 1 4.43 11.77 0.0024 
 AB 1.06 1 1.06 2.81 0.1081 
 AC 3.39 1 3.39 9.01 0.0066 
 BC 0.15 1 0.15 0.40 0.5350 
 A2B 1.30 1 1.30 3.46 0.0763 
 A2C 2.19 1 2.19 5.81 0.0247 
 AC2 1.65 1 1.65 4.38 0.0482 
 BC2 2.18 1 2.18 5.78 0.0251 
 ABC 0.40 1 0.40 1.06 0.3136 
 Residual 8.29 22 0.38 
 Lack of Fit 1.71 4 0.43 1.17 0.3576 not significant 
 Pure Error 6.58 18 0.37 
 Cor Total 66.31 35 
 
 
 The Model F-value of 11.85 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C2, AC, A2C, AC2, BC2 are significant model terms.   
 Values greater than 0.1000 indicate the model terms are not significant.   
 If there are many insignificant model terms (not counting those required to support hierarchy),   
 model reduction may improve your model. 
 
 
 Std. Dev. 0.61 R-Squared 0.8750 
 Mean 198.06 Adj R-Squared 0.8011 
 C.V. 0.31 Pred R-Squared 0.6657 
 PRESS 22.17 Adeq Precision 14.071 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
 Intercept 197.21 1 0.26 196.67 197.74 
 A-Hardwood -0.98 1 0.23 -1.45 -0.51 3.36 
 B-Cooking Time 0.78 1 0.26 0.24 1.31 6.35 
 C-Pressure 0.19 1 0.25 -0.33 0.71 4.04 
 A2 0.42 1 0.25 -0.094 0.94 1.04 
 C2 0.79 1 0.23 0.31 1.26 1.03 
 AB -0.21 1 0.13 -0.47 0.050 1.06 
 AC -0.46 1 0.15 -0.78 -0.14 1.08 
 BC 0.080 1 0.13 -0.18 0.34 1.04 
 A2B 0.46 1 0.25 -0.053 0.98 3.96 
 A2C 0.73 1 0.30 0.10 1.36 3.97 
 AC2 0.57 1 0.27 4.979E-003 1.14 3.32 
 BC2 -0.55 1 0.23 -1.02 -0.075 3.30 
 ABC 0.15 1 0.15 -0.16 0.46 1.02 
 
  Final Equation in Terms of Coded Factors: 
 
 Strength = 
 +197.21 
 -0.98 * A 
 +0.78 * B 
 +0.19 * C 
 +0.42 * A2 
 +0.79 * C2 
 -0.21 * A * B 
 -0.46 * A * C 
 +0.080 * B * C 
 +0.46 * A2 * B 
 +0.73 * A2 * C 
 +0.57 * A * C2 
 -0.55 * B * C2 
 +0.15  * A * B * C 
 
  Final Equation in Terms of Actual Factors: 
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 Strength = 
 +229.96981 
 +12.21654 * Hardwood 
 -12.97602 * Cooking Time 
 -0.21224 * Pressure 
 -0.65287 * Hardwood2 
 +2.34333E-004 * Pressure2 
 -1.60038 * Hardwood * Cooking Time 
 -0.023415 * Hardwood * Pressure 
 +0.070658 * Cooking Time * Pressure 
 +0.10278 * Hardwood2 * Cooking Time 
 +6.48026E-004 * Hardwood2 * Pressure 
 +1.22143E-005 * Hardwood * Pressure2 
 -7.00000E-005 * Cooking Time * Pressure2 
 +8.23308E-004 * Hardwood * Cooking Time * Pressure 
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Cooking Time:  B = 4.00 

 
 
5-17 The quality control department of a fabric finishing plant is studying the effect of several factors on 
the dyeing of cotton-synthetic cloth used to manufacture men’s shirts.  Three operators, three cycle times, 
and two temperatures were selected, and three small specimens of cloth were dyed under each set of 
conditions.  The finished cloth was compared to a standard, and a numerical score was assigned.  The 
results follow.  Analyze the data and draw conclusions.  Comment on the model’s adequacy. 
 

    Temperature    
  300°    350°  
  Operator    Operator  

Cycle Time 1 2 3  1 2 3 
 23 27 31  24 38 34 

40 24 28 32  23 36 36 
 25 26 29  28 35 39 
        
 36 34 33  37 34 34 

50 35 38 34  39 38 36 
 36 39 35  35 36 31 
        
 28 35 26  26 36 28 

60 24 35 27  29 37 26 
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 27 34 25  25 34 24 
 
All three main effects, and the AB, AC, and ABC interactions are significant.  There is nothing unusual 
about the residual plots. 
 
Design Expert Output 
 Response:  Score 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model  1239.33 17 72.90 22.24 < 0.0001 significant 
 A  436.00 2 218.00 66.51 < 0.0001 
 B  261.33 2 130.67 39.86 < 0.0001 
 C  50.07 1 50.07 15.28 0.0004 
 AB  355.67 4 88.92 27.13 < 0.0001 
 AC  78.81 2 39.41 12.02 0.0001 
 BC  11.26 2 5.63 1.72 0.1939 
 ABC  46.19 4 11.55 3.52 0.0159 
 Residual  118.00 36 3.28 
 Lack of Fit  0.000 0 
 Pure Error  118.00 36 3.28 
 Cor Total  1357.33 53 
 
The Model F-value of 22.24 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B, C, AB, AC, ABC are significant model terms.   
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5-18 In Problem 5-1, suppose that we wish to reject the null hypothesis with a high probability if the 
difference in the true mean yield at any two pressures is as great as 0.5.  If a reasonable prior estimate of 
the standard deviation of yield is 0.1, how many replicates should be run? 
 

n.
.
.n

b
naD 512

1032
503

2 2

2

2

2
2  

 
n 2   11 b  12 nab   
2 25 5 2 (3)(3)(1) 0.014 

 
2 replications will be enough to detect the given difference. 
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5-19 The yield of a chemical process is being studied.  The two factors of interest are temperature and 
pressure.  Three levels of each factor are selected; however, only 9 runs can be made in one day.  The 
experimenter runs a complete replicate of the design on each day.  The data are shown in the following 
table.  Analyze the data assuming that the days are blocks. 
 

  Day 1   Day 2  
  Pressure   Pressure  

Temperature 250 260 270 250 260 270 
Low 86.3 84.0 85.8 86.1 85.2 87.3 

Medium 88.5 87.3 89.0 89.4 89.9 90.3 
High 89.1 90.2 91.3 91.7 93.2 93.7 

 
Design Expert Output 
Response:  Yield 
ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 13.01 1 13.01 
 Model 109.81 8 13.73 25.84 < 0.0001 significant 
 A 5.51 2 2.75 5.18 0.0360 
 B 99.85 2 49.93 93.98 < 0.0001 
 AB 4.45 4 1.11 2.10 0.1733 
 Residual 4.25 8 0.53 
 Cor Total 127.07 17 
 
The Model F-value of 25.84 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B are significant model terms.   
 
Both main effects, temperature and pressure, are significant. 
 
 
5-20 Consider the data in Problem 5-5.  Analyze the data, assuming that replicates are blocks. 
 
Design Expert Output 
 Response: Warping 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 11.28 1 11.28 
 Model 968.22 15 64.55 9.96 < 0.0001 significant 
 A 698.34 3 232.78 35.92 < 0.0001 
 B 156.09 3 52.03 8.03 0.0020 
 AB 113.78 9 12.64 1.95 0.1214 
 Residual 97.22 15 6.48 
 Cor Total 1076.72 31 
 
The Model F-value of 9.96 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B are significant model terms.   
 
Both temperature and copper content are significant.  This agrees with the analysis in Problem 5-5. 
 
 
5-21 Consider the data in Problem 5-6.  Analyze the data, assuming that replicates are blocks. 
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Design-Expert Output 
Response:  Stength 
ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 1.04 1 1.04 
 Model 217.46 11 19.77 4.89 0.0070 significant 
 A 160.33 2 80.17 19.84 0.0002 
 B 12.46 3 4.15 1.03 0.4179 
 AB 44.67 6 7.44 1.84 0.1799 
 Residual 44.46 11 4.04 
 Cor Total 262.96 23 
 
The Model F-value of 4.89 implies the model is significant.  There is only 
a 0.70% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A are significant model terms.   
 
Only the operator factor (A) is significant.  This agrees with the analysis in Problem 5-6. 
 
 
5-22 An article in the Journal of Testing and Evaluation (Vol. 16, no.2, pp. 508-515) investigated the 
effects of cyclic loading and environmental conditions on fatigue crack growth at a constant 22 MPa stress 
for a particular material.  The data from this experiment are shown below (the response is crack growth 
rate). 
 

  Environment  
Frequency Air H2O Salt H2O 

 2.29 2.06 1.90 
10 2.47 2.05 1.93 
 2.48 2.23 1.75 
 2.12 2.03 2.06 
    
 2.65 3.20 3.10 

1 2.68 3.18 3.24 
 2.06 3.96 3.98 
 2.38 3.64 3.24 
    
 2.24 11.00 9.96 

0.1 2.71 11.00 10.01 
 2.81 9.06 9.36 
 2.08 11.30 10.40 

 
(a) Analyze the data from this experiment (use  = 0.05). 
 
Design Expert Output  
Response: Crack Growth 
         ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 376.11 8 47.01 234.02 < 0.0001 significant 
 A 209.89 2 104.95 522.40 < 0.0001 
 B 64.25 2 32.13 159.92 < 0.0001 
 AB 101.97 4 25.49 126.89 < 0.0001 
 Residual 5.42 27 0.20 
 Lack of Fit 0.000 0 
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 Pure Error 5.42 27 0.20 
 Cor Total 381.53 35 
 
The Model F-value of 234.02 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B, AB are significant model terms.   
 
Both frequency and environment, as well as their interaction are significant. 
 
(b)  Analyze the residuals. 
 
The residual plots indicate that there may be some problem with inequality of variance.  This is 
particularly noticable on the plot of residuals versus predicted response and the plot of residuals versus 
frequency.  
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(c)  Repeat the analyses from parts (a) and (b) using ln(y) as the response.  Comment on the results. 
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Design Expert Output 
 Response:  Crack Growth Transform:  Natural log  Constant:  0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 13.46 8 1.68 179.57 < 0.0001 significant 
 A 7.57 2 3.79 404.09 < 0.0001 
 B 2.36 2 1.18 125.85 < 0.0001 
 AB 3.53 4 0.88 94.17 < 0.0001 
 Residual 0.25 27 9.367E-003 
 Lack of Fit 0.000 0 
 Pure Error 0.25 27 9.367E-003 
 Cor Total 13.71 35 
 
The Model F-value of 179.57 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant. 
In this case A, B, AB are significant model terms.   
 
Both frequency and environment, as well as their interaction are significant.  The residual plots of the 
based on the transformed data look better. 
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5-23 An article in the IEEE Transactions on Electron Devices (Nov. 1986, pp. 1754) describes a study 
on polysilicon doping.  The experiment shown below is a variation of their study.  The response variable 
is base current. 
 

Polysilicon Anneal Temperature (°C) 
Doping (ions) 900 950 1000 

1 x 10 20 4.60 10.15 11.01 
 4.40 10.20 10.58 
    

2 x 10 20 3.20 9.38 10.81 
 3.50 10.02 10.60 

 
(a) Is there evidence (with  = 0.05) indicating that either polysilicon doping level or anneal temperature 

affect base current? 
 
Design Expert Output 
 Response: Base Current 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 112.74 5 22.55 350.91 < 0.0001 significant 
 A 0.98 1 0.98 15.26 0.0079 
 B 111.19 2 55.59 865.16 < 0.0001 
 AB 0.58 2 0.29 4.48 0.0645 
 Residual 0.39 6 0.064 
 Lack of Fit 0.000 0 
Pure Error 0.39 6 0.064 
 Cor Total 113.13 11 
 
The Model F-value of 350.91 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
In this case A, B are significant model terms.   
 
Both factors, doping and anneal are significant.  Their interaction is significant at the 10% level. 
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(b) Prepare graphical displays to assist in interpretation of this experiment. 
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 (c) Analyze the residuals and comment on model adequacy. 
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There is a funnel shape in the plot of residuals versus predicted, indicating some inequality of variance. 
 
(d)  Is the model  2112

2
22222110 xxxxxy   supported by this experiment (x1 = doping 

level, x2 = temperature)?  Estimate the parameters in this model and plot the response surface. 
 
Design Expert Output 
 Response: Base Current 
         ANOVA for Response Surface Reduced Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 112.73 4 28.18 493.73 < 0.0001       significant 
 A 0.98 1 0.98 17.18 0.0043 
 B 93.16 1 93.16 1632.09 < 0.0001 
 B2 18.03 1 18.03 315.81 < 0.0001 
 AB 0.56 1 0.56 9.84 0.0164 
 Residual 0.40 7 0.057 
 Lack of Fit 0.014 1 0.014 0.22 0.6569    not significant 
Pure Error 0.39 6 0.064 
 Cor Total 113.13 11 
 
The Model F-value of 493.73 implies the model is significant.  There is only 
a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
In this case A, B, B2, AB are significant model terms.   
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 9.94 1 0.12 9.66 10.22 
  A-Doping -0.29 1 0.069 -0.45 -0.12 1.00 
  B-Anneal 3.41 1 0.084 3.21 3.61 1.00 
  B2 -2.60 1 0.15 -2.95 -2.25 1.00 
  AB 0.27 1 0.084 0.065 0.46 1.00 
 
All of the coefficients in the assumed model are significant.  The quadratic effect is easily observable in 
the response surface plot. 
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Chapter 6 
The 2k Factorial Design 

Solutions 
 
 
6-1 An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle on 
the life (in hours) of a machine tool.  Two levels of each factor are chosen, and three replicates of a 23 
factorial design are run.  The results follow: 
 

   Treatment  Replicate  
A B C Combination I II III 
- - - (1) 22 31 25 
+ - - a 32 43 29 
- + - b 35 34 50 
+ + - ab 55 47 46 
- - + c 44 45 38 
+ - + ac 40 37 36 
- + + bc 60 50 54 
+ + + abc 39 41 47 

 
(a)  Estimate the factor effects.  Which effects appear to be large? 
 
From the normal probability plot of effects below, factors B, C, and the AC interaction appear to be 
significant. 
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(b)  Use the analysis of variance to confirm your conclusions for part (a). 
 
The analysis of variance confirms the significance of  factors B, C, and the AC interaction. 
 
Design Expert Output 
 Response: Life in hours 
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         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1612.67 7 230.38 7.64 0.0004 significant 
 A 0.67 1 0.67 0.022 0.8837 
 B 770.67 1 770.67 25.55 0.0001 
 C 280.17 1 280.17 9.29 0.0077 
 AB 16.67 1 16.67 0.55 0.4681 
 AC 468.17 1 468.17 15.52 0.0012 
 BC 48.17 1 48.17 1.60 0.2245 
 ABC 28.17 1 28.17 0.93 0.3483 
 Pure Error 482.67 16 30.17 
 Cor Total 2095.33 23 
 
 The Model F-value of 7.64 implies the model is significant.  There is only 
 a 0.04% chance that a "Model F-Value" this large could occur due to noise. 
 
The reduced model ANOVA is shown below.  Factor A was included to maintain hierarchy. 
 
Design Expert Output 
 Response: Life in hours 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1519.67 4 379.92 12.54 < 0.0001 significant 
 A 0.67 1 0.67 0.022 0.8836 
 B 770.67 1 770.67 25.44 < 0.0001 
 C 280.17 1 280.17 9.25 0.0067 
 AC 468.17 1 468.17 15.45 0.0009 
 Residual 575.67 19 30.30 
 Lack of Fit 93.00 3 31.00 1.03 0.4067 not significant 
 Pure Error 482.67 16 30.17 
 Cor Total 2095.33 23 
 
 The Model F-value of 12.54 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
Effects B, C and AC are significant at 1%. 
 
(c)  Write down a regression model for predicting tool life (in hours) based on the results of this 

experiment. 
 

CACBAijk xx.x.x.x..y 41674416736667516670833340  

 
Design Expert Output 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 40.83 1 1.12 38.48 43.19 
  A-Cutting Speed 0.17 1 1.12 -2.19 2.52 1.00 
  B-Tool Geometry 5.67 1 1.12 3.31 8.02 1.00 
  C-Cutting Angle 3.42 1 1.12 1.06 5.77 1.00 
  AC -4.42 1 1.12 -6.77 -2.06 1.00 
Final Equation in Terms of Coded Factors: 
 
   Life  = 
  +40.83 
  +0.17   * A 
  +5.67   * B 
  +3.42   * C 
  -4.42   * A * C 
 
  Final Equation in Terms of Actual Factors: 
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   Life  = 
  +40.83333 
  +0.16667   * Cutting Speed 
  +5.66667   * Tool Geometry 
  +3.41667   * Cutting Angle 
  -4.41667   * Cutting Speed * Cutting Angle 

 
The equation in part (c) and in the given in the computer output form a “hierarchial” model, that is, if an 
interaction is included in the model, then all of the main effects referenced in the interaction are also 
included in the model. 
 
(d)  Analyze the residuals.  Are there any obvious problems?   
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There is nothing unusual about the residual plots. 
 
(e)  Based on the analysis of main effects and interaction plots, what levels of A, B, and C would you 

recommend using? 
 
Since B has a positive effect, set B at the high level to increase life.  The AC interaction plot reveals that 
life would be maximized with C at the high level and A at the low level. 
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6-2 Reconsider part (c) of Problem 6-1.  Use the regression model to generate response surface and 
contour plots of the tool life response.  Interpret these plots.  Do they provide insight regarding the 
desirable operating conditions for this process? 
 
The response surface plot and the contour plot in terms of factors A and C with B at the high level are 
shown below.  They show the curvature due to the AC interaction.  These plots make it easy to see the 
region of greatest tool life. 
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6-3 Find the standard error of the factor effects and approximate 95 percent confidence limits for the 
factor effects in Problem 6-1.  Do the results of this analysis agree with the conclusions from the analysis 
of variance? 
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2421730
23
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1

23
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..S

n
SE k)effect(  

Variable Effect C I
A 0.333 4.395
B 11.333 4.395 * 

AB -1.667 4.395  
C 6.833 4.395 * 

AC -8.833 4.395 * 
BC -2.833 4.395  

ABC -2.167 4.395  
 
The 95% confidence intervals for factors B, C and AC do not contain zero.  This agrees with the analysis 
of variance approach. 
 
 
6-4 Plot the factor effects from Problem 6-1 on a graph relative to an appropriately scaled t distribution.  
Does this graphical display adequately identify the important factors?  Compare the conclusions from this 

plot with the results from the analysis of variance.  173
3
1730 ..

n
MSS E  

 

-1 0 .0 0 .0 1 0 .0

F a c to r  E f fe c ts

S c a le d  t  D is tr ib u tio n

AC C B

 
 
This method identifies the same factors as the analysis of variance. 

 
 

6-5 A router is used to cut locating notches on a printed circuit board.  The vibration level at the 
surface of the board as it is cut is considered to be a major source of dimensional variation in the notches.  
Two factors are thought to influence vibration:  bit size (A) and cutting speed (B).  Two bit sizes (1/16 and 
1/8 inch) and two speeds (40 and 90 rpm) are selected, and four boards are cut at each set of conditions 
shown below.  The response variable is vibration measured as a resultant vector of three accelerometers (x, 
y, and z) on each test circuit board. 
 

  Treatment  Replicate   
A B Combination I II III IV 
- - (1) 18.2 18.9 12.9 14.4 
+ - a 27.2 24.0 22.4 22.5 
- + b 15.9 14.5 15.1 14.2 
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+ + ab 41.0 43.9 36.3 39.9 

 
(a)  Analyze the data from this experiment. 
 
Design Expert Output  
Response: Vibration 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1638.11 3 546.04 91.36 < 0.0001 significant 
 A 1107.23 1 1107.23 185.25 < 0.0001 
 B 227.26 1 227.26 38.02 < 0.0001 
 AB 303.63 1 303.63 50.80 < 0.0001 
 Residual 71.72 12 5.98 
 Lack of Fit 0.000 0 
 Pure Error 71.72 12 5.98 
 Cor Total 1709.83 15 
 
 The Model F-value of 91.36 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
(b)  Construct a normal probability plot of the residuals, and plot the residuals versus the predicted 

vibration level.  Interpret these plots.   
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There is nothing unusual about the residual plots. 

 
(c)  Draw the AB interaction plot.  Interpret this plot.  What levels of bit size and speed would you 

recommend for routine operation? 
 
To reduce the vibration, use the smaller bit.  Once the small bit is specified, either speed will work equally 
well, because the slope of the curve relating vibration to speed for the small tip is approximately zero.  
The process is robust to speed changes if the small bit is used. 
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DES IG N-EXP ERT  P lo t

V ib ra tio n

X  = A : B i t S ize
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De sig n  Po in ts
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B+ 1 .0 0 0

Cutting Speed
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3 6 .1 5

4 3 .9

 
 
 

6-6 Reconsider the experiment described in Problem 6-1.  Suppose that the experimenter only 
performed the eight trials from replicate I.  In addition, he ran four center points and obtained the 
following response values:  36, 40, 43, 45. 
 
(a)  Estimate the factor effects.  Which effects are large?  
 

DE SIG N-EXP ERT  P lo t
L i fe
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B: T o o l  Ge o m e try
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Effects B, C, and AC appear to be large. 
 
(b)  Perform an analysis of variance, including a check for pure quadratic curvature.  What are your 

conclusions?   04170
48

000418754048 22

...
nn

yynn
SS

CF

CFCF
ticPureQuadra  

 
Design Expert Output 
 Response: Life in hours 
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         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1048.88 7 149.84 9.77 0.0439 significant 
 A 3.13 1 3.13 0.20 0.6823 
 B 325.13 1 325.13 21.20 0.0193 
 C 190.12 1 190.12 12.40 0.0389 
 AB 6.13 1 6.13 0.40 0.5722 
 AC 378.12 1 378.12 24.66 0.0157 
 BC 55.12 1 55.12 3.60 0.1542 
 ABC 91.12 1 91.12 5.94 0.0927 
 Curvature 0.042 1 0.042 2.717E-003 0.9617 not significant 
 Pure Error 46.00 3 15.33 
 Cor Total 1094.92 11 
 
 The Model F-value of 9.77 implies the model is significant.  There is only 
 a 4.39% chance that a "Model F-Value" this large could occur due to noise. 
 
 The "Curvature F-value" of 0.00 implies the curvature (as measured by difference between the 
 average of the center points and the average of the factorial points) in the design space is not 
 significant relative to the noise.  There is a 96.17% chance that a "Curvature F-value" 
 this large could occur due to noise. 
 
Design Expert Output 
 Response: Life in hours 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 896.50 4 224.13 7.91 0.0098 significant 
 A 3.13 1 3.13 0.11 0.7496 
 B 325.12 1 325.12 11.47 0.0117 
 C 190.12 1 190.12 6.71 0.0360 
 AC 378.12 1 378.12 13.34 0.0082 
 Residual 198.42 7 28.35 
 Lack of Fit 152.42 4 38.10 2.49 0.2402 not significant 
 Pure Error 46.00 3 15.33 
 Cor Total 1094.92 11 
 
 The Model F-value of 7.91 implies the model is significant.  There is only 
 a 0.98% chance that a "Model F-Value" this large could occur due to noise. 
 
Effects B, C and AC are significant at 5%. There is no effect of curvature. 
 
(c)  Write down an appropriate model for predicting tool life, based on the results of this experiment.  

Does this model differ in any substantial way from the model in Problem 7-1, part (c)? 
 
Design Expert Output  
Final Equation in Terms of Coded Factors: 
 
   Life  = 
  +40.88 
  +0.62   * A 
  +6.37   * B 
  +4.87   * C 
  -6.88   * A * C 
 
(d)  Analyze the residuals. 
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(e)  What conclusions would you draw about the appropriate operating conditions for this process?  
  
To maximize life run with B at the high level, A at the low level and C at the high level  

 

C ube Graph
Life

A: Cutting Speed
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45.63

34 .88

58.38

37 .13

33 .13

49 .88

45 .88

 
 
 
6-7 An experiment was performed to improve the yield of a chemical process.  Four factors were 
selected, and two replicates of a completely randomized experiment were run.  The results are shown in 
the following table: 
 

Treatment Replicate Replicate Treatment Replicate Replicate 
Combination I II Combination I II 

(1) 90 93 d 98 95 
a 74 78 ad 72 76 
b 81 85 bd 87 83 
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ab 83 80 abd 85 86 
c 77 78 cd 99 90 

ac 81 80 acd 79 75 
bc 88 82 bcd 87 84 
abc 73 70 abcd 80 80 

 
(a)  Estimate the factor effects. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A -9.0625 657.031 40.3714 
 Error  B -1.3125 13.7812 0.84679 
 Error  C -2.6875 57.7813 3.55038 
 Error  D 3.9375 124.031 7.62111 
 Error  AB 4.0625 132.031 8.11267 
 Error  AC 0.6875 3.78125 0.232339 
 Error  AD -2.1875 38.2813 2.3522 
 Error  BC -0.5625 2.53125 0.155533 
 Error  BD -0.1875 0.28125 0.0172814 
 Error  CD 1.6875 22.7812 1.3998 
 Error  ABC -5.1875 215.281 13.228 
 Error  ABD 4.6875 175.781 10.8009 
 Error  ACD -0.9375 7.03125 0.432036 
 Error  BCD -0.9375 7.03125 0.432036 
 Error  ABCD 2.4375 47.5313 2.92056 
 
(b)  Prepare an analysis of variance table, and determine which factors are important in explaining yield. 
 
Design Expert Output 
Response: yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1504.97 15 100.33 13.10 < 0.0001 significant 
 A 657.03 1 657.03 85.82 < 0.0001 
 B 13.78 1 13.78 1.80 0.1984 
 C 57.78 1 57.78 7.55 0.0143 
 D 124.03 1 124.03 16.20 0.0010 
 AB 132.03 1 132.03 17.24 0.0007 
 AC 3.78 1 3.78 0.49 0.4923 
 AD 38.28 1 38.28 5.00 0.0399 
 BC 2.53 1 2.53 0.33 0.5733 
 BD 0.28 1 0.28 0.037 0.8504 
 CD 22.78 1 22.78 2.98 0.1038 
 ABC 215.28 1 215.28 28.12 < 0.0001 
 ABD 175.78 1 175.78 22.96 0.0002 
 ACD 7.03 1 7.03 0.92 0.3522 
 BCD 7.03 1 7.03 0.92 0.3522 
 ABCD 47.53 1 47.53 6.21 0.0241 
 Residual 122.50 16 7.66 
 Lack of Fit 0.000 0 
 Pure Error 122.50 16 7.66 
 Cor Total 1627.47 31 
 
 The Model F-value of 13.10 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, C, D, AB, AD, ABC, ABD, ABCD are significant model terms.   
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F0 01 1 16 853. , , . , and F0 025 1 16 612. , , . therefore, factors A and D and interactions AB, ABC, and ABD are 
significant at 1%. Factor C and interactions AD and ABCD are significant at 2.5%. 
 
(b)  Write down a regression model for predicting yield, assuming that all four factors were varied over 

the range from -1 to +1 (in coded units). 
 
Model with hierarchy maintained: 
 
Design Expert Output  
Final Equation in Terms of Coded Factors: 
 
 yield  = 
 +82.78 
 -4.53  * A 
 -0.66  * B 
 -1.34  * C 
 +1.97  * D 
 +2.03  * A * B 
 +0.34  * A * C 
 -1.09  * A * D 
 -0.28  * B * C 
 -0.094  * B * D 
 +0.84  * C * D 
 -2.59  * A * B * C 
 +2.34  * A * B * D 
 -0.47  * A * C * D 
 -0.47  * B * C * D 
 +1.22  * A * B * C * D 
 
Model without hierarchy terms: 
 
Design Expert Output  
Final Equation in Terms of Coded Factors: 
 
  yield  = 
 +82.78 
 -4.53  * A 
 -1.34  * C 
 +1.97  * D 
 +2.03  * A * B 
 -1.09  * A * D 
 -2.59  * A * B * C 
 +2.34  * A * B * D 
 +1.22  * A * B * C * D 
 
Confirmation runs might be run to see if the simpler model without hierarchy is satisfactory. 
 
(d)  Plot the residuals versus the predicted yield and on a normal probability scale.  Does the residual 

analysis appear satisfactory?   
 
There appears to be one large residual both in the normal probability plot and in the plot of residuals 
versus predicted. 
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(e)  Two three-factor interactions, ABC and ABD, apparently have large effects.  Draw a cube plot in the 

factors A, B, and C with the average yields shown at each corner.  Repeat using the factors A, B, and 
D.  Do these two plots aid in data interpretation?  Where would you recommend that the process be 
run with respect to the four variables?  
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Run the process at A low B low, C low and D high. 
 
 
6-8 A bacteriologist is interested in the effects of two different culture media and two different times on 
the growth of a particular virus.  She performs six replicates of a 22 design, making the runs in random 
order.  Analyze the bacterial growth data that follow and draw appropriate conclusions.  Analyze the 
residuals and comment on the model’s adequacy. 
 

 Culture Medium 
Time 1 2 
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 21 22 25 26 
12 hr 23 28 24 25 
 20 26 29 27 
 37 39 31 34 
18 hr 37 39 31 34 
 35 36 30 35 

 
Design Expert Output 
 Response: Virus growth 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 691.46 3 230.49 45.12 < 0.0001 significant 
 A 9.38 1 9.38 1.84 0.1906 
 B 590.04 1 590.04 115.51 < 0.0001 
 AB 92.04 1 92.04 18.02 0.0004 
 Residual 102.17 20 5.11 
 Lack of Fit 0.000 0 
 Pure Error 102.17 20 5.11 
 Cor Total 793.63 23 
 
 The Model F-value of 45.12 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B, AB are significant model terms.   
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Growth rate is affected by factor B (Time) and the AB interaction (Culture medium and Time).  There is 
some very slight indication of inequality of variance shown by the small decreasing funnel shape in the 
plot of residuals versus predicted. 
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6-9 An industrial engineer employed by a beverage bottler is interested in the effects of two different 
typed of 32-ounce bottles on the time to deliver 12-bottle cases of the product.  The two bottle types are 
glass and plastic.  Two workers are used to perform a task consisting of moving 40 cases of the product 50 
feet on a standard type of hand truck and stacking the cases in a display.  Four replicates of a 22 factorial 
design are performed, and the times observed are listed in the following table.  Analyze the data and draw 
the appropriate conclusions.  Analyze the residuals and comment on the model’s adequacy. 
 

 Worker 
Bottle Type 1 1 2 2 

Glass 5.12 4.89 6.65 6.24 
 4.98 5.00 5.49 5.55 
     
Plastic 4.95 4.43 5.28 4.91 
 4.27 4.25 4.75 4.71 

 
Design Expert Output 

Response: Times 
        ANOVA for Selected Factorial Model 
Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 

 Model 4.86 3 1.62 13.04 0.0004 significant 
 A 2.02 1 2.02 16.28 0.0017 
 B 2.54 1 2.54 20.41 0.0007 
 AB 0.30 1 0.30 2.41 0.1463 
 Residual 1.49 12 0.12 
 Lack of Fit 0.000 0 
 Pure Error 1.49 12 0.12 
 Cor Total 6.35 15 
 
 The Model F-value of 13.04 implies the model is significant.  There is only 
 a 0.04% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
There is some indication of non-constant variance in this experiment. 
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6-10 In problem 6-9, the engineer was also interested in potential fatigue differences resulting from the 
two types of bottles.  As a measure of the amount of effort required, he measured the elevation of heart 
rate (pulse) induced by the task.  The results follow.  Analyze the data and draw conclusions.  Analyze the 
residuals and comment on the model’s adequacy. 
 

 Worker 
Bottle Type 1 1 2 2 

Glass 39 45 20 13 
 58 35 16 11 
     
Plastic 44 35 13 10 
 42 21 16 15 

 
Design Expert Output 
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Response: Pulse 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2784.19 3 928.06 16.03 0.0002 significant 
 A 2626.56 1 2626.56 45.37 < 0.0001 
 B 105.06 1 105.06 1.81 0.2028 
 AB 52.56 1 52.56 0.91 0.3595 
 Residual 694.75 12 57.90 
 Lack of Fit 0.000 0 
 Pure Error 694.75 12 57.90 
 Cor Total 3478.94 15 
 
 The Model F-value of 16.03 implies the model is significant.  There is only 
 a 0.02% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A are significant model terms.   
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There is an indication that one worker exhibits greater variability than the other. 
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6-11 Calculate approximate 95 percent confidence limits for the factor effects in Problem 6-10.  Do the 
results of this analysis agree with the analysis of variance performed in Problem 6-10? 

 

8039057
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Variable Effect C.I.  

A -25.625 3.80(1.96)= 7.448  
B -5.125 3.80(1.96)= 7.448  

AB -7.25 3.80(1.96)= 7.448  

 
The 95% confidence intervals for factors A does not contain zero.  This agrees with the analysis of 
variance approach. 
 

 
6-12 An article in the AT&T Technical Journal (March/April 1986, Vol. 65, pp. 39-50) describes the 
application of two-level factorial designs to integrated circuit manufacturing.  A basic processing step is to 
grow an epitaxial layer on polished silicon wafers.  The wafers mounted on a susceptor are positioned 
inside a bell jar, and chemical vapors are introduced.  The susceptor is rotated and heat is applied until the 
epitaxial layer is thick enough.  An experiment was run using two factors:  arsenic flow rate (A) and 
deposition time (B).  Four replicates were run, and the epitaxial layer thickness was measured (in mm).  
The data are shown below: 
 

   Replicate    Factor Levels 
A B I II III IV  Low (-) High (+) 

- - 14.037 16.165 13.972 13.907 A 55% 59% 
+ - 13.880 13.860 14.032 13.914    
- + 14.821 14.757 14.843 14.878 B Short Long 
+ + 14.888 14.921 14.415 14.932  (10 min) (15 min) 

 
(a)  Estimate the factor effects. 
 
Design Expert Output 
  Term Effect             SumSqr              % Contribtn 
 Model  Intercept     
 Error  A -0.31725 0.40259 6.79865 
 Error  B 0.586 1.37358 23.1961 
 Error  AB 0.2815 0.316969 5.35274 
 Error  Lack Of Fit  0 0 
 Error  Pure Error  3.82848 64.6525 
 
(b)  Conduct an analysis of variance.  Which factors are important? 
 
Design Expert Output 
Response: Thickness 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.09 3 0.70 2.19 0.1425 not significant 
 A 0.40 1 0.40 1.26 0.2833 
 B 1.37 1 1.37 4.31 0.0602 
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 AB 0.32 1 0.32 0.99 0.3386 
 Residual 3.83 12 0.32 
 Lack of Fit 0.000 0 
 Pure Error 3.83 12 0.32 
 Cor Total 5.92 15 
 
 The "Model F-value" of 2.19 implies the model is not significant relative to the noise.  There is a 
 14.25 % chance that a "Model F-value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case there are no significant model terms.   
 
(c)  Write down a regression equation that could be used to predict epitaxial layer thickness over the 

region of arsenic flow rate and deposition time used in this experiment. 
 
Design Expert Output 

Final Equation in Terms of Coded Factors: 
 
  Thickness  = 

  +14.51 
  -0.16   * A 
  +0.29   * B 
  +0.14   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Thickness  = 
  +37.62656 
  -0.43119   * Flow Rate 
  -1.48735   * Dep Time 
  +0.028150   * Flow Rate * Dep Time 
 
(d)  Analyze the residuals.  Are there any residuals that should cause concern? Observation #2 falls 

outside the groupings in the normal probability plot and the plot of residual versus predicted. 
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(e)  Discuss how you might deal with the potential outlier found in part (d). 
 
One approach would be to replace the observation with the average of the observations from that 
experimental cell.  Another approach would be to identify if there was a recording issue in the original 
data.  The first analysis below replaces the data point with the average of the other three.  The second 
analysis assumes that the reading was incorrectly recorded and should have been 14.165. 
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Analysis with the run associated with standard order 2 replaced with the average of the remaining three 
runs in the cell, 13.972: 
 
Design Expert Output 
Response: Thickness 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.97 3 0.99 53.57 < 0.0001 significant 
 A 7.439E-003 1 7.439E-003 0.40 0.5375 
 B 2.96 1 2.96 160.29 < 0.0001 
 AB 2.176E-004 1 2.176E-004 0.012 0.9153 
 Pure Error 0.22 12 0.018 
 Cor Total 3.19 15 
 
 The Model F-value of 53.57 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B are significant model terms.   
  

Final Equation in Terms of Coded Factors: 
 

  Thickness  = 
 +14.38 
 -0.022   * A 
 +0.43   * B 
 +3.688E-003   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
  Thickness  = 
 +13.36650 
 -0.020000   * Flow Rate 
 +0.12999   * Dep Time 
 +7.37500E-004   * Flow Rate * Dep Time 
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A new outlier is present and should be investigated. 
 
Analysis with the run associated with standard order 2 replaced with the value 14.165: 
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Design Expert Output 
Response: Thickness 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.82 3 0.94 45.18 < 0.0001 significant 
 A 0.018 1 0.018 0.87 0.3693 
 B 2.80 1 2.80 134.47 < 0.0001 
 AB 3.969E-003 1 3.969E-003 0.19 0.6699 
 Pure Error 0.25 12 0.021 
 Cor Total 3.07 15  
 
 The Model F-value of 45.18 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B are significant model terms.   
 

Final Equation in Terms of Coded Factors: 
 

  Thickness  = 
 +14.39 
 -0.034   * A 
 +0.42   * B 
 +0.016   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
  Thickness  = 
 +15.50156 
 -0.056188   * Flow Rate 
 -0.012350   * Dep Time 
 +3.15000E-003   * Flow Rate * Dep Time 
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Another outlier is present and should be investigated. 
 
 
6-13 Continuation of Problem 6-12.  Use the regression model in part (c) of Problem 6-12 to generate a 
response surface contour plot for epitaxial layer thickness.  Suppose it is critically important to obtain 
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layer thickness of 14.5 mm.  What settings of arsenic flow rate and deposition time would you 
recommend?  

 
Arsenic flow rate may be set at any of the experimental levels, while the deposition time should be set at 
12.4 minutes. 
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6-14 Continuation of Problem 6-13.  How would your answer to Problem 6-13 change if arsenic flow 
rate was more difficult to control in the process than the deposition time?   
 
Running the process at a high level of Deposition Time there is no change in thickness as flow rate 
changes. 
 
 
6-15 A nickel-titanium alloy is used to make components for jet turbine aircraft engines.  Cracking is a 
potentially serious problem in the final part, as it can lead to non-recoverable failure.  A test is run at the 
parts producer to determine the effects of four factors on cracks.  The four factors are pouring temperature 
(A), titanium content (B), heat treatment method (C), and the amount of grain refiner used (D).  Two 
replicated of a 24 design are run, and the length of crack (in m) induced in a sample coupon subjected to 
a standard test is measured.  The data are shown below: 
 

    Treatment Replicate Replicate 
A B C D Combination I II 

- - - - (1) 7.037 6.376 
+ - - - a 14.707 15.219 
- + - - b 11.635 12.089 
+ + - - ab 17.273 17.815 
- - + - c 10.403 10.151 
+ - + - ac 4.368 4.098 
- + + - bc 9.360 9.253 
+ + + - abc 13.440 12.923 
- - - + d 8.561 8.951 
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+ - - + ad 16.867 17.052 
- + - + bd 13.876 13.658 
+ + - + abd 19.824 19.639 
- - + + cd 11.846 12.337 
+ - + + acd 6.125 5.904 
- + + + bcd 11.190 10.935 
+ + + + abcd 15.653 15.053 

 
(a)  Estimate the factor effects.  Which factors appear to be large? 
 
Design Expert Output 
  Term Effect             SumSqr              % Contribtn 
 Model  Intercept     
 Model  A 3.01888 72.9089 12.7408 
 Model  B 3.97588 126.461 22.099 
 Model  C -3.59625 103.464 18.0804 
 Model  D 1.95775 30.6623 5.35823 
 Model  AB 1.93412 29.9267 5.22969 
 Model  AC -4.00775 128.496 22.4548 
 Error  AD 0.0765 0.046818 0.00818145 
 Error  BC 0.096 0.073728 0.012884 
 Error  BD 0.04725 0.0178605 0.00312112 
 Error  CD -0.076875 0.0472781 0.00826185 
 Model  ABC 3.1375 78.7512 13.7618 
 Error  ABD 0.098 0.076832 0.0134264 
 Error  ACD 0.019125 0.00292613 0.00051134 
 Error  BCD 0.035625 0.0101531 0.00177426 
 Error  ABCD 0.014125 0.00159613 0.000278923 
 
(b)  Conduct an analysis of variance.  Do any of the factors affect cracking?  Use =0.05. 
 
Design Expert Output 
Response: Crack Lengthin mm x 10^-2 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 570.95 15 38.06 468.99 < 0.0001 significant 
 A 72.91 1 72.91 898.34 < 0.0001 
 B 126.46 1 126.46 1558.17 < 0.0001 
 C 103.46 1 103.46 1274.82 < 0.0001 
 D 30.66 1 30.66 377.80 < 0.0001 
 AB 29.93 1 29.93 368.74 < 0.0001 
 AC 128.50 1 128.50 1583.26 < 0.0001 
 AD 0.047 1 0.047 0.58 0.4586 
 BC 0.074 1 0.074 0.91 0.3547 
 BD 0.018 1 0.018 0.22 0.6453 
 CD 0.047 1 0.047 0.58 0.4564 
 ABC 78.75 1 78.75 970.33 < 0.0001 
 ABD 0.077 1 0.077 0.95 0.3450 
 ACD 2.926E-003 1 2.926E-003 0.036 0.8518 
 BCD 0.010 1 0.010 0.13 0.7282 
 ABCD 1.596E-003 1 1.596E-003 0.020 0.8902 
 Residual 1.30 16 0.081 
 Lack of Fit 0.000 0 
 Pure Error 1.30 16 0.081 
 Cor Total 572.25 31 
 
 The Model F-value of 468.99 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, D, AB, AC, ABC are significant model terms.   
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(c)  Write down a regression model that can be used to predict crack length as a function of the significant 

main effects and interactions you have identified in part (b). 
 
Design Expert Output   
Final Equation in Terms of Coded Factors: 
 
 Crack Length= 
 +11.99 
 +1.51 *A 
 +1.99 *B 
 -1.80 *C 
 +0.98 *D 
 +0.97 *A*B 
 -2.00 *A*C 
 +1.57 * A * B * C 
 
(d) Analyze the residuals from this experiment. 
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There is nothing unusual about the residuals. 
 

(e)  Is there an indication that any of the factors affect the variability in cracking? 
 
By calculating the range of the two readings in each cell, we can also evaluate the effects of the factors on 
variation.  The following is the normal probability plot of effects: 
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It appears that the AB and CD interactions could be significant.  The following is the ANOVA for the 
range data: 
 
Design Expert Output 
Response: Range 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.29 2 0.14 11.46 0.0014 significant 
 AB 0.13 1 0.13 9.98 0.0075 
 CD 0.16 1 0.16 12.94 0.0032 
 Residual 0.16 13 0.013 
 Cor Total 0.45 15 
 
 The Model F-value of 11.46 implies the model is significant.  There is only 
 a 0.14% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case AB, CD are significant model terms.  
 
Final Equation in Terms of Coded Factors: 
 
 Range  = 
 +0.37 
 +0.089  * A * B 
 +0.10  * C * D  
 
(f)  What recommendations would you make regarding process operations? 
 
Use interaction and/or main effect plots to assist in drawing conclusions.  From the interaction plots, 
choose A at the high level and B at the high level.  In each of these plots, D can be at either level.  From 
the main effects plot of C, choose C at the high level.  Based on the range analysis, with C at the high 
level, D should be set at the low level. 
 
From the analysis of  the crack length data: 
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From the analysis of the ranges: 
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6-16 Continuation of Problem 6-15.  One of the variables in the experiment described in Problem 6-15, 
heat treatment method (c), is a categorical variable.  Assume that the remaining factors are continuous. 
 
(a)  Write two regression models for predicting crack length, one for each level of the heat treatment 

method variable.  What differences, if any, do you notice in these two equations?   
 
Design Expert Output 
Final Equation in Terms of Coded Factors 
 
 Heat Treat Method -1 
 Crack Length  = 
 +13.78619 
 +3.51331  * Pour Temp 
 +1.93994  * Titanium Content 
 +0.97888  * Grain Refiner 
 -0.60169  * Pour Temp * Titanium Content 
 
 Heat Treat Method 1 
 Crack Length  = 
 +10.18994 
 -0.49444  * Pour Temp 
 +2.03594  * Titanium Content 
 +0.97888  * Grain Refiner 
 +2.53581  * Pour Temp * Titanium Content  
 
(b)  Generate appropriate response surface contour plots for the two regression models in part (a). 
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(c)  What set of conditions would you recommend for the factors A, B and D if you use heat treatment 

method C=+? 
 
High level of A, low level of B, and low level of D. 
 
(d)  Repeat part (c) assuming that you wish to use heat treatment method C=-. 
 
Low level of A, low level of B, and low level of D. 
 
 
6-17 An experimenter has run a single replicate of a 24 design.  The following effect estimates have been 
calculated:  
 

A = 76.95 AB = -51.32 ABC = -2.82 
B = -67.52 AC = 11.69 ABD = -6.50 
C = -7.84 AD = 9.78 ACD = 10.20 
D = -18.73 BC = 20.78 BCD = -7.98 
 BD = 14.74 ABCD = -6.25 
 CD = 1.27  

 
(a)  Construct a normal probability plot of these effects. 
 
The plot from Minitab follows. 
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(b)  Identify a tentative model, based on the plot of the effects in part (a). 
 

BABA xx.x.x.Interceptŷ 6625763347538  
 
 
6-18 An article in Solid State Technology (“Orthogonal Design for Process Optimization and Its 
Application in Plasma Etching,” May 1987, pp. 127-132) describes the application of factorial designs in 
developing a nitride etch process on a single-wafer plasma etcher.  The process uses C2F6 as the reactant 
gas.  Four factors are of interest:  anode-cathode gap (A), pressure in the reactor chamber (B), C2F6 gas 
flow (C), and power applied to the cathode (D).  The response variable of interest is the etch rate for 
silicon nitride.  A single replicate of a 24 design in run, and the data are shown below: 
 

 Actual     Etch    
Run Run     Rate  Factor Levels 

Number Order A B C D (A/min)  Low (-) High (+) 

1 13 - - - - 550 A (cm) 0.80 1.20 
2 8 + - - - 669 B (mTorr) 4.50 550 
3 12 - + - - 604 C (SCCM) 125 200 
4 9 + + - - 650 D (W) 275 325 
5 4 - - + - 633    
6 15 + - + - 642    
7 16 - + + - 601    
8 3 + + + - 635    
9 1 - - - + 1037    
10 14 + - - + 749    
11 5 - + - + 1052    
12 10 + + - + 868    
13 11 - - + + 1075    
14 2 + - + + 860    
15 7 - + + + 1063    



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

6-29 

16 6 + + + + 729    

 
(a)  Estimate the factor effects.  Construct a normal probability plot of the factor effects.  Which effects 

appear large? 
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(b)  Conduct an analysis of variance to confirm your findings for part (a). 
 
Design Expert Output 
Response: Etch Rate in A/min 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 5.106E+005 3 1.702E+005 97.91 < 0.0001 significant 
 A 41310.56 1 41310.56 23.77 0.0004 
 D 3.749E+005 1 3.749E+005 215.66 < 0.0001 
 AD 94402.56 1 94402.56 54.31 < 0.0001 
 Residual 20857.75 12 1738.15 
 Cor Total 5.314E+005 15 
 
 The Model F-value of 97.91 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, D, AD are significant model terms.   
 
(c)  What is the regression model relating etch rate to the significant process variables? 
 
Design Expert Output 
Final Equation in Terms of Coded Factors: 
 
   Etch Rate  = 
  +776.06 
  -50.81   * A 
  +153.06   * D 
  -76.81   * A * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Etch Rate  = 
  -5415.37500 
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  +4354.68750  * Gap 
  +21.48500    * Power 
  -15.36250     * Gap * Power 
 
(d)  Analyze the residuals from this experiment.  Comment on the model’s adequacy.   
 

Res idua l

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Normal plot of residuals

-7 2 .5 -3 7 .75 -3 3 1 .7 5 6 6 .5

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

Predicted

R
es

id
ua

ls

Residuals vs. Predicted

-7 2 .5

-3 7 .75

-3

3 1 .7 5

6 6 .5

5 9 7 .00 7 1 1 .94 8 2 6 .88 9 4 1 .81 1 0 5 6.7 5

 
 

The residual versus predicted plot shows a slight football shape indicating very mild inequality of 
variance. 
 
(e)  If not all the factors are important, project the 24 design into a 2k design with k<4 and conduct that 

analysis of variance.  The analysis of variance table is the same as in part (b). 
 
Design Expert Output 
Response: Etch Rate in A/min 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 5.106E+005 3 1.702E+005 97.91 < 0.0001 significant 
 A 41310.56 1 41310.56 23.77 0.0004 
 B 3.749E+005 1 3.749E+005 215.66 < 0.0001 
 AB 94402.56 1 94402.56 54.31 < 0.0001 
 Residual 20857.75 12 1738.15 
 Lack of Fit 0.000 0 
 Pure Error 20857.75 12 1738.15 
 Cor Total 5.314E+005 15 
 
 The Model F-value of 97.91 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, AB are significant model terms.   
 
(f)  Draw graphs to interpret any significant interactions. 
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DES IG N-EXP ERT  P lo t

E tch  Ra te

X  = A : Ga p
Y = B : Po we r

De sig n  Po in ts

B - 2 7 5 .00 0
B+ 3 2 5 .00 0

Power
Interaction Graph

Gap
E

tc
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R
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e

0 .8 0 0 .9 0 1 .0 0 1 .1 0 1 .2 0

5 5 0

6 8 4 .71 6

8 1 9 .43 3

9 5 4 .14 9

1 0 8 8.8 7

 
 

(g)  Plot the residuals versus the actual run order.  What problems might be revealed by this plot? 
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The plot of residuals versus run order can reveal trends in the process over time, inequality of variance 
with time, and possibly indicate that there may be factors that were not included in the original 
experiment. 
 
 
6-19 Continuation of Problem 6-18. Consider the regression model obtained in part (c) of Problem 6-
18. 
 
(a)  Construct contour plots of the etch rate using this model. 
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DES IG N-EXP ERT  P lo t

E tch  Ra te
X  = A : Ga p
Y = D: Po we r

Actu al  Fa ctors
B : P re ssure  =  5 0 0 .0 0
C: G as Flo w = 1 6 2 .5 0

Etch Rate

Gap
P

ow
er

0 .8 0 0 .9 0 1 .0 0 1 .1 0 1 .2 0

2 7 5 .00

2 8 7 .50

3 0 0 .00

3 1 2 .50

3 2 5 .00

673.625

750.25

826.875

903.5

980.125

 
 

(b)  Suppose that it was necessary to operate this process at an etch rate of 800 Å/min.  What settings of 
the process variables would you recommend? 

 
Run at the low level of anode-cathode gap (0.80 cm) and at a cathode power level of about 286 watts.  The 
curve is flatter (more robust) on the low end of the anode-cathode variable. 
 
 
6-20 Consider the single replicate of the 24 design in Example 6-2.  Suppose we had arbitrarily decided 
to analyze the data assuming that all three- and four-factor interactions were negligible.  Conduct this 
analysis and compare your results with those obtained in the example.  Do you think that it is a good idea 
to arbitrarily assume interactions to be negligible even if they are relatively high-order ones? 
 
Design Expert Output 
Response: Etch Rate in A/min 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 5.212E+005 10 52123.41 25.58 0.0011 significant 
 A 41310.56 1 41310.56 20.28 0.0064 
 B 10.56 1 10.56 5.184E-003 0.9454 
 C 217.56 1 217.56 0.11 0.7571 
 D 3.749E+005 1 3.749E+005 183.99 < 0.0001 
 AB 248.06 1 248.06 0.12 0.7414 
 AC 2475.06 1 2475.06 1.21 0.3206 
 AD 94402.56 1 94402.56 46.34 0.0010 
 BC 7700.06 1 7700.06 3.78 0.1095 
 BD 1.56 1 1.56 7.669E-004 0.9790 
 CD 18.06 1 18.06 8.866E-003 0.9286 
 Residual 10186.81 5 2037.36 
 Cor Total 5.314E+005 15 
 
 The Model F-value of 25.58 implies the model is significant.  There is only 
 a 0.11% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, D, AD are significant model terms.   
 
This analysis of variance identifies the same effects as the normal probability plot of effects approach used 
in Example 6-2.  In general, it is not a good idea to arbitrarily pool interactions.  Use the normal 
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probability plot of effect estimates as a  guide in the choice of which effects to tentatively include in the 
model. 
 
 
6-21 An experiment was run in a semiconductor fabrication plant in an effort to increase yield.  Five 
factors, each at two levels, were studied.  The factors (and levels) were A = aperture setting (small, large), 
B = exposure time (20% below nominal, 20% above nominal), C = development time (30 s, 45 s), D = 
mask dimension (small, large), and E = etch time (14.5 min, 15.5 min).  The unreplicated 25 design 
shown below was run. 
 

(1) = 7 d =  8 e =  8 de = 6 
a = 9 ad =  10 ae = 12 ade = 10 
b = 34 bd = 32 be = 35 bde = 30 

ab = 55 abd = 50 abe = 52 abde = 53 
c = 16 cd = 18 ce = 15 cde = 15 

ac = 20 acd = 21 ace = 22 acde = 20 
bc = 40 bcd = 44 bce = 45 bcde = 41 

abc = 60 abcd = 61 abce = 65 abcde = 63 

 
(a)  Construct a normal probability plot of the effect estimates.  Which effects appear to be large? 
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(b)  Conduct an analysis of variance to confirm your findings for part (a). 
 
Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 11585.13 4 2896.28 991.83 < 0.0001 significant 
 A 1116.28 1 1116.28 382.27 < 0.0001 
 B 9214.03 1 9214.03 3155.34 < 0.0001 
 C 750.78 1 750.78 257.10 < 0.0001 
 AB 504.03 1 504.03 172.61 < 0.0001 
 Residual 78.84 27 2.92 
 Cor Total 11663.97 31 
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 The Model F-value of 991.83 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
 
(c)  Write down the regression model relating yield to the significant process variables. 
 
Design Expert Output 
Final Equation in Terms of Actual Factors: 
                 Aperture small 
   Yield  = 
  +0.40625 
  +0.65000   * Exposure Time 
  +0.64583   * Develop Time 
 
 Aperture large 
   Yield  = 
  +12.21875 
  +1.04688   * Exposure Time 
  +0.64583   * Develop Time 
 
(d)  Plot the residuals on normal probability paper.  Is the plot satisfactory? 
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There is nothing unusual about this plot. 

 
(e)  Plot the residuals versus the predicted yields and versus each of the five factors. Comment on the 

plots.   
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The plot of residual versus exposure time shows some very slight inequality of variance.  There is no 
strong evidence of a potential problem. 
 
(f)  Interpret any significant interactions. 
 

DES IG N-EXP ERT  P lo t

Y ie ld

X  = B : Exp osu re T im e
Y = A : Ap e rtu re

A1  sm a l l
A2  la rg e

Actu al  Fa ctors
C: De ve lo p  T im e  = 3 7.5 0
D: M a sk Dim e n sio n  =  S m a l l
E : E tch  T im e  = 1 5 .0 0

Aperture
Interaction Graph

Expos ure Tim e

Yi
el

d

-2 0 .00 -1 0 .00 0 .0 0 1 0 .0 0 2 0 .0 0
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Factor A does not have as large an effect when B is at its low level as it does when B is at its high level. 
 
(g)  What are your recommendations regarding process operating conditions? 
 
For the highest yield, run with B at the high level, A at the high level and C at the high level. 
 
(h)  Project the 25 design in this problem into a 2k design in the important factors.  Sketch the design and 

show the average and range of yields at each run.  Does this sketch aid in interpreting the results of 
this experiment? 

 
DESIGN-EASE Analysis
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This cube plot aids in interpretation.  The strong AB interaction and the large positive effect of C are 
clearly evident. 
 
 
6-22 Continuation of Problem 6-21.  Suppose that the experimenter had run four runs at the center 
points in addition to the 32 trials in the original experiment.  The yields obtained at the center point runs 
were 68, 74, 76, and 70. 
 
(a)  Reanalyze the experiment, including a test for pure quadratic curvature. 
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Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 11461.09 4 2865.27 353.92 < 0.0001 significant 
 A 992.25 1 992.25 122.56 < 0.0001 
 B 9214.03 1 9214.03 1138.12 < 0.0001 
 C 750.78 1 750.78 92.74 < 0.0001 
 AB 504.03 1 504.03 62.26 < 0.0001 
 Curvature 6114.34 1 6114.34 755.24 < 0.0001 significant 
 Residual 242.88 30 8.10 
 Cor Total 17818.31 35 
 
 The Model F-value of 353.92 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
 
(b)  Discuss what your next step would be. 
 
Add axial points and fit a second-order model. 
 
 
6-23 In a process development study on yield, four factors were studied, each at two levels: time (A), 
concentration (B), pressure (C), and temperature (D).  A single replicate of a 24 design was run, and the 
resulting data are shown in the following table: 
 

 Actual         
Run Run     Yield  Factor Levels 

Number Order A B C D (lbs)  Low (-) High (+) 

1 5 - - - - 12 A (h) 2.5 3.0 
2 9 + - - - 18 B (%) 14 18 
3 8 - + - - 13 C (psi) 60 80 
4 13 + + - - 16 D (ºC) 225 250 
5 3 - - + - 17    
6 7 + - + - 15    
7 14 - + + - 20    
8 1 + + + - 15    
9 6 - - - + 10    
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10 11 + - - + 25    
11 2 - + - + 13    
12 15 + + - + 24    
13 4 - - + + 19    
14 16 + - + + 21    
15 10 - + + + 17    
16 12 + + + + 23    

 
(a)  Construct a normal probability plot of the effect estimates.  Which factors appear to have large 

effects? 
 

DES IG N-EXP ERT  P lo t
Y ie ld

A : T im e
B: Co n cen tra tio n
C: P re ssure
D: T e m p e ratu re

Normal plot

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Effect

-4 .2 5 -2 .0 6 0 .1 3 2 .3 1 4 .5 0

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9
A

C
D

AC

AD

 
 

A, C, D and the AC and AD interactions. 
 
(b)  Conduct an analysis of variance using the normal probability plot in part (a) for guidance in forming 

an error term.  What are your conclusions? 
 
Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 275.50 5 55.10 33.91 < 0.0001 significant 
 A 81.00 1 81.00 49.85 < 0.0001 
 C 16.00 1 16.00 9.85 0.0105 
 D 42.25 1 42.25 26.00 0.0005 
 AC 72.25 1 72.25 44.46 < 0.0001 
 AD 64.00 1 64.00 39.38 < 0.0001 
 Residual 16.25 10 1.62 
 Cor Total 291.75 15 
 
 The Model F-value of 33.91 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, C, D, AC, AD are significant model terms.   
 
(c)  Write down a regression model relating yield to the important process variables. 
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Design Expert Output 
Final Equation in Terms of Coded Factors: 
 
  Yield = 
 +17.38 
 +2.25 *A 
 +1.00 *C 
 +1.63 *D 
 -2.13 *A*C 
 +2.00 *A*D 
 
 Final Equation in Terms of Actual Factors: 
 
  Yield = 
 +209.12500 
 -83.50000   * Time 
 +2.43750   * Pressure 
 -1.63000   * Temperature 
 -0.85000   * Time * Pressure 
 +0.64000   * Time * Temperature 
 
(d)  Analyze the residuals from this experiment.  Does your analysis indicate any potential problems? 
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There is nothing unusual about the residual plots. 
 
(e)  Can this design be collapsed into a 23 design with two replicates?  If so, sketch the design with the 

average and range of yield shown at each point in the cube.  Interpret the results. 
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6-24 Continuation of Problem 6-23.  Use the regression model in part (c) of Problem 6-23 to generate a 
response surface contour plot of yield.  Discuss the practical purpose of this response surface plot. 
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The response surface contour plot shows the adjustments in the process variables that lead to an 
increasing or decreasing response.  It also displays the curvature of the response in the design region, 
possibly indicating where robust operating conditions can be found.  Two response surface contour plots 
for this process are shown below.  These were formed from the model written in terms of the original 
design variables. 
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6-25 The scrumptious brownie experiment.  The author is an engineer by training and a firm believer 
in learning by doing.  I have taught experimental design for many years to a wide variety of audiences and 
have always assigned the planning, conduct, and analysis of an actual experiment to the class participants.  
The participants seem to enjoy this practical experience and always learn a great deal from it.  This 
problem uses the results of an experiment performed by Gretchen Krueger at Arizona State University. 
 
There are many different ways to bake brownies.  The purpose of this experiment was to determine how 
the pan material, the brand of brownie mix, and the stirring method affect the scrumptiousness of 
brownies.  The factor levels were 
 

Factor Low (-) High (+) 
A = pan material Glass Aluminum 
B = stirring method Spoon Mixer 
C = brand of mix Expensive  Cheap 

 
The response variable was scrumptiousness, a subjective measure derived from a questionnaire given to 
the subjects who sampled each batch of brownies. (The questionnaire dealt with such issues as taste, 
appearance, consistency, aroma, and so forth.)  An eight-person test panel sampled each batch and filled 
out the questionnaire.  The design matrix and the response data are shown below: 
 

Brownie     Test Panel Results     
Batch A B C 1 2 3 4 5 6 7 8 

1 - - - 11 9 10 10 11 10 8 9 
2 + - - 15 10 16 14 12 9 6 15 
3 - + - 9 12 11 11 11 11 11 12 
4 + + - 16 17 15 12 13 13 11 11 
5 - - + 10 11 15 8 6 8 9 14 
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6 + - + 12 13 14 13 9 13 14 9 
7 - + + 10 12 13 10 7 7 17 13 
8 + + + 15 12 15 13 12 12 9 14 

 
(a)  Analyze the data from this experiment as if there were eight replicates of a 23 design.  Comment on 

the results. 
 
Design Expert Output 
 ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 93.25 7 13.32 2.20 0.0475 significant 
 A 72.25 1 72.25 11.95 0.0010 
 B 18.06 1 18.06 2.99 0.0894 
 C 0.063 1 0.063 0.010 0.9194 
 AB 0.062 1 0.062 0.010 0.9194 
 AC 1.56 1 1.56 0.26 0.6132 
 BC 1.00 1 1.00 0.17 0.6858 
 ABC 0.25 1 0.25 0.041 0.8396 
 Residual 338.50 56 6.04 
 Lack of Fit 0.000 0 
 Pure Error 338.50 56 6.04 
 Cor Total 431.75 63 
 
 The Model F-value of 2.20 implies the model is significant.  There is only 
 a 4.75% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A are significant model terms.   
 
In this analysis, A, the pan material and B, the stirring method, appear to be significant.  There are 56 
degrees of freedom for the error, yet only eight batches of brownies were cooked, one for each recipe. 
 
(b)  Is the analysis in part (a) the correct approach?  There are only eight batches; do we really have eight 

replicates of a 23 factorial design?   
 
The different rankings by the taste-test panel are not replicates, but repeat observations by differenttesters 
on the same batch of brownies. It is not a good idea to use the analysis in part (a) because the estimate of 
error may not reflect the batch-to-batch variation. 
 
(c)  Analyze the average and standard deviation of the scrumptiousness ratings.  Comment on the results.  

Is this analysis more appropriate than the one in part (a)?  Why or why not? 
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Design Expert Output 
Response: Average 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 11.28 2 5.64 76.13 0.0002 significant 
 A 9.03 1 9.03 121.93 0.0001 
 B 2.25 1 2.25 30.34 0.0027 
 Residual 0.37 5 0.074 
 Cor Total 11.65 7 
 
 The Model F-value of 76.13 implies the model is significant.  There is only 
 a 0.02% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
Design Expert Output 
Response: Stdev 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 6.05 3 2.02 9.77 0.0259 significant 
 A 0.24 1 0.24 1.15 0.3432 
 C 0.91 1 0.91 4.42 0.1034 
 AC 4.90 1 4.90 23.75 0.0082 
 Residual 0.82 4 0.21 
 Cor Total 6.87 7 
 
 The Model F-value of 9.77 implies the model is significant.  There is only 
 a 2.59% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case AC are significant model terms.   
 
Variables A and B affect the mean rank of the brownies.  Note that the AC interaction affects the standard 
deviation of the ranks.  This is an indication that both factors A and C have some effect on the variability 
in the ranks.  It may also indicate that there is some inconsistency in the taste test panel members. For the 
analysis of both the average of the ranks and the standard deviation of the ranks, the mean square error is 
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now determined by pooling apparently unimportant effects. This is a more estimate of error than obtained 
assuming that all observations were replicates. 
 
 
6-26 An experiment was conducted on a chemical process that produces a polymer.  The four factors 
studied were temperature (A), catalyst concentration (B), time (C), and pressure (D).  Two responses, 
molecular weight and viscosity, were observed.  The design matrix and response data are shown below: 
 

 Actual          
Run Run     Molecular   Factor Levels 

Number Order A B C D Weight Viscosity  Low (-) High (+) 

1 18 - - - - 2400 1400 A (ºC) 100 120 
2 9 + - - - 2410 1500 B (%) 4 8 
3 13 - + - - 2315 1520 C (min) 20 30 
4 8 + + - - 2510 1630 D (psi) 60 75 
5 3 - - + - 2615 1380    
6 11 + - + - 2625 1525    
7 14 - + + - 2400 1500    
8 17 + + + - 2750 1620    
9 6 - - - + 2400 1400    

10 7 + - - + 2390 1525    
11 2 - + - + 2300 1500    
12 10 + + - + 2520 1500    
13 4 - - + + 2625 1420    
14 19 + - + + 2630 1490    
15 15 - + + + 2500 1500    
16 20 + + + + 2710 1600    
17 1 0 0 0 0 2515 1500    
18 5 0 0 0 0 2500 1460    
19 16 0 0 0 0 2400 1525    
20 12 0 0 0 0 2475 1500    

 
(a) Consider only the molecular weight response.  Plot the effect estimates on a normal probability scale.  

What effects appear important? 
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A, C and the AB interaction. 

 
(b) Use an analysis of variance to confirm the results from part (a).  Is there an indication of curvature?  

A,C and the AB interaction are significant.  While the main effect of B is not significant, it could be 
included to preserve hierarchy in the model.  There is no indication of quadratic curvature. 

 
Design Expert Output 
Response: Molecular Wt 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.809E+005 3 93620.83 73.00 < 0.0001 significant 
 A 61256.25 1 61256.25 47.76 < 0.0001 
 C 1.620E+005 1 1.620E+005 126.32 < 0.0001 
 AB 57600.00 1 57600.00 44.91 < 0.0001 
 Curvature 3645.00 1 3645.00 2.84 0.1125 not significant 
 Residual 19237.50 15 1282.50 
 Lack of Fit 11412.50 12 951.04 0.36 0.9106 not significant 
 Pure Error 7825.00 3 2608.33 
 Cor Total 3.037E+005 19 
 
 The Model F-value of 73.00 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, C, AB are significant model terms.   
 
(c)  Write down a regression model to predict molecular weight as a function of the important variables. 
 
Design Expert Output 
Final Equation in Terms of Coded Factors: 
 
  Molecular Wt  = 
 +2506.25 
 +61.87   * A 
 +100.63   * C 
 +60.00   * A * B 
 
(d)  Analyze the residuals and comment on model adequacy. 
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There are two residuals that appear to be large and should be investigated. 

 
(e)  Repeat parts (a) - (d) using the viscosity response. 
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Design Expert Output 
Response: Viscosity 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 70362.50 2 35181.25 35.97 < 0.0001 significant 
 A 37056.25 1 37056.25 37.88 < 0.0001 
 B 33306.25 1 33306.25 34.05 < 0.0001 
 Curvature 61.25 1 61.25 0.063 0.8056 not significant 
 Residual 15650.00 16 978.13 
 Lack of Fit 13481.25 13 1037.02 1.43 0.4298 not significant 
 Pure Error 2168.75 3 722.92 
 Cor Total 86073.75 19 
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 The Model F-value of 35.97 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
 Final Equation in Terms of Coded Factors: 
 
   Viscosity  = 
  +1500.62 
  +48.13   * A 
  +45.63   * B 
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There is one large residual that should be investigated. 
 
 
6-27 Continuation of Problem 6-26.  Use the regression models for molecular weight and viscosity to 
answer the following questions. 
 
(a) Construct a response surface contour plot for molecular weight.  In what direction would you adjust 

the process variables to increase molecular weight?  Increase temperature, catalyst and time. 
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(a)  Construct a response surface contour plot for viscosity.  In what direction would you adjust the 
process variables to decrease viscosity?   
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Decrease temperature and catalyst. 
 
(c)  What operating conditions would you recommend if it was necessary to produce a product with a 

molecular weight between 2400 and 2500, and the lowest possible viscosity? 
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Set the temperature between 100 and 105, the catalyst between 4 and 5%, and the time at 24.5 minutes.  
The pressure was not significant and can be set at conditions that may improve other results of the process 
such as cost. 
 
 
6-28 Consider the single replicate of the 24 design in Example 6-2.  Suppose that we ran five points at 
the center (0,0,0,0) and observed the following responses: 73, 75, 71, 69, and 76.  Test for curvature in 
this experiment.  Interpret the results. 
 
Design Expert Output 
Response: Filtration Rate 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 5535.81 5 1107.16 68.01 < 0.0001 significant 
 A 1870.56 1 1870.56 114.90 < 0.0001 
 C 390.06 1 390.06 23.96 0.0002 
 D 855.56 1 855.56 52.55 < 0.0001 
 AC 1314.06 1 1314.06 80.71 < 0.0001 
 AD 1105.56 1 1105.56 67.91 < 0.0001 
 Curvature 28.55 1 28.55 1.75 0.2066 not significant 
 Residual 227.93 14 16.28 
 Lack of Fit 195.13 10 19.51 2.38 0.2093 not significant 
 Pure Error 32.80 4 8.20 
 Cor Total 5792.29 20 
 
 The Model F-value of 68.01 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, C, D, AC, AD are significant model terms.   
  
 The "Curvature F-value" of 1.75 implies the curvature (as measured by difference between the 
 average of the center points and the average of the factorial points) in the design space is not 
 significant relative to the noise.  There is a 20.66% chance that a "Curvature F-value" 
 this large could occur due to noise. 
 
There is no indication of curvature. 
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6-29 A missing value in a 2k factorial.  It is not unusual to find that one of the observations in a 2k 
design is missing due to faulty measuring equipment, a spoiled test, or some other reason.  If the design is 
replicated n times (n>1) some of the techniques discussed in Chapter 14 can be employed, including 
estimating the missing observations.  However, for an unreplicated factorial (n-1) some other method must 
be used.  One logical approach is to estimate the missing value with a number that makes the highest-
order interaction contrast zero.  Apply this technique to the experiment in Example 6-2 assuming that run 
ab is missing.  Compare the results with the results of Example 6-2. 
 

Treatm ent 
Com bination

Response
Response * 
ABCD

ABCD A B C D

(1) 45 45 1 -1 -1 -1 -1
a 71 -71 -1 1 -1 -1 -1
b 48 -48 -1 -1 1 -1 -1
ab m issing m issing * 1 1 1 1 -1 -1
c 68 -68 -1 -1 -1 1 -1
ac 60 60 1 1 -1 1 -1
bc 80 80 1 -1 1 1 -1
abc 65 -65 -1 1 1 1 -1
d 43 -43 -1 -1 -1 -1 1
ad 100 100 1 1 -1 -1 1
bd 45 45 1 -1 1 -1 1
abd 104 -104 -1 1 1 -1 1
cd 75 75 1 -1 -1 1 1
acd 86 -86 -1 1 -1 1 1
bcd 70 -70 -1 -1 1 1 1
abcd 96 96 1 1 1 1 1

Contrast (ABCD ) = m issing - 54 = 0
m issing = 54  

 
Substitute the value 54 for the missing run at ab. 
 
  Term Effect SumSqr % Contribtn 
 Model  Intercept    
 Model  A 20.25 1640.25 27.5406 
 Model  B 1.75 12.25 0.205684 
 Model  C 11.25 506.25 8.50019 
 Model  D 16 1024 17.1935 
 Model  AB -1.25 6.25 0.104941 
 Model  AC -16.75 1122.25 18.8431 
 Model  AD 18 1296 21.7605 
 Model  BC 3.75 56.25 0.944465 
 Model  BD 1 4 0.067162 
 Model  CD -2.5 25 0.419762 
 Model  ABC 3.25 42.25 0.709398 
 Model  ABD 5.5 121 2.03165 
 Model  ACD -3 36 0.604458 
 Model  BCD -4 64 1.07459 
 Model  ABCD 0 0 0 
   Lenth's ME 11.5676   
   Lenth's SME 23.4839   
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6-30 An engineer has performed an experiment to study the effect of four factors on the surface 
roughness of a machined part.  The factors (and their levels) are A = tool angle (12 degrees, 15 degrees), 
B = cutting fluid viscosity (300, 400), C = feed rate (10 in/min, 15 in/min), and D = cutting fluid cooler 
used (no, yes).  The data from this experiment (with the factors coded to the usual -1, +1 levels) are shown 
below. 
 

Run A B C D Surface Roughness 
1 - - - - 0.00340 
2 + - - - 0.00362 
3 - + - - 0.00301 
4 + + - - 0.00182 
5 - - + - 0.00280 
6 + - + - 0.00290 
7 - + + - 0.00252 
8 + + + - 0.00160 
9 - - - + 0.00336 

10 + - - + 0.00344 
11 - + - + 0.00308 
12 + + - + 0.00184 
13 - - + + 0.00269 
14 + - + + 0.00284 
15 - + + + 0.00253 
16 + + + + 0.00163 

 
(a)  Estimate the factor effects.  Plot the effect estimates on a normal probability plot and select a tentative 

model. 
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(b)  Fit the model identified in part (a) and analyze the residuals.  Is there any indication of model 
inadequacy? 

 
Design Expert Output 
Response: Surface Roughness 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 6.406E-006 4 1.601E-006 114.97 < 0.0001 significant 
 A 8.556E-007 1 8.556E-007 61.43 < 0.0001 
 B 3.080E-006 1 3.080E-006 221.11 < 0.0001 
 C 1.030E-006 1 1.030E-006 73.96 < 0.0001 
 AB 1.440E-006 1 1.440E-006 103.38 < 0.0001 
 Residual 1.532E-007 11 1.393E-008 
 Cor Total 6.559E-006 15 
 
 The Model F-value of 114.97 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
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The plot of residuals versus predicted shows a slight “u-shaped” appearance in the residuals, and the plot of 
residuals versus tool angle shows an outward-opening funnel.   

 
(c)  Repeat the analysis from parts (a) and (b) using 1/y as the response variable.  Is there and indication 

that the transformation has been useful?   
 
The plots of the residuals are more representative of a model that does not violate the constant variance 
assumption. 
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Design Expert Output 
Response: Surface RoughnessTransform: Inverse 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.059E+005 4 51472.28 1455.72 < 0.0001 significant 
 A 42610.92 1 42610.92 1205.11 < 0.0001 
 B 89386.27 1 89386.27 2527.99 < 0.0001 
 C 18762.29 1 18762.29 530.63 < 0.0001 
 AB 55129.62 1 55129.62 1559.16 < 0.0001 
 Residual 388.94 11 35.36 
 Cor Total 2.063E+005 15 
 
 The Model F-value of 1455.72 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
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(d)  Fit a model in terms of the coded variables that can be used to predict the surface roughness.  Convert 

this prediction equation into a model in the natural variables. 
 
Design Expert Output 
Final Equation in Terms of Coded Factors: 
 
   1.0/(Surface Roughness)  = 
  +397.81 
  +51.61   * A 
  +74.74   * B 
  +34.24   * C 
  +58.70   * A * B 
 
 
6-31 Resistivity on a silicon wafer is influenced by several factors.  The results of a 24 factorial 
experiment performed during a critical process step is shown below. 
 

Run A B C D Resistivity 
1 - - - - 1.92 
2 + - - - 11.28 
3 - + - - 1.09 
4 + + - - 5.75 
5 - - + - 2.13 
6 + - + - 9.53 
7 - + + - 1.03 
8 + + + - 5.35 
9 - - - + 1.60 

10 + - - + 11.73 
11 - + - + 1.16 
12 + + - + 4.68 
13 - - + + 2.16 
14 + - + + 9.11 
15 - + + + 1.07 
16 + + + + 5.30 

 
(a)  Estimate the factor effects.  Plot the effect estimates on a normal probability plot and select a tentative 

model. 
 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

6-56 

DES IG N-EXP ERT  P lo t
Re sisti v i ty

A : A
B : B
C: C
D: D

Normal plot

N
or

m
al

 %
 p

ro
ba

bi
lit

y
Effect

-3 .0 0 -0 .6 7 1 .6 6 3 .9 9 6 .3 2

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9
A

B

AB

 
 

(b)  Fit the model identified in part (a) and analyze the residuals.  Is there any indication of model 
inadequacy? 

 
The normal probability plot of residuals is not satisfactory.  The plots of residual versus predicted, residual 
versus factor A, and the residual versus factor B are funnel shaped indicating non-constant variance. 
 
Design Expert Output 
Response: Resistivity 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 214.22 3 71.41 148.81 < 0.0001 significant 
 A 159.83 1 159.83 333.09 < 0.0001 
 B 36.09 1 36.09 75.21 < 0.0001 
 AB 18.30 1 18.30 38.13 < 0.0001 
 Residual 5.76 12 0.48 
 Cor Total 219.98 15 
 
 The Model F-value of 148.81 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, AB are significant model terms.   
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(c)  Repeat the analysis from parts (a) and (b) using ln(y) as the response variable.  Is there any indication 

that the transformation has been useful? 
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Design Expert Output 
Response: Resistivity Transform: Natural log Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 12.15 2 6.08 553.44 < 0.0001 significant 
 A 10.57 1 10.57 962.95 < 0.0001 
 B 1.58 1 1.58 143.94 < 0.0001 
 Residual 0.14 13 0.011 
 Cor Total 12.30 15 
 
 The Model F-value of 553.44 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
The transformed data no longer indicates that the AB interaction is significant.  A simpler model has 
resulted from the log transformation.   
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The residual plots are much improved. 

 
(d)  Fit a model in terms of the coded variables that can be used to predict the resistivity. 
 
Design Expert Output 
Final Equation in Terms of Coded Factors: 
 
   Ln(Resistivity)  = 
  +1.19 
  +0.81   * A 
  -0.31   * B 
 
 
6.32 Continuation of Problem 6-31.  Suppose that the experiment had also run four center points along 
with the 16 runs in Problem 6-31.  The resistivity measurements at the center points are: 8.15, 7.63, 8.95, 
6.48.  Analyze the experiment again incorporating the center points.  What conclusions can you draw 
now? 
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Design Expert Output 
Response: Resistivity 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 214.22 3 71.41 119.35 < 0.0001 significant 
 A 159.83 1 159.83 267.14 < 0.0001 
 B 36.09 1 36.09 60.32 < 0.0001 
 AB 18.30 1 18.30 30.58 < 0.0001 
 Curvature 31.19 1 31.19 52.13 < 0.0001 significant 
 Residual 8.97 15 0.60 
 Lack of Fit 5.76 12 0.48 0.45 0.8632 not significant 
 Pure Error 3.22 3 1.07 
 Cor Total 254.38 19 
 
 The Model F-value of 119.35 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, AB are significant model terms. 
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Repeated analysis with the natural log transformation.   
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Design Expert Output 
Response: Resistivity Transform: Natural log Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 12.15 2 6.08 490.37 < 0.0001 significant 
 A 10.57 1 10.57 853.20 < 0.0001 
 B 1.58 1 1.58 127.54 < 0.0001 
 Curvature 2.38 1 2.38 191.98 < 0.0001 significant 
 Residual 0.20 16 0.012 
 Lack of Fit 0.14 13 0.011 0.59 0.7811 not significant 
 Pure Error 0.056 3 0.019 
 Cor Total 14.73 19 
 
 The Model F-value of 490.37 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
  
 The "Curvature F-value" of 191.98 implies there is significant curvature (as measured by 
 difference between the average of the center points and the average of the factorial points) in 
 the design space.  There is only a 0.01% chance that a "Curvature F-value" this large 
 could occur due to noise. 
 
The curvature test indicates that the model has significant pure quadratic curvature. 
 
 
6.33 Often the fitted regression model from a 2k factorial design is used to make predictions at points of 
interest in the design space. 
 
(a) Find the variance of the predicted response ŷ at the point 1x , 2x  ,…, kx  in the design space.  Hint:  

Remember that the x’s are coded variables, and assume a 2k design with an equal number of replicates 

n at each design point so that the variance of a regression coefficient ˆ is kn2

2
 and that the 

covariance between any pair of regression coefficients is zero. 
 
Let’s assume that the model can be written as follows: 
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0 1 1 2 2
ˆ ˆ ˆ ˆˆ( )= ... p py x x xx  

 
where 1 2[ , ,..., ]kx x xx  are the values of the original variables in the design at the point of interest 

where a prediction is required , and the variables in the model 1 2, ,..., px x x potentially include interaction 

terms among the original k variables.  Now the variance of the predicted response is  
 

 

0 1 1 2 2

0 1 1 2 2

2
2

1

ˆ ˆ ˆ ˆˆ[ ( )] ( ... )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ... ( )

1
2

p p

p p

p

ik
i

V y V x x x

V V x V x V x

x
n

x

 

 
This result follows because the design is orthogonal and all model parameter estimates have the same 
variance.  Remember that some of the x’s involved in this equation are potentially interaction terms. 
 
(b) Use the result of part (a) to find an equation for a 100(1- )% confidence interval on the true mean 

response at the point 1x , 2x  ,…, kx  in the design space. 
 
The confidence interval is  
 

 / 2, / 2,ˆ ˆ ˆ ˆ( ) [ ( )] ( ) ( ) [ ( )]
E Edf dfy t V y y y t V yx x x x x  

 
where dfE  is the number of degrees of freedom used to estimate 2  and the estimate of 2  has been 
used in computing the variance of the predicted value of the response at the point of interest. 
 
 
6.34 Hierarchical Models.  Several times we have utilized the hierarchy principal in selecting a model; 
that is, we have included non-significant terms in a model because they were factors involved in 
significant higher-order terms.  Hierarchy is certainly not an absolute principle that must be followed in 
all cases.  To illustrate, consider the model resulting from Problem 6-1, which required that a non-
significant main effect be included to achieve hierarchy.  Using the data from Problem 6-1: 
 
(a) Fit both the hierarchical model and the non-hierarchical model. 
 
Design Expert Output for Hierarchial Model 
Response: Life in hours 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1519.67 4 379.92 12.54 < 0.0001 significant 
 A 0.67 1 0.67 0.022 0.8836 
 B 770.67 1 770.67 25.44 < 0.0001 
 C 280.17 1 280.17 9.25 0.0067 
 AC 468.17 1 468.17 15.45 0.0009 
 Residual 575.67 19 30.30 
 Lack of Fit 93.00 3 31.00 1.03 0.4067 not significant 
 Pure Error 482.67 16 30.17 
 Cor Total 2095.33 23 
 
 The Model F-value of 12.54 implies the model is significant.  There is only 
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 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B, C, AC are significant model terms.   
  
 Std. Dev. 5.50  R-Squared  0.7253 
 Mean 40.83  Adj R-Squared 0.6674 
 C.V. 13.48  Pred R-Squared 0.5616 
 PRESS 918.52  Adeq Precision 10.747 
 
 The "Pred R-Squared" of 0.5616 is in reasonable agreement with the "Adj R-Squared" of 
 0.6674.  A difference greater than 0.20 between the "Pred R-Squared" and the "Adj R-Squared" 
 indicates a possible problem with your model and/or data. 
 
Design Expert Output for Non-Hierarchical Model 
Response: Life in hours 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1519.00 3 506.33 17.57 < 0.0001 significant 
 B 770.67 1 770.67 26.74 < 0.0001 
 C 280.17 1 280.17 9.72 0.0054 
 AC 468.17 1 468.17 16.25 0.0007 
 Residual 576.33 20 28.82 
 Lack of Fit 93.67 4 23.42 0.78 0.5566 not significant 
 Pure Error 482.67 16 30.17 
 Cor Total 2095.33 23 
 
 The Model F-value of 17.57 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B, C, AC are significant model terms.   
  
 The "Lack of Fit F-value" of 0.78 implies the Lack of Fit is not significant relative to the pure 
 error.  There is a 55.66% chance that a "Lack of Fit F-value" this large could occur due 
 to noise.  Non-significant lack of fit is good -- we want the model to fit. 
 
 Std. Dev. 5.37  R-Squared  0.7249 
 Mean 40.83  Adj R-Squared 0.6837 
 C.V. 13.15  Pred R-Squared 0.6039 
 PRESS 829.92  Adeq Precision 12.320 
 
 The "Pred R-Squared" of 0.6039 is in reasonable agreement with the "Adj R-Squared" of 
 0.6837.  A difference greater than 0.20 between the "Pred R-Squared" and the "Adj R-Squared" 
 indicates a possible problem with your model and/or data. 
 

(b) Calculate the PRESS statistic, the adjusted R2 and the mean square error for both models. 
 
The PRESS and R2 are in the Design Expert Output above.  The PRESS is smaller for the non-
hierarchical model than the hierarchical model suggesting that the non-hierarchical model is a better 
predictor. 
 

(c) Find a 95 percent confidence interval on the estimate of the mean response at a cube corner 
( 1x = 2x = 3x = 1 ).  Hint: Use the result of Problem 6-33. 

 
Design Expert Output 
  Prediction SE Mean 95% CI low 95% CI high SE Pred 95% PI low 95% PI high 
Life 27.45 2.18 22.91 31.99 5.79 15.37 39.54 
Life 36.17 2.19 31.60 40.74 5.80 24.07 48.26 
Life 38.67 2.19 34.10 43.24 5.80 26.57 50.76 
Life 47.50 2.19 42.93 52.07 5.80 35.41 59.59 
Life 43.00 2.19 38.43 47.57 5.80 30.91 55.09 
Life 34.17 2.19 29.60 38.74 5.80 22.07 46.26 
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Life 54.33 2.19 49.76 58.90 5.80 42.24 66.43 
Life 45.50 2.19 40.93 50.07 5.80 33.41 57.59 
 
(d) Based on the analyses you have conducted, which model would you prefer? 
 
Notice that PRESS is smaller and the adjusted R2 is larger for the non-hierarchical model.  This is an 
indication that strict adherence to the hierarchy principle isn’t always necessary.  Note also that the 
confidence interval is shorter for the non-hierarchical model. 
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Chapter 7 
Blocking and Confounding in the 2k Factorial Design 

Solutions 
 
 
7-1 Consider the experiment described in Problem 6-1.  Analyze this experiment assuming that each 
replicate represents a block of a single production shift. 
 

Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

Cutting Speed (A) 0.67 1 0.67 <1 
Tool Geometry (B) 770.67 1 770.67 22.38* 
Cutting Angle (C) 280.17 1 280.17 8.14* 
AB 16.67 1 16.67 <1 
AC 468.17 1 468.17 13.60* 
BC 48.17 1 48.17 1.40 
ABC 28.17 1 28.17 <1 
Blocks  0.58 2 0.29  
Error  482.08 14 34.43  
Total 2095.33 23   

 
Design Expert Output 
 Response: Life in hours 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.58 2          0.29 
 Model 1519.67 4 379.92 11.23 0.0001 significant 
 A 0.67 1 0.67 0.020 0.8900 
 B 770.67 1 770.67 22.78 0.0002 
 C 280.17 1 280.17 8.28 0.0104 
 AC 468.17 1 468.17 13.84 0.0017 
 Residual 575.08 17 33.83 
 Cor Total 2095.33 23 
 
 The Model F-value of 11.23 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B, C, AC are significant model terms.   
 
These results agree with the results from Problem 6-1.  Tool geometry, cutting angle and the cutting speed 
x cutting angle factors are significant at the 5% level.  The Design Expert program also includes A, speed, 
in the model to preserve hierarchy. 
 
7-2 Consider the experiment described in Problem 6-5.  Analyze this experiment assuming that each 
one of the four replicates represents a block. 
 

Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

Bit Size (A) 1107.23 1 1107.23 364.22* 
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Cutting Speed (B) 227.26 1 227.26 74.76* 
AB 303.63 1 303.63 99.88* 
Blocks  44.36 3 14.79  
Error  27.36 9 3.04  
Total 1709.83 15   

 
These results agree with those from Problem 6-5.  Bit size, cutting speed and their interaction are 
significant at the 1% level. 
 
Design Expert Output 
Response: Vibration 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 44.36 3 14.79 
 Model 1638.11 3 546.04 179.61 < 0.0001 significant 
 A 1107.23 1 1107.23 364.21 < 0.0001 
 B 227.26 1 227.26 74.75 < 0.0001 
 AB 303.63 1 303.63 99.88 < 0.0001 
 Residual 27.36 9 3.04 
 Cor Total 1709.83 15 
 
 The Model F-value of 179.61 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, AB are significant model terms.   
 
 
7-3 Consider the alloy cracking experiment described in Problem 6-15.  Suppose that only 16 runs 
could be made on a single day, so each replicate was treated as a block.  Analyze the experiment and draw 
conclusions. 
 
The analysis of variance for the full model is as follows: 
 
Design Expert Output 
Response: Crack Lengthin mm x 10^-2 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.016 1 0.016 
 Model 570.95 15 38.06 445.11 < 0.0001 significant 
 A 72.91 1 72.91 852.59 < 0.0001 
 B 126.46 1 126.46 1478.83 < 0.0001 
 C 103.46 1 103.46 1209.91 < 0.0001 
 D 30.66 1 30.66 358.56 < 0.0001 
 AB 29.93 1 29.93 349.96 < 0.0001 
 AC 128.50 1 128.50 1502.63 < 0.0001 
 AD 0.047 1 0.047 0.55 0.4708 
 BC 0.074 1 0.074 0.86 0.3678 
 BD 0.018 1 0.018 0.21 0.6542 
 CD 0.047 1 0.047 0.55 0.4686 
 ABC 78.75 1 78.75 920.92 < 0.0001 
 ABD 0.077 1 0.077 0.90 0.3582 
 ACD 2.926E-003 1 2.926E-003 0.034 0.8557 
 BCD 0.010 1 0.010 0.12 0.7352 
 ABCD 1.596E-003 1 1.596E-003 0.019 0.8931 
 Residual 1.28 15 0.086 
 Cor Total 572.25 31 
 
 The Model F-value of 445.11 implies the model is significant.  There is only 
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 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, D, AB, AC, ABC are significant model terms.   
 
The analysis of variance for the reduced model based on the significant factors is shown below.  The BC 
interaction was included to preserve hierarchy. 
 
Design Expert Output 
Response: Crack Lengthin mm x 10^-2 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.016 1 0.016 
 Model 570.74 8 71.34 1056.10 < 0.0001 significant 
 A 72.91 1 72.91 1079.28 < 0.0001 
 B 126.46 1 126.46 1872.01 < 0.0001 
 C 103.46 1 103.46 1531.59 < 0.0001 
 D 30.66 1 30.66 453.90 < 0.0001 
 AB 29.93 1 29.93 443.01 < 0.0001 
 AC 128.50 1 128.50 1902.15 < 0.0001 
 BC 0.074 1 0.074 1.09 0.3075 
 ABC 78.75 1 78.75 1165.76 < 0.0001 
 Residual 1.49 22 0.068 
 Cor Total 572.25 31 
 
 The Model F-value of 1056.10 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, D, AB, AC, ABC are significant model terms.   
 
Blocking does not change the results of Problem 6-15. 
 
 
7-4 Consider the data from the first replicate of Problem 6-1.  Suppose that these observations could not 
all be run using the same bar stock.  Set up a design to run these observations in two blocks of four 
observations each with ABC confounded.  Analyze the data. 
 

Block 1 Block 2 
(1) a 
ab b 
ac c 
bc abc 

 
From the normal probability plot of effects, B, C, and the AC interaction are significant.  
Factor A was included in the analysis of variance to preserve hierarchy. 
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Design Expert Output 
Response: Life in hours 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 91.13 1 91.13 
 Model 896.50 4 224.13 7.32 0.1238 not significant 
 A 3.13 1 3.13 0.10 0.7797 
 B 325.12 1 325.12 10.62 0.0827 
 C 190.12 1 190.12 6.21 0.1303 
 AC 378.13 1 378.13 12.35 0.0723 
 Residual 61.25 2 30.62 
 Cor Total 1048.88 7 
 
 The "Model F-value" of 7.32 implies the model is not significant relative to the noise.  There is a 
 12.38 % chance that a "Model F-value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case there are no significant model terms.   
 
This design identifies the same significant factors as Problem 6-1. 
 
 
7-5 Consider the data from the first replicate of Problem 6-7.  Construct a design with two blocks of 
eight observations each with ABCD confounded.  Analyze the data. 
 

Block 1 Block 2 
(1) a 
ab b 
ac c 
bc d 
ad abc 
bd abd 
cd acd 
abcd bcd 
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The significant effects are identified in the normal probability plot of effects below: 
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AC, BC, and BD were included in the model to preserve hierarchy. 
 
Design Expert Output 
Response: yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 42.25 1 42.25 
 Model 892.25 11 81.11 9.64 0.0438 significant 
 A 400.00 1 400.00 47.52 0.0063 
 B 2.25 1 2.25 0.27 0.6408 
 C 2.25 1 2.25 0.27 0.6408 
 D 100.00 1 100.00 11.88 0.0410 
 AB 81.00 1 81.00 9.62 0.0532 
 AC 1.00 1 1.00 0.12 0.7531 
 AD 56.25 1 56.25 6.68 0.0814 
 BC 6.25 1 6.25 0.74 0.4522 
 BD 9.00 1 9.00 1.07 0.3772 
 ABC 144.00 1 144.00 17.11 0.0256 
 ABD 90.25 1 90.25 10.72 0.0466 
 Residual 25.25 3 8.42 
 Cor Total 959.75 15 
 
 The Model F-value of 9.64 implies the model is significant.  There is only 
 a 4.38% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, D, ABC, ABD are significant model terms.   
 
 
7-6 Repeat Problem 7-5 assuming that four blocks are required.  Confound ABD and ABC (and 
consequently CD) with blocks. 
 

Block 1 Block 2 Block 3 Block 4 
(1) ac c a 
ab bc abc b 
acd d ad cd 
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bcd abd bd abcd 
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Design Expert Output 
Response: yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 243.25 3 81.08 
 Model 623.25 4 155.81 13.37 0.0013 significant 
 A 400.00 1 400.00 34.32 0.0004 
 D 100.00 1 100.00 8.58 0.0190 
 AB 81.00 1 81.00 6.95 0.0299 
 ABCD 42.25 1 42.25 3.62 0.0934 
 Residual 93.25 8 11.66 
 Cor Total 959.75 15 
 
 The Model F-value of 13.37 implies the model is significant.  There is only 
 a 0.13% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, D, AB are significant model terms.   
 
 
7-7 Using the data from the 25 design in Problem 6-21, construct and analyze a design in two blocks 
with ABCDE confounded with blocks. 
 

Block 1 Block 1 Block 2 Block 2 
(1) ae a e 
ab be b abe 
ac ce c ace 
bc abce abc bce 
ad de d ade 
bd abde abd bde 
cd acde acd cde 
abcd bcde bcd abcde 
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The normal probability plot of effects identifies factors A, B, C, and the AB interaction as being 
significant.  This is confirmed with the analysis of variance. 
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Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.28 1 0.28 
 Model 11585.13 4 2896.28 958.51 < 0.0001 significant 
 A 1116.28 1 1116.28 369.43 < 0.0001 
 B 9214.03 1 9214.03 3049.35 < 0.0001 
 C 750.78 1 750.78 248.47 < 0.0001 
 AB 504.03 1 504.03 166.81 < 0.0001 
 Residual 78.56 26 3.02 
 Cor Total 11663.97 31 
 
 The Model F-value of 958.51 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
 
 
7-8 Repeat Problem 7-7 assuming that four blocks are necessary.  Suggest a reasonable confounding 
scheme. 

 
Use ABC, CDE, confounded with ABDE.  The four blocks follow. 
 

Block 1 Block 2 Block 3 Block 4 
(1) a ac c 
ab b bc abc 
acd cd d ad 
bcd abcd abd bd 
ace ce e ae 
bce abce abe be 
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de ade acde cde 
abde bde bcde abcde 

 
The normal probability plot of effects identifies the same significant effects as in Problem 7-7. 
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Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 13.84 3 4.61 
 Model 11585.13 4 2896.28 1069.40 < 0.0001 significant 
 A 1116.28 1 1116.28 412.17 < 0.0001 
 B 9214.03 1 9214.03 3402.10 < 0.0001 
 C 750.78 1 750.78 277.21 < 0.0001 
 AB 504.03 1 504.03 186.10 < 0.0001 
 Residual 65.00 24 2.71 
 Cor Total 11663.97 31 
 
 The Model F-value of 1069.40 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
 
 
7-9 Consider the data from the 25 design in Problem 6-21.  Suppose that it was necessary to run this 
design in four blocks with ACDE and BCD (and consequently ABE) confounded.  Analyze the data from 
this design. 
 

Block 1 Block 2 Block 3 Block 4 
(1) a b c 
ae e abe ace 
cd acd bcd d 
abc bc ac ab 
acde cde abcde ade 
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bce abce ce be 
abd bd ab abcd 
bde abde de bcde 

 
Even with four blocks, the same effects are identified as significant per the normal probability plot and 
analysis of variance below: 
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Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 2.59 3 0.86 
 Model 11585.13 4 2896.28 911.62 < 0.0001 significant 
 A 1116.28 1 1116.28 351.35 < 0.0001 
 B 9214.03 1 9214.03 2900.15 < 0.0001 
 C 750.78 1 750.78 236.31 < 0.0001 
 AB 504.03 1 504.03 158.65 < 0.0001 
 Residual 76.25 24 3.18 
 Cor Total 11663.97 31 
 
 The Model F-value of 911.62 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AB are significant model terms.   
 
 
7-10 Design an experiment for confounding a 26 factorial in four blocks.  Suggest an appropriate 
confounding scheme, different from the one shown in Table 7-8. 
 
We choose ABCE and ABDF. Which also confounds with CDEF 
 

Block 1 Block 2 Block 3 Block 4 
a c ac (1) 
b abc bc ab 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

7-10 

cd ad d acd 
abcd bd abd bcd 
ace e ae ce 
bce abe be abce 
de acde cde ade 
abde bcde abcde bde 
cf af f acf 
abcf bf abf bcf 
adf cdf acdf df 
bdf abcdf bcdf abdf 
ef acef cef aef 
abef bcef abcef bef 
acdef def adef cdef 
bcdef abdef bdef abcdef 

 
 
7-11 Consider the 26 design in eight blocks of eight runs each with ABCD, ACE, and ABEF as the 
independent effects chosen to be confounded with blocks.  Generate the design.  Find the other effects 
confound with blocks. 
 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 
b abc a c ac (1) bc ab 
acd d bcd abd bd abcd ad cd 
ce ae abce be abe bce e ace 
abde bcde de acde cde ade abcde bde 
abcf bf cf af f acf abf bcf 
de acdf abdf bcdf abcdf bdf cdf adf 
aef cef def abcef bcef abef acef ef 
bcdef abdef acdef def adef cdef bdef abcdef 

 
The factors that are confounded with blocks are ABCD, ABEF, ACE, BDE, CDEF, BCF, and ADF. 
 
 
7-12 Consider the 22 design in two blocks with AB confounded.  Prove algebraically that SSAB = SSBlocks. 
 
If AB is confounded, the two blocks are: 
 

Block 1 Block 2 
(1) a 
ab b 

(1) + ab a + b 
 

2
2121
4

1
2

1

2222

222

abbaababSS

baabbaabSS

Blocks

Blocks
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4
2221212121 2222 ababbababaabbaab  

ABBlocks

Blocks

SSbaabSS

abbababaababbaabSS

2

2222

1
4
1

4
2212122121

 

 
 
7-13 Consider the data in Example 7-2.  Suppose that all the observations in block 2 are increased by 20.  
Analyze the data that would result.  Estimate the block effect.  Can you explain its magnitude?  Do blocks 
now appear to be an important factor?  Are any other effect estimates impacted by the change you made in 
the data? 
 

Block Effect 62538
8
309

8
715

8
406

21 .yy BlockBlock  

 
This is the block effect estimated in Example 7-2 plus the additional 20 units that were added to each 
observation in block 2.  All other effects are the same. 
 

Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

A 1870.56 1 1870.56 89.93 
C 390.06 1 390.06 18.75 
D 855.56 1 855.56 41.13 
AC 1314.06 1 1314.06 63.18 
AD 1105.56 1 1105.56 53.15 
Blocks  5967.56 1 5967.56  
Error   187.56 9 20.8  
Total 11690.93 15   

 
Design Expert Output 
Response: Filtration in gal/hr 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 5967.56 1 5967.56 
 Model 5535.81 5 1107.16 53.13 < 0.0001 significant 
 A 1870.56 1 1870.56 89.76 < 0.0001 
 C 390.06 1 390.06 18.72 0.0019 
 D 855.56 1 855.56 41.05 0.0001 
 AC 1314.06 1 1314.06 63.05 < 0.0001 
 AD 1105.56 1 1105.56 53.05 < 0.0001 
 Residual 187.56 9 20.84 
 Cor Total 11690.94 15 
 
 The Model F-value of 53.13 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, C, D, AC, AD are significant model terms.   
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7-14 Suppose that the data in Problem 7-1 we had confounded ABC in replicate I, AB in replicate II, and 
BC in replicate III.  Construct the analysis of variance table. 
 

 Replicate I  Replicate II  Replicate III  
 (ABC Confounded)  (AB Confounded)  (BC Confounded)  

Block-> 1 2 1 2 1 2 
 (1) a (1) a (1) b 
 ab b ab b bc c 
 ac c abc ac abc ab 
 bc abc c bc a ac 

 
Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

A 0.67 1 0.67 <1 
B 770.67 1 770.67 20.77 
C 280.17 1 280.17 7.55 
AB (reps 1 and III) 25.00 1 25.00 <1 
AC 468.17 1 468.17 12.62 
BC (reps I and II) 22.56 1 22.56 <1 
ABC (reps II and III) 0.06 1 0.06 <1 
Blocks within replicates 119.83 3 15.87  
Replicates 0.58 2   
Error   408.21 11 37.11  
Total 2095.33 23   

 
 
7-15 Repeat Problem 7-1 assuming that ABC was confounded with blocks in each replicate. 
 

 Replicate I, II, and III  
 (ABC Confounded)  

Block-> 1 2 
 (1) a 
 ab b 
 ac c 
 bc abc 

 
Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

A 0.67 1 0.67 <1 
B 770.67 1 770.67 22.15 
C 280.17 1 280.17 8.05 
AB 16.67 1 16.67 <1 
AC 468.17 1 468.17 13.46 
BC  48.17 1 48.17 1.38 
Blocks (or ABC) 119.83 1 119.83  
Replicates/Lack of Fit 64.83 4   
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Error   471.50 12 34.79  
Total 2095.33 23   

 
 
7-16 Suppose that in Problem 7-7 ABCD was confounded in replicate I and ABC was confounded in 
replicate II.  Perform the statistical analysis of variance. 
 

Source of Sum of Degrees of Mean  
Variation Squares Freedom Square F0 

A 657.03 1 657.03 84.89 
B 13.78 1 13.78 1.78 
C 57.78 1 57.78 7.46 
D 124.03 1 124.03 16.02 
AB 132.03 1 132.03 17.06 
AC 3.78 1 3.78 <1 
AD 38.28 1 38.28 4.95 
BC 2.53 1 2.53 <1 
BD 0.28 1 0.28 <1 
CD 22.78 1 22.78 2.94 
ABC 144.00 1 144.00 18.64 
ABD 175.78 1 175.78 22.71 
ACD 7.03 1 7.03 <1 
BCD 7.03 1 7.03 <1 
ABCD 10.56 1 10.56 1.36 
Replicates 11.28 1 11.28  
Blocks  118.81 2 15.35  
Error   100.65 13 7.74  
Total 1627.47 31   

 
 
7-17 Construct a 23 design with ABC confounded in the first two replicates and BC confounded in the 
third.  Outline the analysis of variance and comment on the information obtained. 
 

 Replicate I  Replicate II  Replicate III  
 (ABC Confounded)  (ABC Confounded)  (BC Confounded)  

Block-> 1 2 1 2 1 2 
 (1) a (1) a (1) b 
 ab b ab b bc c 
 ac c ac c abc ab 
 bc abc bc abc a ac 

 
Source of Degrees of 
Variation Freedom 

A 1 
B 1 
C 1 
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AB 1 
AC 1 
BC 1 
ABC 1 
Replicates 2 
Blocks  3 
Error   11 
Total 23 

 
This design provides “two-thirds” information on BC and “one-third” information on ABC. 
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Chapter 8 
Two-Level Fractional Factorial Designs 

Solutions 
 
 
8-1 Suppose that in the chemical process development experiment in Problem 6-7, it was only possible 
to run a one-half fraction of the 24 design.  Construct the design and perform the statistical analysis, using 
the data from replicate 1. 
 
The required design is a 24-1 with I=ABCD. 
 

A B C D=ABC   
- - - - (1) 90 
+ - - + ad 72 
- + - + bd 87 
+ + - - ab 83 
- - + + cd 99 
+ - + - ac 81 
- + + - bc 88 
+ + + + abcd 80 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept 
 Model  A -12 288 64.2857 
 Model  B -1 2 0.446429 
 Model  C 4 32 7.14286 
 Model  D -1 2 0.446429 
 Model  AB 6 72 16.0714 
 Model  AC -1 2 0.446429 
 Model  AD -5 50 11.1607 
 Error  BC Aliased   
 Error  BD Aliased   
 Error  CD Aliased   
 Error  ABC Aliased   
 Error  ABD Aliased   
 Error  ACD Aliased   
 Error  BCD Aliased   
 Error  ABCD Aliased  
   Lenth's ME  22.5856   
   Lenth's SME 54.0516   
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The largest effect is A.  The next largest effects are the AB and AD interactions.  A plausible tentative 
model would be A, AB and AD, along with B and D to preserve hierarchy. 

 
Design Expert Output 
 Response: yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 414.00 5 82.80 4.87 0.1791 not significant 
 A 288.00 1 288.00 16.94 0.0543 
 B 2.00 1 2.00 0.12 0.7643 
 D 2.00 1 2.00 0.12 0.7643 
 AB 72.00 1 72.00 4.24 0.1758 
 AD 50.00 1 50.00 2.94 0.2285 
 Residual 34.00 2 17.00 
 Cor Total 448.00 7 
 
 The "Model F-value" of 4.87 implies the model is not significant relative to the noise.  There is a 
 17.91 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 4.12  R-Squared 0.9241 
 Mean 85.00  Adj R-Squared 0.7344 
 C.V. 4.85  Pred R-Squared -0.2143 
 PRESS 544.00  Adeq Precision 6.441 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 85.00 1 1.46 78.73 91.27 
  A-A -6.00 1 1.46 -12.27 0.27 1.00 
  B-B -0.50 1 1.46 -6.77 5.77 1.00 
  D-D -0.50 1 1.46 -6.77 5.77 1.00 
  AB 3.00 1 1.46 -3.27 9.27 1.00 
  AD -2.50 1 1.46 -8.77 3.77 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   yield  = 
  +85.00 
  -6.00   * A 
  -0.50   * B 
  -0.50   * D 
  +3.00   * A * B 
  -2.50   * A * D 
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  Final Equation in Terms of Actual Factors: 
 
   yield  = 
  +85.00000 
  -6.00000   * A 
  -0.50000   * B 
  -0.50000   * D 
  +3.00000   * A * B 
  -2.50000   * A * D 
 
The Design-Expert output indicates that we really only need the main effect of factor A.  The updated 
analysis is shown below: 
 
Design Expert Output 
 Response: yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 288.00 1 288.00 10.80 0.0167 significant 
 A 288.00 1 288.00 10.80 0.0167 
 Residual 160.00 6 26.67 
 Cor Total 448.00 7 
 
 The Model F-value of 10.80 implies the model is significant.  There is only 
 a 1.67% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 5.16  R-Squared 0.6429 
 Mean 85.00  Adj R-Squared 0.5833 
 C.V. 6.08  Pred R-Squared 0.3651 
 PRESS 284.44  Adeq Precision 4.648 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 85.00 1 1.83 80.53 89.47 
  A-A -6.00 1 1.83 -10.47 -1.53 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   yield  = 
  +85.00 
  -6.00   * A 
 
  Final Equation in Terms of Actual Factors: 
 
   yield  = 
  +85.00000 
  -6.00000   * A 
 
 
8-2 Suppose that in Problem 6-15, only a one-half fraction of the 24 design could be run. Construct the 
design and perform the analysis, using the data from replicate I. 
 
The required design is a 24-1 with I=ABCD. 
 

A B C D=ABC   
- - - - (1) 1.71 
+ - - + ad 1.86 
- + - + bd 1.79 
+ + - - ab 1.67 
- - + + cd 1.81 
+ - + - ac 1.25 
- + + - bc 1.46 
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+ + + + abcd 0.85 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept 
 Model  A -0.285 0.16245 19.1253 
 Error  B -0.215 0.09245 10.8842 
 Model  C -0.415 0.34445 40.5522 
 Error  D 0.055 0.00605 0.712267 
 Error  AB -0.08 0.0128 1.50695 
 Model  AC -0.3 0.18 21.1914 
 Error  AD -0.16 0.0512 6.02778 
 Error  BC Aliased   
 Error  BD Aliased   
 Error  CD Aliased   
 Error  ABC Aliased   
 Error  ABD Aliased   
 Error  ACD Aliased   
 Error  BCD Aliased   
 Error  ABCD Aliased  
   Lenth's ME 1.21397 
   Lenth's SME 2.90528 
 
C, A and AC + BD are the largest three effects. Now because the main effects of A and C are large, the 
large effect estimate for the AC + BD alias chain probably indicates that the AC interaction is important. 
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Design Expert Output 
 Response: Crack Lengthin mm x 10^-2 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.69 3 0.23 5.64 0.0641 not significant 
 A 0.16 1 0.16 4.00 0.1162 
 C 0.34 1 0.34 8.48 0.0436 
 AC 0.18 1 0.18 4.43 0.1031 
 Residual 0.16 4 0.041 
 Cor Total 0.85 7 
 
 The Model F-value of 5.64 implies there is a 6.41% chance that a "Model F-Value"  
 this large could occur due to noise. 
 
 Std. Dev. 0.20  R-Squared 0.8087 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

8-5 

 Mean 1.55  Adj R-Squared 0.6652 
 C.V. 13.00  Pred R-Squared 0.2348 
 PRESS 0.65  Adeq Precision 5.017 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 1.55 1 0.071 1.35 1.75 
  A-Pour Temp -0.14 1 0.071 -0.34 0.055 1.00 
  C-Heat Tr Mtd -0.21 1 0.071 -0.41 -9.648E-003 1.00 
  AC -0.15 1 0.071 -0.35 0.048 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Crack Length  = 
  +1.55 
  -0.14   * A 
  -0.21   * C 
  -0.15   * A * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Crack Length  = 
  +1.55000 
  -0.14250   * Pour Temp 
  -0.20750   * Heat Treat Method 
  -0.15000   * Pour Temp * Heat Treat Method 
 
 
8-3 Consider the plasma etch experiment described in Problem 6-18.  Suppose that only a one-half 
fraction of the design could be run.  Set up the design and analyze the data. 
 

    Etch    
    Rate  Factor Levels 

A B C D=ABC (A/min)  Low (-) High (+) 
- - - - 550 A (cm) 0.80 1.20 
+ + - - 650 B (mTorr) 4.50 550 
+ - + - 642 C (SCCM) 125 200 
- + + - 601 D (W) 275 325 
+ - - + 749    
- + - + 1052    
- - + + 1075    
+ + + + 729    

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A 4 32 0.0113941 
 Error  B 11.5 264.5 0.0941791 
 Model  C 290.5 168780 60.0967 
 Model  D -127 32258 11.4859 
 Error  AB -197.5 78012.5 27.7775 
 Error  AC -25.5 1300.5 0.463062 
 Error  AD -10 200 0.0712129 
 Error  BC Aliased   
 Error  BD Aliased   
 Model  CD Aliased   
 Error  ABC Aliased   
 Error  ABD Aliased   
 Error  ACD Aliased   
 Error  BCD Aliased   
 Error  ABCD Aliased   
   Lenth's ME  60.6987   
   Lenth's SME  145.264  
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The large AB + CD alias chain is most likely the CD interaction. 
 
 
Design Expert Output 
 Response: Etch Rate in A/min 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.791E+005 3 93017.00 207.05 < 0.0001 significant 
 C 1.688E+005 1 1.688E+005 375.69 < 0.0001 
 D 32258.00 1 32258.00 71.80 0.0011 
 CD 78012.50 1 78012.50 173.65 0.0002 
 Residual 1797.00 4 449.25 
 Cor Total 2.808E+005 7 
 
 The Model F-value of 207.05 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 21.20  R-Squared 0.9936 
 Mean 756.00  Adj R-Squared 0.9888 
 C.V. 2.80  Pred R-Squared 0.9744 
 PRESS 7188.00  Adeq Precision 32.560 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 756.00 1 7.49 735.19 776.81 
  C-Gas Flow 145.25 1 7.49 124.44 166.06 1.00 
  D-Power -63.50 1 7.49 -84.31 -42.69 1.00 
  CD -98.75 1 7.49 -119.56 -77.94 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Etch Rate  = 
  +756.00 
  +145.25   * C 
  -63.50   * D 
  -98.75   * C * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Etch Rate  = 
  -4246.41667 
  +35.47333   * Gas Flow 
  +14.57667   * Power 
  -0.10533   * Gas Flow * Power 
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8-4 Problem 6-21describes a process improvement study in the manufacturing process of an integrated 
circuit.  Suppose that only eight runs could be made in this process.  Set up an appropriate 25-2 design and 
find the alias structure.  Use the appropriate observations from Problem 6-21 as the observations in this 
design and estimate the factor effects.  What conclusions can you draw? 
 

I = ABD = ACE = BCDE 
 
A (ABD) =BD  A (ACE) =CE  A (BCDE) =ABCDE A=BD=CE=ABCDE 
B (ABD) =AD  B (ACE) =ABCE  B (BCDE) =CDE B=AD=ABCE=CDE 
C (ABD) =ABCD  C (ACE) =AE  C (BCDE) =BDE C=ABCD=AE=BDE 
D (ABD) =AB  D (ACE) =ACDE  D (BCDE) =BCE D=AB=ACDE=BCE 
E (ABD) =ABDE  E (ACE) =AC  E (BCDE) =BCD E=ABDE=AC=BCD 
BC (ABD) =ACD  BC (ACE) =ABE  BC (BCDE) =DE BC=ACD=ABE=DE 
BE (ABD) =ADE  BE (ACE) =ABC  BE (BCDE) =CD BE=ADE=ABC=CD 
 

A B C D=AB E=AC   
- - - + + de 6 
+ - - - - a 9 
- + - - + be 35 
+ + - + - abd 50 
- - + + - cd 18 
+ - + - + ace 22 
- + + - - bc 40 
+ + + + + abcde 63 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 11.25 253.125 8.91953 
 Model  B 33.25 2211.13 77.9148 
 Model  C 10.75 231.125 8.1443 
 Model  D 7.75 120.125 4.23292 
 Error  E 2.25 10.125 0.356781 
 Error  BC -1.75 6.125 0.215831 
 Error  BE 1.75 6.125 0.215831 
   Lenth's ME 28.232   
   Lenth's SME 67.5646   
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The main A, B, C, and D are large. However, recall that you are really estimating A+BD+CE, B+AD, 
C+DE and D+AD.  There are other possible interpretations of the experiment because of the aliasing. 

 
Design Expert Output 
 Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2815.50 4 703.88 94.37 0.0017 significant 
 A 253.13 1 253.13 33.94 0.0101 
 B 2211.12 1 2211.12 296.46 0.0004 
 C 231.13 1 231.13 30.99 0.0114 
 D 120.13 1 120.13 16.11 0.0278 
 Residual 22.38 3 7.46 
 Cor Total 2837.88 7 
 
 The Model F-value of 94.37 implies the model is significant.  There is only 
 a 0.17% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.73  R-Squared 0.9921 
 Mean 30.38  Adj R-Squared 0.9816 
 C.V. 8.99  Pred R-Squared 0.9439 
 PRESS 159.11  Adeq Precision 25.590 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 30.38 1 0.97 27.30 33.45 
  A-Aperture 5.63 1 0.97 2.55 8.70 1.00 
  B-Exposure Time 16.63 1 0.97 13.55 19.70 1.00 
  C-Develop Time 5.37 1 0.97 2.30 8.45 1.00 
  D-Mask Dimension 3.87 1 0.97 0.80 6.95 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
  +30.38 
  +5.63   * A 
  +16.63   * B 
  +5.37   * C 
  +3.87   * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Aperture small 
   Mask Dimension Small 
   Yield  = 
  -6.00000 
  +0.83125   * Exposure Time 
  +0.71667   * Develop Time 
 
   Aperture large 
   Mask Dimension Small 
   Yield  = 
  +5.25000 
  +0.83125   * Exposure Time 
  +0.71667   * Develop Time 
 
   Aperture small 
   Mask Dimension Large 
   Yield  = 
  +1.75000 
  +0.83125   * Exposure Time 
  +0.71667   * Develop Time 
 
   Aperture large 
   Mask Dimension Large 
   Yield  = 
  +13.00000 
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  +0.83125   * Exposure Time 
  +0.71667   * Develop Time 
 
 
8-5 Continuation of Problem 8-4.  Suppose you have made the eight runs in the 25-2 design in Problem 
8-4.  What additional runs would be required to identify the factor effects that are of interest?  What are 
the alias relationships in the combined design? 
 
We could fold over the original design by changing the signs on the generators D = AB and E = AC to 
produce the following new experiment. 
 

A B C D=-AB E=-AC   
- - - - - (1) 7 
+ - - + + ade 12 
- + - + - bd 32 
+ + - - + abe 52 
- - + - + ce 15 
+ - + + - acd 21 
- + + + + bcde 41 
+ + + - - abc 60 

 
A (-ABD) =-BD  A (-ACE) =-CE  A (BCDE) =ABCDE A=-BD=-CE=ABCDE 
B (-ABD) =-AD  B (-ACE) =-ABCE  B (BCDE) =CDE B=-AD=-ABCE=CDE 
C (-ABD) =-ABCD  C (-ACE) =-AE  C (BCDE) =BDE C=-ABCD=-AE=BDE 
D (-ABD) =-AB  D (-ACE) =-ACDE  D (BCDE) =BCE D=-AB=-ACDE=BCE 
E (-ABD) =-ABDE  E (-ACE) =-AC  E (BCDE) =BCD E=-ABDE=-AC=BCD 
BC (-ABD) =-ACD  BC (-ACE) =-ABE  BC (BCDE) =DE BC=-ACD=-ABE=DE 
BE (-ABD) =-ADE  BE (-ACE) =-ABC  BE (BCDE) =CD BE=-ADE=-ABC=CD 
 
Assuming all three factor and higher interactions to be negligible, all main effects can be separated from 
their two-factor interaction aliases in the combined design. 
 
 
8-6 R.D. Snee (“Experimenting with a Large Number of Variables,” in Experiments in Industry: 
Design, Analysis and Interpretation of Results, by R.D. Snee, L.B. Hare, and J.B. Trout, Editors, ASQC, 
1985) describes an experiment in which a 25-1 design with I=ABCDE was used to investigate the effects of 
five factors on the color of a chemical product.  The factors are A = solvent/reactant, B = catalyst/reactant, 
C = temperature, D = reactant purity, and E = reactant pH.  The results obtained were as follows: 
 

e = -0.63 d =  6.79 
a = 2.51 ade = 5.47 
b = -2.68 bde = 3.45 

abe = 1.66 abd = 5.68 
c = 2.06 cde = 5.22 

ace = 1.22 acd = 4.38 
bce = -2.09 bcd = 4.30 
abc = 1.93 abcde = 4.05 

 
(a)  Prepare a normal probability plot of the effects.  Which effects seem active? 
 
Factors A, B, D, and the AB, AD interactions appear to be active. 
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DE SIG N-EXP ERT  P lo t
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Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 1.31 6.8644 5.98537 
 Model  B -1.34 7.1824 6.26265 
 Error  C -0.1475 0.087025 0.0758809 
 Model  D 4.42 78.1456 68.1386 
 Error  E -0.8275 2.73902 2.38828 
 Model  AB 1.275 6.5025 5.66981 
 Error  AC -0.7875 2.48062 2.16297 
 Model  AD -1.355 7.3441 6.40364 
 Error  AE 0.3025 0.366025 0.319153 
 Error  BC 0.1675 0.112225 0.0978539 
 Error  BD 0.245 0.2401 0.209354 
 Error  BE 0.2875 0.330625 0.288286 
 Error  CD -0.7125 2.03063 1.77059 
 Error  CE -0.24 0.2304 0.200896 
 Error  DE 0.0875 0.030625 0.0267033 
   Lenth's ME 1.95686   
   Lenth's SME 3.9727   
 
Design Expert Output 
 Response: Color 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 106.04 5 21.21 24.53 < 0.0001 significant 
 A 6.86 1 6.86 7.94 0.0182 
 B 7.18 1 7.18 8.31 0.0163 
 D 78.15 1 78.15 90.37 < 0.0001 
 AB 6.50 1 6.50 7.52 0.0208 
 AD 7.34 1 7.34 8.49 0.0155 
 Residual 8.65 10 0.86 
 Cor Total 114.69 15 
 
 The Model F-value of 24.53 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.93  R-Squared 0.9246 
 Mean 2.71  Adj R-Squared 0.8869 
 C.V. 34.35  Pred R-Squared 0.8070 
 PRESS 22.14  Adeq Precision 14.734 
 
  Coefficient  Standard 95% CI 95% CI 
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 Factor Estimate DF Error Low High VIF 
  Intercept 2.71 1 0.23 2.19 3.23 
  A-Solvent/Reactant 0.66 1 0.23 0.14 1.17 1.00 
  B-Catalyst/Reactant -0.67 1 0.23 -1.19 -0.15 1.00 
  D-Reactant Purity 2.21 1 0.23 1.69 2.73 1.00 
  AB 0.64 1 0.23 0.12 1.16 1.00 
  AD -0.68 1 0.23 -1.20 -0.16 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Color  = 
  +2.71 
  +0.66   * A 
  -0.67   * B 
  +2.21   * D 
  +0.64   * A * B 
  -0.68   * A * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Color  = 
  +2.70750 
  +0.65500   * Solvent/Reactant 
  -0.67000   * Catalyst/Reactant 
  +2.21000   * Reactant Purity 
  +0.63750   * Solvent/Reactant * Catalyst/Reactant 
  -0.67750   * Solvent/Reactant * Reactant Purity 
 
(b)  Calculate the residuals.  Construct a normal probability plot of the residuals and plot the residuals 
versus the fitted values.  Comment on the plots. 
 
Design Expert Output 
              Diagnostics Case Statistics 
Standard Actual Predicted   Student Cook's Outlier Run 
Order Value Value Residual Leverage Residual Distance t Order 
 1 -0.63 0.47 -1.10 0.375 -1.500 0.225 -1.616 2 
 2 2.51 1.86 0.65 0.375 0.881 0.078 0.870 6 
 3 -2.68 -2.14 -0.54 0.375 -0.731 0.053 -0.713 14 
 4 1.66 1.80 -0.14 0.375 -0.187 0.003 -0.178 11 
 5 2.06 0.47 1.59 0.375 2.159 0.466 2.804 8 
 6 1.22 1.86 -0.64 0.375 -0.874 0.076 -0.863 15 
 7 -2.09 -2.14 0.053 0.375 0.071 0.001 0.068 10 
 8 1.93 1.80 0.13 0.375 0.180 0.003 0.171 3 
 9 6.79 6.25 0.54 0.375 0.738 0.054 0.720 4 
 10 5.47 4.93 0.54 0.375 0.738 0.054 0.720 5 
 11 3.45 3.63 -0.18 0.375 -0.248 0.006 -0.236 16 
 12 5.68 4.86 0.82 0.375 1.112 0.124 1.127 12 
 13 5.22 6.25 -1.03 0.375 -1.398 0.195 -1.478 9 
 14 4.38 4.93 -0.55 0.375 -0.745 0.055 -0.727 1 
 15 4.30 3.63 0.67 0.375 0.908 0.082 0.899 13 
 16 4.05 4.86 -0.81 0.375 -1.105 0.122 -1.119 7 
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The residual plots are satisfactory. 
 
(c) If any factors are negligible, collapse the 25-1 design into a full factorial in the active factors.  

Comment on the resulting design, and interpret the results. 
 
The design becomes two replicates of a 23 in the factors A, B and D.  When re-analyzing the data in three 
factors, D becomes labeled as C. 
 
Design Expert Output 
 Response: Color 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 106.51 7 15.22 14.89 0.0005 significant 
 A 6.86 1 6.86 6.72 0.0320 
 B 7.18 1 7.18 7.03 0.0292 
 C 78.15 1 78.15 76.46 < 0.0001 
 AB 6.50 1 6.50 6.36 0.0357 
 AC 7.34 1 7.34 7.19 0.0279 
 BC 0.24 1 0.24 0.23 0.6409 
 ABC 0.23 1 0.23 0.23 0.6476 
 Residual 8.18 8 1.02 
 Lack of Fit 0.000 0 
 Pure Error 8.18 8 1.02 
 Cor Total 114.69 15 
 
 The Model F-value of 14.89 implies the model is significant.  There is only 
 a 0.05% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.01  R-Squared 0.9287 
 Mean 2.71  Adj R-Squared 0.8663 
 C.V. 37.34  Pred R-Squared 0.7148 
 PRESS 32.71  Adeq Precision 11.736 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 2.71 1 0.25 2.12 3.29 
  A-Solvent/Reactant 0.66 1 0.25 0.072 1.24 1.00 
  B-Catalyst/Reactant -0.67 1 0.25 -1.25 -0.087 1.00 
  C-Reactant Purity 2.21 1 0.25 1.63 2.79 1.00 
  AB 0.64 1 0.25 0.055 1.22 1.00 
  AC -0.68 1 0.25 -1.26 -0.095 1.00 
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  BC 0.12 1 0.25 -0.46 0.71 1.00 
  ABC -0.12 1 0.25 -0.70 0.46 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Color  = 
  +2.71 
  +0.66   * A 
  -0.67   * B 
  +2.21   * C 
  +0.64   * A * B 
  -0.68   * A * C 
  +0.12   * B * C 
  -0.12   * A * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Color  = 
  +2.70750 
  +0.65500   * Solvent/Reactant 
  -0.67000   * Catalyst/Reactant 
  +2.21000   * Reactant Purity 
  +0.63750   * Solvent/Reactant * Catalyst/Reactant 
  -0.67750   * Solvent/Reactant * Reactant Purity 
  +0.12250   * Catalyst/Reactant * Reactant Purity 
  -0.12000   * Solvent/Reactant * Catalyst/Reactant * Reactant Purity 
 
 
8-7 An article by J.J. Pignatiello, Jr. And J.S. Ramberg in the Journal of Quality Technology, (Vol. 17, 
1985, pp. 198-206) describes the use of a replicated fractional factorial to investigate the effects of five 
factors on the free height of leaf springs used in an automotive application.  The factors are A = furnace 
temperature, B = heating time, C = transfer time, D = hold down time, and E = quench oil temperature.  
The data are shown below: 
 

A B C D E Free Height
- - - - - 7.78 7.78 7.81
+ - - + - 8.15 8.18 7.88 
- + - + - 7.50 7.56 7.50 
+ + - - - 7.59 7.56 7.75 
- - + + - 7.54 8.00 7.88 
+ - + - - 7.69 8.09 8.06 
- + + - - 7.56 7.52 7.44 
+ + + + - 7.56 7.81 7.69 
- - - - + 7.50 7.25 7.12 
+ - - + + 7.88 7.88 7.44 
- + - + + 7.50 7.56 7.50 
+ + - - + 7.63 7.75 7.56 
- - + + + 7.32 7.44 7.44 
+ - + - + 7.56 7.69 7.62 
- + + - + 7.18 7.18 7.25 
+ + + + + 7.81 7.50 7.59 

 
(a)  Write out the alias structure for this design.  What is the resolution of this design? 
 

I=ABCD, Resolution IV 
 

A (ABCD)= BCD 
B (ABCD)= ACD 
C (ABCD)= ABD 
D (ABCD)= ABC 
E (ABCD)= ABCDE 
AB (ABCD)= CD 
AC (ABCD)= BD 
AD (ABCD)= BC 
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AE (ABCD)= BCDE 
BE (ABCD)= ACDE 
CE (ABCD)= ABDE 
DE (ABCD)= ABCE 

 
 
(b) Analyze the data.  What factors influence the mean free height? 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 0.242083 0.703252 24.3274 
 Model  B -0.16375 0.321769 11.1309 
 Model  C -0.0495833 0.0295021 1.02056 
 Model  D 0.09125 0.0999188 3.45646 
 Model  E -0.23875 0.684019 23.6621 
 Model  AB -0.0295833 0.0105021 0.363296 
 Model  AC 0.00125 1.875E-005 0.000648614 
 Model  AD -0.0229167 0.00630208 0.218006 
 Model  AE 0.06375 0.0487687 1.68704 
 Error  BC Aliased   
 Error  BD Aliased   
 Model  BE 0.152917 0.280602 9.70679 
 Error  CD Aliased   
 Model  CE -0.0329167 0.0130021 0.449777 
 Model  DE 0.0395833 0.0188021 0.650415 
 Error  Pure Error  0.627067 21.6919 
   Lenth's ME 0.088057   
   Lenth's SME 0.135984   
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Design Expert Output 
 Response:Free Height 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1.99 4 0.50 23.74 < 0.0001 significant 
 A 0.70 1 0.70 33.56 < 0.0001 
 B 0.32 1 0.32 15.35 0.0003 
 E 0.68 1 0.68 32.64 < 0.0001 
 BE 0.28 1 0.28 13.39 0.0007 
 Residual 0.90 43 0.021 
 Lack of Fit 0.27 11 0.025 1.27 0.2844 not significant 
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 Pure Error 0.63 32 0.020 
 Cor Total 2.89 47 
 
 The Model F-value of 23.74 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.14  R-Squared 0.6883 
 Mean 7.63  Adj R-Squared 0.6593 
 C.V. 1.90  Pred R-Squared 0.6116 
 PRESS 1.12  Adeq Precision 13.796 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 7.63 1 0.021 7.58 7.67 
  A-Furnace Temp 0.12 1 0.021 0.079 0.16 1.00 
  B-Heating Time -0.082 1 0.021 -0.12 -0.040 1.00 
  E-Quench Temp -0.12 1 0.021 -0.16 -0.077 1.00 
  BE 0.076 1 0.021 0.034 0.12 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Free Height  = 
  +7.63 
  +0.12   * A 
  -0.082   * B 
  -0.12   * E 
  +0.076   * B * E 
 
  Final Equation in Terms of Actual Factors: 
 
   Free Height  = 
  +7.62562 
  +0.12104   * Furnace Temp 
  -0.081875   * Heating Time 
  -0.11937   * Quench Temp 
  +0.076458   * Heating Time * Quench Temp 
 
(c)  Calculate the range and standard deviation of the free height for each run.  Is there any indication that 
any of these factors affects variability in the free height? 
 
Design Expert Output (Range) 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model A 0.11375 0.0517563 16.2198 
 Model B -0.12625 0.0637563 19.9804 
 Model C 0.02625 0.00275625 0.863774 
 Error D 0.06125 0.0150063 4.70277 
 Model E -0.01375 0.00075625 0.236999 
 Error AB 0.04375 0.00765625 2.39937 
 Error AC -0.03375 0.00455625 1.42787 
 Error AD 0.03625 0.00525625 1.64724 
 Error AE -0.00375 5.625E-005 0.017628 
 Model BC Aliased   
 Error BD Aliased   
 Model BE 0.01625 0.00105625 0.331016 
 Error CD Aliased   
 Model CE -0.13625 0.0742562 23.271 
 Error DE -0.02125 0.00180625 0.566056 
 Error ABC Aliased   
 Error ABD Aliased   
 Error ABE 0.03125 0.00390625 1.22417 
 Error ACD Aliased   
 Error ACE 0.04875 0.00950625 2.97914 
 Error ADE 0.13875 0.0770062 24.1328   
 Error BCD Aliased   
 Model BCE Aliased   
 Error BDE Aliased   
 Error CDE Aliased 
  Lenth's ME 0.130136   
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  Lenth's SME 0.264194   
 
Interaction ADE is aliased with BCE.  Although the plot below identifies ADE, BCE was included in the 
analysis. 
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Design Expert Output (Range) 
 Response: Range 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.28 8 0.035 5.70 0.0167 significant 
 A 0.052 1 0.052 8.53 0.0223 
 B 0.064 1 0.064 10.50 0.0142 
 C 2.756E-003 1 2.756E-003 0.45 0.5220 
 E 7.562E-004 1 7.562E-004 0.12 0.7345 
 BC 5.256E-003 1 5.256E-003 0.87 0.3831 
 BE 1.056E-003 1 1.056E-003 0.17 0.6891 
 CE 0.074 1 0.074 12.23 0.0100 
 BCE 0.077 1 0.077 12.69 0.0092 
 Residual 0.042 7 6.071E-003 
 Cor Total 0.32 15 
 
 The Model F-value of 5.70 implies the model is significant.  There is only 
 a 1.67% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.078  R-Squared 0.8668 
 Mean 0.22  Adj R-Squared 0.7146 
 C.V. 35.52  Pred R-Squared 0.3043 
 PRESS 0.22  Adeq Precision 7.166 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 0.22 1 0.019 0.17 0.27 
  A-Furn Temp 0.057 1 0.019 0.011 0.10 1.00 
  B-Heat Time -0.063 1 0.019 -0.11 -0.017 1.00 
  C-Transfer Time 0.013 1 0.019 -0.033 0.059 1.00 
  E-Qnch Temp -6.875E-003 1 0.019 -0.053 0.039 1.00 
  BC 0.018 1 0.019 -0.028 0.064 1.00 
  BE 8.125E-003 1 0.019 -0.038 0.054 1.00 
  CE -0.068 1 0.019 -0.11 -0.022 1.00 
  BCE 0.069 1 0.019 0.023 0.12 1.00 
 
  Final Equation in Terms of Coded Factors: 
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   Range  = 
  +0.22 
  +0.057   * A 
  -0.063   * B 
  +0.013   * C 
  -6.875E-003   * E 
  +0.018   * B * C 
  +8.125E-003   * B * E 
  -0.068   * C * E 
  +0.069   * B * C * E 
 
  Final Equation in Terms of Actual Factors: 
 
   Range  = 
  +0.21937 
  +0.056875   * Furnace Temp 
  -0.063125   * Heating Time 
  +0.013125   * Transfer Time 
  -6.87500E-003   * Quench Temp 
  +0.018125   * Heating Time * Transfer Time 
  +8.12500E-003   * Heating Time * Quench Temp 
  -0.068125   * Transfer Time * Quench Temp 
  +0.069375   * Heating Time * Transfer Time * Quench Temp 
 
Design Expert Output (StDev) 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 0.0625896 0.0156698 16.873 
 Model  B -0.0714887 0.0204425 22.0121 
 Model  C 0.010567 0.000446646 0.48094 
 Error  D 0.0353616 0.00500176 5.3858 
 Model  E -0.00684034 0.000187161 0.201532 
 Error  AB 0.0153974 0.000948317 1.02113 
 Error  AC -0.0218505 0.00190978 2.05641 
 Error  AD 0.0190608 0.00145326 1.56484 
 Error  AE -0.00329035 4.33057E-005 0.0466308 
 Model  BC Aliased   
 Error  BD Aliased   
 Model  BE 0.0087666 0.000307413 0.331017 
 Error  CD Aliased   
 Model  CE -0.0714816 0.0204385 22.0078 
 Error  DE -0.00467792 8.75317E-005 0.0942525 
 Error  ABC Aliased   
 Error  ABD Aliased   
 Error  ABE 0.0155599 0.000968437 1.0428 
 Error  ACD Aliased   
 Error  ACE 0.0199742 0.00159587 1.7184 
 Error  ADE Aliased   
 Error  BCD Aliased   
 Model  BCE 0.0764346 0.023369 25.1633 
 Error  BDE Aliased   
 Error  CDE Aliased   
   Lenth's ME 0.0596836   
   Lenth's SME 0.121166   
 
Interaction ADE is aliased with BCE.  Although the plot below identifies ADE, BCE was included in the 
analysis. 
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Design Expert Output (StDev) 
 Response: StDev 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.082 8 0.010 6.82 0.0101 significant 
 A 0.016 1 0.016 10.39 0.0146 
 B 0.020 1 0.020 13.56 0.0078 
 C 4.466E-004 1 4.466E-004 0.30 0.6032 
 E 1.872E-004 1 1.872E-004 0.12 0.7350 
 BC 1.453E-003 1 1.453E-003 0.96 0.3589 
 BE 3.074E-004 1 3.074E-004 0.20 0.6653 
 CE 0.020 1 0.020 13.55 0.0078 
 BCE 0.023 1 0.023 15.50 0.0056 
 Residual 0.011 7 1.508E-003 
 Cor Total 0.093 15 
 
 The Model F-value of 6.82 implies the model is significant.  There is only 
 a 1.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.039  R-Squared 0.8863 
 Mean 0.12  Adj R-Squared 0.7565 
 C.V. 33.07  Pred R-Squared 0.4062 
 PRESS 0.055  Adeq Precision 7.826 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 0.12 1 9.708E-003 0.094 0.14 
  A-Furnace Temp 0.031 1 9.708E-003 8.340E-003 0.054 1.00 
  B-Heating Time -0.036 1 9.708E-003 -0.059 -0.013 1.00 
  C-Transfer Time 5.283E-003 1 9.708E-003 -0.018 0.028 1.00 
  E-Quench Temp -3.420E-003 1 9.708E-003 -0.026 0.020 1.00 
  BC 9.530E-003 1 9.708E-003 -0.013 0.032 1.00 
  BE 4.383E-003 1 9.708E-003 -0.019 0.027 1.00 
  CE -0.036 1 9.708E-003 -0.059 -0.013 1.00 
  BCE 0.038 1 9.708E-003 0.015 0.061 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   StDev  = 
  +0.12 
  +0.031   * A 
  -0.036   * B 
  +5.283E-003   * C 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

8-19 

  -3.420E-003   * E 
  +9.530E-003   * B * C 
  +4.383E-003   * B * E 
  -0.036   * C * E 
  +0.038   * B * C * E 
 
  Final Equation in Terms of Actual Factors: 
 
   StDev  = 
  +0.11744 
  +0.031295   * Furnace Temp 
  -0.035744   * Heating Time 
  +5.28350E-003   * Transfer Time 
  -3.42017E-003   * Quench Temp 
  +9.53040E-003   * Heating Time * Transfer Time 
  +4.38330E-003   * Heating Time * Quench Temp 
  -0.035741   * Transfer Time * Quench Temp 
  +0.038217   * Heating Time * Transfer Time * Quench Temp 
 
(d)  Analyze the residuals from this experiment, and comment on your findings. 
 
The residual plot follows.  All plots are satisfactory. 
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(e)  Is this the best possible design for five factors in 16 runs?  Specifically, can you find a fractional 

design for five factors in 16 runs with a higher resolution than this one?   
 
This was not the best design.  A resolution V design is possible by setting the generator equal to the 
highest order interaction, ABCDE. 
 
 
8-8 An article in Industrial and Engineering Chemistry (“More on Planning Experiments to Increase 
Research Efficiency,” 1970, pp. 60-65) uses a 25-2 design to investigate the effect of A = condensation, B = 
amount of material 1, C = solvent volume, D = condensation time, and E = amount of material 2 on yield.  
The results obtained are as follows: 
 

e = 23.2 ad = 16.9 cd = 23.8 bde = 16.8 
ab = 15.5 bc = 16.2 ace = 23.4 abcde = 18.1 

 
(a)  Verify that the design generators used were I = ACE and I = BDE. 
 

A B C D=BE E=AC  
- - - - + e 
+ - - + - ad 
- + - + + bde 
+ + - - - ab 
- - + + - cd 
+ - + - + ace 
- + + - - bc 
+ + + + + abcde 

 
(b)  Write down the complete defining relation and the aliases for this design. 
 

I=BDE=ACE=ABCD. 
 
A (BDE) =ABDE  A (ACE) =CE  A (ABCD) =BCD A=ABDE=CE=BCD 
B (BDE) =DE  B (ACE) =ABCE  B (ABCD) =ACD B=DE=ABCE=ACD 
C (BDE) =BCDE  C (ACE) =AE  C (ABCD) =ABD C=BCDE=AE=ABD 
D (BDE) =BE  D (ACE) =ACDE  D (ABCD) =ABC D=BE=ACDE=ABC 
E (BDE) =BD  E (ACE) =AC  E (ABCD) =ABCDE E=BD=AC=ABCDE 
AB (BDE) =ADE  AB (ACE) =BCE  AB (ABCD) =CD AB=ADE=BCE=CD 
AD (BDE) =ABE  AD (ACE) =CDE  AD (ABCD) =BC AD=ABE=CDE=BC 
 
(c)  Estimate the main effects. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A -1.525 4.65125 5.1831 
 Model  B -5.175 53.5613 59.6858 
 Model  C 2.275 10.3512 11.5349 
 Model  D -0.675 0.91125 1.01545 
 Model  E 2.275 10.3513 11.5349 
 
(d)  Prepare an analysis of variance table.  Verify that the AB and AD interactions are available to use as 

error. 
 
The analysis of variance table is shown below.  Part (b) shows that AB and AD are aliased with other 
factors.  If all two-factor and three factor interactions are negligible, then AB and AD could be pooled as 
an estimate of error. 
 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

8-22 

Design Expert Output 
 Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 79.83 5 15.97 3.22 0.2537 not significant 
 A 4.65 1 4.65 0.94 0.4349 
 B 53.56 1 53.56 10.81 0.0814 
 C 10.35 1 10.35 2.09 0.2853 
 D 0.91 1 0.91 0.18 0.7098 
 E 10.35 1 10.35 2.09 0.2853 
 Residual 9.91 2 4.96 
 Cor Total 89.74 7 
 
 The "Model F-value" of 3.22 implies the model is not significant relative to the noise.  There is a 
 25.37 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 2.23  R-Squared 0.8895 
 Mean 19.24  Adj R-Squared 0.6134 
 C.V. 11.57  Pred R-Squared -0.7674 
 PRESS 158.60  Adeq Precision 5.044 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 19.24 1 0.79 15.85 22.62 
  A-Condensation -0.76 1 0.79 -4.15 2.62 1.00 
  B-Material 1 -2.59 1 0.79 -5.97 0.80 1.00 
  C-Solvent 1.14 1 0.79 -2.25 4.52 1.00 
  D-Time -0.34 1 0.79 -3.72 3.05 1.00 
  E-Material 2 1.14 1 0.79 -2.25 4.52 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
  +19.24 
  -0.76   * A 
  -2.59   * B 
  +1.14   * C 
  -0.34   * D 
  +1.14   * E 
 
  Final Equation in Terms of Actual Factors: 
 
   Yield  = 
  +19.23750 
  -0.76250   * Condensation 
  -2.58750   * Material 1 
  +1.13750   * Solvent 
  -0.33750   * Time 
  +1.13750   * Material 2 
 
(e) Plot the residuals versus the fitted values.  Also construct a normal probability plot of the residuals.  

Comment on the results. 
 
The residual plots are satisfactory. 
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8-9 Consider the leaf spring experiment in Problem 8-7.  Suppose that factor E (quench oil 
temperature) is very difficult to control during manufacturing.  Where would you set factors A, B, C and D 
to reduce variability in the free height as much as possible regardless of the quench oil temperature used? 
 

DE SIG N-E XPE RT  P lo t

Fre e  He i g h t

X  =  E : Q u e n ch  T e m p
Y = B : He a tin g  T im e

B- -1 .0 0 0
B+ 1 .0 0 0

Actu a l  Fa cto rs
A : Fu rn a ce  T e m p  = 0 .0 0
C: T ra n sfe r T im e  = 0 .0 0
D: Ho ld  T im e  = 0 .0 0

Heating  Tim e
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Run the process with A at the high level, B at the low level, C at the low level and D at either level (the 
low level of D may give a faster process). 
 
 
8-10 Construct a 27-2 design by choosing two four-factor interactions as the independent generators.  
Write down the complete alias structure for this design.  Outline the analysis of variance table.  What is 
the resolution of this design? 

 
I=CDEF=ABCG=ABDEFG, Resolution IV 

 
 A B C D E F=CDE G=ABC  
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1 - - - - - - - (1) 
2 + - - - - - + ag 
3 - + - - - - + bg 
4 + + - - - - - ab 
5 - - + - - + + cfg 
6 + - + - - + - acf 
7 - + + - - + - bcf 
8 + + + - - + + abcfg 
9 - - - + - + - df 
10 + - - + - + + adfg 
11 - + - + - + + bdfg 
12 + + - + - + - abdf 
13 - - + + - - + cdg 
14 + - + + - - - acd 
15 - + + + - - - bcd 
16 + + + + - - + abcdg 
17 - - - - + + - ef 
18 + - - - + + + aefg 
19 - + - - + + + befg 
20 + + - - + + - abef 
21 - - + - + - + ceg 
22 + - + - + - - ace 
23 - + + - + - - bce 
24 + + + - + - + abceg 
25 - - - + + - - de 
26 + - - + + - + adeg 
27 - + - + + - + bdeg 
28 + + - + + - - abde 
29 - - + + + + + cdefg 
30 + - + + + + - acdef 
31 - + + + + + - bcdef 
32 + + + + + + + abcdefg 

 
Alias Structure 

A (CDEF)= ACDEF A(ABCG)= BCG A (ABDEFG)= BDEFG A=ACDEF=BCG=BDEFG 
B (CDEF)= BCDEF B(ABCG)= ACG B (ABDEFG)= ADEFG B=BCDEF=ACG=ADEFG 
C (CDEF)= DEF C(ABCG)= ABG C (ABDEFG)= ABCDEFG C=DEF=ABG=ABCDEFG 
D (CDEF)= CEF D(ABCG)= ABCDG D (ABDEFG)= ABEFG D=CEF=ABCDG=ABEFG 
E (CDEF)= CDF E(ABCG)= ABCEG E (ABDEFG)= ABDFG E=CDF=ABCEG=ABDFG 
F (CDEF)= CDE F(ABCG)= ABCFG F (ABDEFG)= ABDEG F=CDE=ABCFG=ABDEG 
G (CDEF)= CDEFG G(ABCG)= ABC G (ABDEFG)= ABDEF G=CDEFG=ABC=ABDEF 

AB (CDEF)= ABCDEF AB(ABCG)= CG AB (ABDEFG)= DEFG AB=ABCDEF=CG=DEFG 
AC (CDEF)= ADEF AC(ABCG)= BG AC (ABDEFG)= BCDEFG AC=ADEF=BG=BCDEFG 
AD (CDEF)= ACEF AD(ABCG)= BCDG AD (ABDEFG)= BEFG AD=ACEF=BCDG=BEFG 
AE (CDEF)= ACDF AE(ABCG)= BCEG AE (ABDEFG)= BDFG AE=ACDF=BCEG=BDFG 
AF (CDEF)= ACDE AF(ABCG)= BCFG AF (ABDEFG)= BDEG AF=ACDE=BCFG=BDEG 
AG (CDEF)= ACDEFG AG(ABCG)= BC AG (ABDEFG)= BDEF AG=ACDEFG=BC=BDEF 
BD (CDEF)= BCEF BD(ABCG)= ACDG BD (ABDEFG)= AEFG BD=BCEF=ACDG=AEFG 
BE (CDEF)= BCDF BE(ABCG)= ACEG BE (ABDEFG)= ADFG BE=BCDF=ACEG=ADFG 
BF (CDEF)= BCDE BF(ABCG)= ACFG BF (ABDEFG)= ADEG BF=BCDE=ACFG=ADEG 
CD (CDEF)= EF CD(ABCG)= ABDG CD (ABDEFG)= ABCEFG CD=EF=ABDG=ABCEFG 
CE (CDEF)= DF CE(ABCG)= ABEG CE (ABDEFG)= ABCDFG CE=DF=ABEG=ABCDFG 
CF (CDEF)= DE CF(ABCG)= ABFG CF (ABDEFG)= ABCDEG CF=DE=ABFG=ABCDEG 
DG (CDEF)= CEFG DG(ABCG)= ABCD DG (ABDEFG)= ABEF DG=CEFG=ABCD=ABEF 
EG (CDEF)= CDFG EG(ABCG)= ABCE EG (ABDEFG)= ABDF EG=CDFG=ABCE=ABDF 
FG (CDEF)= CDEG FG(ABCG)= ABCF FG (ABDEFG)= ABDE FG=CDEG=ABCF=ABDE 

 
Analysis of Variance Table 

Source Degrees of Freedom 
A 1 
B 1 
C 1 
D 1 
E 1 
F 1 
G 1 

AB=CG 1 
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AC=BG 1 
AD 1 
AE 1 
AF 1 

AG=BC 1 
BD 1 
BE 1 

CD=EF 1 
CE=DF 1 
CF=DE 1 

DG 1 
EG 1 
FG 1 

Error 9 
Total 31 

 
 
8-11 Consider  the 25 design in Problem 6-21.  Suppose that only a one-half fraction could be run.  
Furthermore, two days were required to take the 16 observations, and it was necessary to confound the 25-1 
design in two blocks.  Construct the design and analyze the data. 
 

A B C D E=ABCD  Data Blocks = AB Block 
- - - - + e 8 + 1 
+ - - - - a 9 - 2 
- + - - - b 34 - 2 
+ + - - + abe 52 + 1 
- - + - - c 16 + 1 
+ - + - + ace 22 - 2 
- + + - + bce 45 - 2 
+ + + - - abc 60 + 1 
- - - + - d 8 + 1 
+ - - + + ade 10 - 2 
- + - + + bde 30 - 2 
+ + - + - abd 50 + 1 
- - + + + cde 15 + 1 
+ - + + - acd 21 - 2 
- + + + - bcd 44 - 2 
+ + + + + abcde 63 + 1 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 10.875 473.063 8.6343 
 Model  B 33.625 4522.56 82.5455 
 Model  C 10.625 451.562 8.24188 
 Error  D -0.625 1.5625 0.0285186 
 Error  E 0.375 0.5625 0.0102667 
 Error  AB Aliased   
 Error  AC 0.625 1.5625 0.0285186 
 Error  AD 0.875 3.0625 0.0558965 
 Error  AE 1.375 7.5625 0.13803 
 Error  BC 0.875 3.0625 0.0558965 
 Error  BD -0.375 0.5625 0.0102667 
 Error  BE 0.125 0.0625 0.00114075 
 Error  CD 0.625 1.5625 0.0285186 
 Error  CE 0.625 1.5625 0.0285186 
 Error  DE -1.625 10.5625 0.192786 
   Lenth's ME 2.46263   
   Lenth's SME 5.0517   
 
The AB interaction in the above table is aliased with the three-factor interaction BCD, and is also 
confounded with blocks. 
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Design Expert Output 
 Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 203.06 1 203.06 
 Model 5447.19 3 1815.73 630.31 < 0.0001 significant 
 A 473.06 1 473.06 164.22 < 0.0001 
 B 4522.56 1 4522.56 1569.96 < 0.0001 
 C 451.56 1 451.56 156.76 < 0.0001 
 Residual 31.69 11 2.88 
 Cor Total 5681.94 15 
 
 The Model F-value of 630.31 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.70  R-Squared 0.9942 
 Mean 30.44  Adj R-Squared 0.9926 
 C.V. 5.58  Pred R-Squared 0.9878 
 PRESS 67.04  Adeq Precision 58.100 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 30.44 1 0.42 29.50 31.37 
  Block 1 3.56 1 
  Block 2 -3.56 
  A-Aperture 5.44 1 0.42 4.50 6.37 1.00 
  B-Exposure Time 16.81 1 0.42 15.88 17.75 1.00 
  C-Develop Time 5.31 1 0.42 4.38 6.25 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
  +30.44 
  +5.44   * A 
  +16.81   * B 
  +5.31   * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Aperture small 
   Yield  = 
  -1.56250 
  +0.84063   * Exposure Time 
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  +0.70833   * Develop Time 
 
   Aperture large 
   Yield  = 
  +9.31250 
  +0.84063   * Exposure Time 
  +0.70833   * Develop Time 
 
 
8-12 Analyze the data in Problem 6-23 as if it came from a 142 IV  design with I = ABCD.  Project the 
design into a full factorial in the subset of the original four factors that appear to be significant. 
 

Run      Yield  Factor Levels 
Number A B C D=ABC  (lbs)  Low (-) High (+) 

1 - - - - (1) 12 A (h) 2.5 3.0 
2 + - - + ad 25 B (%) 14 18 
3 - + - + bd 13 C (psi) 60 80 
4 + + - - ab 16 D (ºC) 225 250 
5 - - + + cd 19    
6 + - + - ac 15    
7 - + + - bc 20    
8 + + + + abcd 23    

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 3.75 28.125 18.3974 
 Error  B 0.25 0.125 0.0817661 
 Model  C 2.75 15.125 9.8937 
 Model  D 4.25 36.125 23.6304 
 Error  AB -0.75 1.125 0.735895 
 Model  AC -4.25 36.125 23.6304 
 Model  AD 4.25 36.125 23.6304 
   Lenth's ME 21.174   
   Lenth's SME 50.6734   
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Design Expert Output 
 Response: Yield in lbs 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
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  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 151.63 5 30.32 48.52 0.0203 significant 
 A 28.13 1 28.13 45.00 0.0215 
 C 15.13 1 15.13 24.20 0.0389 
 D 36.12 1 36.12 57.80 0.0169 
 AC 36.12 1 36.12 57.80 0.0169 
 AD 36.13 1 36.13 57.80 0.0169 
 Residual 1.25 2 0.62 
 Cor Total 152.88 7 
 
 The Model F-value of 48.52 implies the model is significant.  There is only 
 a 2.03% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.79  R-Squared 0.9918 
 Mean 17.88  Adj R-Squared 0.9714 
 C.V. 4.42  Pred R-Squared 0.8692 
 PRESS 20.00  Adeq Precision 17.892 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 17.88 1 0.28 16.67 19.08 
  A-Time 1.87 1 0.28 0.67 3.08 1.00 
  C-Pressure 1.37 1 0.28 0.17 2.58 1.00 
  D-Temperature 2.13 1 0.28 0.92 3.33 1.00 
  AC -2.13 1 0.28 -3.33 -0.92 1.00 
  AD 2.13 1 0.28 0.92 3.33 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
  +17.88 
  +1.87   * A 
  +1.37   * C 
  +2.13   * D 
  -2.13   * A * C 
  +2.13   * A * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Yield  = 
  +227.75000 
  -94.50000   * Time 
  +2.47500   * Pressure 
  -1.70000   * Temperature 
  -0.85000   * Time * Pressure 
  +0.68000   * Time * Temperature 
 
 
8-13 Repeat Problem 8-12 using I = -ABCD.  Does use of the alternate fraction change your 
interpretation of the data? 
 

Run      Yield  Factor Levels 
Number A B C D=ABC  (lbs)  Low (-) High (+) 

1 - - - + d 10 A (h) 2.5 3.0 
2 + - - - a 18 B (%) 14 18 
3 - + - - b 13 C (psi) 60 80 
4 + + - + abd 24 D (ºC) 225 250 
5 - - + - c 17    
6 + - + + acd 21    
7 - + + + bcd 17    
8 + + + - abc 15    

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
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 Model  A 5.25 55.125 40.8712 
 Error  B 0.75 1.125 0.834106 
 Model  C 1.25 3.125 2.31696 
 Model  D 2.25 10.125 7.50695 
 Error  AB -0.75 1.125 0.834106 
 Model  AC -4.25 36.125 26.7841 
 Model  AD 3.75 28.125 20.8526 
   Lenth's ME 12.7044   
   Lenth's SME 30.404   
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Design Expert Output 
 Response: Yield in lbs 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 132.63 5 26.52 23.58 0.0412 significant 
 A 55.13 1 55.13 49.00 0.0198 
 C 3.13 1 3.13 2.78 0.2375 
 D 10.13 1 10.13 9.00 0.0955 
 AC 36.13 1 36.13 32.11 0.0298 
 AD 28.13 1 28.13 25.00 0.0377 
 Residual 2.25 2 1.12 
 Cor Total 134.88 7 
 
 The Model F-value of 23.58 implies the model is significant.  There is only 
 a 4.12% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.06  R-Squared 0.9833 
 Mean 16.88  Adj R-Squared 0.9416 
 C.V. 6.29  Pred R-Squared 0.7331 
 PRESS 36.00  Adeq Precision 14.425 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 16.88 1 0.37 15.26 18.49 
  A-Time 2.63 1 0.37 1.01 4.24 1.00 
  C-Pressure 0.63 1 0.37 -0.99 2.24 1.00 
  D-Temperature 1.13 1 0.37 -0.49 2.74 1.00 
  AC -2.13 1 0.37 -3.74 -0.51 1.00 
  AD 1.88 1 0.37 0.26 3.49 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
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  +16.88 
  +2.63   * A 
  +0.63   * C 
  +1.13   * D 
  -2.13   * A * C 
  +1.88   * A * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Yield  = 
  +190.50000 
  -72.50000   * Time 
  +2.40000   * Pressure 
  -1.56000   * Temperature 
  -0.85000   * Time * Pressure 
  +0.60000   * Time * Temperature 
 
 
8-14 Project the 142 IV  design in Example 8-1 into two replicates of a 22 design in the factors A and B.  
Analyze the data and draw conclusions. 
 
Design Expert Output 
 Response: Filtration Rate 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 728.50 3 242.83 0.41 0.7523 not significant 
 A 722.00 1 722.00 1.23 0.3291 
 B 4.50 1 4.50 7.682E-003 0.9344 
 AB 2.00 1 2.00 3.414E-003 0.9562 
 Residual 2343.00 4 585.75 
 Lack of Fit 0.000 0 
 Pure Error 2343.00 4 585.75 
 Cor Total 3071.50 7 
 
 The "Model F-value" of 0.41 implies the model is not significant relative to the noise.  There is a 
 75.23 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 24.20  R-Squared 0.2372 
 Mean 70.75  Adj R-Squared -0.3349 
 C.V. 34.21  Pred R-Squared -2.0513 
 PRESS 9372.00  Adeq Precision 1.198 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 70.75 1 8.56 46.99 94.51 
  A-Temperature 9.50 1 8.56 -14.26 33.26 1.00 
  B-Pressure 0.75 1 8.56 -23.01 24.51 1.00 
  AB -0.50 1 8.56 -24.26 23.26 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Filtration Rate  = 
  +70.75 
  +9.50   * A 
  +0.75   * B 
  -0.50   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Filtration Rate  = 
  +70.75000 
  +9.50000   * Temperature 
  +0.75000   * Pressure 
  -0.50000   * Temperature * Pressure 
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8-15 Construct a 362 III  design.  Determine the effects that may be estimated if a second fraction of this 
design is run with all signs reversed. 
 

A B C D=AB E=AC F=BC  
- - - + + + def 
+ - - - - + af 
- + - - + - be 
+ + - + - - abd 
- - + + - - cd 
+ - + - + - ace 
- + + - - + bcf 
+ + + + + + abcdef 

 
Principal Fraction Second Fraction 
lA=A+BD+CE l*A=A-BD-CE 
lB=B+AD+CF l*B=B-AD-CF 
lC=C+AE+BF l*C=C-AE-BF 
lD=D+AB+EF l*D=D-AB-EF 
lE=E+AC+DF l*E=E-AC-DF 
lF=F+BC+DE l*F=F-BC-DE 
lBE=BE+CD+AF l*BE=BE+CD+AF 

 
By combining the two fractions we can estimate the following: 
 

( li +l*I)/2 ( li -l*I)/2 
A BD+CE 
B AD+CF 
C AE+BF 
D AB+EF 
E AC+DF 
F BC+DE 
BE+CD+AF  

 
 
8-16 Consider the 362 III  design in Problem 8-15.  Determine the effects that may be estimated if a second 
fraction of this design is run with the signs for factor A reversed. 
 

Principal Fraction Second Fraction 
lA=A+BD+CE l*A=-A+BD+CE 
lB=B+AD+CF l*B=B-AD+CF 
lC=C+AE+BF l*C=C-AE+BF 
lD=D+AB+EF l*D=D-AB+EF 
lE=E+AC+DF l*E=E-AC+DF 
lF=F+BC+DE l*F=F+BC+DE 
lBE=BE+CD+AF l*BE=BE+CD-AF 

 
By combining the two fractions we can estimate the following: 
 

( li -l*I)/2 ( li +l*I)/2 
A BD+CE 
AD B+CF 
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AE C+BF 
AB D+EF 
AC E+DF 
 F+BC+DE 
AF  

 
 
8-17 Fold over the 472 III  design in Table 8-19 to produce a eight-factor design.  Verify that the resulting 

design is a 482 IV  design. Is this a minimal design? 
 

 H A B C D=AB E=AC F=BC G=ABC 
 + - - - + + + - 

Original + + - - - - + + 
Design + - + - - + - + 

 + + + - + - - - 
 + - - + + - - + 
 + + - + - + - - 
 + - + + - - + - 
 + + + + + + + + 
 - + + + - - - + 

Second - - + + + + - - 
Set of - + - + + - + - 

Runs w/ - - - + - + + + 
all Signs - + + - - + + - 
Switched - - + - + - + + 

 - + - - + + - + 
 - - - - - - - - 

 
After folding the original design over, we add a new factor H, and we have a design with generators 
D=ABH, E=ACH, F=BCH, and G=ABC.  This is a 482IV  design.  It is a minimal design, since it contains 
2k=2(8)=16 runs. 
 
 
8-18 Fold over a 252 III  design to produce a six-factor design.  Verify that the resulting design is a 262 IV  

design. Compare this 262 IV  design to the in Table 8-10. 
 

 F A B C D=AB E=BC 
 + - - - + + 

Original + + - - - + 
Design + - + - - - 

 + + + - + - 
 + - - + + - 
 + + - + - - 
 + - + + - + 
 + + + + + + 
 - + + + - - 

Second - - + + + - 
Set of - + - + + + 

Runs w/ - - - + - + 
all Signs - + + - - + 
Switched - - + - + + 

 - + - - + - 
 - - - - - - 

 
If we relabel the factors from left to right as A, B, C, D, E, F, then this design becomes 262 IV with 
generators I=ABDF and I=BCEF.  It is not a minimal design, since 2k=2(6)=12 runs, and the design 
contains 16 runs. 
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8-19 An industrial engineer is conducting an experiment using a Monte Carlo simulation model of an 
inventory system.  The independent variables in her model are the order quantity (A), the reorder point 
(B), the setup cost (C), the backorder cost (D), and the carrying cost rate (E).  The response variable is 
average annual cost.  To conserve computer time, she decides to investigate these factors using a 252 III  
design with I = ABD and I = BCE.  The results she obtains are de = 95, ae = 134, b = 158, abd = 190, cd 
= 92, ac = 187, bce = 155, and abcde = 185. 
 
(a)  Verify that the treatment combinations given are correct.  Estimate the effects, assuming three-factor 

and higher interactions are negligible. 
 

A B C D=AB E=BC  
- - - + + de 
+ - - - + ae 
- + - - - b 
+ + - + - abd 
- - + + - cd 
+ - + - - ac 
- + + - + bce 
+ + + + + abcde 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 49 4802 43.9502 
 Model  B 45 4050 37.0675 
 Error  C 10.5 220.5 2.01812 
 Error  D -18 648 5.93081 
 Error  E -14.5 420.5 3.84862 
 Error  AC 13.5 364.5 3.33608 
 Error  AE -14.5 420.5 3.84862 
   Lenth's ME 81.8727   
   Lenth's SME 195.937   
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(b) Suppose that a second fraction is added to the first, for example ade = 136, e = 93, ab = 187, bd = 

153, acd = 139, c = 99, abce - 191, and bcde = 150.  How was this second fraction obtained?  Add 
this data to the original fraction, and estimate the effects. 
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This second fraction is formed by reversing the signs of factor A. 
 

A B C D=AB E=BC  
+ - - + + ade 
- - - - + e 
+ + - - - ab 
- + - + - bd 
+ - + + - acd 
- - + - - c 
+ + + - + abce 
- + + + + bcde 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 44.25 7832.25 39.5289 
 Model  B 49.25 9702.25 48.9666 
 Error  C 6.5 169 0.852932 
 Error  D -8 256 1.29202 
 Error  E -8.25 272.25 1.37403 
 Error  AB -10 400 2.01877 
 Error  AC 7.25 210.25 1.06112 
 Error  AD -4.25 72.25 0.364641 
 Error  AE -6 144 0.726759 
 Error  BD 4.75 90.25 0.455486 
 Error  CD -8.5 289 1.45856 
 Error  DE 6.25 156.25 0.788584 
 Error  ACD -6.25 156.25 0.788584 
 Error  ADE 4 64 0.323004 
   Lenth's ME 25.1188   
   Lenth's SME 51.5273   

 

DE SIG N-EXP ERT  P lo t
Avg  An n u a l  Co st

A : O rd e r Qu a n ti ty
B : Re -o rd er P o in t
C: S e tu p  Co st
D: B a cko rde r Co st
E : Ca rryin g  Co st

Normal plot

N
or

m
al

 %
 p

ro
ba

bi
lit

y

E ffect

-9 .2 5 5 .6 3 2 0 .5 0 3 5 .3 8 5 0 .2 5

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

A

B

Half Normal plot

H
al

f N
or

m
al

 %
 p

ro
ba

bi
lit

y

Effect

0 .0 0 1 2 .3 1 2 4 .6 3 3 6 .9 4 4 9 .2 5

0

2 0

4 0

6 0

7 0

8 0
8 5

9 0

9 5

9 7

9 9

A

B

 
 
(c) Suppose that the fraction abc = 189, ce = 96, bcd = 154, acde = 135, abe = 193, bde = 152, ad = 137, 

and (1) = 98 was run.  How was this fraction obtained?  Add this data to the original fraction and 
estimate the effects. 

 
This second fraction is formed by reversing the signs of all factors. 

 
A B C D=AB E=BC  
+ + + - - abc 
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- + + + - bcd 
+ - + + + acde 
- - + - + ce 
+ + - - + abe 
- + - + + bde 
+ - - + - ad 
- - - - - (1) 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 43.75 7656.25 38.1563 
 Model  B 50.25 10100.3 50.3364 
 Error  C 4.5 81 0.403678 
 Error  D -8.75 306.25 1.52625 
 Error  E -7.5 225 1.12133 
 Error  AB -9.25 342.25 1.70566 
 Error  AC 6 144 0.71765 
 Error  AD -5.25 110.25 0.549451 
 Error  AE -6.5 169 0.842242 
 Error  BC -7 196 0.976801 
 Error  BD 5.25 110.25 0.549451 
 Error  BE 6 144 0.71765 
 Error  ABC -8 256 1.27582 
 Error  ABE 7.5 225 1.12133 
   Lenth's ME 26.5964   
   Lenth's SME 54.5583   
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8-20 Construct a 25 1  design.  Show how the design may be run in two blocks of eight observations 

each.  Are any main effects or two-factor interactions confounded with blocks? 
 

A B C D E=ABCD Blocks = AB Block
- - - - + e + 1 
+ - - - - a - 2 
- + - - - b - 2 
+ + - - + abe + 1 
- - + - - c + 1 
+ - + - + ace - 2 
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- + + - + bce - 2 
+ + + - - abc + 1 
- - - + - d + 1 
+ - - + + ade - 2 
- + - + + bde - 2 
+ + - + - abd + 1 
- - + + + cde + 1 
+ - + + - acd - 2 
- + + + - bcd - 2 
+ + + + + abcde + 1 

 
Blocks are confounded with AB and CDE. 

 
 
8-21 Construct a 27 2  design.  Show how the design may be run in four blocks of eight observations 

each.  Are any main effects or two-factor interactions confounded with blocks? 
 

 A B C D E F=CDE G=ABC  Block=ACE Block=BFG Block assignment 
1 - - - - - - - (1) - - 1 
2 + - - - - - + ag + + 4 
3 - + - - - - + bg - - 1 
4 + + - - - - - ab + + 4 
5 - - + - - + + cfg + - 3 
6 + - + - - + - acf - + 2 
7 - + + - - + - bcf + - 3 
8 + + + - - + + abcfg - + 2 
9 - - - + - + - df - + 2 
10 + - - + - + + adfg + - 3 
11 - + - + - + + bdfg - + 2 
12 + + - + - + - abdf + - 3 
13 - - + + - - + cdg + + 4 
14 + - + + - - - acd - - 1 
15 - + + + - - - bcd + + 4 
16 + + + + - - + abcdg - - 1 
17 - - - - + + - ef + + 4 
18 + - - - + + + aefg - - 1 
19 - + - - + + + befg + + 4 
20 + + - - + + - abef - - 1 
21 - - + - + - + ceg - + 2 
22 + - + - + - - ace + - 3 
23 - + + - + - - bce - + 2 
24 + + + - + - + abceg + - 3 
25 - - - + + - - de + - 3 
26 + - - + + - + adeg - + 2 
27 - + - + + - + bdeg + - 3 
28 + + - + + - - abde - + 2 
29 - - + + + + + cdefg - - 1 
30 + - + + + + - acdef + + 4 
31 - + + + + + - bcdef - - 1 
32 + + + + + + + abcdefg + + 4 

 
Blocks are confounded with  ACE, BFG, and ABCEFG. 

 
 
8-22 Irregular fractions of the 2k [John (1971)].  Consider a 24 design.  We must estimate the four 
main effects and the six two-factor interactions, but the full 24 factorial cannot be run.  The largest 
possible block contains 12 runs.  These 12 runs can be obtained from the four one-quarter fractions 
defined by I =  AB =  ACD =  BCD by omitting the principal fraction.  Show how the remaining three 
24-2 fractions can be combined to estimate the required effects, assuming that three-factor and higher 
interactions are negligible.  This design could be thought of as a three-quarter fraction. 
 
The four 24-2 fractions are as follows: 
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(1)  I=+AB=+ACD=+BCD 

Runs: c,d,ab,abcd 
 

(2)  I=+AB=-ACD=-BCD 
Runs:  (1), cd, abc, abd 

 
(3)  I=-AB=+ACD=-BCD 

Runs:  a, bc, bd, acd 
 

(4) I=-AB=-ACD=+BCD 
Runs:  b, ac, ad, bcd 

 
If we do not run the principal fraction (1), then we can combine the remaining 3 fractions to from 3 one-
half fractions of the 24 as follows: 
 

Fraction 1:  (2) + (3) implies I=-BCD.  This fraction estimates: A, AB, AC, and AD 
Fraction 2:  (2) + (4) implies I=-ACD.  This fraction estimates: B, BC, BD, and AB 
Fraction 3:  (3) + (4) implies I=-AB.  This fraction estimates: C, D, and CD 

 
In estimating these effects we assume that all three-factor and higher interactions are negligible.  Note 
that AB is estimated in two of the one-half fractions: 1 and 2.  We would average these quantities and 
obtain a single estimate of AB.  John (1971, pp. 161-163) discusses this design and shows that the 
estimates obtained above are also the least squares estimates.  John also derives the variances and 
covariances of these estimators. 
 
 
8-23 Carbon anodes used in a smelting process are baked in a ring furnace.  An experiment is run in the 
furnace to determine which factors influence the weight of packing material that is stuck to the anodes 
after baking.  Six variables are of interest, each at two levels:  A = pitch/fines ratio (0.45, 0.55); B = 
packing material type (1, 2); C = packing material temperature (ambient, 325 C); D = flue location 
(inside, outside); E = pit temperature (ambient, 195 C); and F = delay time before packing (zero, 24 
hours).  A 26-3 design is run, and three replicates are obtained at each of the design points. The weight of 
packing material stuck to the anodes is measured in grams.  The data in run order are as follows:  abd = 
(984, 826, 936); abcdef = (1275, 976, 1457); be = (1217, 1201, 890); af = (1474, 1164, 1541); def = 
(1320, 1156, 913); cd = (765, 705, 821); ace = (1338, 1254, 1294); and bcf = (1325, 1299, 1253).  We 
wish to minimize the amount stuck packing material. 
 
(a) Verify that the eight runs correspond to a 362 III design.  What is the alias structure? 
 

A B C D=AB E=AC F=BC  
- - - + + + def 
+ - - - - + af 
- + - - + - be 
+ + - + - - abd 
- - + + - - cd 
+ - + - + - ace 
- + + - - + bcf 
+ + + + + + abcdef 

 
I=ABD=ACE=BCF=BCDE=ACDF=ABEF=DEF, Resolution III 

 
A=BD=CE=CDF=BEF 
B=AD=CF=CDE=AEF 
C=AE=BF=BDE=ADF 
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D=AB=EF=BCE=ACF 
E=AC=DF=BCD=ABF 
F=BC=DE=ACD=ABE 

CD=BE=AF=ABC=ADE=BDF=CEF 
 
(b) Use the average weight as a response.  What factors appear to be influential? 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 137.9 37996.1 12.0947 
 Error  B -8.9 156.056 0.049675 
 Error  C 0.221108 2094.02 0.666559 
 Model  D -259.6 136168 43.3443 
 Model  E 99.7667 27246.7 8.67305 
 Model  F 243.567 107863 34.3345 
 Error  BC -38.0306 2629.69 0.837072 
   Lenth's ME 563.322   
   Lenth's SME 1348.14   
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Factors A, D, E and F (and their aliases) are apparently important. 
 
(c) Use the range of the weights as a response.  What factors appear to be influential? 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A 44.5 3960.5 2.13311 
 Error  B 13.5 364.5 0.196319 
 Model  C -129 33282 17.9256 
 Error  D 75.5 11400.5 6.14028 
 Model  E 144 41472 22.3367 
 Model  F 163 53138 28.62 
 Model  AF 145 42050 22.648 
   Lenth's ME 728.384   
   Lenth's SME 1743.17   
 
Factors C, E, F and the AF interaction (and their aliases) appear to be large. 
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(d) What recommendations would you make to the process engineers? 
 
It is not known exactly what to do here, since A, D, E and F are large effects, and because the design is 
resolution III, the main effects are aliased with two-factor interactions.  Note, for example, that D is 
aliased with EF and the main effect could really be a EF interaction.  If the main effects are really 
important, then setting all factors at the low level would minimize the amount of material stuck to the 
anodes.  It would be necessary to run additional experiments to confirm these findings. 
 
 
8-24 A 16-run experiment was performed in a semiconductor manufacturing plant to study the effects of 
six factors on the curvature or camber of the substrate devices produced.  The six variables and their levels 
are shown below: 
 

 Lamination Lamination Lamination Firing Firing Firing 
 Temperature Time Pressure Temperature Cycle Time Dew Point 

Run (c) (s) (tn) (c) (h) (c) 
1 55 10 5 1580 17.5 20 
2 75 10 5 1580 29 26 
3 55 25 5 1580 29 20 
4 75 25 5 1580 17.5 26 
5 55 10 10 1580 29 26 
6 75 10 10 1580 17.5 20 
7 55 25 10 1580 17.5 26 
8 75 25 10 1580 29 20 
9 55 10 5 1620 17.5 26 

10 75 10 5 1620 29 20 
11 55 25 5 1620 29 26 
12 75 25 5 1620 17.5 20 
13 55 10 10 1620 29 20 
14 75 10 10 1620 17.5 26 
15 55 25 10 1620 17.5 20 
16 75 25 10 1620 29 26 

 
Each run was replicated four times , and a camber measurement was taken on the substrate.  The data are 
shown below: 
 

 Camber for  Replicate (in/in) Total Mean Standard 
Run 1 2 3 4 (10-4 in/in) (10-4 in/in) Deviation 

1 0.0167 0.0128 0.0149 0.0185 629 157.25 24.418 
2 0.0062 0.0066 0.0044 0.0020 192 48.00 20.976 
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3 0.0041 0.0043 0.0042 0.0050 176 44.00 4.083 
4 0.0073 0.0081 0.0039 0.0030 223 55.75 25.025 
5 0.0047 0.0047 0.0040 0.0089 223 55.75 22.410 
6 0.0219 0.0258 0.0147 0.0296 920 230.00 63.639 
7 0.0121 0.0090 0.0092 0.0086 389 97.25 16.029 
8 0.0255 0.0250 0.0226 0.0169 900 225.00 39.420 
9 0.0032 0.0023 0.0077 0.0069 201 50.25 26.725 

10 0.0078 0.0158 0.0060 0.0045 341 85.25 50.341 
11 0.0043 0.0027 0.0028 0.0028 126 31.50 7.681 
12 0.0186 0.0137 0.0158 0.0159 640 160.00 20.083 
13 0.0110 0.0086 0.0101 0.0158 455 113.75 31.120 
14 0.0065 0.0109 0.0126 0.0071 371 92.75 29.510 
15 0.0155 0.0158 0.0145 0.0145 603 150.75 6.750 
16 0.0093 0.0124 0.0110 0.0133 460 115.00 17.450 

 
(a) What type of design did the experimenters use? 
 
The 262 IV ,  a 16-run design. 
 
(b)  What are the alias relationships in this design?  The defining relation is I=ABCE=ACDF=BDEF 
 

A (ABCE)= BCE A (ACDF)= CDF A (BDEF)= ABCDEF A=BCE=CDF=ABDEF 
B (ABCE)= ACE B (ACDF)= ABCDF B (BDEF)= DEF B=ACE=ABCDF=DEF 
C (ABCE)= ABE C (ACDF)= ADF C (BDEF)= BCDEF C=ABE=ADF=BCDEF 
D (ABCE)= ABCDE D (ACDF)= ACF D (BDEF)= BEF D=ABCDE=ACF=BEF 
E (ABCE)= ABC E (ACDF)= ACDEF E (BDEF)= BDF E=ABC=ABDEF=BDF 
F (ABCE)= ABCEF F (ACDF)= ACD F (BDEF)= BDE F=ABCEF=ACD=BDE 

AB (ABCE)= CE AB (ACDF)= BCDF AB (BDEF)= ADEF AB=CE=BCDF=ADEF 
AC (ABCE)= BE AC (ACDF)= DF AC (BDEF)= ABCDEF AC=BE=DF=ABCDEF 
AD (ABCE)= BCDE AD (ACDF)= CF AD (BDEF)= ABEF AD=BCDE=CF=ABEF 
AE (ABCE)= BC AE (ACDF)= CDEF AE (BDEF)= ABDF AE=BC=CDEF=ABDF 
AF (ABCE)= BCEF AF (ACDF)= CD AF (BDEF)= ABDE AF=BCEF=CD=ABDE 
BD (ABCE)= ACDE BD (ACDF)= ABCF BD (BDEF)= EF BD=ACDE=ABCF=EF 
BF (ABCE)= ACEF BF (ACDF)= ABCD BF (BDEF)= DE BF=ACEF=ABCD=DE 

 
(c)  Do any of the process variables affect average camber? 
 
Yes, per the analysis below, variables A, C, D, and F affect average camber. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
Model Intercept     
Model A 38.9063 6054.79 10.2962 
Error B 5.78125 133.691 0.227344 
Model C 56.0313 12558 21.355 
Error D -14.2188 808.691 1.37519 
Model E -34.4687 4752.38 8.08148 
Model F -77.4688 24005.6 40.8219 
Error AB 19.1563 1467.85 2.49609 
Error AC 22.4063 2008.16 3.4149 
Error AD -12.2188 597.191 1.01553 
Error AE 18.1563 1318.6 2.24229 
Error AF -19.7187 1555.32 2.64483 
Error BC Aliased   
Error BD 23.0313 2121.75 3.60807 
Error BE Aliased   
Error BF 7.40625 219.41 0.37311 
Error CD Aliased   
Error CE Aliased   
Error CF Aliased   
Error DE Aliased   
Error DF Aliased   
Error EF Aliased   
Error ABC Aliased   
Error ABD 0.53125 1.12891 0.00191972 
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Error ABE Aliased   
Error ABF -17.3438 1203.22 2.04609 
  Lenth's ME 71.9361   
  Lenth's SME 146.041   
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Ca m b e r A vg
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Design Expert Output 
 Response: Camber Avg in in/in 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 47370.80 4 11842.70 11.39 0.0007 significant 
 A 6054.79 1 6054.79 5.82 0.0344 
 C 12558.00 1 12558.00 12.08 0.0052 
 E 4752.38 1 4752.38 4.57 0.0558 
 F 24005.63 1 24005.63 23.09 0.0005 
 Residual 11435.01 11 1039.55 
 Cor Total 58805.81 15 
 
 The Model F-value of 11.39 implies the model is significant.  There is only 
 a 0.07% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 32.24  R-Squared 0.8055 
 Mean 107.02  Adj R-Squared 0.7348 
 C.V. 30.13  Pred R-Squared 0.5886 
 PRESS 24193.08  Adeq Precision 11.478 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 107.02 1 8.06 89.27 124.76 
  A-Lam Temp 19.45 1 8.06 1.71 37.19 1.00 
  C-Lam Pres 28.02 1 8.06 10.27 45.76 1.00 
  E-Fire Time -17.23 1 8.06 -34.98 0.51 1.00 
  F-Fire DP -38.73 1 8.06 -56.48 -20.99 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Camber Avg  = 
  +107.02 
  +19.45   * A 
  +28.02   * C 
  -17.23   * E 
  -38.73   * F 
 
  Final Equation in Terms of Actual Factors: 
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   Camber Avg  = 
  +263.17380 
  +1.94531   * Lam Temp 
  +11.20625   * Lam Pres 
  -2.99728   * Fire Time 
  -12.91146   * Fire DP 
 
(d)  Do any of the process variables affect the variability in camber measurements? 
 
Yes, A, B, F, and AF interaction affect the variability in camber measurements. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 15.9035 1011.69 27.6623 
 Model  B -16.5773 1099.22 30.0558 
 Error  C 5.8745 138.039 3.77437 
 Error  D -3.2925 43.3622 1.18564 
 Error  E -2.33725 21.851 0.597466 
 Model  F -9.256 342.694 9.37021 
 Error  AB 0.95525 3.65001 0.0998014 
 Error  AC 2.524 25.4823 0.696757 
 Error  AD -4.6265 85.618 2.34103 
 Error  AE -0.18025 0.12996 0.00355347 
 Model  AF -10.8745 473.019 12.9337 
 Error  BC Aliased   
 Error  BD -4.85575 94.3132 2.57879 
 Error  BE Aliased   
 Error  BF 8.21825 270.159 7.38689 
 Error  CD Aliased   
 Error  CE Aliased   
 Error  CF Aliased   
 Error  DE Aliased   
 Error  DF Aliased   
 Error  EF Aliased   
 Error  ABC Aliased   
 Error  ABD -0.68125 1.85641 0.0507593 
 Error  ABE Aliased   
 Error  ABF 3.39825 46.1924 1.26303 
   Lenth's ME 17.8392   
   Lenth's SME 36.2162   
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 Response: Camber StDev 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2926.62 4 731.65 11.02 0.0008 significant 
 A 1011.69 1 1011.69 15.23 0.0025 
 B 1099.22 1 1099.22 16.55 0.0019 
 F 342.69 1 342.69 5.16 0.0442 
 AF 473.02 1 473.02 7.12 0.0218 
 Residual 730.65 11 66.42 
 Cor Total 3657.27 15 
 
 The Model F-value of 11.02 implies the model is significant.  There is only 
 a 0.08% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 8.15  R-Squared 0.8002 
 Mean 25.35  Adj R-Squared 0.7276 
 C.V. 32.15  Pred R-Squared 0.5773 
 PRESS 1545.84  Adeq Precision 9.516 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 25.35 1 2.04 20.87 29.84 
  A-Lam Temp 7.95 1 2.04 3.47 12.44 1.00 
  B-Lam Time -8.29 1 2.04 -12.77 -3.80 1.00 
  F-Fire DP -4.63 1 2.04 -9.11 -0.14 1.00 
  AF -5.44 1 2.04 -9.92 -0.95 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Camber StDev  = 
  +25.35 
  +7.95   * A 
  -8.29   * B 
  -4.63   * F 
  -5.44   * A * F 
 
  Final Equation in Terms of Actual Factors: 
 
   Camber StDev  = 
  -242.46746 
  +4.96373   * Lam Temp 
  -1.10515   * Lam Time 
  +10.23804   * Fire DP 
  -0.18124   * Lam Temp * Fire DP 
 
(e)  If it is important to reduce camber as much as possible, what recommendations would you make? 
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Run A and C at the low level and E and F at the high level.  B at the low level enables a lower variation 
without affecting the average camber. 
 
 
8-25 A spin coater is used to apply photoresist to a bare silicon wafer.  This operation usually occurs 
early in the semiconductor manufacturing process, and the average coating thickness and the variability in 
the coating thickness has an important impact on downstream manufacturing steps.  Six variables are 
used in the experiment.  The variables and their high and low levels are as follows: 
 

Factor Low Level High Level 
Final Spin Speed 7350 rpm 6650 rpm 
Acceleration Rate 5 20 
Volume of Resist Applied 3 cc 5 cc 
Time of Spin 14 s 6 s 
Resist Batch Variation Batch 1 Batch 2 
Exhaust Pressure Cover Off Cover On 

 
The experimenter decides to use a 26-1 design and to make three readings on resist thickness on each test 
wafer.  The data are shown in table 8-29. 
 
Table 8-29 

 A B C D E F  Resist Thick ness  
Run Volume Batch Time Speed Acc. Cover Left Center Right Avg. Range 

1 5 2 14 7350 5 Off 4531 4531 4515 4525.7 16 
2 5 1 6 7350 5 Off 4446 4464 4428 4446 36 
3 3 1 6 6650 5 Off 4452 4490 4452 4464.7 38 
4 3 2 14 7350 20 Off 4316 4328 4308 4317.3 20 
5 3 1 14 7350 5 Off 4307 4295 4289 4297 18 
6 5 1 6 6650 20 Off 4470 4492 4495 4485.7 25 
7 3 1 6 7350 5 On 4496 4502 4482 4493.3 20 
8 5 2 14 6650 20 Off 4542 4547 4538 4542.3 9 
9 5 1 14 6650 5 Off 4621 4643 4613 4625.7 30 

10 3 1 14 6650 5 On 4653 4670 4645 4656 25 
11 3 2 14 6650 20 On 4480 4486 4470 4478.7 16 
12 3 1 6 7350 20 Off 4221 4233 4217 4223.7 16 
13 5 1 6 6650 5 On 4620 4641 4619 4626.7 22 
14 3 1 6 6650 20 On 4455 4480 4466 4467 25 
15 5 2 14 7350 20 On 4255 4288 4243 4262 45 
16 5 2 6 7350 5 On 4490 4534 4523 4515.7 44 
17 3 2 14 7350 5 On 4514 4551 4540 4535 37 
18 3 1 14 6650 20 Off 4494 4503 4496 4497.7 9 
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19 5 2 6 7350 20 Off 4293 4306 4302 4300.3 13 
20 3 2 6 7350 5 Off 4534 4545 4512 4530.3 33 
21 5 1 14 6650 20 On 4460 4457 4436 4451 24 
22 3 2 6 6650 5 On 4650 4688 4656 4664.7 38 
23 5 1 14 7350 20 Off 4231 4244 4230 4235 14 
24 3 2 6 7350 20 On 4225 4228 4208 4220.3 20 
25 5 1 14 7350 5 On 4381 4391 4376 4382.7 15 
26 3 2 6 6650 20 Off 4533 4521 4511 4521.7 22 
27 3 1 14 7350 20 On 4194 4230 4172 4198.7 58 
28 5 2 6 6650 5 Off 4666 4695 4672 4677.7 29 
29 5 1 6 7350 20 On 4180 4213 4197 4196.7 33 
30 5 2 6 6650 20 On 4465 4496 4463 4474.7 33 
31 5 2 14 6650 5 On 4653 4685 4665 4667.7 32 
32 3 2 14 6650 5 Off 4683 4712 4677 4690.7 35 

 
(a)  Verify that this is a 26-1 design.  Discuss the alias relationships in this design.   
 
I=ABCDEF.  This is a resolution VI design where main effects are aliased with five-factor interactions 
and two-factor interactions are aliased with four-factor interactions. 
 
(b)  What factors appear to affect average resist thickness? 
 
Factors B, D, and E appear to affect the average resist thickness. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A 9.925 788.045 0.107795 
 Model  B 73.575 43306.2 5.92378 
 Error  C 3.375 91.125 0.0124648 
 Model  D -207.062 342999 46.9182 
 Model  E -182.925 267692 36.6172 
 Error  F -5.6625 256.511 0.0350877 
 Error  AB -9 648 0.0886387 
 Error  AC -7.3 426.32 0.0583155 
 Error  AD -3.8625 119.351 0.0163258 
 Error  AE -7.1 403.28 0.0551639 
 Error  AF -26.9875 5826.6 0.79701 
 Error  BC 10.875 946.125 0.129419 
 Error  BD 18.1125 2624.5 0.359001 
 Error  BE -28.35 6429.78 0.879518 
 Error  BF -30.2375 7314.45 1.00053 
 Error  CD -24.9875 4995 0.683257 
 Error  CE 8.2 537.92 0.0735811 
 Error  CF -6.7875 368.561 0.0504148 
 Error  DE -38.5375 11881.1 1.6252 
 Error  DF -3.2 81.92 0.0112057 
 Error  EF -41.1625 13554.8 1.85414 
 Error  ABC 0.375 1.125 0.000153887 
 Error  ABD Aliased   
 Error  ABE 16.5 2178 0.297925 
 Error  ABF 31.4125 7893.96 1.0798 
 Error  ACD 15.5875 1943.76 0.265883 
 Error  ACE Aliased   
 Error  ACF Aliased   
 Error  ADE 9.5375 727.711 0.0995423 
 Error  ADF Aliased   
 Error  AEF Aliased   
 Error  BCD 29.0875 6768.66 0.925873 
 Error  BCE -1.625 21.125 0.00288965 
 Error  BCF Aliased   
 Error  BDE -1.8875 28.5013 0.00389863 
 Error  BDF 3.95 124.82 0.0170739 
 Error  BEF Aliased   
 Error  CDE Aliased   
 Error  CDF Aliased   
 Error  CEF 3.1375 78.7512 0.0107722 
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 Error  DEF Aliased   
   Lenth's ME 28.6178   
   Lenth's SME 54.4118   
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Design Expert Output 
 Response: Thick Avg 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 6.540E+005 3 2.180E+005 79.21 < 0.0001 significant 
 B 43306.24 1 43306.24 15.74 0.0005 
 D 3.430E+005 1 3.430E+005 124.63 < 0.0001 
 E 2.677E+005 1 2.677E+005 97.27 < 0.0001 
 Residual 77059.83 28 2752.14 
 Cor Total 7.311E+005 31 
 
 The Model F-value of 79.21 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 52.46  R-Squared 0.8946 
 Mean 4458.51  Adj R-Squared 0.8833 
 C.V. 1.18  Pred R-Squared 0.8623 
 PRESS 1.006E+005  Adeq Precision 24.993 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 4458.51 1 9.27 4439.52 4477.51 
  B-Batch 36.79 1 9.27 17.79 55.78 1.00 
  D-Speed -103.53 1 9.27 -122.53 -84.53 1.00 
  E-Acc -91.46 1 9.27 -110.46 -72.47 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Thick Avg  = 
  +4458.51 
  +36.79   * B 
  -103.53   * D 
  -91.46   * E 
 
  Final Equation in Terms of Actual Factors: 
 
   Batch Batch 1 
   Thick Avg  = 
  +6644.78750 
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  -0.29580   * Speed 
  -12.19500   * Acc 
 
   Batch Batch 2 
   Thick Avg  = 
  +6718.36250 
  -0.29580   * Speed 
  -12.19500   * Acc 
 
(c)  Since the volume of resist applied has little effect on average thickness, does this have any important 

practical implications for the process engineers? 
 
Yes, less material could be used. 
 
(d)  Project this design into a smaller design involving only the significant factors.  Graphically display 

the results.  Does this aid in interpretation? 
 

C ube Graph
Thick Avg

Batch

S
pe

ed

Acc

B- B+
D-

D+

E-

E+

4616.72

4433.7 9

4409.66

4226.7 3

4690.29

4507.37

4483.23

4300.31

  
The cube plot usually assists the experimenter in drawing conclusions. 
 
(e)  Use the range of resist thickness as a response variable.  Is there any indication that any of these 

factors affect the variability in resist thickness? 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A -0.625 3.125 0.0777387 
 Model  B 2.125 36.125 0.89866 
 Error  C -2.75 60.5 1.50502 
 Error  D 1.625 21.125 0.525514 
 Model  E -5.375 231.125 5.74956 
 Model  F 7.75 480.5 11.9531 
 Model  AB 0.625 3.125 0.0777387 
 Error  AC -3.5 98 2.43789 
 Error  AD -0.125 0.125 0.00310955 
 Error  AE 1.875 28.125 0.699649 
 Model  AF 1.75 24.5 0.609472 
 Error  BC 0 0 0 
 Error  BD 0.125 0.125 0.00310955 
 Error  BE -5.375 231.125 5.74956 
 Model  BF 3.25 84.5 2.10206 
 Error  CD 3.75 112.5 2.79859 
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 Error  CE 3.75 112.5 2.79859 
 Error  CF 4.875 190.125 4.72962 
 Error  DE 5.375 231.125 5.74956 
 Error  DF 5.5 242 6.02009 
 Model  EF 8 512 12.7367 
 Error  ABC Aliased   
 Error  ABD Aliased   
 Error  ABE 3.625 105.125 2.61513 
 Model  ABF 9 648 16.1199 
 Error  ACD -6.5 338 8.40822 
 Error  ACE Aliased   
 Error  ACF Aliased   
 Error  ADE -3.375 91.125 2.26686 
 Error  ADF -0.5 2 0.0497528 
 Error  AEF 1 8 0.199011 
 Error  BCD Aliased   
 Error  BCE Aliased   
 Error  BCF Aliased   
 Error  BDE -2.625 55.125 1.37131 
 Error  BDF -0.5 2 0.0497528 
 Error  BEF Aliased   
 Error  CDE Aliased   
 Error  CDF Aliased   
 Error  CEF 2.125 36.125 0.89866 
 Error  DEF 2 32 0.796045 
   Lenth's ME 9.15104   
   Lenth's SME 17.3991   
 

DES IG N-EXP ERT  P lo t
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Design Expert Output 
 Response: Thick StDev 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2023.00 9 224.78 2.48 0.0400 significant 
 A 3.13 1 3.13 0.034 0.8545 
 B 36.13 1 36.13 0.40 0.5346 
 E 231.12 1 231.12 2.55 0.1248 
 F 480.50 1 480.50 5.29 0.0313 
 AB 3.12 1 3.12 0.034 0.8545 
 AF 24.50 1 24.50 0.27 0.6086 
 BF 84.50 1 84.50 0.93 0.3451 
 EF 512.00 1 512.00 5.64 0.0267 
 ABF 648.00 1 648.00 7.14 0.0139 
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 Residual 1996.88 22 90.77 
 Cor Total 4019.88 31 
 
 The Model F-value of 2.48 implies the model is significant.  There is only 
 a 4.00% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 9.53  R-Squared 0.5032 
 Mean 26.56  Adj R-Squared 0.3000 
 C.V. 35.87  Pred R-Squared -0.0510 
 PRESS 4224.79  Adeq Precision 5.586 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 26.56 1 1.68 23.07 30.06 
  A-Volume -0.31 1 1.68 -3.81 3.18 1.00 
  B-Batch 1.06 1 1.68 -2.43 4.56 1.00 
  E-Acc -2.69 1 1.68 -6.18 0.81 1.00 
  F-Cover 3.88 1 1.68 0.38 7.37 1.00 
  AB 0.31 1 1.68 -3.18 3.81 1.00 
  AF 0.88 1 1.68 -2.62 4.37 1.00 
  BF 1.63 1 1.68 -1.87 5.12 1.00 
  EF 4.00 1 1.68 0.51 7.49 1.00 
  ABF 4.50 1 1.68 1.01 7.99 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Thick StDev  = 
  +26.56 
  -0.31   * A 
  +1.06   * B 
  -2.69   * E 
  +3.88   * F 
  +0.31   * A * B 
  +0.88   * A * F 
  +1.63   * B * F 
  +4.00   * E * F 
  +4.50   * A * B * F 
 
  Final Equation in Terms of Actual Factors: 
 
   Batch Batch 1 
   Cover Off 
   Thick StDev  = 
  +22.39583 
  +3.00000   * Volume 
  -0.89167   * Acc 
 
   Batch Batch 2 
   Cover Off 
   Thick StDev  = 
  +54.77083 
  -5.37500   * Volume 
  -0.89167   * Acc 
 
   Batch Batch 1 
   Cover On 
   Thick StDev  = 
  +42.56250 
  -4.25000   * Volume 
  +0.17500   * Acc 
 
   Batch Batch 2 
   Cover On 
   Thick StDev  = 
  +9.43750 
  +5.37500   * Volume 
  +0.17500   * Acc 
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The model here for variability isn’t very strong.  Notice the small value of R2, and in particular, the 
adjusted R2.  Often we find that obtaining a good model for a response that expresses variability isn’t as 
easy as finding a satisfactory model for a response that essentially measures the mean. 
 
(f)  Where would you recommend that the process engineers run the process? 
 
Considering only the average thickness results, the engineers could use factors B, D and E to put the 
process mean at target.  Then the engineer could consider the other factors on the range model to try to set 
the factors to reduce the variation in thickness at that mean.  
 
 
8-26 Harry and Judy Peterson-Nedry (two friends of the author) own a vineyard in Oregon.  They grow 
several varieties of grapes and manufacture wine.  Harry and Judy have used factorial designs for process 
and product development in the winemaking segment of their business.  This problem describes the 
experiment conducted for their 1985 Pinot Noir. Eight variables, shown below, were originally studied in 
this experiment: 
 

 Variable Low Level High Level 
A Pinot Noir Clone Pommard Wadenswil 
B Oak Type Allier Troncais 
C Age of Barrel Old New 
D Yeast/Skin Contact Champagne Montrachet 
E Stems None All 
F Barrel Toast Light  Medium 
G Whole Cluster None 10% 
H Fermentation Temperature Low (75 F Max) High (92 F Max) 

 
Harry and Judy decided to use a 28 4

IV design with 16 runs.  The wine was taste-tested by a panel of experts 
on 8 March 1986.  Each expert ranked the 16 samples of wine tasted, with rank 1 being the best.  The 
design and taste-test panel results are shown in Table 8-30. 
 
Table 8-30 

Run A B C D E F G H HPN JPN CAL DCM RGB ybar s 
1 - - - - - - - - 12 6 13 10 7 9.6 3.05 
2 + - - - - + + + 10 7 14 14 9 10.8 3.11 
3 - + - - + - + + 14 13 10 11 15 12.6 2.07 
4 + + - - + + - - 9 9 7 9 12 9.2 1.79 
5 - - + - + + + - 8 8 11 8 10 9.0 1.41 
6 + - + - + - - + 16 12 15 16 16 15.0 1.73 
7 - + + - - + - + 6 5 6 5 3 5.0 1.22 
8 + + + - - - + - 15 16 16 15 14 15.2 0.84 
9 - - - + + + - + 1 2 3 3 2 2.2 0.84 

10 + - - + + - + - 7 11 4 7 6 7.0 2.55 
11 - + - + - + + - 13 3 8 12 8 8.8 3.96 
12 + + - + - - - + 3 1 5 1 4 2.8 1.79 
13 - - + + - - + + 2 10 2 4 5 9.6 3.29 
14 + - + + - + - - 4 4 1 2 1 2.4 1.52 
15 - + + + + - - - 5 15 9 6 11 9.2 4.02 
16 + + + + + + + + 11 14 12 13 13 12.6 1.14 

 
(a) What are the alias relationships in the design selected by Harry and Judy? 

 
E = BCD, F = ACD, G = ABC, H = ABD 
 

 Defining Contrast :   I = BCDE = ACDF = ABEF = ABCG = ADEG = BDFG = CEFG = ABDH 
    = ACEH = BCFH = DEFH = CDGH = BEGH = AFGH = ABCDEFGH 

 
Aliases: 

        A = BCG = BDH = BEF = CDF = CEH = DEG = FGH      
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        B = ACG = ADH = AEF = CDE = CFH = DFG = EGH 
        C = ABG = ADF = AEH = BDE = BFH = DGH = EFG 
        D = ABH = ACF = AEG = BCE = BFG = CGH = EFH 
        E = ABF = ACH = ADG = BCD = BGH = CFG = DFH 
        F = ABE = ACD = AGH = BCH = BDG = CEG = DEH 
        G = ABC = ADE = AFH = BDF = BEH = CDH = CEF 
        H = ABD = ACE = AFG = BCF = BEG = CDG = DEF 

                     AB = CG = DH = EF 
                     AC = BG = DF = EH 
                     AD = BH = CF = EG 
                     AE = BF = CH = DG 
                     AF = BE = CD = GH 
                     AG = BC = DE = FH 
                     AH = BD = CE = FG 

 
(b) Use the average ranks ( y ) as a response variable.  Analyze the data and draw conclusions.  You will 

find it helpful to examine a normal probability plot of effect estimates. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A 1.125 5.0625 2.00799 
 Error  B 1.225 6.0025 2.38083 
 Error  C 1.875 14.0625 5.57776 
 Model  D -3.975 63.2025 25.0687 
 Error  E 1.575 9.9225 3.93566 
 Model  F -2.625 27.5625 10.9324 
 Model  G 3.775 57.0025 22.6095 
 Error  H 0.025 0.0025 0.000991601 
 Error  AB -0.075 0.0225 0.00892441 
 Error  AC 1.975 15.6025 6.18858 
 Model  AD -2.375 22.5625 8.9492 
 Error  AE 1.575 9.9225 3.93566 
 Error  AF 1.375 7.5625 2.99959 
 Error  AG 0.275 0.3025 0.119984 
 Error  AH 1.825 13.3225 5.28424 
   Lenth's ME 6.073   
   Lenth's SME 12.3291   
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Design Expert Output 
 Response: Taste Avg 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 175.39 5 35.08 4.57 0.0198 significant 
 A 5.06 1 5.06 0.66 0.4355 
 D 63.20 1 63.20 8.24 0.0167 
 F 27.56 1 27.56 3.59 0.0873 
 G 57.00 1 57.00 7.43 0.0214 
 AD 22.56 1 22.56 2.94 0.1171 
 Residual 76.72 10 7.67 
 Cor Total 252.12 15 
 
 The Model F-value of 4.57 implies the model is significant.  There is only 
 a 1.98% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.77  R-Squared 0.6957 
 Mean 8.81  Adj R-Squared 0.5435 
 C.V. 31.43  Pred R-Squared 0.2209 
 PRESS 196.42  Adeq Precision 7.517 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 8.81 1 0.69 7.27 10.36 
  A-A 0.56 1 0.69 -0.98 2.11 1.00 
  D-D -1.99 1 0.69 -3.53 -0.44 1.00 
  F-F -1.31 1 0.69 -2.86 0.23 1.00 
  G-G 1.89 1 0.69 0.34 3.43 1.00 
  AD -1.19 1 0.69 -2.73 0.36 1.00 
 
 
  Final Equation in Terms of Coded Factors: 
 
   Taste Avg  = 
  +8.81 
  +0.56   * A 
  -1.99   * D 
  -1.31   * F 
  +1.89   * G 
  -1.19   * A * D 

 
Factors D, F, G and the AD interaction are important.  Factor A is added to the model to preserve 
hierarchy.  Notice that the AD interaction is aliased with other two-factor interactions that could also be 
important.  So the interpretation of the two-factor interaction is somewhat uncertain.  Normally, we would 
add runs to the design to isolate the significant interactions, but that won’t work very well here because 
each experiment requires a full growing season.  In other words, it would require a very long time to add 
runs to dealias the alias chain of interest. 
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DES IG N-EXP ERT  P lo t
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(c) Use the standard deviation of the ranks (or some appropriate transformation such as log s) as a 

response variable.  What conclusions can you draw about the effects of the eight variables on 
variability in wine quality? 
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There do not appear to be any significant factors. 
 
(d) After looking at the results, Harry and Judy decide that one of the panel members (DCM) knows more 

about beer than he does about wine, so they decide to delete his ranking.  What affect would this have 
on the results and on conclusions from parts (b) and (c)? 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 1.625 10.5625 4.02957 
 Error  B 2.0625 17.0156 6.49142 
 Error  C 1.5 9 3.43348 
 Model  D -4.5 81 30.9013 
 Error  E 2.4375 23.7656 9.06652 
 Model  F -2.375 22.5625 8.60753 
 Model  G 2.9375 34.5156 13.1676 
 Error  H -0.6875 1.89063 0.721268 
 Error  AB -0.5625 1.26562 0.482833 
 Error  AC 2.375 22.5625 8.60753 
 Model  AD -1.5 9 3.43348 
 Error  AE 0.6875 1.89062 0.721268 
 Error  AF 0.875 3.0625 1.16834 
 Error  AG 0.8125 2.64062 1.00739 
 Error  AH 2.3125 21.3906 8.16047 
   Lenth's ME 6.26579   
   Lenth's SME 12.7205   
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Design Expert Output 
 Response: Taste Avg 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 157.64 5 31.53 3.02 0.0646 not significant 
 A 10.56 1 10.56 1.01 0.3384 
 D 81.00 1 81.00 7.75 0.0193 
 F 22.56 1 22.56 2.16 0.1724 
 G 34.52 1 34.52 3.30 0.0992 
 AD 9.00 1 9.00 0.86 0.3752 
 Residual 104.48 10 10.45 
 Cor Total 262.13 15 
 
 The Model F-value of 3.02 implies there is a 6.46% chance that a "Model F-Value"  
 this large could occur due to noise. 
 
 Std. Dev. 3.23  R-Squared 0.6014 
 Mean 8.50  Adj R-Squared 0.4021 
 C.V. 38.03  Pred R-Squared -0.0204 
 PRESS 267.48  Adeq Precision 5.778 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 8.50 1 0.81 6.70 10.30 
  A-A 0.81 1 0.81 -0.99 2.61 1.00 
  D-D -2.25 1 0.81 -4.05 -0.45 1.00 
  F-F -1.19 1 0.81 -2.99 0.61 1.00 
  G-G 1.47 1 0.81 -0.33 3.27 1.00 
  AD -0.75 1 0.81 -2.55 1.05 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Taste Avg  = 
  +8.50 
  +0.81   * A 
  -2.25   * D 
  -1.19   * F 
  +1.47   * G 
  -0.75   * A * D 
 
The results are the same for average taste without DCM as they were with DCM. 
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DES IG N-EXP ERT  P lo t
T a ste  S tDe v

A : A
B : B
C: C
D: D
E : E
F: F
G: G
H: H

Normal plot

N
or

m
al

 %
 p

ro
ba

bi
lit

y
Effect

-0 .7 4 -0 .3 5 0 .0 3 0 .4 1 0 .7 9

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

Warning! No term s  are  s ele

  
The standard deviation response is much the same with or without DCM’s responses.  Again, there are no 
significant factors. 
 
(e) Suppose that just before the start of the experiment, Harry and Judy discovered that the eight new 

barrels they ordered from France for use in the experiment would not arrive in time, and all 16 runs 
would have to be made with old barrels.  If Harry and Judy just drop column C from their design, 
what does this do to the alias relationships?  Do they need to start over and construct a new design? 

 
The resulting design  is a 27 3

IV  with defining relations:  I = ABEF = ADEG = BDFG = ABDH = DEFH = 
BEGH = AFGH. 
 
(f) Harry and Judy know from experience that some treatment combinations are unlikely to produce good 

results.  For example, the run with all eight variables at the high level generally results in a poorly 
rated wine.  This was confirmed in the 8 March 1986 taste test.  They want to set up a new design to 
make the run with all eight factors at the high level.  What design would you suggest? 

 
By changing the sign of any of the design generators, a design that does not include the principal fraction 
will be generated.  This will give a design without an experimental run combination with all of the 
variables at the high level. 
 
 
8-27 In an article in Quality Engineering (“An Application of Fractional Factorial Experimental 
Designs,” 1988, Vol. 1 pp. 19-23) M.B. Kilgo describes an experiment to determine the effect of CO2 
pressure (A), CO2 temperature (B), peanut moisture (C), CO2 flow rate (D), and peanut particle size (E) on 
the total yield of oil per batch of peanuts (y).  The levels she used for these factors are as follows: 
 

 A B C D E 
Coded Pressure Temp Moisture Flow Particle Size 
Level (bar) (C) (% by weight) (liters/min) (mm) 

-1 415 25 5 40 1.28 
1 550 95 15 60 4.05 

 
She conducted the 16-run fractional factorial experiment shown below: 
 

 A B C D E y 
1 415 25 5 40 1.28 63 
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2 550 25 5 40 4.05 21 
3 415 95 5 40 4.05 36 
4 550 95 5 40 1.28 99 
5 415 25 15 40 4.05 24 
6 550 25 15 40 1.28 66 
7 415 95 15 40 1.28 71 
8 550 95 15 40 4.05 54 
9 415 25 5 60 4.05 23 
10 550 25 5 60 1.28 74 
11 415 95 5 60 1.28 80 
12 550 95 5 60 4.05 33 
13 415 25 15 60 1.28 63 
14 550 25 15 60 4.05 21 
15 415 95 15 60 4.05 44 
16 550 95 15 60 1.28 96 

 
(a) What type of design has been used?  Identify the defining relation and the alias relationships. 
 

A 25 1
V , 16-run design, with I= -ABCDE. 

 
A(-ABCDE)= -BCDE A = -BCDE 
B(-ABCDE)= -ACDE B = -ACDE 
C(-ABCDE)= -ABDE C = -ABDE 
D(-ABCDE)= -ABCE D = -ABCE 
E(-ABCDE)= -ABCD E = -ABCD 

AB(-ABCDE)= -CDE AB = -CDE 
AC(-ABCDE)= -BDE AC = -BDE 
AD(-ABCDE)= -BCE AD = -BCE 
AE(-ABCDE)= -BCD AE = -BCD 
BC(-ABCDE)= -ADE BC = -ADE 
BD(-ABCDE)= -ACE BD = -ACE 
BE(-ABCDE)= -ACD BE = -ACD 
CD(-ABCDE)= -ABE CD = -ABE 
CE(-ABCDE)= -ABD CE = -ABD 
DE(-ABCDE)= -ABC DE = -ABC 

 
(b) Estimate the factor effects and use a normal probability plot to tentatively identify the important 

factors. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A 7.5 225 2.17119 
 Model  B 19.75 1560.25 15.056 
 Error  C 1.25 6.25 0.0603107 
 Error  D 0 0 0 
 Model  E 44.5 7921 76.4354 
 Error  AB 5.25 110.25 1.06388 
 Error  AC 1.25 6.25 0.0603107 
 Error  AD -4 64 0.617582 
 Error  AE 7 196 1.89134 
 Error  BC 3 36 0.34739 
 Error  BD -1.75 12.25 0.118209 
 Error  BE 0.25 0.25 0.00241243 
 Error  CD 2.25 20.25 0.195407 
 Error  CE -6.25 156.25 1.50777 
 Error  DE 3.5 49 0.472836 
   Lenth's ME 11.5676   
   Lenth's SME 23.4839   
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(c) Perform an appropriate statistical analysis to test the hypothesis that the factors identified in part 

above have a significant effect on the yield of peanut oil. 
 
Design Expert Output 
 Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 9481.25 2 4740.63 69.89 < 0.0001 significant 
 B 1560.25 1 1560.25 23.00 0.0003 
 E 7921.00 1 7921.00 116.78 < 0.0001 
 Residual 881.75 13 67.83 
 Cor Total 10363.00 15 
 
 The Model F-value of 69.89 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 8.24  R-Squared 0.9149 
 Mean 54.25  Adj R-Squared 0.9018 
 C.V. 15.18  Pred R-Squared 0.8711 
 PRESS 1335.67  Adeq Precision 18.017 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 54.25 1 2.06 49.80 58.70 
  B-Temperature 9.88 1 2.06 5.43 14.32 1.00 
  E-Particle Size 22.25 1 2.06 17.80 26.70 1.00 
 
(d)  Fit a model that could be used to predict peanut oil yield in terms of the factors that you have 

identified as important. 
 
Design Expert Output 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
  +54.25 
  +9.88   * B 
  +22.25   * E 
 
  Final Equation in Terms of Actual Factors: 
 
   Yield  = 
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  -5.49175 
  +0.28214   * Temperature 
  +16.06498   * Particle Size 
 
(e)  Analyze the residuals from this experiment and comment on model adequacy. 
 
The residual plots are satisfactory.  There is a slight tendency for the variability of the residuals to 
increase with the predicted value of y. 
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8-28 A 16-run fractional factorial experiment in 10 factors on sand-casting of engine manifolds was 
conducted by engineers at the Essex Aluminum Plant of the Ford Motor Company and described in the 
article “Evaporative Cast Process 3.0 Liter Intake Manifold Poor Sandfill Study,” by D. Becknell (Fourth 
Symposium on Taguchi Methods, American Supplier Institute, Dearborn, MI, 1986, pp. 120-130).  The 
purpose was to determine which of 10 factors has an effect on the proportion of defective castings.  The 
design and the resulting proportion of nondefective castings p observed on each run are shown below.  
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This is a resolution III fraction with generators E=CD, F=BD, G=BC, H=AC, J=AB, and K=ABC.  
Assume that the number of castings made at each run in the design is 1000. 
 

             F&T’s 
Run A B C D E F G H J K p arcsin Modification 

1 - - - - + + + + + - 0.958 1.364 1.363 
2 + - - - + + + - - + 1.000 1.571 1.555 
3 - + - - + - - + - + 0.977 1.419 1.417 
4 + + - - + - - - + - 0.775 1.077 1.076 
5 - - + - - + - - + + 0.958 1.364 1.363 
6 + - + - - + - + - - 0.958 1.364 1.363 
7 - + + - - - + - - - 0.813 1.124 1.123 
8 + + + - - - + + + + 0.906 1.259 1.259 
9 - - - + - - + + + - 0.679 0.969 0.968 

10 + - - + - - + - - + 0.781 1.081 1.083 
11 - + - + - + - + - + 1.000 1.571 1.556 
12 + + - + - + - - + - 0.896 1.241 1.242 
13 - - + + + - - - + + 0.958 1.364 1.363 
14 + - + + + - - + - - 0.818 1.130 1.130 
15 - + + + + + + - - - 0.841 1.161 1.160 
16 + + + + + + + + + + 0.955 1.357 1.356 

 
(a) Find the defining relation and the alias relationships in this design. 
 
I=CDE=BDF=BCG=ACH=ABJ=ABCK=BCEF=BDEG=ADEH=ABCDEJ=ABDEK=CDFG=ABCDFH
= ADFJ=ACDFK=ABGH=ACGJ=AGK=BCHJ=BHK=CKJ 
 

(b) Estimate the factor effects and use a normal probability plot to tentatively identify the important 
factors. 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A -0.011875 0.000564063 0.409171 
 Error  B 0.006625 0.000175562 0.127353 
 Error  C 0.017625 0.00124256 0.901355 
 Error  D -0.052125 0.0108681 7.88369 
 Error  E 0.036375 0.00529256 3.83923 
 Model  F 0.107375 0.0461176 33.4537 
 Error  G -0.050875 0.0103531 7.51011 
 Error  H 0.028625 0.00327756 2.37754 
 Error  J -0.012875 0.000663062 0.480986 
 Model  K 0.099625 0.0397006 28.7988 
 Error  AB Aliased   
 Error  AC Aliased   
 Error  AD 0.004875 9.50625E-005 0.0689584 
 Error  AE -0.034625 0.00479556 3.4787 
 Error  AF 0.024875 0.00247506 1.79541 
 Error  BE -0.053125 0.0112891 8.18909 
 Error  DK 0.015375 0.000945563 0.685911 
   Lenth's ME 0.103145   
   Lenth's SME 0.209399   
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(c) Fit an appropriate model using the factors identified in part (b) above. 
 
Design Expert Output 
 Response: p 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.086 2 0.043 10.72 0.0018 significant 
 F 0.046 1 0.046 11.52 0.0048 
 K 0.040 1 0.040 9.92 0.0077 
 Residual 0.052 13 4.003E-003 
 Cor Total 0.14 15 
 
 The Model F-value of 10.72 implies the model is significant.  There is only 
 a 0.18% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.063  R-Squared 0.6225 
 Mean 0.89  Adj R-Squared 0.5645 
 C.V. 7.09  Pred R-Squared 0.4282 
 PRESS 0.079  Adeq Precision 7.556 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 0.89 1 0.016 0.86 0.93 
  F-F 0.054 1 0.016 0.020 0.088 1.00 
  K-K 0.050 1 0.016 0.016 0.084 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   p  = 
  +0.89 
  +0.054   * F 
  +0.050   * K 
 
  Final Equation in Terms of Actual Factors: 
 
   p  = 
  +0.89206 
  +0.053688   * F 
  +0.049812   * K 
 
(d) Plot the residuals from this model versus the predicted proportion of nondefective castings.  Also 

prepare a normal probability plot of the residuals.  Comment on the adequacy of these plots. 
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The residual versus predicted plot identifies an inequality of variances.  This is likely caused by the 
response variable being a proportion.  A transformation could be used to correct this. 
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(e) In part (d) you should have noticed an indication that the variance of the response is not constant 

(considering that the response is a proportion, you should have expected this).  The previous table 
also shows a transformation on P, the arcsin square root, that is a widely used variance stabilizing 
transformation for proportion data (refer to the discussion of variance stabilizing transformations is 
Chapter 3).  Repeat parts (a) through (d) above using the transformed response and comment on your 
results.  Specifically, are the residuals plots improved? 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A -0.032 0.004096 0.884531 
 Error  B 0.00025 2.5E-007 5.39875E-005 
 Error  C -0.02125 0.00180625 0.39006 
 Error  D -0.0835 0.027889 6.02263 
 Error  E 0.05875 0.0138062 2.98146 
 Model  F 0.19625 0.154056 33.2685 
 Error  G -0.0805 0.025921 5.59764 
 Error  H 0.05625 0.0126562 2.73312 
 Error  J -0.05325 0.0113422 2.44936 
 Model  K 0.1945 0.151321 32.6778 
 Error  AD -0.032 0.004096 0.884531 
 Error  AF 0.05025 0.0101003 2.18115 
 Error  BE -0.104 0.043264 9.34286 
 Error  DH -0.01125 0.00050625 0.109325 
 Error  DK 0.0235 0.002209 0.477034 
   Lenth's ME 0.205325   
   Lenth's SME 0.41684   
 
As with the original analysis, factors F and K remain significant with a slight increase with the R2. 
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Design Expert Output 
 Response: arcsin 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.31 2 0.15 12.59 0.0009 significant 
 F 0.15 1 0.15 12.70 0.0035 
 K 0.15 1 0.15 12.47 0.0037 
 Residual 0.16 13 0.012 
 Cor Total 0.46 15 
 
 The Model F-value of 12.59 implies the model is significant.  There is only 
 a 0.09% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.11  R-Squared 0.6595 
 Mean 1.28  Adj R-Squared 0.6071 
 C.V. 8.63  Pred R-Squared 0.4842 
 PRESS 0.24  Adeq Precision 8.193 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 1.28 1 0.028 1.22 1.34 
  F-F 0.098 1 0.028 0.039 0.16 1.00 
  K-K 0.097 1 0.028 0.038 0.16 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   arcsin  = 
  +1.28 
  +0.098   * F 
  +0.097   * K 
 
  Final Equation in Terms of Actual Factors: 
 
   arcsin  = 
  +1.27600 
  +0.098125   * F 
  +0.097250   * K 
 
The inequality of variance has improved; however, there remain hints of inequality in the residuals versus 
predicted plot and the normal probability plot now appears to be irregular. 
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(f) There is a modification to the arcsin square root transformation, proposed by Freeman and Tukey 

(“Transformations Related to the Angular and the Square Root,” Annals of Mathematical Statistics, 
Vol. 21, 1950, pp. 607-611) that improves its performance in the tails.  F&T’s modification is: 

 

1
1

12
1

n
p̂narcsin

n
p̂narcsin  

 
Rework parts (a) through (d) using this transformation and comment on the results.  (For an interesting 
discussion and analysis of this experiment, refer to “Analysis of Factorial Experiments with Defects or 
Defectives as the Response,” by S. Bisgaard and H.T. Fuller, Quality Engineering, Vol. 7, 1994-5, pp. 
429-443.)  
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A -0.031125 0.00387506 0.871894 
 Error  B 0.000125 6.25E-008 1.40626E-005 
 Error  C -0.017875 0.00127806 0.287566 
 Error  D -0.082625 0.0273076 6.14424 
 Error  E 0.057875 0.0133981 3.01458 
 Model  F 0.192375 0.148033 33.3075 
 Error  G -0.080375 0.0258406 5.81416 
 Error  H 0.055875 0.0124881 2.80983 
 Error  J -0.049625 0.00985056 2.21639 
 Model  K 0.190875 0.145733 32.7901 
 Error  AD -0.027875 0.00310806 0.699318 
 Error  AF 0.049625 0.00985056 2.21639 
 Error  BE -0.100625 0.0405016 9.1129 
 Error  DH -0.015375 0.000945563 0.212753 
 Error  DK 0.023625 0.00223256 0.502329 
   Lenth's ME 0.191348   
   Lenth's SME 0.388464   
 
As with the prior analysis, factors F and K remain significant. 
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Design Expert Output 
 Response: F&T Transform 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.29 2 0.15 12.67 0.0009 significant 
 F 0.15 1 0.15 12.77 0.0034 
 K 0.15 1 0.15 12.57 0.0036 
 Residual 0.15 13 0.012 
 Cor Total 0.44 15 
 
 The Model F-value of 12.67 implies the model is significant.  There is only 
 a 0.09% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.11  R-Squared 0.6610 
 Mean 1.27  Adj R-Squared 0.6088 
 C.V. 8.45  Pred R-Squared 0.4864 
 PRESS 0.23  Adeq Precision 8.221 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 1.27 1 0.027 1.22 1.33 
  F-F 0.096 1 0.027 0.038 0.15 1.00 
  K-K 0.095 1 0.027 0.037 0.15 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   F&T Transform  = 
  +1.27 
  +0.096   * F 
  +0.095   * K 
 
  Final Equation in Terms of Actual Factors: 
 
   F&T Transform  = 
  +1.27356 
  +0.096188   * F 
  +0.095437   * K 
 
The residual plots appears as they did with the arcsin square root transformation. 
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8-29 A 16-run fractional factorial experiment in 9 factors was conducted by Chrysler Motors 
Engineering and described in the article “Sheet Molded Compound Process Improvement,” by P.I. Hsieh 
and D.E. Goodwin (Fourth Symposium on Taguchi Methods, American Supplier Institute, Dearborn, MI, 
1986, pp. 13-21).  The purpose was to reduce the number of defects in the finish of sheet-molded grill 
opening panels.  The design, and the resulting number of defects, c, observed on each run, is shown 
below.  This is a resolution III fraction with generators E=BD, F=BCD, G=AC, H=ACD, and J=AB. 
 

            F&T’s 
Run A B C D E F G H J c c  Modification 

1 - - - - + - + - + 56 7.48 7.52 
2 + - - - + - - + - 17 4.12 4.18 
3 - + - - - + + - - 2 1.41 1.57 
4 + + - - - + - + + 4 2.00 2.12 
5 - - + - + + - + + 3 1.73 1.87 
6 + - + - + + + - - 4 2.00 2.12 
7 - + + - - - - + - 50 7.07 7.12 
8 + + + - - - + - + 2 1.41 1.57 
9 - - - + - + + + + 1 1.00 1.21 

10 + - - + - + - - - 0 0.00 0.50 
11 - + - + + - + + - 3 1.73 1.87 
12 + + - + + - - - + 12 3.46 3.54 
13 - - + + - - - - + 3 1.73 1.87 
14 + - + + - - + + - 4 2.00 2.12 
15 - + + + + + - - - 0 0.00 0.50 
16 + + + + + + + + + 0 0.00 0.50 

 
(a) Find the defining relation and the alias relationships in this design. 
 
I=BDE=BCDF=CEF=ACG=ABCDEG=ABDEG=AEFG=ACDH=ABCEH=ABFH=ADEFH=DGH= 
BEGH=BCRG=CDEFGH=ABJ=ADEJ=ACDFJ=ABCEFJ=BCGJ=CDEGJ=DEGJ=BEFGJ=BCDHJ= 
CEHJ=FHJ=BDEFHJ=ABDGHJ=AEGHJ=ACEGJ=ABCDEFGHJ 
 
(b) Estimate the factor effects and use a normal probability plot to tentatively identify the important 

factors. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
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 Model  A -9.375 351.562 7.75573 
 Model  B -1.875 14.0625 0.310229 
 Model  C -3.625 52.5625 1.15957 
 Model  D -14.375 826.562 18.2346 
 Error  E 3.625 52.5625 1.15957 
 Model  F -16.625 1105.56 24.3895 
 Model  G -2.125 18.0625 0.398472 
 Error  H 0.375 0.5625 0.0124092 
 Error  J 0.125 0.0625 0.0013788 
 Model  AD 11.625 540.563 11.9252 
 Error  AE 2.125 18.0625 0.398472 
 Model  AF 9.875 390.063 8.60507 
 Error  AH 1.375 7.5625 0.166834 
 Model  BC 11.375 517.563 11.4178 
 Model  BG -12.625 637.562 14.0651 
   Lenth's ME 13.9775   
   Lenth's SME 28.3764   
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(c) Fit an appropriate model using the factors identified in part (b) above. 
 
Design Expert Output 
 Response: c 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 4454.13 10 445.41 28.26 0.0009 significant 
 A 351.56 1 351.56 22.30 0.0052 
 B 14.06 1 14.06 0.89 0.3883 
 C 52.56 1 52.56 3.33 0.1274 
 D 826.56 1 826.56 52.44 0.0008 
 F 1105.56 1 1105.56 70.14 0.0004 
 G 18.06 1 18.06 1.15 0.3333 
 AD 540.56 1 540.56 34.29 0.0021 
 AF 390.06 1 390.06 24.75 0.0042 
 BC 517.56 1 517.56 32.84 0.0023 
 BG 637.56 1 637.56 40.45 0.0014 
 Residual 78.81 5 15.76 
 Cor Total 4532.94 15 
 
 The Model F-value of 28.26 implies the model is significant.  There is only 
 a 0.09% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 3.97  R-Squared 0.9826 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

8-69 

 Mean 10.06  Adj R-Squared 0.9478 
 C.V. 39.46  Pred R-Squared 0.8220 
 PRESS 807.04  Adeq Precision 17.771 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 10.06 1 0.99 7.51 12.61 
  A-A -4.69 1 0.99 -7.24 -2.14 1.00 
  B-B -0.94 1 0.99 -3.49 1.61 1.00 
  C-C -1.81 1 0.99 -4.36 0.74 1.00 
  D-D -7.19 1 0.99 -9.74 -4.64 1.00 
  F-F -8.31 1 0.99 -10.86 -5.76 1.00 
  G-G -1.06 1 0.99 -3.61 1.49 1.00 
  AD 5.81 1 0.99 3.26 8.36 1.00 
  AF 4.94 1 0.99 2.39 7.49 1.00 
  BC 5.69 1 0.99 3.14 8.24 1.00 
  BG -6.31 1 0.99 -8.86 -3.76 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   c  = 
  +10.06 
  -4.69   * A 
  -0.94   * B 
  -1.81   * C 
  -7.19   * D 
  -8.31   * F 
  -1.06   * G 
  +5.81   * A * D 
  +4.94   * A * F 
  +5.69   * B * C 
  -6.31   * B * G 
 
  Final Equation in Terms of Actual Factors: 
 
   c  = 
  +10.06250 
  -4.68750   * A 
  -0.93750   * B 
  -1.81250   * C 
  -7.18750   * D 
  -8.31250   * F 
  -1.06250   * G 
  +5.81250   * A * D 
  +4.93750   * A * F 
  +5.68750   * B * C 
  -6.31250   * B * G 
 
(d) Plot the residuals from this model versus the predicted number of defects.  Also, prepare a normal 

probability plot of the residuals.  Comment on the adequacy of these plots. 
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There is a significant problem with inequality of variance.  This is likely caused by the response variable 
being a count.  A transformation may be appropriate. 
 
(e) In part (d) you should have noticed an indication that the variance of the response is not constant 

(considering that the response is a count, you should have expected this).  The previous table also 
shows a transformation on c, the square root, that is a widely used variance stabilizing transformation 
for count data (refer to the discussion of variance stabilizing transformations in Chapter 3).  Repeat 
parts (a) through (d) using the transformed response and comment on your results.  Specifically, are 
the residual plots improved? 

 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A -0.895 3.2041 4.2936 
 Model  B -0.3725 0.555025 0.743752 
 Error  C -0.6575 1.72922 2.31722 
 Model  D -2.1625 18.7056 25.0662 
 Error  E 0.4875 0.950625 1.27387 
 Model  F -2.6075 27.1962 36.4439 
 Model  G -0.385 0.5929 0.794506 
 Error  H 0.27 0.2916 0.390754 
 Error  J 0.06 0.0144 0.0192965 
 Error  AD 1.145 5.2441 7.02727 
 Error  AE 0.555 1.2321 1.65106 
 Error  AF 0.86 2.9584 3.96436 
 Error  AH 0.0425 0.007225 0.00968175 
 Error  BC 0.6275 1.57502 2.11059 
 Model  BG -1.61 10.3684 13.894 
   Lenth's ME 2.27978   
   Lenth's SME 4.62829   
 
The analysis of the data with the square root transformation identifies only D, F, the BG interaction as being 
significant.  The original analysis identified factor A and several two factor interactions as being significant. 
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Design Expert Output 
 Response: sqrt 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 57.42 5 11.48 6.67 0.0056 significant 
 B 0.56 1 0.56 0.32 0.5826 
 D 18.71 1 18.71 10.87 0.0081 
 F 27.20 1 27.20 15.81 0.0026 
 G 0.59 1 0.59 0.34 0.5702 
 BG 10.37 1 10.37 6.03 0.0340 
 Residual 17.21 10 1.72 
 Cor Total 74.62 15 
 
 The Model F-value of 6.67 implies the model is significant.  There is only 
 a 0.56% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.31  R-Squared 0.7694 
 Mean 2.32  Adj R-Squared 0.6541 
 C.V. 56.51  Pred R-Squared 0.4097 
 PRESS 44.05  Adeq Precision 8.422 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 2.32 1 0.33 1.59 3.05 
  B-B -0.19 1 0.33 -0.92 0.54 1.00 
  D-D -1.08 1 0.33 -1.81 -0.35 1.00 
  F-F -1.30 1 0.33 -2.03 -0.57 1.00 
  G-G -0.19 1 0.33 -0.92 0.54 1.00 
  BG -0.80 1 0.33 -1.54 -0.074 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   sqrt  = 
  +2.32 
  -0.19   * B 
  -1.08   * D 
  -1.30   * F 
  -0.19   * G 
  -0.80   * B * G 
 
  Final Equation in Terms of Actual Factors: 
 
   sqrt  = 
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  +2.32125 
  -0.18625   * B 
  -1.08125   * D 
  -1.30375   * F 
  -0.19250   * G 
  -0.80500   * B * G 
 
The residual plots are acceptable; although, there appears to be a slight “u” shape to the residuals versus predicted 
plot. 
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(f) There is a modification to the square root transformation proposed by Freeman and Tukey 

(“Transformations Related to the Angular and the Square Root,” Annals of Mathematical Statistics, 
Vol. 21, 1950, pp. 607-611) that improves its performance.  F&T’s modification to the square root 
transformation is: 
 

1
2
1 cc  

 
Rework parts (a) through (d) using this transformation and comment on the results.  (For an interesting 
discussion and analysis of this experiment, refer to “Analysis of Factorial Experiments with Defects or 
Defectives as the Response,” by S. Bisgaard and H.T. Fuller, Quality Engineering, Vol. 7, 1994-5, pp. 
429-443.) 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Error  A -0.86 2.9584 4.38512 
 Model  B -0.325 0.4225 0.626255 
 Error  C -0.605 1.4641 2.17018 
 Model  D -1.995 15.9201 23.5977 
 Error  E 0.5025 1.01002 1.49712 
 Model  F -2.425 23.5225 34.8664 
 Model  G -0.4025 0.648025 0.960541 
 Error  H 0.225 0.2025 0.300158 
 Error  J 0.0275 0.003025 0.00448383 
 Error  AD 1.1625 5.40562 8.01254 
 Error  AE 0.505 1.0201 1.51205 
 Error  AF 0.8825 3.11523 4.61757 
 Error  AH 0.0725 0.021025 0.0311645 
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 Error  BC 0.7525 2.26503 3.35735 
 Model  BG -1.54 9.4864 14.0613 
   Lenth's ME 2.14001   
   Lenth's SME 4.34453   
 
As with the square root transformation, factors D, F, and the BG interaction remain significant. 
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Design Expert Output 
 Response: F&T 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 50.00 5 10.00 5.73 0.0095 significant 
 B 0.42 1 0.42 0.24 0.6334 
 D 15.92 1 15.92 9.12 0.0129 
 F 23.52 1 23.52 13.47 0.0043 
 G 0.65 1 0.65 0.37 0.5560 
 BG 9.49 1 9.49 5.43 0.0420 
 Residual 17.47 10 1.75 
 Cor Total 67.46 15 
 
 The Model F-value of 5.73 implies the model is significant.  There is only 
 a 0.95% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.32  R-Squared 0.7411 
 Mean 2.51  Adj R-Squared 0.6117 
 C.V. 52.63  Pred R-Squared 0.3373 
 PRESS 44.71  Adeq Precision 7.862 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 2.51 1 0.33 1.78 3.25 
  B-B -0.16 1 0.33 -0.90 0.57 1.00 
  D-D -1.00 1 0.33 -1.73 -0.26 1.00 
  F-F -1.21 1 0.33 -1.95 -0.48 1.00 
  G-G -0.20 1 0.33 -0.94 0.53 1.00 
  BG -0.77 1 0.33 -1.51 -0.034 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   F&T  = 
  +2.51 
  -0.16   * B 
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  -1.00   * D 
  -1.21   * F 
  -0.20   * G 
  -0.77   * B * G 
 
  Final Equation in Terms of Actual Factors: 
 
   F&T  = 
  +2.51125 
  -0.16250   * B 
  -0.99750   * D 
  -1.21250   * F 
  -0.20125   * G 
  -0.77000   * B * G 
 
The following interaction plots appear as they did with the square root transformation; a slight “u” shape 
is observed in the residuals versus predicted plot. 
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8-30 An experiment is run in a semiconductor factory to investigate the effect of six factors on transistor 
gain.  The design selected is the 262 IV  shown below. 
 

Standard Run        
Order Order A B C D E F Gain 

1 2 - - - - - - 1455 
2 8 + - - - + - 1511 
3 5 - + - - + + 1487 
4 9 + + - - - + 1596 
5 3 - - + - + + 1430 
6 14 + - + - - + 1481 
7 11 - + + - - - 1458 
8 10 + + + - + - 1549 
9 15 - - - + - + 1454 
10 13 + - - + + + 1517 
11 1 - + - + + - 1487 
12 6 + + - + - - 1596 
13 12 - - + + + - 1446 
14 4 + - + + - - 1473 
15 7 - + + + - + 1461 
16 16 + + + + + + 1563 
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(a) Use a normal plot of the effects to identify the significant factors. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 76 23104 55.2714 
 Model  B 53.75 11556.2 27.6459 
 Model  C -30.25 3660.25 8.75637 
 Error  D 3.75 56.25 0.134566 
 Error  E 2 16 0.0382766 
 Error  F 1.75 12.25 0.0293055 
 Model  AB 26.75 2862.25 6.84732 
 Model  AC -8.25 272.25 0.6513 
 Error  AD -0.75 2.25 0.00538265 
 Error  AE -3.5 49 0.117222 
 Error  AF 5.25 110.25 0.26375 
 Error  BD 0.5 1 0.00239229 
 Error  BF 2.5 25 0.0598072 
 Error  ABD 3.5 49 0.117222 
 Error  ABF -2.5 25 0.0598072 
   Lenth's ME 9.63968   
   Lenth's SME 19.57   
 

DES IG N-EXP ERT  P lo t
Ga in

A : A
B : B
C: C
D: D
E : E
F: F

Normal plot

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Effect

-3 0 .25 -3 .6 9 2 2 .8 7 4 9 .4 4 7 6 .0 0

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

A

B

C

AB

AC

 
 
(b)  Conduct appropriate statistical tests for the model identified in part (a). 
 
Design Expert Output 
 Response: Gain 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 41455.00 5 8291.00 239.62 < 0.0001 significant 
 A 23104.00 1 23104.00 667.75 < 0.0001 
 B 11556.25 1 11556.25 334.00 < 0.0001 
 C 3660.25 1 3660.25 105.79 < 0.0001 
 AB 2862.25 1 2862.25 82.72 < 0.0001 
 AC 272.25 1 272.25 7.87 0.0186 
 Residual 346.00 10 34.60 
 Cor Total 41801.00 15 
 
 The Model F-value of 239.62 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
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 Std. Dev. 5.88  R-Squared 0.9917 
 Mean 1497.75  Adj R-Squared 0.9876 
 C.V. 0.39  Pred R-Squared 0.9788 
 PRESS 885.76  Adeq Precision 44.419 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 1497.75 1 1.47 1494.47 1501.03 
  A-A 38.00 1 1.47 34.72 41.28 1.00 
  B-B 26.87 1 1.47 23.60 30.15 1.00 
  C-C -15.13 1 1.47 -18.40 -11.85 1.00 
  AB 13.38 1 1.47 10.10 16.65 1.00 
  AC -4.12 1 1.47 -7.40 -0.85 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Gain  = 
  +1497.75 
  +38.00   * A 
  +26.87   * B 
  -15.13   * C 
  +13.38   * A * B 
  -4.12   * A * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Gain  = 
  +1497.75000 
  +38.00000   * A 
  +26.87500   * B 
  -15.12500   * C 
  +13.37500   * A * B 
  -4.12500   * A * C 
 
(c)  Analyze the residuals and comment on your findings. 
 
The residual plots are acceptable.  The normality and equality of variance assumptions are verified.  There 
does not appear to be any trends or interruptions in the residuals versus run order plot. 
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(d)  Can you find a set of operating conditions that produce gain of 251500 ? 
 
Yes, see the graphs below. 
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8-31 Heat treating is often used to carbonize metal parts, such as gears.  The thickness of the carbonized 
layer is a critical output variable from this process, and it is usually measured by performing a carbon 
analysis on the gear pitch (top of the gear tooth).  Six factors were studied on a 262 IV  design:  A = furnace 
temperature, B = cycle time, C = carbon concentration, D = duration of the carbonizing cycle, E = carbon 
concentration of the diffuse cycle, and F = duration of the diffuse cycle.  The experiment is shown below: 
 

Standard Run        
Order Order A B C D E F Pitch 

1 5 - - - - + - 74 
2 7 + - - - - - 190 
3 8 - + - - - + 133 
4 2 + + - - + + 127 
5 10 - - + - - + 115 
6 12 + - + - + + 101 
7 16 - + + - + - 54 
8 1 + + + - - - 144 
9 6 - - - + + + 121 
10 9 + - - + - + 188 
11 14 - + - + - - 135 
12 13 + + - + + - 170 
13 11 - - + + - - 126 
14 3 + - + + + - 175 
15 15 - + + + + + 126 
16 4 + + + + - + 193 

 
(a) Estimate the factor effects and plot them on a normal probability plot.  Select a tentative model. 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 50.5 10201 41.8777 
 Error  B -1 4 0.016421 
 Model  C -13 676 2.77515 
 Model  D 37 5476 22.4804 
 Model  E 34.5 4761 19.5451 
 Error  F 4.5 81 0.332526 
 Error  AB -4 64 0.262737 
 Error  AC -2.5 25 0.102631 
 Error  AD 4 64 0.262737 
 Error  AE 1 4 0.016421 
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 Error  BD 4.5 81 0.332526 
 Model  CD 14.5 841 3.45252 
 Model  DE -22 1936 7.94778 
 Error  ABD 0.5 1 0.00410526 
 Error  ABF 6 144 0.591157 
   Lenth's ME 15.4235   
   Lenth's SME 31.3119   
 
Factors A, C, D, E and the two factor interactions CD and DE appear to be significant.  The model can be 
found in the Design Expert Output below. 
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(b) Perform appropriate statistical tests on the model. 
 
Design Expert Output 
 Response: Pitch 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 23891.00 6 3981.83 76.57 < 0.0001 significant 
 A 10201.00 1 10201.00 196.17 < 0.0001 
 C 676.00 1 676.00 13.00 0.0057 
 D 5476.00 1 5476.00 105.31 < 0.0001 
 E 4761.00 1 4761.00 91.56 < 0.0001 
 CD 841.00 1 841.00 16.17 0.0030 
 DE 1936.00 1 1936.00 37.23 0.0002 
 Residual 468.00 9 52.00 
 Cor Total 24359.00 15 
 
 The Model F-value of 76.57 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 7.21  R-Squared 0.9808 
 Mean 135.75  Adj R-Squared 0.9680 
 C.V. 5.31  Pred R-Squared 0.9393 
 PRESS 1479.11  Adeq Precision 28.618 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 135.75 1 1.80 131.67 139.83 
  A-A 25.25 1 1.80 21.17 29.33 1.00 
  C-C -6.50 1 1.80 -10.58 -2.42 1.00 
  D-D 18.50 1 1.80 14.42 22.58 1.00 
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  E-E 17.25 1 1.80 13.17 21.33 1.00 
  CD 7.25 1 1.80 3.17 11.33 1.00 
  DE -11.00 1 1.80 -15.08 -6.92 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Pitch  = 
  +135.75 
  +25.25   * A 
  -6.50   * C 
  +18.50   * D 
  +17.25   * E 
  +7.25   * C * D 
  -11.00   * D * E 
 
  Final Equation in Terms of Actual Factors: 
 
   Pitch  = 
  +135.75000 
  +25.25000   * A 
  -6.50000   * C 
  +18.50000   * D 
  +17.25000   * E 
  +7.25000   * C * D 
  -11.00000   * D * E 
 
(c) Analyze the residuals and comment on model adequacy. 
 
The residual plots are acceptable.  The normality and equality of variance assumptions are verified.  There 
does not appear to be any trends or interruptions in the residuals versus run order plot.  The plots of the 
residuals versus factors C and E identify reduced variation at the lower level of both variables while the 
plot of residuals versus factor F identifies reduced variation at the upper level.  Because C and E are 
significant factors in the model, this might not affect the decision on the optimum solution for the process.  
However, factor F is not included in the model and may be set at the upper level to reduce variation. 
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(d) Interpret the results of this experiment.  Assume that a layer thickness of between 140 and 160 is 

desirable. 
 
The graphs below identify a region that is acceptable between 140 and 160. 
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DES IG N-EXP ERT  P lo t

Ove rla y P lo t
X  =  C: C
Y  = D: D

Co d e d  Fa cto rs
A : A  =  0 .5 0 0
B : B  =  0 .0 0 0
E : E  =  0 .0 0 0
F: F = 0 .0 0 0

Overlay P lot

C

D

-1 .0 0 -0 .5 0 0 .0 0 0 .5 0 1 .0 0

-1 .0 0

-0 .5 0

0 .0 0

0 .5 0

1 .0 0

Pitch: 140

Pitch: 160

 
 
 
8-32 Five factors are studied in the irregular fractional factorial design of resolution V shown below. 
 

Standard Run       
Order Order A B C D E Gain 

1 1 - - - - - 16.33 
2 10 - + - - - 18.43 
3 5 + + - - - 27.07 
4 4 - - + - - 16.95 
5 15 + - + - - 14.58 
6 19 - + + - - 19.12 
7 16 - - - + - 18.96 
8 7 + - - + - 23.56 
9 8 + + - + - 29.15 
10 3 + - + + - 15.74 
11 13 - + + + - 20.73 
12 11 + + + + - 21.52 
13 12 - - - - + 15.58 
14 20 + - - - + 21.03 
15 9 + + - - + 26.78 
16 22 + - + - + 13.39 
17 21 - + + - + 18.63 
18 6 + + + - + 19.01 
19 23 - - - + + 17.96 
20 18 - + - + + 20.49 
21 24 + + - + + 29.31 
22 17 - - + + + 17.62 
23 2 + - + + + 16.03 
24 14 - + + + + 21.42 

 
(a) Analyze the data from this experiment.  What factors influence the response y? 
 
Design Expert Output 
  Term Effect SumSqr % Contribtn 
 Model  Intercept     
 Model  A 2.9125 50.8959 11.2736 
 Model  B 5.3275 170.294 37.7207 
 Model  C -4.15917 103.792 22.9903 
 Model  D 2.1325 27.2853 6.04381 
 Error  E -0.4075 0.996338 0.220693 
 Model  AB 1.45428 12.6896 2.8108 
 Model  AC -3.71585 82.8451 18.3505 
 Error  AD -0.0282843 0.0048 0.00106322 
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 Error  AE 0.113137 0.0768 0.0170115 
 Error  BC 0.142887 7.5E-005 1.66128E-005 
 Error  BD 0.133172 0.102704 0.0227494 
 Error  BE 0.281664 0.710704 0.157424 
 Error  CD -0.128458 0.0990083 0.0219307 
 Error  CE 0.0294628 0.00520833 0.00115367 
 Error  DE 0.291898 0.511225 0.113238 
 Error  ABC -0.130639 0.264033 0.0584844 
 Error  ABD 0.067361 0.027225 0.00603044 
 Error  ABE Aliased   
 Error  ACD 0.189835 0.216225 0.0478947 
 Error  ACE Aliased   
 Error  ADE 0.102062 0.0625 0.013844 
 Error  BCD 0.155134 0.1444 0.0319852 
 Error  BCE 0.0898146 0.0484 0.0107208 
 Error  BDE 0.0408248 0.01 0.00221504 
 Error  CDE 0.251073 0.378225 0.0837783 
   Lenth's ME 0.455325   
   Lenth's SME 0.881839   
 
Factors A, B, C, D, and the AB and AC interactions appear to be significant. 
 

DES IG N-EXP ERT  P lo t
y
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Design Expert Output 
 Response: y 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 447.80 6 74.63 346.86 < 0.0001 significant 
 A 50.90 1 50.90 236.54 < 0.0001 
 B 85.92 1 85.92 399.32 < 0.0001 
 C 70.86 1 70.86 329.32 < 0.0001 
 D 27.29 1 27.29 126.81 < 0.0001 
 AB 12.69 1 12.69 58.98 < 0.0001 
 AC 82.85 1 82.85 385.02 < 0.0001 
 Residual 3.66 17 0.22 
 Cor Total 451.46 23 
 
 The Model F-value of 346.86 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.46  R-Squared 0.9919 
 Mean 19.97  Adj R-Squared 0.9890 
 C.V. 2.32  Pred R-Squared 0.9832 
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 PRESS 7.60  Adeq Precision 60.974 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 19.97 1 0.095 19.77 20.17 
  A-A 1.46 1 0.095 1.26 1.66 1.00 
  B-B 2.01 1 0.10 1.79 2.22 1.13 
  C-C -1.82 1 0.10 -2.03 -1.61 1.13 
  D-D 1.07 1 0.095 0.87 1.27 1.00 
  AB 0.77 1 0.10 0.56 0.98 1.12 
  AC -1.97 1 0.10 -2.18 -1.76 1.12 
 
  Final Equation in Terms of Coded Factors: 
 
   y  = 
  +19.97 
  +1.46   * A 
  +2.01   * B 
  -1.82   * C 
  +1.07   * D 
  +0.77   * A * B 
  -1.97   * A * C 
 
  Final Equation in Terms of Actual Factors: 
 
   y  = 
  +19.97458 
  +1.45625   * A 
  +2.00687   * B 
  -1.82250   * C 
  +1.06625   * D 
  +0.77125   * A * B 
  -1.97062   * A * C 
 

DES IG N-EXP ERT  P lo t
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DES IG N-EXP ERT  P lo t
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(b) Analyze the residuals.  Comment on model adequacy. 
 
The residual plots are acceptable.  The normality and equality of variance assumptions are verified.  There 
does not appear to be any trends or interruptions in the residuals versus run order plot. 
 

Res idua l

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Normal plot of residuals

-0 .8 77 0 8 3 -0 .4 61 1 4 6 -0 .0 45 2 0 8 3 0 .3 7 07 2 9 0 .7 8 66 6 7

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

Predicted

R
es

id
ua

ls

Residuals vs. Predicted

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

1 3 .7 9 1 7 .6 1 2 1 .4 3 2 5 .2 5 2 9 .0 7

 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

8-88 

Run Num ber

R
es

id
ua

ls

Residuals vs. Run

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

1 4 7 1 0 1 3 1 6 1 9 2 2

A

R
es

id
ua

ls

Residuals vs. A

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

-1 0 1

 

B

R
es

id
ua

ls

Residuals vs. B

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

-1 0 1

C

R
es

id
ua

ls

Residuals vs. C

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

-1 0 1

 

D

R
es

id
ua

ls

Residuals vs. D

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

-1 0 1

E

R
es

id
ua

ls

Residuals vs. E

-0 .8 77 0 8 3

-0 .4 61 1 4 6

-0 .0 45 2 0 8 3

0 .3 7 07 2 9

0 .7 8 66 6 7

-1 0 1

 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

9-1 

Chapter 9  
Three-Level and Mixed-Level  

Factorial and Fractional Factorial Design 
Solutions 

 
 
9-1 The effects of developer concentration (A) and developer time (B) on the density of photographic 
plate film are being studied.  Three strengths and three times are used, and four replicates of a 32 factorial 
experiment are run.  The data from this experiment follow.  Analyze the data using the standard methods 
for factorial experiments. 
 
   Development Time (minutes)   
 Developer Concentration 10 14 18   
 10% 0 2 1 3 2 5 
  5 4 4 2 4 6 
 12% 4 6 6 8 9 10 
  7 5 7 7 8 5 
 14% 7 10 10 10 12 10 
  8 7 8 7 9 8 
 
Design Expert Output 
Response: Data 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 224.22 8 28.03 10.66 < 0.0001 significant 
 A 198.22 2 99.11 37.69 < 0.0001 
 B 22.72 2 11.36 4.32 0.0236 
 AB 3.28 4 0.82 0.31 0.8677 
 Residual 71.00 27 2.63 
 Lack of Fit 0.000 0 
 Pure Error 71.00 27 2.63 
 Cor Total 295.22 35 
 
 The Model F-value of 10.66 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
Concentration and time are significant.  The interaction is not significant.  By letting both A and B be 
treated as numerical factors, the analysis can be performed as follows: 
 
Design Expert Output 
Response: Data 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 221.01 5 44.20 17.87 < 0.0001 significant 
 A 192.67 1 192.67 77.88 < 0.0001 
 B 22.04 1 22.04 8.91 0.0056 
 A2 5.56 1 5.56 2.25 0.1444 
 B2 0.68 1 0.68 0.28 0.6038 
 AB 0.062 1 0.062 0.025 0.8748 
 Residual 74.22 30 2.47 
 Lack of Fit 3.22 3 1.07 0.41 0.7488 not significant 
 Pure Error 71.00 27 2.63 
 Cor Total 295.22 35 
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 The Model F-value of 17.87 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B are significant model terms.   
 
 
9-2 Compute the I and J components of the two-factor interaction in Problem 9-1. 
 

  B  
 11 10 17 
A 22 28 32 
 32 35 39 

 

AB Totals = 77, 78, 71;  ABISSAB 39.2
36

226
12

717877 2222
 

 

AB2  Totals = 78, 74, 74;  ABJSSAB 89.0
36

226
12

747478 2222

2  

28.3ABJABISSAB  
 
 
9-3 An experiment was performed to study the effect of three different types of 32-ounce bottles (A) and 
three different shelf types (B) -- smooth permanent shelves, end-aisle displays with grilled shelves, and 
beverage coolers -- on the time it takes to stock ten 12-bottle cases on the shelves.  Three workers (factor 
C) were employed in this experiment, and two replicates of a 33 factorial design were run.  The observed 
time data are shown in the following table.  Analyze the data and draw conclusions. 
 
    Replicate I   Replicate 2  
 Worker Bottle Type Permanent EndAisle Cooler Permanent EndAisle Cooler 
 1 Plastic 3.45 4.14 5.80 3.36 4.19 5.23 
  28-mm glass 4.07 4.38 5.48 3.52 4.26 4.85 
  38-mm glass 4.20 4.26 5.67 3.68 4.37 5.58 
 2 Plastic 4.80 5.22 6.21 4.40 4.70 5.88 
  28-mm glass 4.52 5.15 6.25 4.44 4.65 6.20 
  38-mm glass 4.96 5.17 6.03 4.39 4.75 6.38 
 3 Plastic 4.08 3.94 5.14 3.65 4.08 4.49 
  28-mm glass 4.30 4.53 4.99 4.04 4.08 4.59 
  38-mm glass 4.17 4.86 4.85 3.88 4.48 4.90 
 
Design Expert Output 
Response: Time 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 28.38 26 1.09 13.06 < 0.0001 significant 
 A 0.33 2 0.16 1.95 0.1618 
 B 17.91 2 8.95 107.10 < 0.0001 
 C 7.91 2 3.96 47.33 < 0.0001 
 AB 0.11 4 0.027 0.33 0.8583 
 AC 0.11 4 0.027 0.32 0.8638 
 BC 1.59 4 0.40 4.76 0.0049 
 ABC 0.43 8 0.053 0.64 0.7380 
 Residual 2.26 27 0.084 
 Lack of Fit 0.000 0 
 Pure Error 2.26 27 0.084 
 Cor Total 30.64 53 
 
 The Model F-value of 13.06 implies the model is significant.  There is only 
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 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B, C, BC are significant model terms.   
 
Factors B and C, shelf type and worker, and the BC interaction are significant.  For the shortest time 
regardless of worker chose the permanent shelves.  This can easily be seen in the interaction plot below. 
 

DES IG N-EXP ERT  P lo t

T im e

X = C: Wo rke r
Y  = B : Sh e l f T yp e

De sig n  Po in ts

B1  Pe rm a n en t
B2  En d  A isle
B3  Co o le r

Actu al  Fa ctor
A : Bo ttl e  T yp e  = 2 8 m m  g la ss

Shelf Type
Interaction Graph

Worker

Ti
m

e

1 2 3

3 .3 6

4 .1 5 04

4 .9 4 08 1

5 .7 3 12 1

6 .5 2 16 2

 
 
 
9-4 A medical researcher is studying the effect of lidocaine on the enzyme level in the heart muscle of 
beagle dogs.  Three different commercial brands of lidocaine (A), three dosage levels (B), and three dogs 
(C) are used in the experiment, and two replicates of a 33 factorial design are run.  The observed enzyme 
levels follow.  Analyze the data from this experiment. 
 
    Replicate I   Replicate 2  
 Lidocaine Dosage  Dog   Dog  
 Brand Strength 1 2 3 1 2 3 
 1 1 86 84 85 84 85 86 
  2 94 99 98 95 97 90 
  3 101 106 98 105 104 103 
 2 1 85 84 86 80 82 84 
  2 95 98 97 93 99 95 
  3 108 114 109 110 102 100 
 3 1 84 83 81 83 80 79 
  2 95 97 93 92 96 93 
  3 105 100 106 102 111 108 
 
Design Expert Output 
Response: Enzyme Level 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 4490.33 26 172.71 16.99 < 0.0001 significant 
 A 31.00 2 15.50 1.52 0.2359 
 B 4260.78 2 2130.39 209.55 < 0.0001 
 C 28.00 2 14.00 1.38 0.2695 
 AB 69.56 4 17.39 1.71 0.1768 
 AC 3.33 4 0.83 0.082 0.9872 
 BC 36.89 4 9.22 0.91 0.4738 
 ABC 60.78 8 7.60 0.75 0.6502 
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 Residual 274.50 27 10.17 
 Lack of Fit 0.000 0 
 Pure Error 274.50 27 10.17 
 Cor Total 4764.83 53 
 
 The Model F-value of 16.99 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B are significant model terms.   
 
The dosage is significant. 
 
 
9-5 Compute the I and J components of the two-factor interactions for Example 9-1. 
 

  A  
 134 188 44 

B -155 -348 -289 
 176 127 288 

 
I totals = 74,75,16          J totals = -128,321,-28 

I(AB) = 126.78          J(AB) = 6174.12 
SSAB = 6300.90 

 
  A  

 -190 -58 -211 
C 399 230 394 

 6 -205 -140 
 

I totals = -100,342,-77         J totals = 25,141,-1 
I(AC) = 6878.78         J(AC) = 635.12 

SSAC = 7513.90 
 

  B  
 -93 -350 -16 

C -155 -133 533 
 -104 -309 74 

 
I totals = -152,79,238          J totals =-253,287,131 

I(BC) = 4273.00     J(BC) = 8581.34 
SSBC = 12854.34 

 
 
9-6 An experiment is run in a chemical process using a 32 factorial design.  The design factors are 
temperature and pressure, and the response variable is yield.  The data that result from this experiment are 
shown below. 
   Pressure, psig 
 Temperature, C 100 120 140  
 80 47.58, 48.77 64.97, 69.22 80.92, 72.60 
 90 51.86, 82.43 88.47, 84.23 93.95, 88.54 
 100 71.18, 92.77 96.57, 88.72 76.58, 83.04 
 
(a) Analyze the data from this experiment by conducting an analysis of variance.  What conclusions can 

you draw? 
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Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3187.13 8 398.39 4.37 0.0205 significant 
 A 1096.93 2 548.47 6.02 0.0219 
 B 1503.56 2 751.78 8.25 0.0092 
 AB  586.64 4 146.66 1.61 0.2536 
 Pure Error  819.98 9 91.11 
 Cor Total 4007.10 17 
 
The Model F-value of 4.37 implies the model is significant.  There is only 
a 2.05% chance that a "Model F-Value" this large could occur due to noise. 
 
Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
In this case A, B are significant model terms.   
 
Temperature and pressure are significant.  Their interaction is not.  An alternate analysis is performed 
below with the A and B treated as numeric factors: 
 
Design Expert Output 
Response: Yield 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3073.27 5 614.65 7.90 0.0017 significant 
 A 850.76 1 850.76 10.93 0.0063 
 B 1297.92 1 1297.92 16.68 0.0015 
 A2 246.18 1 246.18 3.16 0.1006 
 B2 205.64 1 205.64 2.64 0.1300 
 AB 472.78 1 472.78 6.08 0.0298 
 Residual 933.83 12 77.82 
 Lack of Fit 113.86 3 37.95 0.42 0.7454 not significant 
 Pure Error 819.98 9 91.11 
 Cor Total 4007.10 17 
  
 The Model F-value of 7.90 implies the model is significant.  There is only 
 a 0.17% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, AB are significant model terms.   
 
(b) Graphically analyze the residuals.  Are there any concerns about underlying assumptions or model 

adequacy? 
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The plot of residuals versus pressure shows a decreasing funnel shape indicating a non-constant variance. 
 
(c) Verify that if we let the low, medium and high levels of both factors in this experiment take on the 

levels -1, 0, and +1, then a least squares fit to a second order model for yield is 
 

. . . . . .y x x x x x x86 81 10 4 8 42 7 17 7 86 7 691 2 1
2

2
2

1 2  
 

The coefficients can be found in the following table of computer output. 
 
Design Expert Output 
Final Equation in Terms of Coded Factors: 
 
  Yield  = 
   +86.81 
   +8.42   * A 
   +10.40   * B 
   -7.84   * A2 
   -7.17   * B2 
   -7.69   * A * B 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

9-7 

 
(d) Confirm that the model in part (c) can be written in terms of the natural variables temperature (T) and 

pressure (P) as 
 

. . . . . .y T P T P TP1335 63 18 56 8 59 0 072 0 0196 0 03842 2  
 
The coefficients can be found in the following table of computer output. 
 
Design Expert Output 
 Final Equation in Terms of Actual Factors: 
 
   Yield  = 
     -1335.62500 
  +8.58737   * Pressure 
  +18.55850   * Temperature 
  -0.019612   * Pressure2 
  -0.071700   * Temperature2 
  -0.038437   * Pressure * Temperature 
 
(e) Construct a contour plot for yield as a function of pressure and temperature.  Based on the 

examination of this plot, where would you recommend running the process. 
 

Yield

A: Pres s ure

B
: T

em
pe

ra
tu

re

1 0 0 .0 0 1 1 0 .0 0 1 2 0 .0 0 1 3 0 .0 0 1 4 0 .0 0

8 0 .0 0

8 5 .0 0

9 0 .0 0

9 5 .0 0

1 0 0 .0 0

50

55
60

65 70

75

80

85

85

90

2 2 2

2 2 2

2 2 2

 
 

Run the process in the oval region indicated by the yield of 90. 
 
 
9-7 
 
(a) Confound a 33 design in three blocks using the ABC2 component of the three-factor interaction.  

Compare your results with the design in Figure 9-7. 
 

L = X1 + X2 + 2X3 
 

Block 1 Block 2 Block 3 
000 100 200 
112 212 012 
210 010 110 
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120 220 020 
022 122 222 
202 002 102 
221 021 121 
101 201 001 
011 111 211 

 
The new design is a 180  rotation around the Factor B axis. 
 
(b) Confound a 33 design in three blocks using the AB2C component of the three-factor interaction.  

Compare your results with the design in Figure 9-7. 
 

L = X1 + 2X2 + X3 
 

Block 1 Block 2 Block 3 
000 210 112 
022 202 120 
011 221 101 
212 100 010 
220 122 002 
201 111 021 
110 012 200 
102 020 222 
121 001 211 

 
The new design is a 180  rotation around the Factor C axis. 
 
(c) Confound a 33 design three blocks using the ABC component of the three-factor interaction.  

Compare your results with the design in Figure 9-7. 
 

L = X1 + X2 + X3 
 

Block 1 Block 2 Block 3 
000 112 221 
210 022 101 
120 202 011 
021 100 212 
201 010 122 
111 220 002 
012 121 200 
222 001 110 
102 211 020 

 
The new design is a 90  rotation around the Factor C axis along with switching layer 0 and layer 1 in the 
C axis. 
 
(d) After looking at the designs in parts (a), (b), and (c) and Figure 9-7, what conclusions can you draw? 
 
All four designs are relatively the same.  The only differences are rotations and swapping of layers. 
 
 
9-8 Confound a 34 design in three blocks using the AB2CD component of the four-factor interaction. 
 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

9-9 

L = X1 + 2X2 + X3 + X4 
 

    Block 1     
0000 1100 0110 0101 2200 0220 0202 1210 1201 
0211 1222 2212 2221 0122 2111 1121 1112 2010 
2102 0021 2001 2120 1011 2022 0012 1002 1020 

 
    Block 2     

1021 1110 1202 0001 0120 0212 1012 1101 1220 
0200 0022 0111 2002 2121 2210 0010 0102 0221 
1000 1122 1211 2112 2201 2020 2011 2100 2222 

 
    Block 3     

2012 2101 2220 1022 1111 1200 2000 2121 2211 
1221 1010 1102 0020 0112 0201 1001 1120 1212 
2021 2110 2202 0100 0222 0011 0002 0121 0210 

 
 
9-9 Consider the data from the first replicate of Problem 9-3.  Assuming that all 27 observations could 
not be run on the same day, set up a design for conducting the experiment over three days with AB2C 
confounded with blocks.  Analyze the data. 
 

 Block 1   Block 2   Block 3  
000 = 3.45 100 = 4.07 200 = 4.20 
110 = 4.38 210 = 4.26 010 = 4.14 
011 = 5.22 111 = 4.14 211 = 5.17 
102 = 4.30 202 = 4.17 002 = 4.08 
201 = 4.96 001 = 4.80 101 = 4.52 
212 = 4.86 012 = 3.94 112 = 4.53 
121 = 6.25 221 = 4.99 021 = 6.21 
022 = 5.14 122 = 6.03 222 = 4.85 
220 = 5.67 020 = 5.80 120 = 5.48 

Totals-> = 44.23   43.21   43.18 
 
Design Expert Output 
 Response: Time 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.23 2 0.11 
 Model 13.17 18 0.73 4.27 0.0404 significant 
 A 0.048 2 0.024 0.14 0.8723 
 B 8.92 2 4.46 26.02 0.0011 
 C 1.57 2 0.78 4.57 0.0622 
 AB 1.31 4 0.33 1.91 0.2284 
 AC 0.87 4 0.22 1.27 0.3774 
 BC 0.45 4 0.11 0.66 0.6410 
 Residual 1.03 6 0.17 
 Cor Total 14.43 26 
 
 The Model F-value of 4.27 implies the model is significant.  There is only 
 a 4.04% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case B are significant model terms.   
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9-10 Outline the analysis of variance table for the 34 design in nine blocks.  Is this a practical design? 
 

Source DF 
A 2 
B 2 
C 2 
D 2 
AB 4 
AC 4 
AD 4 
BC 4 
BD 4 
CD 4 
ABC (AB2C,ABC2,AB2C2) 6 
ABD (ABD,AB2D,ABD2) 6 
ACD (ACD,ACD2,AC2D2) 6 
BCD (BCD,BC2D,BCD2) 6 
ABCD 16 
Blocks (ABC,AB2C2,AC2D,BC2D2) 8 
Total 80 

 
Any experiment with 81 runs is large. Instead of having three full levels of each factor, if two levels of 
each factor could be used, then the overall design would have 16 runs plus some center points.  This two-
level design could now probably be run in 2 or 4 blocks, with center points in each block.  Additional 
curvature effects could be determined by augmenting the experiment with the axial points of a central 
composite design and additional enter points.  The overall design would be less than 81 runs. 
 
 
9-11 Consider the data in Problem 9-3.  If ABC is confounded in replicate I and ABC2 is confounded in 
replicate II, perform the analysis of variance. 
 
 L1 = X1 + X2 + X3  L2 = X1 + X2 + 2X2   
 Block 1    Block 2    Block 3    Block 1    Block 2    Block 3  
000 = 3.45  001 = 4.80  002 = 4.08  000 = 3.36  100 = 3.52  200 = 3.68 
111 = 5.15  112 = 4.53  110 = 4.38  101 = 4.44  201 = 4.39  001 = 4.40 
222 = 4.85  220 = 5.67  221 = 6.03  011 = 4.70  111 = 4.65  211 = 4.75 
120 = 5.48  121 = 6.25  122 = 4.99  221 = 6.38  021 = 5.88  121 = 6.20 
102 = 4.30  100 = 4.07  101 = 4.52  202 = 3.88  002 = 3.65  102 = 4.04 
210 = 4.26  211 = 5.17  212 = 4.86  022 = 4.49  122 = 4.59  222 = 4.90 
201 = 4.96  202 = 4.17  200 = 4.20  120 = 4.85  220 = 5.58  020 = 5.23 
012 = 3.94  010 = 4.14  011 = 5.22  210 = 4.37  010 = 4.19  110 = 4.26 
021 = 6.21  022 = 5.14  020 = 5.80  112 = 4.08  212 = 4.48  012 = 4.08 
 
The sums of squares for A, B, C, AB, AC, and BC are calculated as usual.  The only sums of squares 
presenting difficulties with calculations are the four components of the ABC interaction (ABC, ABC2, 
AB2C, and AB2C2).  ABC is computed using replicate I and ABC2 is computed using replicate II.  AB2C 
and AB2C2 are computed using data from both replicates. 
 
We will show how to calculate AB2C and AB2C2 from both replicates.  Form a two-way table of A x B at 
each level of C.  Find the I(AB) and J(AB) totals for each third of the A x B table. 
 

   A     
C B 0 1 2  I J 
 0 6.81 7.59 7.88  26.70 27.55 
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0 1 8.33 8.64 8.63  27.25 27.17 
 2 11.03 10.33 11.25  26.54 25.77 
 0 9.20 8.96 9.35  31.41 31.25 
1 1 9.92 9.80 9.92  30.97 31.29 
 2 12.09 12.45 12.41  31.72 31.57 
 0 7.73 8.34 8.05  26.09 26.29 
2 1 8.02 8.61 9.34  27.31 26.11 
 2 9.63 9.58 9.75  25.65 26.65 

 
The I and J components for each third of the above table are used to form a new table of diagonal totals. 
 

C  I(AB)   J(AB)  
0 2.670 27.25 26.54 27.55 27.17 25.77 
1 31.41 30.97 31.72 31.25 31.29 31.57 
2 26.09 27.31 25.65 26.29 26.11 26.65 

 
 I Totals: I Totals: 
 85.06,85.26,83.32   85.99,85.03,83.12 
 
 J Totals: J Totals: 
 85.73,83.60,84.31 83.35,85.06,85.23 
 

Now, AB2C2 = I[C x I(AB)] = (85. ) (85. ) (83. ) ( . ) .06 26 32
18

25364
54

01265
2 2 2 2

 

and, AB2C = J[C x I(AB)]= (85. ) (83. ) (84. ) ( . ) .73 60 31
18

25364
54

01307
2 2 2 2

 

 
If it were necessary, we could find ABC2 as ABC2= I[C x J(AB)] and ABC as  J[C x J(AB)].  However, 
these components must be computed using the data from the appropriate replicate.   
 
The analysis of variance table: 
 

Source SS DF MS F0 
Replicates 1.06696 1   
Blocks within Replicates 0.2038 4   
A 0.4104 2 0.2052 5.02 
B 17.7514 2 8.8757 217.0 
C 7.6631 2 3.8316 93.68 
AB 0.1161 4 0.0290 <1 
AC 0.1093 4 0.0273 <1 
BC 1.6790 4 0.4198 10.26 
ABC (rep I) 0.0452 2 0.0226 <1 
ABC2 (rep II) 0.1020 2 0.0510 1.25 
AB2C 0.1307 2 0.0754 1.60 
AB2C2 0.1265 2 0.0633 1.55 
Error 0.8998 22 0.0409  
Total 30.3069 53   

 
 
9-12 Consider the data from replicate I in Problem 9-3.  Suppose that only a one-third fraction of this 
design with I=ABC is run.  Construct the design, determine the alias structure, and analyze the design. 
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The design is 000, 012, 021, 102, 201, 111, 120, 210, 222. 
 
The alias structure is:  A = BC = AB2C2 
 B = AC = AB2C 
 C = AB = ABC2 
 AB2 = AC2 = BC2 
 

   C  
A B 0 1 2 
 0 3.45   
0 1   5.48 
 2  4.26  
 0   6.21 
1 1  5.15  
 2 4.96   
 0  3.94  
2 1 4.30   
 2   4.85 

 
 

Source SS DF 
A 2.25 2 
B 0.30 2 
C 2.81 2 
AB2 0.30 2 
Total 5.66 8 

 
 
9-13 From examining Figure 9-9, what type of design would remain if after completing the first 9 runs, 
one of the three factors could be dropped? 
 
A full 32 factorial design results. 
 
 
9-14 Construct a 34 1

IV  design with I=ABCD.  Write out the alias structure for this design. 
 
The 27 runs for this design are as follows: 
 

0000 1002 2001 
0012 1011 2010 
0021 1020 2022 
0102 1101 2100 
0111 1110 2112 
0120 1122 2121 
0201 1200 2202 
0210 1212 2211 
0222 1221 2220 

 
A = AB2C2D2 = BCD B = AB2CD = ACD C = ABC2D = ABD D = ABCD2 = ABC 
AB = ABC2D2 = CD AB2 = AC2D2 = BC2D2 AC = AB2CD2 = BD AC2 = AB2D2 = BC2D 
BC = AB2C2D = AD BC2 = AB2D = AC2D BD2 = AB2C = ACD2 CD2 = ABC2 = ABCD2 
AD2 = AB2C2 = BCD2 
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9-15 Verify that the design in Problem 9-14 is a resolution IV design. 
 
The design in Problem 9-14 is a Resolution IV design because no main effect is aliased with a component 
of a two-factor interaction, but some two-factor interaction components  are aliased with each other. 
 
 
9-16 Construct a 35-2 design with I=ABC and I=CDE.  Write out the alias structure for this design. What 
is the resolution of this design? 
 
The complete defining relation for this design is :  I = ABC = CDE = ABC2DE = ABD2E2 
This is a resolution III design.  The defining contrasts are L1 = X1 + X2 + X3 and L2 = X3 + X4 + X5. 
 

00000 11120 20111 
00012 22111 22222 
00022 21021 01210 
01200 02111 12000 
02100 01222 20120 
10202 12012 11111 
20101 02120 22201 
11102 10210 21012 
21200 12021 10222 

 
To find the alias of any effect, multiply the effect by I and I2.  For example, the alias of A is: 
 
A = AB2C2 = ACDE = AB2CDE = AB2DE = BC = AC2D2E2 = BC2DE = BD2E2 
 
 
9-17 Construct a 39-6 design, and verify that is a resolution III design. 
 
Use the generators I = AC2D2, I = AB2C2E, I = BC2F2, I = AB2CG, I = ABCH2, and I = ABJ2 
 

000000000 021201102 102211001 
022110012 212012020 001212210 
011220021 100120211 211100110 
221111221 122200220 020022222 
210221200 010011111 222020101 
202001212 201122002 200210122 
112222112 002121120 121021010 
101002121 111010202 110101022 
120112100 220202011 012102201 

 
To find the alias of any effect, multiply the effect by I and I2.  For example, the alias of C is: 
 
C = C(BC2F2) = BF2,  At least one main effect is aliased with a component of a two-factor interaction. 
 
 
9-18  Construct a 4 x 23 design confounded in two blocks of 16 observations each.  Outline the analysis of 
variance for this design. 
 
Design is a 4 x 23, with ABC at two levels, and Z at 4 levels.  Represent Z with two pseudo-factors D and 
E as follows: 
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Factor Pseudo- Factors 

Z D E 
Z1 0 0 = (1) 
Z2 1 0 = d 
Z3 0 1 = e 
Z4 1 1 = de 

 
The 4 x 23 is now a 25 in the factors A, B, C, D and E.  Confound ABCDE with blocks.  We have given 
both the letter notation and the digital notation for the treatment combinations. 
 

 Block 1    Block 2  
(1) = 000  a = 1000 
ab = 1100  b = 0100 
ac = 1010  c = 0010 
bc = 0110  abc = 1110 
abcd = 1111  bcd = 0111 
abce = 1112  bce = 0112 
cd = 0011  acd = 1011 
ce = 0012  ace = 1012 
de = 0003  ade = 1003 
abde = 1103  bde = 0103 
bcde = 0113  abcde = 1113 
be = 0102  abd = 1101 
ad = 1001  abe = 1102 
ae = 1002  d = 0001 
acde = 1013  e = 0002 
bd = 0101  cde = 0013 

 
Source DF 
A 1 
B 1 
C 1 
Z (D+E+DE) 3 
AB 1 
AC 1 
AZ (AD+AE+ADE) 3 
BC 1 
BZ (BD+BE+BDE) 3 
CZ (CD+CE+CDE) 3 
ABC 1 
ABZ (ABD+ABE+ABDE) 3 
ACZ (ACD+ACE+ACDE) 3 
BCZ (BCD+BCE+BCDE) 3 
ABCZ (ABCD+ABCE) 2 
Blocks (or ABCDE) 1 
Total 31 

 
 
9-19 Outline the analysis of variance table for a 2232 factorial design.  Discuss how this design may be 
confounded in blocks. 
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Suppose we have n replicates of a 2232 factorial design.  A and B are at 2 levels, and C and D are at 3 
levels.   
 

Source DF Components for Confounding 
A 1 A 
B 1 B 
C 2 C 
D 2 D 
AB 1 AB 
AC 2 AC 
AD 2 AD 
BC 2 BD 
BD 2 CD,CD2 
CD 4 ABC 
ABC 2 ABD 
ABD 2 ACD,ACD2 
ACD 4 BCD,BCD2 
BCD 4 ABCD,ABCD2 

ABCD 4  
Error 36(n-1)  
Total 36n-1  

 
Confounding in this series of designs is discussed extensively by Margolin (1967).  The possibilities for a 
single replicate of the 2232 design are: 
 
 2 blocks of 18 observations 6 blocks of 6 observations 
 3 blocks of 12 observations 9 blocks of 4 observations 
 4 blocks of 9 observations  
 
For example, one component of the four-factor interaction, say ABCD2, could be selected to confound the 
design in 3 blocks for 12 observations each, while to confound the design in 2 blocks of 18 observations 3 
each we would select the AB interaction.  Cochran and Cox (1957) and Anderson and McLean (1974) 
discuss confounding in these designs. 
 
 
9-20 Starting with a 16-run 24 design, show how two three-level factors can be incorporated in this 
experiment.  How many two-level factors can be included if we want some information on two-factor 
interactions? 
 
Use column A and B for one three-level factor and columns C and D for the other.  Use the AC and BD 
columns for the two, two-level factors.  The design will be of resolution V. 
 
 
9-21 Starting with a 16-run 24 design, show how one three-level factor and three two-level factors can be 
accommodated and still allow the estimation of two-factor interactions. 
 
Use columns A and B for the three-level factor, and columns C and D and ABCD for the three two-level 
factors.  This design will be of resolution V.   
 
 
9-22 In Problem 9-26, you met Harry and Judy Peterson-Nedry, two friends of the author who have a 
winery and vineyard in Newberg, Oregon.  That problem described the application of two-level fractional 
factorial designs to their 1985 Pinor Noir product.  In 1987, they wanted to conduct another Pinot Noir 
experiment.  The variables for this experiment were 
 
 Variable Levels 
 Clone of Pinot Noir Wadenswil, Pommard 
 Berry Size Small, Large 
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 Fermentation temperature 80F, 85F, 90/80F, 90F 
 Whole Berry None, 10% 
 Maceration Time 10 days, 21 days 
 Yeast Type Assmanhau, Champagne 
 Oak Type Troncais, Allier 
 
Harry and Judy decided to use a 16-run two-level fractional factorial design, treating the four levels of 
fermentation temperature as two two-level variables.  As in Problem 8-26, they used the rankings from a 
taste-test panel as the response variable.  The design and the resulting average ranks are shown below: 
 
   Berry Ferm. Whole Macer. Yeast Oak Average 
 Run Clone Size Temp. Berry Time Type Type Rank  
 1 - - - - - - - - 4 
 2 + - - - - + + + 10 
 3 - + - - + - + + 6 
 4 + + - - + + - - 9 
 5 - - + - + + + - 11 
 6 + - + - + - - + 1 
 7 - + + - - + - + 15 
 8 + + + - - - + - 5 
 9 - - - + + + - + 12 
 10 + - - + + - + - 2 
 11 - + - + - + + - 16 
 12 + + - + - - - + 3 
 13 - - + + - - + + 8 
 14 + - + + - + - - 14 
 15 - + + + + - - - 7 
 16 + + + + + + + + 13 
  
(a) Describe the aliasing in this design. 
 
The design is a resolution IV design such that the main effects are aliased with three factor interactions. 
 
Design Expert Output 
 Term Aliases 
 Intercept ABCG ABDH ABEF ACDF ACEH ADEG AFGH BCDE BCFH BDFG BEGH CDGH CEFG DEFH 
 A BCG BDH BEF CDF CEH DEG FGH ABCDE 
 B ACG ADH AEF CDE CFH DFG EGH 
 C ABG ADF AEH BDE BFH DGH EFG 
 D ABH ACF AEG BCE BFG CGH EFH 
 E ABF ACH ADG BCD BGH CFG DFH 
 F ABE ACD AGH BCH BDG CEG DEH 
 G ABC ADE AFH BDF BEH CDH CEF 
 H ABD ACE AFG BCF BEG CDG DEF 
 AB CG DH EF ACDE ACFH ADFG AEGH BCDF BCEH BDEG BFGH 
 AC BG DF EH ABDE ABFH ADGH AEFG BCDH BCEF CDEG CFGH 
 AD BH CF EG ABCE ABFG ACGH AEFH BCDG BDEF CDEH DFGH 
 AE BF CH DG ABCD ABGH ACFG ADFH BCEG BDEH CDEF EFGH 
 AF BE CD GH ABCH ABDG ACEG ADEH BCFG BDFH CEFH DEFG 
 AG BC DE FH ABDF ABEH ACDH ACEF BDGH BEFG CDFG CEGH 
 AH BD CE FG ABCF ABEG ACDG ADEF BCGH BEFH CDFH DEGH 
 
(b) Analyze the data and draw conclusions. 
 
All of the main effects except Yeast and Oak are significant.  The Macer Time is the most significant.  
None of the interactions were significant. 
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DES IG N-EXP ERT  P lo t
Ra n k

A : Clo n e
B : Be rry S ize
C: Fe rm  T e m p  1
D: Fe rm  T e m p  2
E : Wh o le B erry
F: M ace r T im e
G: Y ea st
H: O ak

Normal plot
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lit
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Effect

-2 .7 5 -0 .0 6 2 .6 3 5 .3 1 8 .0 0

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

A

B
C
D

E

F

 
 

Design Expert Output 
 Response: Rank 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 328.75 6 54.79 43.83 < 0.0001 significant 
 A 30.25 1 30.25 24.20 0.0008 
 B 9.00 1 9.00 7.20 0.0251 
 C 9.00 1 9.00 7.20 0.0251 
 D 12.25 1 12.25 9.80 0.0121 
 E 12.25 1 12.25 9.80 0.0121 
 F 256.00 1 256.00 204.80 < 0.0001 
 Residual 11.25 9 1.25 
 Cor Total 340.00 15 
 
 The Model F-value of 43.83 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.12  R-Squared 0.9669 
 Mean 8.50  Adj R-Squared 0.9449 
 C.V. 13.15  Pred R-Squared 0.8954 
 PRESS 35.56  Adeq Precision 19.270 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 8.50 1 0.28 7.87 9.13 
  A-Clone -1.38 1 0.28 -2.01 -0.74 1.00 
  B-Berry Size 0.75 1 0.28 0.12 1.38 1.00 
  C-Ferm Temp 1 0.75 1 0.28 0.12 1.38 1.00 
  D-Ferm Temp 2 0.88 1 0.28 0.24 1.51 1.00 
  E-Whole Berry -0.87 1 0.28 -1.51 -0.24 1.00 
  F-Macer Time 4.00 1 0.28 3.37 4.63 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Rank  = 
  +8.50 
  -1.38   * A 
  +0.75   * B 
  +0.75   * C 
  +0.88   * D 
  -0.87   * E 
  +4.00   * F 
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(c) What comparisons can you make between this experiment and the 1985 Pinot Noir experiment from 
Problem 8-26? 

 
The experiment from Problem 8-26 indicates that yeast, barrel, whole cluster and the clone x yeast 
interactions were significant.  This experiment indicates that maceration time, whole berry, clone and 
fermentation temperature are significant. 
 
 
9-23 An article by W.D. Baten in the 1956 volume of Industrial Quality Control described an 
experiment to study the effect of three factors on the lengths of steel bars.  Each bar was subjected to one 
of two heat treatment processes, and was cut on one of four machines at one of three times during the day 
(8 am, 11 am, or 3 pm).  The coded length data are shown below 
 
(a) Analyze the data from this experiment assuming that the four observations in each cell are replicates. 
 
The Machine effect (C) is significant, the Heat Treat Process (B) is also significant, while the Time of Day 
(A) is not significant.  None of the interactions are significant. 
 

 
Design Expert Output 
 Response: Length 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 590.33 23 25.67 4.13 < 0.0001 significant 
 A 26.27 2 13.14 2.11 0.1283 
 B 42.67 1 42.67 6.86 0.0107 
 C 393.42 3 131.14 21.10 < 0.0001 
 AB 23.77 2 11.89 1.91 0.1552 
 AC 42.15 6 7.02 1.13 0.3537 
 BC 13.08 3 4.36 0.70 0.5541 
 ABC 48.98 6 8.16 1.31 0.2623 
 Pure Error 447.50 72 6.22 
 Cor Total 1037.83 95 
 
 The Model F-value of 4.13 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.49  R-Squared 0.5688 
 Mean 3.96  Adj R-Squared 0.4311 

Time of 
Day

Heat Treat 
Process

6 9 7 9 1 2 6 6
1 3 5 5 0 4 7 3
4 6 6 5 -1 0 4 5
0 1 3 4 0 1 5 4
6 3 8 7 3 2 7 9
1 -1 4 8 1 0 11 6
3 1 6 4 2 0 9 4
1 -2 1 3 -1 1 6 3
5 4 10 11 -1 2 10 5
9 6 6 4 6 1 4 8
6 0 8 7 0 -2 4 3
3 7 10 0 4 -4 7 0

3 4

Machine

2

1

2

8am

11 am

3 pm

1

2

1

1 2
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 C.V. 62.98  Pred R-Squared 0.2334 
 PRESS 795.56  Adeq Precision 7.020 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High VIF 
  Intercept 3.96 1 0.25 3.45 4.47 
  A[1] 0.010 1 0.36 -0.71 0.73 
  A[2] -0.65 1 0.36 -1.36 0.071 
  B-Process -0.67 1 0.25 -1.17 -0.16 1.00 
  C[1] -0.54 1 0.44 -1.42 0.34 
  C[2] 1.92 1 0.44 1.04 2.80 
  C[3] -3.08 1 0.44 -3.96 -2.20 
  A[1]B 0.010 1 0.36 -0.71 0.73 
  A[2]B 0.60 1 0.36 -0.11 1.32 
  A[1]C[1] 0.32 1 0.62 -0.92 1.57 
  A[2]C[1] -1.27 1 0.62 -2.51 -0.028 
  A[1]C[2] -0.39 1 0.62 -1.63 0.86 
  A[2]C[2] -0.10 1 0.62 -1.35 1.14 
  A[1]C[3] 0.24 1 0.62 -1.00 1.48 
  A[2]C[3] 0.77 1 0.62 -0.47 2.01 
  BC[1] -0.25 1 0.44 -1.13 0.63 
  BC[2] -0.46 1 0.44 -1.34 0.42 
  BC[3] 0.46 1 0.44 -0.42 1.34 
  A[1]BC[1] -0.094 1 0.62 -1.34 1.15 
  A[2]BC[1] -0.44 1 0.62 -1.68 0.80 
  A[1]BC[2] 0.11 1 0.62 -1.13 1.36 
  A[2]BC[2] -1.10 1 0.62 -2.35 0.14 
  A[1]BC[3] -0.43 1 0.62 -1.67 0.82 
  A[2]BC[3] 0.60 1 0.62 -0.64 1.85 
 
  Final Equation in Terms of Coded Factors: 
 
   Length  = 
  +3.96 
  +0.010   * A[1] 
  -0.65   * A[2] 
  -0.67   * B 
  -0.54   * C[1] 
  +1.92   * C[2] 
  -3.08   * C[3] 
  +0.010   * A[1]B 
  +0.60   * A[2]B 
  +0.32   * A[1]C[1] 
  -1.27   * A[2]C[1] 
  -0.39   * A[1]C[2] 
  -0.10   * A[2]C[2] 
  +0.24   * A[1]C[3] 
  +0.77   * A[2]C[3] 
  -0.25   * BC[1] 
  -0.46   * BC[2] 
  +0.46   * BC[3] 
  -0.094   * A[1]BC[1] 
  -0.44   * A[2]BC[1] 
  +0.11   * A[1]BC[2] 
  -1.10   * A[2]BC[2] 
  -0.43   * A[1]BC[3] 
  +0.60   * A[2]BC[3] 
 
(b) Analyze the residuals from this experiment.  Is there any indication that there is an outlier in one 

cell?  If you find an outlier, remove it and repeat the analysis from part (a).  What are your 
conclusions? 

 
Standard Order 84, Time of Day at 3:00pm, Heat Treat #2, Machine #2, and length of 0, appears to be an 
outlier. 
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The following analysis was performed with the outlier described above removed.  As with the original 
analysis, Machine is significant and Heat Treat Process is also significant, but now Time of Day, factor A, 
is also significant with an F-value of 3.05 (the P-value is just above 0.05). 
 
Design Expert Output 
 Response: Length 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 626.58 23 27.24 4.89 < 0.0001 significant 
 A 34.03 2 17.02 3.06 0.0533 
 B 33.06 1 33.06 5.94 0.0173 
 C 411.89 3 137.30 24.65 < 0.0001 
 AB 16.41 2 8.20 1.47 0.2361 
 AC 50.19 6 8.37 1.50 0.1900 
 BC 8.38 3 2.79 0.50 0.6824 
 ABC 67.00 6 11.17 2.01 0.0762 
 Pure Error 395.42 71 5.57 
 Cor Total 1022.00 94 
 
 The Model F-value of 4.89 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.36  R-Squared 0.6131 
 Mean 4.00  Adj R-Squared 0.4878 
 C.V. 59.00  Pred R-Squared 0.3100 
 PRESS 705.17  Adeq Precision 7.447 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High VIF 
  Intercept 4.05 1 0.24 3.z56 4.53 
  A[1] -0.076 1 0.34 -0.76 0.61 
  A[2] -0.73 1 0.34 -1.41 -0.051 
  B-Process -0.58 1 0.24 -1.06 -0.096 1.00 
  C[1] -0.63 1 0.42 -1.46 0.21 
  C[2] 2.18 1 0.43 1.33 3.03 
  C[3] -3.17 1 0.42 -4.00 -2.34 
  A[1]B -0.076 1 0.34 -0.76 0.61 
  A[2]B 0.52 1 0.34 -0.16 1.20 
  A[1]C[1] 0.41 1 0.59 -0.77 1.59 
  A[2]C[1] -1.18 1 0.59 -2.36 -6.278E-003 
  A[1]C[2] -0.65 1 0.60 -1.83 0.54 
  A[2]C[2] -0.36 1 0.60 -1.55 0.82 
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  A[1]C[3] 0.33 1 0.59 -0.85 1.50 
  A[2]C[3] 0.86 1 0.59 -0.32 2.04 
  BC[1] -0.34 1 0.42 -1.17 0.50 
  BC[2] -0.20 1 0.43 -1.05 0.65 
  BC[3] 0.37 1 0.42 -0.46 1.21 
  A[1]BC[1] -6.944E-003 1 0.59 -1.18 1.17 
  A[2]BC[1] -0.35 1 0.59 -1.53 0.83 
  A[1]BC[2] -0.15 1 0.60 -1.33 1.04 
  A[2]BC[2] -1.36 1 0.60 -2.55 -0.18 
  A[1]BC[3] -0.34 1 0.59 -1.52 0.84 
  A[2]BC[3] 0.69 1 0.59 -0.49 1.87 
 
  Final Equation in Terms of Coded Factors: 
 
   Length  = 
  +4.05 
  -0.076   * A[1] 
  -0.73   * A[2] 
  -0.58   * B 
  -0.63   * C[1] 
  +2.18   * C[2] 
  -3.17   * C[3] 
  -0.076   * A[1]B 
  +0.52   * A[2]B 
  +0.41   * A[1]C[1] 
  -1.18   * A[2]C[1] 
  -0.65   * A[1]C[2] 
  -0.36   * A[2]C[2] 
  +0.33   * A[1]C[3] 
  +0.86   * A[2]C[3] 
  -0.34   * BC[1] 
  -0.20   * BC[2] 
  +0.37   * BC[3] 
  -6.944E-003   * A[1]BC[1] 
  -0.35   * A[2]BC[1] 
  -0.15   * A[1]BC[2] 
  -1.36   * A[2]BC[2] 
  -0.34   * A[1]BC[3] 
  +0.69   * A[2]BC[3] 
 
The following residual plots are acceptable.  Both the normality and constant variance assumptions are 
satisfied 
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(c) Suppose that the observations in the cells are the lengths (coded) of bars processed together in heat 
treating and then cut sequentially (that is, in order) on the three machines.  Analyze the data to 
determine the effects of the three factors on mean length. 

 
The analysis with all effects and interactions included: 
 
Design Expert Output 
 Response: Length 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 147.58 23 6.42 
 A 6.57 2 3.28   
 B 10.67 1 10.67   
 C 98.35 3 32.78   
 AB 5.94 2 2.97   
 AC 10.54 6 1.76   
 BC 3.27 3 1.09   
 ABC 12.24 6 2.04   
 Pure Error 0.000 0  
 Cor Total 147.58 23 
 
The by removing the three factor interaction from the model and applying it to the error, the analysis 
identifies factor C as being significant and B as being mildly significant. 
 
Design Expert Output 
 Response: Length 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 135.34 17 7.96 3.90 0.0502 not significant 
 A 6.57 2 3.28 1.61 0.2757 
 B 10.67 1 10.67 5.23 0.0623 
 C 98.35 3 32.78 16.06 0.0028 
 AB 5.94 2 2.97 1.46 0.3052 
 AC 10.54 6 1.76 0.86 0.5700 
 BC 3.27 3 1.09 0.53 0.6756 
 Residual 12.24 6 2.04 
 Cor Total 147.58 23 
 
When removing the remaining insignificant factors from the model, C, Machine, is the most significant 
factor while B, Heat Treat Process, is moderately significant.  Factor A, Time of Day, is not significant. 
 
Design Expert Output 
 Response: Avg 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 109.02 4 27.26 13.43 < 0.0001 significant 
 B 10.67 1 10.67 5.26 0.0335 
 C 98.35 3 32.78 16.15 < 0.0001 
 Residual 38.56 19 2.03 
 Cor Total 147.58 23 
 
 The Model F-value of 13.43 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.42  R-Squared 0.7387 
 Mean 3.96  Adj R-Squared 0.6837 
 C.V. 35.99  Pred R-Squared 0.5831 
 PRESS 61.53  Adeq Precision 9.740 
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  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High VIF 
  Intercept 3.96 1 0.29 3.35 4.57 
  B-Process -0.67 1 0.29 -1.28 -0.058 1.00 
  C[1] -0.54 1 0.50 -1.60 0.51 
  C[2] 1.92 1 0.50 0.86 2.97 
  C[3] -3.08 1 0.50 -4.14 -2.03 
 
  Final Equation in Terms of Coded Factors: 
 
   Avg  = 
  +3.96 
  -0.67   * B 
  -0.54   * C[1] 
  +1.92   * C[2] 
  -3.08   * C[3] 
 
The following residual plots are acceptable.  Both the normality and uniformity of variance assumptions 
are verified. 
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(d) Calculate the log variance of the observations in each cell.  Analyze the average length and the log 

variance of the length for each of the 12 bars cut at each machine/heat treatment process combination.  
What conclusions can you draw? 

 
Factor B, Heat Treat Process, has an affect on the log variance of the observations while Factor A, Time of 
Day, and Factor C, Machine, are not significant at the 5 percent level. However, A is significant at the 10 
percent level, so Tome of Day has some effect on the variance. 
 
Design Expert Output 
 Response: Log(Var) 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2.79 11 0.25 2.51 0.0648 not significant 
 A 0.58 2 0.29 2.86 0.0966 
 B 0.50 1 0.50 4.89 0.0471 
 C 0.59 3 0.20 1.95 0.1757 
 AB 0.49 2 0.24 2.40 0.1324 
 BC 0.64 3 0.21 2.10 0.1538 
 Residual 1.22 12 0.10 
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 Cor Total 4.01 23 
 
 The Model F-value of 2.51 implies there is a 6.48% chance that a "Model F-Value"  
 this large could occur due to noise. 
 
 Std. Dev. 0.32  R-Squared 0.6967 
 Mean 0.65  Adj R-Squared 0.4186 
 C.V. 49.02  Pred R-Squared -0.2133 
 PRESS 4.86  Adeq Precision 5.676 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High VIF 
  Intercept 0.65 1 0.065 0.51 0.79 
  A[1] -0.054 1 0.092 -0.25 0.15 
  A[2] -0.16 1 0.092 -0.36 0.043 
  B-Process 0.14 1 0.065 2.181E-003 0.29 1.00 
  C[1] 0.22 1 0.11 -0.025 0.47 
  C[2] 0.066 1 0.11 -0.18 0.31 
  C[3] -0.19 1 0.11 -0.44 0.052 
  A[1]B -0.20 1 0.092 -0.40 3.237E-003 
  A[2]B 0.14 1 0.092 -0.065 0.34 
  BC[1] -0.18 1 0.11 -0.42 0.068 
  BC[2] -0.15 1 0.11 -0.39 0.098 
  BC[3] 0.14 1 0.11 -0.10 0.39 
 
  Final Equation in Terms of Coded Factors: 
 
   Log(Var)  = 
  +0.65 
  -0.054   * A[1] 
  -0.16   * A[2] 
  +0.14   * B 
  +0.22   * C[1] 
  +0.066   * C[2] 
  -0.19   * C[3] 
  -0.20   * A[1]B 
  +0.14   * A[2]B 
  -0.18   * BC[1] 
  -0.15   * BC[2] 
  +0.14   * BC[3] 
 
The following residual plots are acceptable.  Both the normality and uniformity of variance assumptions 
are verified. 
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(e) Suppose the time at which a bar is cut really cannot be controlled during routine production.  Analyze 
the average length and the log variance of the length for each of the 12 bars cut at each machine/heat 
treatment process combination.  What conclusions can you draw? 

 
The analysis of the average length is as follows: 
 
Design Expert Output 
 Response: Avg 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 37.43 7 5.35 
 A 3.56 1 3.56   
 B 32.78 3 10.93   
 AB 1.09 3 0.36   
 Pure Error 0.000 0  
 Cor Total 37.43 7 
 
Because the Means Square of the AB interaction is much less than the main effects, it is removed from the 
model and placed in the error.  The average length is strongly affected by Factor B, Machine, and 
moderately affected by Factor A, Heat Treat Process.  The interaction effect was small and removed from 
the model. 
 
Design Expert Output 
 Response: Avg 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 36.34 4 9.09 25.00 0.0122 significant 
 A 3.56 1 3.56 9.78 0.0522 
 B 32.78 3 10.93 30.07 0.0097 
 Residual 1.09 3 0.36 
 Cor Total 37.43 7 
 
 The Model F-value of 25.00 implies the model is significant.  There is only 
 a 1.22% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.60  R-Squared 0.9709 
 Mean 3.96  Adj R-Squared 0.9320 
 C.V. 15.23  Pred R-Squared 0.7929 
 PRESS 7.75  Adeq Precision 13.289 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High VIF 
  Intercept 3.96 1 0.21 3.28 4.64 
  A-Process -0.67 1 0.21 -1.34 0.012 1.00 
  B[1] -0.54 1 0.37 -1.72 0.63 
  B[2] 1.92 1 0.37 0.74 3.09 
  B[3] -3.08 1 0.37 -4.26 -1.91 
 
  Final Equation in Terms of Coded Factors: 
 
   Avg  = 
  +3.96 
  -0.67   * A 
  -0.54   * B[1] 
  +1.92   * B[2] 
  -3.08   * B[3] 
 
The following residual plots are acceptable.  Both the normality and uniformity of variance assumptions 
are verified. 
 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

9-26 

Res idua l

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Normal plot of residuals

-0 .4 58 3 3 3 -0 .2 29 1 6 7 0 0 .2 2 91 6 7 0 .4 5 83 3 3

1

5

1 0

2 0
3 0

5 0

7 0
8 0

9 0

9 5

9 9

Predicted

R
es

id
ua

ls

Residuals vs. Predicted

-0 .4 58 3 3 3

-0 .2 29 1 6 7

0

0 .2 2 91 6 7

0 .4 5 83 3 3

0 .2 1 1 .7 9 3 .3 8 4 .9 6 6 .5 4

 
 
The Log(Var) is analyzed below: 
 
Design Expert Output 
 Response: Log(Var) 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.32 7 0.046 
 A 0.091 1 0.091   
 B 0.13 3 0.044   
 AB 0.098 3 0.033   
 Pure Error 0.000 0  
 Cor Total 0.32 7 
 
Because the AB interaction has the smallest Mean Square, it was removed from the model and placed in 
the error.  From the following analysis of variance, neither Heat Treat Process, Machine, nor the 
interaction affect the log variance of the length.  
 
Design Expert Output 
 Response: Log(Var) 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.22 4 0.056 1.71 0.3441 not significant 
 A 0.091 1 0.091 2.80 0.1926 
 B 0.13 3 0.044 1.34 0.4071 
 Residual 0.098 3 0.033 
 Cor Total 0.32 7 
 
 The "Model F-value" of 1.71 implies the model is not significant relative to the noise.  There is a 
 34.41 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 0.18  R-Squared 0.6949 
 Mean 0.79  Adj R-Squared 0.2882 
 C.V. 22.90  Pred R-Squared -1.1693 
 PRESS 0.69  Adeq Precision 3.991 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High VIF 
  Intercept 0.79 1 0.064 0.59 0.99 
  A-Process 0.11 1 0.064 -0.096 0.31 1.00 
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  B[1] 0.15 1 0.11 -0.20 0.51 
  B[2] 0.030 1 0.11 -0.32 0.38 
  B[3] -0.20 1 0.11 -0.55 0.15 
 
  Final Equation in Terms of Coded Factors: 
 
   Log(Var)  = 
  +0.79 
  +0.11   * A 
  +0.15   * B[1] 
  +0.030   * B[2] 
  -0.20   * B[3] 
 
The following residual plots are acceptable.  Both the normality and uniformity of variance assumptions 
are verified. 
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Chapter 10 
Fitting Regression Models 

Solutions 
 
 
10-1 The tensile strength of a paper product is related to the amount of hardwood in the pulp.  Ten 
samples are produced in the pilot plant, and the data obtained are shown in the following table. 
 
 Strength Percent Hardwood Strength Percent Hardwood 
 160 10 181 20 
 171 15 188 25 
 175 15 193 25 
 182 20 195 28 
 184 20 200 30 
 
(a) Fit a linear regression model relating strength to percent hardwood. 
 
Minitab Output 
Regression Analysis: Strength versus Hardwood 
 
The regression equation is 
Strength = 144 + 1.88 Hardwood 
 
Predictor        Coef     SE Coef          T        P 
Constant      143.824       2.522      57.04    0.000 
Hardwood       1.8786      0.1165      16.12    0.000 
 
S = 2.203              R-Sq = 97.0%         R-Sq(adj) = 96.6% 
PRESS = 66.2665        R-Sq(pred) = 94.91% 
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(b)  Test the model in part (a) for significance of regression. 
 
Minitab Output 
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Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      1262.1      1262.1    260.00    0.000 
Residual Error     8        38.8         4.9 
  Lack of Fit      4        13.7         3.4      0.54    0.716 
  Pure Error       4        25.2         6.3 
Total              9      1300.9 
 
3 rows with no replicates 
 
No evidence of lack of fit (P > 0.1) 
 
 
(c) Find a 95 percent confidence interval on the parameter 1. 
 
The 95 percent confidence interval is: 
 

1,2111,21
ˆˆˆˆ setset pnpn  

0.11653060.21.87860.11653060.21.8786 1  
1473.26900.1 1  

 
 
10-2 A plant distills liquid air to produce oxygen , nitrogen, and argon.  The percentage of impurity in 
the oxygen is thought to be linearly related to the amount of impurities in the air as measured by the 
“pollution count” in part per million (ppm).  A sample of plant operating data is shown below. 
 
 Purity(%) 93.3 92.0 92.4 91.7 94.0 94.6 93.6 93.1 93.2 92.9 92.2 91.3 90.1 91.6 91.9 
 Pollution count (ppm) 1.10 1.45 1.36 1.59 1.08 0.75 1.20 0.99 0.83 1.22 1.47 1.81 2.03 1.75 1.68 
 
(a) Fit a linear regression model to the data. 
 
Minitab Output 
Regression Analysis: Purity versus Pollution 
 
The regression equation is 
Purity = 96.5 - 2.90 Pollution 
 
Predictor        Coef     SE Coef          T        P 
Constant      96.4546      0.4282     225.24    0.000 
Pollutio      -2.9010      0.3056      -9.49    0.000 
 
S = 0.4277             R-Sq = 87.4%         R-Sq(adj) = 86.4% 
PRESS = 3.43946        R-Sq(pred) = 81.77% 
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(b) Test for significance of regression. 
 
Minitab Output 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      16.491      16.491     90.13    0.000 
Residual Error    13       2.379       0.183 
Total             14      18.869 
 
No replicates. Cannot do pure error test. 
 
No evidence of lack of fit (P > 0.1) 
 
(c) Find a 95 percent confidence interval on 1. 
 
The 95 percent confidence interval is: 
 

1,2111,21
ˆˆˆˆ setset pnpn  

0.30561604.29010.2-0.30561604.29010.2- 1  
2408.25612.3 1  

 
 
10-3 Plot the residuals from Problem 10-1 and comment on model adequacy. 
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There is nothing unusual about the residual plots.  The underlying assumptions have been met. 

 
 
10-4 Plot the residuals from Problem 10-2 and comment on model adequacy. 
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There is nothing unusual about the residual plots.  The underlying assumptions have been met. 
 
 
10-5 Using the results of Problem 10-1, test the regression model for lack of fit. 
 
Minitab Output 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      1262.1      1262.1    260.00    0.000 
Residual Error     8        38.8         4.9 
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  Lack of Fit      4        13.7         3.4      0.54    0.716 
  Pure Error       4        25.2         6.3 
Total              9      1300.9 
 
3 rows with no replicates 
 
No evidence of lack of fit (P > 0.1) 
 
 
10-6 A study was performed on wear of a bearing y and its relationship to x1 = oil viscosity and x2 = 
load.  The following data were obtained. 
 
  y x1 x2 
 193 1.6 851 
 230 15.5 816 
 172 22.0 1058 
 91 43.0 1201 
 113 33.0 1357 
 125 40.0 1115 
 
(a) Fit a multiple linear regression model to the data. 
 
Minitab Output 
Regression Analysis: Wear versus Viscosity, Load 
 
The regression equation is 
Wear = 351 - 1.27 Viscosity - 0.154 Load 
 
Predictor        Coef     SE Coef          T        P       VIF 
Constant       350.99       74.75       4.70    0.018 
Viscosit       -1.272       1.169      -1.09    0.356       2.6 
Load         -0.15390     0.08953      -1.72    0.184       2.6 
 
S = 25.50              R-Sq = 86.2%         R-Sq(adj) = 77.0% 
PRESS = 12696.7        R-Sq(pred) = 10.03% 
 
(b) Test for significance of regression. 
 
Minitab Output 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2     12161.6      6080.8      9.35    0.051 
Residual Error     3      1950.4       650.1 
Total              5     14112.0 
 
No replicates. Cannot do pure error test. 
 
Source       DF      Seq SS 
Viscosit      1     10240.4 
Load          1      1921.2 
 
* Not enough data for lack of fit test 
 
(c)  Compute t statistics for each model parameter.  What conclusions can you draw? 
 
Minitab Output 
Regression Analysis: Wear versus Viscosity, Load 
 
The regression equation is 
Wear = 351 - 1.27 Viscosity - 0.154 Load 
 
Predictor        Coef     SE Coef          T        P       VIF 
Constant       350.99       74.75       4.70    0.018 
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Viscosit       -1.272       1.169      -1.09    0.356       2.6 
Load         -0.15390     0.08953      -1.72    0.184       2.6 
 
S = 25.50              R-Sq = 86.2%         R-Sq(adj) = 77.0% 
PRESS = 12696.7        R-Sq(pred) = 10.03% 
 
The t-tests are shown in part (a).  Notice that overall regression is significant (part(b)), but neither 
variable has a large t-statistic. This could be an indicator that the regressors are nearly linearly dependent. 
 
 
10-7 The brake horsepower developed by an automobile engine on a dynomometer is thought to be a 
function of the engine speed in revolutions per minute (rpm), the road octane number of the fuel, and the 
engine compression.  An experiment is run in the laboratory and the data that follow are collected. 
 
 Brake Horsepower rpm Road Octane Number Compression 
 225 2000 90 100 
 212 1800 94 95 
 229 2400 88 110 
 222 1900 91 96 
 219 1600 86 100 
 278 2500 96 110 
 246 3000 94 98 
 237 3200 90 100 
 233 2800 88 105 
 224 3400 86 97 
 223 1800 90 100 
 230 2500 89 104 
 
(a) Fit a multiple linear regression model to the data. 
 
Minitab Output 
Regression Analysis: Horsepower versus rpm, Octane, Compression 
 
The regression equation is 
Horsepower = - 266 + 0.0107 rpm + 3.13 Octane + 1.87 Compression 
 
Predictor        Coef     SE Coef          T        P       VIF 
Constant      -266.03       92.67      -2.87    0.021 
rpm          0.010713    0.004483       2.39    0.044       1.0 
Octane         3.1348      0.8444       3.71    0.006       1.0 
Compress       1.8674      0.5345       3.49    0.008       1.0 
 
S = 8.812              R-Sq = 80.7%         R-Sq(adj) = 73.4% 
PRESS = 2494.05        R-Sq(pred) = 22.33% 
 
(b) Test for significance of regression.  What conclusions can you draw? 
 
Minitab Output 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         3     2589.73      863.24     11.12    0.003 
Residual Error     8      621.27       77.66 
Total             11     3211.00 
r No replicates. Cannot do pure error test. 
 
Source       DF      Seq SS 
rpm           1      509.35 
Octane        1     1132.56 
Compress      1      947.83 
 
Lack of fit test 
Possible interactions with variable Octane (P-Value = 0.028) 
Possible lack of fit at outer X-values       (P-Value = 0.000) 
Overall lack of fit test is significant at P = 0.000 
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(c) Based on t tests, do you need all three regressor variables in the model? 
 
Yes, all of the regressor variables are important. 
 
 
10-8 Analyze the residuals from the regression model in Problem 10-7.  Comment on model adequacy. 
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The normal probability plot is satisfactory, as is the plot of residuals versus run order (assuming that 
observation order is run order).  The plot of residuals versus predicted response exhibits a slight “bow” 
shape.  This could be an indication of lack of fit.  It might be useful to consider adding some ineraction 
terms to the model. 
 
 
10-9 The yield of a chemical process is related to the concentration of the reactant and the operating 
temperature.  An experiment has been conducted with the following results. 
 
 Yield Concentration Temperature 
 81 1.00 150 
 89 1.00 180 
 83 2.00 150 
 91 2.00 180 
 79 1.00 150 
 87 1.00 180 
 84 2.00 150 
 90 2.00 180 
 
(a) Suppose we wish to fit a main effects model to this data.  Set up the X’X matrix using the data 

exactly as it appears in the table. 
 
 

21960019801320
19802012
1320128

18000.21
15000.21
18000.11
15000.11
18000.21
15000.21
18000.11
15000.11

180150180150180150180150
00.200.200.100.100.200.200.100.1
11111111

 

 
(b) Is the matrix you obtained in part (a) diagonal?  Discuss your response. 
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The X’X is not diagonal, even though an orthogonal design has been used.  The reason is that we have 
worked with the natural factor levels, not the orthogonally coded variables. 
 
(c)  Suppose we write our model in terms of the “usual” coded variables 
 

5.0
5.1

1
Concx , 

15
165

2
Tempx

 
 

Set up the X’X matrix for the model in terms of these coded variables.  Is this matrix diagonal?  Discuss 
your response. 

 

1 1 1
1 1 1
1 1 1

1 1 1 1 1 1 1 1 8 0 0
1 1 1

1 1 1 1 1 1 1 1 0 8 0
1 1 1

1 1 1 1 1 1 1 1 0 0 8
1 1 1
1 1 1
1 1 1  

 
 
The X’X matrix is diagonal because we have used the orthogonally coded variables. 
 
(d)  Define a new set of coded variables 
 
 

0.1
0.1

1
Concx , 

30
150

2
Tempx  

 
Set up the X’X matrix for the model in terms of this set of coded variables.  Is this matrix diagonal?  
Discuss your response. 
 

424
244
448

111
011
101
001
111
011
101
001

10101010
11001100
11111111

 

 
The X’X is not diagonal, even though an orthogonal design has been used.  The reason is that we have not 
used orthogonally coded variables. 
 
(e)  Summarize what you have learned from this problem about coding the variables. 
 
If the design is orthogonal, use the orthogonal coding.  This not only makes the analysis somewhat easier, 
but it also results in model coefficients that are easier to interpret because they are both dimensionless and 
uncorrelated.   
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10-10 Consider the 24 factorial experiment in Example 6-2.  Suppose that the last observation in missing.  
Reanalyze the data and draw conclusions.  How do these conclusions compare with those from the 
original example? 
 
The regression analysis with the one data point missing indicates that the same effects are important. 
 
Minitab Output 
Regression Analysis: Rate versus A, B, C, D, AB, AC, AD, BC, BD, CD 
 
The regression equation is 
Rate = 69.8 + 10.5 A + 1.25 B + 4.63 C + 7.00 D - 0.25 AB - 9.38 AC + 8.00 AD 
           + 0.87 BC - 0.50 BD - 0.87 CD 
 
Predictor        Coef     SE Coef          T        P       VIF 
Constant       69.750       1.500      46.50    0.000 
A              10.500       1.500       7.00    0.002       1.1 
B               1.250       1.500       0.83    0.452       1.1 
C               4.625       1.500       3.08    0.037       1.1 
D               7.000       1.500       4.67    0.010       1.1 
AB             -0.250       1.500      -0.17    0.876       1.1 
AC             -9.375       1.500      -6.25    0.003       1.1 
AD              8.000       1.500       5.33    0.006       1.1 
BC              0.875       1.500       0.58    0.591       1.1 
BD             -0.500       1.500      -0.33    0.756       1.1 
CD             -0.875       1.500      -0.58    0.591       1.1 
 
S = 5.477              R-Sq = 97.6%         R-Sq(adj) = 91.6% 
PRESS = 1750.00        R-Sq(pred) = 65.09% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression        10     4893.33      489.33     16.31    0.008 
Residual Error     4      120.00       30.00 
Total             14     5013.33 
 
No replicates. Cannot do pure error test. 
 
Source       DF      Seq SS 
A             1     1414.40 
B             1        4.01 
C             1      262.86 
D             1      758.88 
AB            1        0.06 
AC            1     1500.63 
AD            1      924.50 
BC            1       16.07 
BD            1        1.72 
CD            1       10.21 
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The residual plots are acceptable; therefore, the underlying assumptions are valid. 
 
 
10-11 Consider the 24 factorial experiment in Example 6-2.  Suppose that the last two observations are 
missing. Reanalyze the data and draw conclusions.  How do these conclusions compare with those from 
the original example? 
 
The regression analysis with the one data point missing indicates that the same effects are important. 
 
Minitab Output 
Regression Analysis: Rate versus A, B, C, D, AB, AC, AD, BC, BD, CD 
 
The regression equation is 
Rate = 71.4 + 10.1 A + 2.87 B + 6.25 C + 8.62 D - 0.66 AB - 9.78 AC + 7.59 AD 
           + 2.50 BC + 1.12 BD + 0.75 CD 
 
Predictor        Coef     SE Coef          T        P       VIF 
Constant       71.375       1.673      42.66    0.000 
A              10.094       1.323       7.63    0.005       1.1 
B               2.875       1.673       1.72    0.184       1.7 
C               6.250       1.673       3.74    0.033       1.7 
D               8.625       1.673       5.15    0.014       1.7 
AB             -0.656       1.323      -0.50    0.654       1.1 
AC             -9.781       1.323      -7.39    0.005       1.1 
AD              7.594       1.323       5.74    0.010       1.1 
BC              2.500       1.673       1.49    0.232       1.7 
BD              1.125       1.673       0.67    0.549       1.7 
CD              0.750       1.673       0.45    0.684       1.7 
 
S = 4.732              R-Sq = 98.7%         R-Sq(adj) = 94.2% 
PRESS = 1493.06        R-Sq(pred) = 70.20% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression        10     4943.17      494.32     22.07    0.014 
Residual Error     3       67.19       22.40 
Total             13     5010.36 
 
No replicates. Cannot do pure error test. 
 
Source       DF      Seq SS 
A             1     1543.50 
B             1        1.52 
C             1      177.63 
D             1      726.01 
AB            1        1.17 
AC            1     1702.53 
AD            1      738.11 
BC            1       42.19 
BD            1        6.00 
CD            1        4.50 
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The residual plots are acceptable; therefore, the underlying assumptions are valid. 
 
 
10-12 Given the following data, fit the second-order polynomial regression model 
 

2112
2
222

2
11122110 xxxxxxy  

 
  y x1 x2 
 26 1.0 1.0 
 24 1.0 1.0 
 175 1.5 4.0 
 160 1.5 4.0 
 163 1.5 4.0 
 55 0.5 2.0 
 62 1.5 2.0 
 100 0.5 3.0 
 26 1.0 1.5 
 30 0.5 1.5  
 70 1.0 2.5 
 71 0.5 2.5 
 
After you have fit the model, test for significance of regression. 
 
Minitab Output 
Regression Analysis: y versus x1, x2, x1^2, x2^2, x1x2 
 
The regression equation is 
y = 24.4 - 38.0 x1 + 0.7 x2 + 35.0 x1^2 + 11.1 x2^2 - 9.99 x1x2 
 
Predictor        Coef     SE Coef          T        P       VIF 
Constant        24.41       26.59       0.92    0.394 
x1             -38.03       40.45      -0.94    0.383      89.6 
x2               0.72       11.69       0.06    0.953      52.1 
x1^2            34.98       21.56       1.62    0.156     103.9 
x2^2           11.066       3.158       3.50    0.013     104.7 
x1x2           -9.986       8.742      -1.14    0.297     105.1 
 
S = 6.042              R-Sq = 99.4%         R-Sq(adj) = 98.9% 
PRESS = 1327.71        R-Sq(pred) = 96.24% 
r Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         5     35092.6      7018.5    192.23    0.000 
Residual Error     6       219.1        36.5 
  Lack of Fit      3        91.1        30.4      0.71    0.607 
  Pure Error       3       128.0        42.7 
Total             11     35311.7 
 
7 rows with no replicates 
 
Source       DF      Seq SS 
x1            1     11552.0 
x2            1     22950.3 
x1^2          1        21.9 
x2^2          1       520.8 
x1x2          1        47.6 
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10-13 
 
(a) Consider the quadratic regression model from Problem 10-12.  Compute t statistics for each model 

parameter and comment on the conclusions that follow from the quantities. 
 
Minitab Output 
Predictor        Coef     SE Coef          T        P       VIF 
Constant        24.41       26.59       0.92    0.394 
x1             -38.03       40.45      -0.94    0.383      89.6 
x2               0.72       11.69       0.06    0.953      52.1 
x1^2            34.98       21.56       1.62    0.156     103.9 
x2^2           11.066       3.158       3.50    0.013     104.7 
x1x2           -9.986       8.742      -1.14    0.297     105.1 
 

2
2x  is the only model parameter that is statistically significant with a t-value of 3.50.  A logical model 

might also include x2 to preserve model hierarchy. 
 
(b) Use the extra sum of squares method to evaluate the value of the quadratic terms, 2

2
2
1 , xx and 21 xx  to 

the model. 
 
The extra sum of squares due to 2 is 

 
01021102101,02 ,,,, RRRRR SSSSSSSSSS  

 
021,RSS  sum of squares of regression for the model in Problem 10-12 = 35092.6 

 

01RSS =34502.3 

3.5903.345026.350921,02RSS  

3892.5
511.36

33.59031,02
0

E

R

MS
SS

F
 

 
Since 76.46,3,05.0F , then the addition of the quadratic terms to the model is significant. The P-values 

indicate that it’s probably the term 2
2x  that is responsible for this. 

 
 
10-14 Relationship between analysis of variance and regression.  Any analysis of variance model can be 
expressed in terms of the general linear model  y = X  +   , where the X matrix consists of zeros and 
ones.  Show that the single-factor model  ijiijy , i=1,2,3, j=1,2,3,4 can be written in general 

linear model form.  Then 
 
(a) Write the normal equations ˆ( )X X X y and compare them with the normal equations found for 

the model in Chapter 3. 
 
The normal equations are ˆ( )X X X y  
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which are in agreement with the results of Chapter 3. 
 
(b) Find the rank of X X .  Can 1( )X X  be obtained? 
 
X X is a 4 x 4 matrix of rank 3, because the last three columns add to the first column.  Thus (X’X)-1 
does not exist. 
 

(c) Suppose the first normal equation is deleted and the restriction  3
1

0ˆ
i in  is added.  Can the 

resulting system of equations be solved?  If so, find the solution.  Find the regression sum of squares 
ˆ X y , and compare it to the treatment sum of squares in the single-factor model. 

Imposing 3
1

0ˆ
i in  yields the normal equations 

 

.3

.2

.1

..

3

2

1

ˆ
ˆ
ˆ
ˆ

4004
0404
0044
4440

y
y
y
y

 

 
The solution to this set of equations is 
 

..
..

12
ˆ y

y
 

...ˆ yyii  
 

This solution was found be solving the last three equations for iˆ , yielding ˆˆ .ii y , and then 
substituting in the first equation to find ..ˆ y  
 
The regression sum of squares is 
 

ˆ
RSS X’y =

a

i

i
a

i

i
a

i
i n

y
an
y

n
y

an
y

yyyy
1

2
.

1

2
..

2
.

2
..

1

2
.......  

 
 
with a degrees of freedom.  This is the same result found in Chapter 3.  For more discussion of the 
relationship between analysis of variance and regression, see Montgomery and Peck (1992). 
 
 
10-15 Suppose that we are fitting a straight line and we desire to make the variance of as small as 
possible.  Restricting ourselves to an even number of experimental points, where should we place these 
points so as to minimize 1

ˆV ?  (Note:  Use the design called for in this exercise with great caution 

because, even though it minimized 1
ˆV , it has some undesirable properties; for example, see Myers and 
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Montgomery (1995).  Only if you are very sure the true functional relationship is linear should you 
consider using this design. 
 

Since 
xxS

V
2

1
ˆ , we may minimize 1

ˆV by making Sxx as large as possible. Sxx  is maximized by 

spreading out the xj’s as much as possible. The experimenter usually has a “region of interest” for x. If n is 
even, n/2 of the observations should be run at each end of the “region of interest”.  If n is odd, then run 
one of the observations in the center of the region and the remaining (n-1)/2 at either end. 
 
 
10-16 Weighted least squares.  Suppose that we are fitting the straight line xy 10 , but the 
variance of the y’s now depends on the level of x; that is, 
 

ni
w

xyV
i

i ,...,2,1,
2

2  

 
where the wi are known constants, often called weights.  Show that if we choose estimates of the 

regression coefficients to minimize the weighted sum of squared errors given by 
n

i
iii xyw

1

2
10 , 

the resulting least squares normal equations are 
 

n

i

n

i
iii

n

i
ii ywxww

1 11
10

ˆˆ  

n

i

n

i
iiii

n

i
iii yxwxwxw

1 1

2

1
10

ˆˆ  

 
 
The least squares normal equations are found: 
 

0ˆˆ2

0ˆˆ2

1
1110

1

1
110

0

1

2
110

n

i
ii

n

i
ii

n

i
ii

wxxyL

wxyL

wxyL

 
 

which simplify to 
 

i

n

i
i

n

i

n

i
ii

i

n

i
i

n

i

n

i
ii

yxwwxwx

ywwxw
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ˆˆ

 

 
 
10-17 Consider the 142 IV design discussed in Example 10-5. 
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(a) Suppose you elect to augment the design with the single run selected in that example.  Find the 
variances and covariances of the regression coefficients in the model (ignoring blocks): 

 
43342112443322110 xxxxxxxxy  

 

9711111
7911111
1191111
1119111
1111911
1111191
1111119

1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111

111111111
111111111
111111111
111111111
111111111
111111111
111111111

XX'  

4375.0375.00625.00625.00625.00625.00625.0
375.04375.00625.00625.00625.00625.00625.0
0625.00625.0125.00000
0625.00625.00125.0000
0625.00625.000125.000
0625.00625.0000125.00
0625.00625.00000125.0

)( 1XX'  

 
(b) Are there any other runs in the alternate fraction that  
 
Any other run from the alternate fraction will dealias AB from CD. 
 
(c) Suppose you augment the design with four runs suggested in Example 10-5.  Find the variance and 

the covariances of the regression coefficients (ignoring blocks) for the model in part (a). 
 
Choose 4 runs that are one of the quarter fractions not used in the principal half fraction. 
 

1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111

111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111

XX'  
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12000000
01240040
04120040
00012400
00041200
04400120
00000012

XX'  

 

1785.01429.00357.0000357.00
1429.02142.00536.0000536.00
0357.00536.01071.0000179.00

0000938.00313.000
0000313.00938.000

0357.00536.00179.0001071.00
0000000833.0

1XX'  

 
(d) Considering parts (a) and (c), which augmentation strategy would you prefer and why? 
 
If you only have the resources to run one more run, then choose the one-run augmentation.  But if 
resources are not scarce, then augment the design in multiples of two runs, to keep the design orthogonal.  
Using four runs results in smaller variances of the regression coefficients and a simpler covariance 
structure. 
 
 
10-18 Consider the  472 III .  Suppose after running the experiment, the largest observed effects are A + 
BD, B + AD, and D + AB.  You wish to augment the original design with a group of four runs to dealias 
these effects. 
 
(a) Which four runs would you make? 
 
Take the first four runs of the original experiment and change the sign on A. 
 
Design Expert Output 
    Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 
Std  Run Block A:x1 B:x2 C:x3 D:x4 E:x5 F:x6 G:x7 
 1 1 Block 1 -1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 
 2 2 Block 1 1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 
 3 3 Block 1 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 
 4 4 Block 1 1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 
 5 5 Block 1 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 
 6 6 Block 1 1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 
 7 7 Block 1 -1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00 
 8 8 Block 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 9 9 Block 2 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 
 10 10 Block 2 1.00 -1.00 -1.00 1.00 -1.00 -1.00 -1.00 
 11 11 Block 2 -1.00 -1.00 1.00 1.00 -1.00 -1.00 -1.00 
 12 12 Block 2 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
 
Main effects and interactions of interest are: 
 

x1 x2 x4 x1x2 x1x4 x2x4 
-1 -1 1 1 -1 -1 
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1 -1 -1 -1 -1 1 
-1 1 -1 -1 1 -1 
1 1 1 1 1 1 

-1 -1 1 1 -1 -1 
1 -1 -1 -1 -1 1 

-1 1 -1 -1 1 -1 
1 1 1 1 1 1 
1 -1 1 -1 1 -1 

-1 -1 -1 1 1 1 
1 1 -1 1 -1 -1 

-1 1 1 -1 -1 1 
 
 
(b) Find the variances and covariances of the regression coefficients in the model 
 

4224411421124422110 xxxxxxxxxy  
 

12000040
01200400
00124000
00412000
04001200
40000120
00000012

XX'   

 

2143.01607.0000536.00714.00
1607.02143.0000714.00536.00

000938.00313.0000
000313.00938.0000

0536.00714.0001071.00179.00
0714.00536.0000178.01071.00

0000000833.0

1XX'  

 
(c)  Is it possible to dealias these effects with fewer than four additional runs? 
 
It is possible to dealias these effects in only two runs.  By utilizing Design Expert’s design augmentation 
function, the runs 9 and 10 (Block 2) were generated as follows: 
 
Design Expert Output 
    Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 
Std  Run Block A:x1 B:x2 C:x3 D:x4 E:x5 F:x6 G:x7 
 1 1 Block 1 -1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 
 2 2 Block 1 1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 
 3 3 Block 1 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 
 4 4 Block 1 1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 
 5 5 Block 1 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 
 6 6 Block 1 1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 
 7 7 Block 1 -1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00 
 8 8 Block 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 9 9 Block 2 -1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 
 10 10 Block 2 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
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Chapter 11 
Response Surface Methods and  

Other Approaches to Process Optimization 
Solutions 

 
 
11-1 A chemical plant produces oxygen by liquefying air and separating it into its component gases by 
fractional distillation.  The purity of the oxygen is a function of the main condenser temperature and the 
pressure ratio between the upper and lower columns.  Current operating conditions are temperature 

)( 1  -220°C and pressure ratio )( 2 1.2.  Using the following data find the path of steepest ascent. 
 
 Temperature (x1) Pressure Ratio (x2) Purity 
 -225 1.1 82.8 
 -225 1.3 83.5 
 -215 1.1 84.7 
 -215 1.3 85.0 
 -220 1.2 84.1 
 -220 1.2 84.5 
 -220 1.2 83.9 
 -220 1.2 84.3 
 
Design Expert Output 
 Response: Purity 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3.14 2 1.57 26.17 0.0050 significant 
 A 2.89 1 2.89 48.17 0.0023 
 B 0.25 1 0.25 4.17 0.1108 
 Curvature 0.080 1 0.080 1.33 0.3125 not significant 
 Residual 0.24 4 0.060 
 Lack of Fit 0.040 1 0.040 0.60 0.4950 not significant 
 Pure Error 0.20 3 0.067 
 Cor Total 3.46 7 
 
 The Model F-value of 26.17 implies the model is significant.  There is only 
 a 0.50% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.24  R-Squared 0.9290 
 Mean 84.10  Adj R-Squared 0.8935 
 C.V. 0.29  Pred R-Squared 0.7123 
 PRESS 1.00  Adeq Precision 12.702 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 84.00 1 0.12 83.66 84.34 
  A-Temperature 0.85 1 0.12 0.51 1.19 1.00 
  B-Pressure Ratio 0.25 1 0.12 -0.090 0.59 1.00 
  Center Point 0.20 1 0.17 -0.28 0.68 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Purity  = 
  +84.00 
  +0.85   * A 
  +0.25   * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Purity  = 
  +118.40000 
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  +0.17000   * Temperature 
  +2.50000   * Pressure Ratio 
 
From the computer output use the model 21 25085084 x.x.ŷ as the equation for steepest ascent.  
Suppose we use a one degree change in temperature as the basic step size.  Thus, the path of steepest 
ascent passes through the point (x1=0, x2=0) and has a slope 0.25/0.85.  In the coded variables, one degree 
of temperature is equivalent to a step of 1x 1/5=0.2. Thus, 2x (0.25/0.85)0.2=0.059.  The path of 
steepest ascent is: 
 

 Coded  Variables Natural Variables 
 x1 x2 1  2  

Origin 0 0 -220 1.2 
 0.2 0.059 1 0.0059 

Origin +  0.2 0.059 -219 1.2059 
Origin +5  1.0 0.295 -215 1.2295 
Origin +7  1.40 0.413 -213 1.2413 

 
 
11-2 An industrial engineer has developed a computer simulation model of a two-item inventory system.  
The decision variables are the order quantity and the reorder point for each item.  The response to be 
minimized is the total inventory cost.  The simulation model is used to produce the data shown in the 
following table.  Identify the experimental design.  Find the path of steepest descent. 
 
 Item 1 Item 2 
 Order  Reorder Order Reorder Total 
 Quantity (x1) Point (x2) Quantity (x3) Point (x4) Cost 
 100 25 250 40 625 
 140 45 250 40 670 
 140 25 300 40 663 
 140 25 250 80 654 
 100 45 300 40 648 
 100 45 250 80 634 
 100 25 300 80 692 
 140 45 300 80 686 
 120 35 275 60 680 
 120 35 275 60 674 
 120 35 275 60 681 
 
The design is a 24-1 fractional factorial with generator I=ABCD, and three center points. 
 
Design Expert Output 
 Response: Total Cost 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3880.00 6 646.67 63.26 0.0030 significant 
 A 684.50 1 684.50 66.96 0.0038 
 C 1404.50 1 1404.50 137.40 0.0013 
 D 450.00 1 450.00 44.02 0.0070 
 AC 392.00 1 392.00 38.35 0.0085 
 AD 264.50 1 264.50 25.88 0.0147 
 CD 684.50 1 684.50 66.96 0.0038 
 Curvature 815.52 1 815.52 79.78 0.0030 significant 
 Residual 30.67 3 10.22 
 Lack of Fit 2.00 1 2.00 0.14 0.7446 not significant 
 Pure Error 28.67 2 14.33 
 Cor Total 4726.18 10 
 
 The Model F-value of 63.26 implies the model is significant.  There is only 
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 a 0.30% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 3.20  R-Squared 0.9922 
 Mean 664.27  Adj R-Squared 0.9765 
 C.V. 0.48  Pred R-Squared 0.9593 
 PRESS 192.50  Adeq Precision 24.573 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 659.00 1 1.13 655.40 662.60 
  A-Item 1 QTY 9.25 1 1.13 5.65 12.85 1.00 
  C-Item 2 QTY 13.25 1 1.13 9.65 16.85 1.00 
  D-Item 2 Reorder 7.50 1 1.13 3.90 11.10 1.00 
  AC -7.00 1 1.13 -10.60 -3.40 1.00 
  AD -5.75 1 1.13 -9.35 -2.15 1.00 
  CD 9.25 1 1.13 5.65 12.85 1.00 
  Center Point 19.33 1 2.16 12.44 26.22 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Total Cost  = 
  +659.00 
  +9.25   * A 
  +13.25   * C 
  +7.50   * D 
  -7.00   * A * C 
  -5.75   * A * D 
  +9.25   * C * D 
 
  Final Equation in Terms of Actual Factors: 
 
   Total Cost  = 
  +175.00000 
  +5.17500   * Item 1 QTY 
  +1.10000   * Item 2 QTY 
  -2.98750   * Item 2 Reorder 
  -0.014000   * Item 1 QTY * Item 2 QTY 
  -0.014375   * Item 1 QTY * Item 2 Reorder 
  +0.018500   * Item 2 QTY * Item 2 Reorder 
 +0.019    * Item 2 QTY * Item 2 Reorder 
 
The equation used to compute the path of steepest ascent is 431 5072513259659 x.x.x.ŷ .  Notice 
that even though the model contains interaction, it is relatively common practice to ignore the interactions 
in computing the path of steepest ascent.  This means that the path constructed is only an approximation 
to the path that would have been obtained if the interactions were considered, but it’s usually close enough 
to give satisfactory results. 
 
It is helpful to give a general method for finding the path of steepest ascent.  Suppose we have a first-order 
model in k variables, say 
 

k

i
ii xˆˆŷ

1
0  

 
The path of steepest ascent passes through the origin, x=0, and through the point on a hypersphere of 
radius, R where ŷ is a maximum.  Thus, the x’s must satisfy the constraint 
 

k

i
i Rx

1

22  

 
To find the set of x’s that maximize ŷ  subject to this constraint, we maximize 
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k

i
i

k

i
ii RxxˆˆL

1

22

1
0  

 
where  is a LaGrange multiplier.   From  0/Lx/L i , we find 
 

2
i

i

ˆ
x  

 
It is customary to specify a basic step size in one of the variables, say xj, and then calculate 2  as 
2 = jj x/ˆ .  Then this value of 2  can be used to generate the remaining coordinates of a point on 

the path of steepest ascent. 
 
We demonstrate using the data from this problem.  Suppose that we use -10 units in 1  as the basic step 
size.   Note that a decrease in 1  is called for, because we are looking for a path of steepest decent.     Now 
-10 units in 1  is equal to -10/20 = -0.5 units change in x1. 
 
Thus, 2 = 11 x/ˆ = 9.25/(-0.5) = -18.50 
 
Consequently, 
 

7160
5018

2513
2

3
3 .

.
.ˆ

x  

7050
5018

507
2

4
4 .

.
.ˆ

x  

 
are the remaining coordinates of points along the path of steepest decent, in terms of the coded variables.  
The path of steepest decent is shown below: 
 

 Coded  Variables   Natural Variables   
 x1 x2 x3 x4 1  2  3  4  

Origin 0 0 0 0 120 35 275 60 
 -0.50 0 -0.716 -0.405 -10 0 -17.91 -8.11 

Origin +  -0.50 0 -0.716 -0.405 110 35 257.09 51.89 
Origin +2  -1.00 0 -1.432 -0.810 100 35 239.18 43.78 

 
 
11-3 Verify that the following design is a simplex.  Fit the first-order model and find the path of steepest 
ascent. 

 
Position  x1 x2 x3 y 

1 0 2  -1 18.5 
2 - 2  0 1 19.8 
3 0 - 2  -1 17.4 
4 2  0 1 22.5 
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1

2

3

4

x2

x1

x3

 
 
The graphical representation of the design identifies a tetrahedron; therefore, the design is a simplex. 
 
Design Expert Output 
 Response: y 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 14.49 3 4.83 
 A 3.64 1 3.64   
 B 0.61 1 0.61   
 C 10.24 1 10.24   
 Pure Error 0.000 0  
 Cor Total 14.49 3 
 
 Std. Dev.   R-Squared 1.0000 
 Mean 19.55  Adj R-Squared  
 C.V.   Pred R-Squared N/A 
 PRESS N/A  Adeq Precision 0.000 
  Case(s) with leverage of 1.0000:  Pred R-Squared and PRESS statistic not defined 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 19.55 1    
  A-x1 1.35 1    1.00 
  B-x2 0.55 1    1.00 
  C-x3 1.60 1    1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   y  = 
  +19.55 
  +1.35   * A 
  +0.55   * B 
  +1.60   * C 
 
  Final Equation in Terms of Actual Factors: 
 
   y  = 
  +19.55000 
  +0.95459   * x1 
  +0.38891   * x2 
  +1.60000   * x3 
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The first order model is 321 6015503515519 x.x.x..ŷ . 
 
To find the path of steepest ascent, let the basic step size be 13x .  Then using the results obtained in 
the previous problem, we obtain 
 

2
3

3

ˆ
x   or  1.0 = 

2
601.  

 
which yields 6012 . .  Then the coordinates of points on the path of steepest ascent are defined by 
 

600
601
960

2
1

1 .
.
.ˆ

x  

240
601
240

2
2

2 .
.
.ˆ

x  

 
Therefore, in the coded variables we have: 
 

 Coded  Variables  
 x1 x2 x3 

Origin 0 0 0 
 0.60 0.24 1.00 

Origin +  0.60 0.24 1.00 
Origin +2  1.20 0.48 2.00 

 
 
11-4 For the first-order model 321 02805160 x.x.x.ŷ  find the path of steepest ascent.  The 
variables are coded as 11 ix . 
 

Let the basic step size be 13x .  
2

3
3

ˆ
x   or  1.0 = 

2
02. .  Then 022 .  

750
02

501
2

1
1 .

.
.ˆ

x  

400
02
80

2
2

2 .
.
.ˆ

x  

 
Therefore, in the coded variables we have 
 

 Coded  Variables  
 x1 x2 x3 

Origin 0 0 0 
 0.75 -0.40 1.00 

Origin +  0.75 -0.40 1.00 
Origin +2  1.50 -0.80 2.00 

 
 
11-5 The region of experimentation for three factors are time ( 8040 1T min), temperature 
( 300200 2T °C), and pressure ( 5020 P psig).  A first-order model in coded variables has been fit 
to yield data from a 23 design.  The model is  
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321 5352530 x.x.xŷ  

 
Is the point T1 = 85, T2 = 325, P=60 on the path of steepest ascent? 
 
The coded variables are found with the following: 
 

20
601

1
Tx         

50
2502

2
Tx         

15
351

3
Px  

51T    250
20
5

1 .x  

2
1

1

ˆ
x   or  0.25 = 

2
20  202  

1250
20

52
2

2
2 ..ˆ

x  

1750
20

53
2

3
3 ..ˆ

x  

 
 Coded  Variables  Natural Variables  
 x1 x2 x3 T1 T2 P 

Origin 0 0 0 60 250 35 
 0.25 0.125 0.175 5 6.25 2.625 

Origin +  0.25 0.125 0.175 65 256.25 37.625 
Origin +5  1.25 0.625 0.875 85 281.25 48.125  

 
The point T1=85, T2=325, and P=60 is not on the path of steepest ascent. 
 
 
11-6  The region of experimentation for two factors are temperature ( 300100 T F) and catalyst feed 
rate ( 3010 C  lb/h).  A first order model in the usual 1 coded variables has been fit to a molecular 
weight response, yielding the following model. 
 

21 401252000 xxŷ  
 
(a) Find the path of steepest ascent. 
 

100
200

1
Tx         

10
20

2
Cx  

100T    1
100
100

1x  

2
1

1

ˆ
x   or  

2
1251    1252  

320
125
40

2
2

2 .
ˆ

x  

 
 Coded  Variables Natural Variables 
 x1 x2 T C 

Origin 0 0 200 20 
 1 0.32 100 3.2 
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Origin +  1 0.32 300 23.2 
Origin +5  5 1.60 700 36.0 

 
 
(a) It is desired to move to a region where molecular weights are above 2500.  Based on the information 

you have from the experiment, in this region, about how may steps along the path of steepest ascent 
might be required to move to the region of interest? 

 
81374032012512211 ..ˆxˆxŷ  

4633
8137
20002500 .
.

Steps#  

 
 
11-7 The path of steepest ascent is usually computed assuming that the model is truly first-order.; that is, 
there is no interaction.  However, even if there is interaction, steepest ascent ignoring the interaction still 
usually produces good results.  To illustrate, suppose that we have fit the model 
 

2121 38520 xxxxŷ  
 
using coded variables (-1  x1  +1) 
 
(a) Draw the path of steepest ascent that you would obtain if the interaction were ignored. 
 

Path of Steepest Ascent for 
Main Effects Model

-5

-4

-3

-2

-1

0

0 1 2 3 4 5
X1

X2

 
 
(b) Draw the path of steepest ascent that you would obtain with the interaction included in the model.  

Compare this with the path found in part (a). 
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Path of Steepest Ascent for 
Full Model

-5

-4

-3

-2

-1

0

-2 -1 0 1 2 3
X1

X2

 
 
 
11-8 The data shown in the following table were collected in an experiment to optimize crystal growth 
as a function of three variables x1, x2, and x3.  Large values of y (yield in grams) are desirable.  Fit a 
second order model and analyze the fitted surface.  Under what set of conditions is maximum growth 
achieved? 
 

x1 x2 x3 y 
-1 -1 -1 66 
-1 -1 1 70 
-1 1 -1 78 
-1 1 1 60 
1 -1 -1 80 
1 -1 1 70 
1 1 -1 100 
1 1 1 75 

-1.682 0 0 100 
1.682 0 0 80 

0 -1.682 0 68 
0 1.682 0 63 
0 0 -1.682 65 
0 0 1.682 82 
0 0 0 113 
0 0 0 100 
0 0 0 118 
0 0 0 88 
0 0 0 100 
0 0 0 85 

 
Design Expert Output 
 Response: Yield 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3662.00 9 406.89 2.19 0.1194 not significant 
 A 22.08 1 22.08 0.12 0.7377 
 B 25.31 1 25.31 0.14 0.7200 
 C 30.50 1 30.50 0.16 0.6941 
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 A2 204.55 1 204.55 1.10 0.3191 
 B2 2226.45 1 2226.45 11.96 0.0061 

 C2 1328.46 1 1328.46 7.14 0.0234 
 AB 66.12 1 66.12 0.36 0.5644 
 AC 55.13 1 55.13 0.30 0.5982 
 BC 171.13 1 171.13 0.92 0.3602 
 Residual 1860.95 10 186.09 
 Lack of Fit 1001.61 5 200.32 1.17 0.4353 not significant 
 Pure Error 859.33 5 171.87 
 Cor Total 5522.95 19 
 
 The "Model F-value" of 2.19 implies the model is not significant relative to the noise.  There is a 
 11.94 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 13.64  R-Squared 0.6631 
 Mean 83.05  Adj R-Squared 0.3598 
 C.V. 16.43  Pred R-Squared -0.6034 
 PRESS 8855.23  Adeq Precision 3.882 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 100.67 1 5.56 88.27 113.06 
  A-x1 1.27 1 3.69 -6.95 9.50 1.00 
  B-x2 1.36 1 3.69 -6.86 9.59 1.00 
  C-x3 -1.49 1 3.69 -9.72 6.73 1.00 
  A2 -3.77 1 3.59 -11.77 4.24 1.02 
  B2 -12.43 1 3.59 -20.44 -4.42 1.02 
  C2 -9.60 1 3.59 -17.61 -1.59 1.02 
  AB 2.87 1 4.82 -7.87 13.62 1.00 
  AC -2.63 1 4.82 -13.37 8.12 1.00 
  BC -4.63 1 4.82 -15.37 6.12 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
  Yield  = 
  +100.67 
  +1.27   * A 
  +1.36   * B 
  -1.49   * C 
  -3.77   * A2 
  -12.43   * B2 
  -9.60   * C2 
  +2.87   * A * B 
  -2.63   * A * C 
  -4.63   * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Yield  = 
  +100.66609 
  +1.27146   * x1 
  +1.36130   * x2 
  -1.49445   * x3 
  -3.76749   * x12 
  -12.42955   * x22 
  -9.60113   * x32 
  +2.87500   * x1 * x2 
  -2.62500   * x1 * x3 
  -4.62500   * x2 * x3 
 
There are so many nonsignificant terms in this model that we should consider eliminating some of them.  
A reasonable reduced model is shown below. 
 
Design Expert Output 
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 Response: Yield 
         ANOVA for Response Surface Reduced Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3143.00 4 785.75 4.95 0.0095 significant 
 B 25.31 1 25.31 0.16 0.6952 
 C 30.50 1 30.50 0.19 0.6673 
 B2 2115.31 1 2115.31 13.33 0.0024 
 C2 1239.17 1 1239.17 7.81 0.0136 
 Residual 2379.95 15 158.66 
 Lack of Fit 1520.62 10 152.06 0.88 0.5953 not significant 
 Pure Error 859.33 5 171.87 
 Cor Total 5522.95 19 
 
 The Model F-value of 4.95 implies the model is significant.  There is only 
 a 0.95% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 12.60  R-Squared 0.5691 
 Mean 83.05  Adj R-Squared 0.4542 
 C.V. 15.17  Pred R-Squared 0.1426 
 PRESS 4735.52  Adeq Precision 5.778 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 97.58 1 4.36 88.29 106.88 
  B-x2 1.36 1 3.41 -5.90 8.63 1.00 
  C-x3 -1.49 1 3.41 -8.76 5.77 1.00 
  B2 -12.06 1 3.30 -19.09 -5.02 1.01 
  C2 -9.23 1 3.30 -16.26 -2.19 1.01 
 
  Final Equation in Terms of Coded Factors: 
 
   Yield  = 
  +97.58 
  +1.36   * B 
  -1.49   * C 
  -12.06   * B2 
  -9.23   * C2 
 
  Final Equation in Terms of Actual Factors: 
 
   Yield  = 
  +97.58260 
  +1.36130   * x2 
  -1.49445   * x3 
  -12.05546   * x22 
  -9.22703   * x32 
 
The contour plot identifies a maximum near the center of the design space. 
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DES IG N-EXP ERT  P lo t

Y ie ld
X  = B : x2
Y  = C: x3

De sig n  Po in ts

Actu al  Fa ctor
A : x1 =  0 .0 0

Yield

B: x2
C

: x
3

-1.00 -0.50 0.00 0.50 1.00
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0.00
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80

80
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90
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6

Predic t ion97.682
95%  Low 69.273
95%  H igh126.090
SE m ean 4.35584
SE pred 13.3281
X 0.06
Y -0.08

 
 
 
11-9 The following data were collected by a chemical engineer.  The response y is filtration time, x1 is 
temperature, and x2 is pressure.  Fit a second-order model. 
 

x1 x2 y 
-1 -1 54 
-1 1 45 
1 -1 32 
1 1 47 

-1.414 0 50 
1.414 0 53 

0 -1.414 47 
0 1.414 51 
0 0 41 
0 0 39 
0 0 44 
0 0 42 
0 0 40 

 
Design Expert Output 
 Response: y 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 264.22 4 66.06 2.57 0.1194 not significant 
 A 13.11 1 13.11 0.51 0.4955 
 B 25.72 1 25.72 1.00 0.3467 
 A2 81.39 1 81.39 3.16 0.1132 
 AB 144.00 1 144.00 5.60 0.0455 
 Residual 205.78 8 25.72 
 Lack of Fit 190.98 4 47.74 12.90 0.0148 significant 
 Pure Error 14.80 4 3.70 
 Cor Total 470.00 12 
 
 The "Model F-value" of 2.57 implies the model is not significant relative to the noise.  There is a 
 11.94 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 5.07  R-Squared 0.5622 
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 Mean 45.00  Adj R-Squared 0.3433 
 C.V. 11.27  Pred R-Squared -0.5249 
 PRESS 716.73  Adeq Precision 4.955 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 42.91 1 1.83 38.69 47.14 
  A-Temperature 1.28 1 1.79 -2.85 5.42 1.00 
  B-Pressure -1.79 1 1.79 -5.93 2.34 1.00 
  A2 3.39 1 1.91 -1.01 7.79 1.00 
  AB 6.00 1 2.54 0.15 11.85 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Time  = 
  +42.91 
  +1.28   * A 
  -1.79   * B 
  +3.39   * A2 
  +6.00   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Time  = 
  +42.91304 
  +1.28033   * Temperature 
  -1.79289   * Pressure 
  +3.39130   * Temperature2 
  +6.00000   * Temperature * Pressure 
 
The lack of fit test in the above analysis is significant.  Also, the residual plot below identifies an outlier 
which happens to be standard order number 8. 

Res idua l

N
or

m
al

 %
 p

ro
ba

bi
lit

y

Normal plot of residuals

-5.23112 -1.26772 2.69568 6.65909 10.6225

1

5

10

20

30

50

70
80

90

95

99

 
 
We chose to remove this run and re-analyze the data. 
 
Design Expert Output 
 Response: y 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 407.34 4 101.84 30.13 0.0002 significant 
 A 13.11 1 13.11 3.88 0.0895 
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 B 132.63 1 132.63 39.25 0.0004 
 A2 155.27 1 155.27 45.95 0.0003 
 AB 144.00 1 144.00 42.61 0.0003 
 Residual 23.66 7 3.38 
 Lack of Fit 8.86 3 2.95 0.80 0.5560 not significant 
 Pure Error 14.80 4 3.70 
 Cor Total 431.00 11 
 
 The Model F-value of 30.13 implies the model is significant.  There is only 
 a 0.02% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.84  R-Squared 0.9451 
 Mean 44.50  Adj R-Squared 0.9138 
 C.V. 4.13  Pred R-Squared 0.8129 
 PRESS 80.66  Adeq Precision 18.243 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 40.68 1 0.73 38.95 42.40 
  A-Temperature 1.28 1 0.65 -0.26 2.82 1.00 
  B-Pressure -4.82 1 0.77 -6.64 -3.00 1.02 
  A2 4.88 1 0.72 3.18 6.59 1.02 
  AB 6.00 1 0.92 3.83 8.17 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Time  = 
  +40.68 
  +1.28   * A 
  -4.82   * B 
  +4.88   * A2 
  +6.00   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Time  = 
  +40.67673 
  +1.28033   * Temperature 
  -4.82374   * Pressure 
  +4.88218   * Temperature2 
  +6.00000   * Temperature * Pressure 
 
The lack of fit test is satisfactory as well as the following normal plot of residuals: 
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(a) What operating conditions would you recommend if the objective is to minimize the filtration time? 
 

Time

A: Tem pera ture

B
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Predic t ion 33.195
95%  Low 27.885
95%  H igh 38.506
SE m ean 1.29007
SE pred 2.24581
X -0.68
Y 1.00

 
 
(b) What operating conditions would you recommend if the objective is to operate the process at a mean 

filtration time very close to 46? 
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There are two regions that enable a filtration time of 46.  Either will suffice; however, higher temperatures 
and pressures typically have higher operating costs.  We chose the operating conditions at the lower 
pressure and temperature as shown. 
 
 
11-10 The hexagon design that follows is used in an experiment that has the objective of fitting a second-
order model. 
 

x1 x2 y 
1 0 68 
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0.5 0 75.  74 
-0.5 0 75.  65 
-1 0 60 

-0.5 - 0 75.  63 
0.5 - 0 75.  70 
0 0 58 
0 0 60 
0 0 57 
0 0 55 
0 0 69 

 
(a) Fit the second-order model.  
 
Design Expert Output 
 Response: y 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 245.26 5 49.05 1.89 0.2500 not significant 
 A 85.33 1 85.33 3.30 0.1292 
 B 9.00 1 9.00 0.35 0.5811 
 A2 25.20 1 25.20 0.97 0.3692 
 B2 129.83 1 129.83 5.01 0.0753 
 AB 1.00 1 1.00 0.039 0.8519 
 Residual 129.47 5 25.89 
 Lack of Fit 10.67 1 10.67 0.36 0.5813 not significant 
 Pure Error 118.80 4 29.70 
 Cor Total 374.73 10 
 
 The "Model F-value" of 1.89 implies the model is not significant relative to the noise.  There is a 
 25.00 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 5.09  R-Squared 0.6545 
 Mean 63.55  Adj R-Squared 0.3090 
 C.V. 8.01  Pred R-Squared -0.5201 
 PRESS 569.63  Adeq Precision 3.725 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 59.80 1 2.28 53.95 65.65 
  A-x1 5.33 1 2.94 -2.22 12.89 1.00 
  B-x2 1.73 1 2.94 -5.82 9.28 1.00 
  A2 4.20 1 4.26 -6.74 15.14 1.00 
  B2 9.53 1 4.26 -1.41 20.48 1.00 
  AB 1.15 1 5.88 -13.95 16.26 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   y  = 
  +59.80 
  +5.33   * A 
  +1.73   * B 
  +4.20   * A2 
  +9.53   * B2 
  +1.15   * A * B 
 
(a) Perform the canonical analysis.  What type of surface has been found? 
 
The full quadratic model is used in the following analysis because the reduced model is singular. 
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Solution 

 Variable Critical Value 
 X1 -0.627658 
 X2 -0.052829 
 Predicted Value at Solution   58.080492 
 

          Eigenvalues and Eigenvectors 
 Variable 9.5957 4.1382 
 X1 0.10640 0.99432 
 X2 0.99432 -0.10640 
 
Since both eigenvalues are positive, the response is a minimum at the stationary point. 
 
(c) What operating conditions on x1 and x2 lead to the stationary point? 
 
The stationary point is (x1,x2) = (-0.62766, -0.05283) 
 
(d) Where would you run this process if the objective is to obtain a response that is as close to 65 as 

possible? 
 

y
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B
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Any value of x1 and x2 that give a point on the contour with value of 65 would be satisfactory. 
 
 
11-11 An experimenter has run a Box-Behnken design and has obtained the results below, where the 
response variable is the viscosity of a polymer. 
 

 
Level 

 
Temp. 

Agitation 
Rate 

 
Pressure 

 
x1 

 
x2 

 
x3 

High 200 10.0 25 +1 +1 +1 
Middle 175 7.5 20 0 0 0 

Low 150 5.0 15 -1 -1 -1 
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Run x1 x2 x3 y1 
1 -1 -1 0 535 
2 1 -1 0 580 
3 -1 1 0 596 
4 1 1 0 563 
5 -1 0 -1 645 
6 1 0 -1 458 
7 -1 0 1 350 
8 1 0 1 600 
9 0 -1 -1 595 

10 0 1 -1 648 
11 0 -1 1 532 
12 0 1 1 656 
13 0 0 0 653 
14 0 0 0 599 
15 0 0 0 620 

 
(a)  Fit the second-order model. 
 
Design Expert Output 
 Response: Viscosity 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 89652.58 9 9961.40 9.54 0.0115 significant 
 A 703.12 1 703.12 0.67 0.4491 
 B 6105.12 1 6105.12 5.85 0.0602 
 C 5408.00 1 5408.00 5.18 0.0719 
 A2 20769.23 1 20769.23 19.90 0.0066 
 B2 1404.00 1 1404.00 1.35 0.2985 
 C2 4719.00 1 4719.00 4.52 0.0868 
 AB 1521.00 1 1521.00 1.46 0.2814 
 AC 47742.25 1 47742.25 45.74 0.0011 
 BC 1260.25 1 1260.25 1.21 0.3219 
 Residual 5218.75 5 1043.75 
 Lack of Fit 3736.75 3 1245.58 1.68 0.3941 not significant 
 Pure Error 1482.00 2 741.00 
 Cor Total 94871.33 14 
 
 The Model F-value of 9.54 implies the model is significant.  There is only 
 a 1.15% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 32.31  R-Squared 0.9450 
 Mean 575.33  Adj R-Squared 0.8460 
 C.V. 5.62  Pred R-Squared 0.3347 
 PRESS 63122.50  Adeq Precision 10.425 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 624.00 1 18.65 576.05 671.95 
  A-Temperatue 9.37 1 11.42 -19.99 38.74 1.00 
  B-Agitation Rate 27.62 1 11.42 -1.74 56.99 1.00 
  C-Pressure -26.00 1 11.42 -55.36 3.36 1.00 
  A2 -75.00 1 16.81 -118.22 -31.78 1.01 
  B2 19.50 1 16.81 -23.72 62.72 1.01 
  C2 -35.75 1 16.81 -78.97 7.47 1.01 
  AB -19.50 1 16.15 -61.02 22.02 1.00 
  AC 109.25 1 16.15 67.73 150.77 1.00 
  BC 17.75 1 16.15 -23.77 59.27 1.00 
 
  Final Equation in Terms of Coded Factors: 
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   Viscosity  = 
  +624.00 
  +9.37   * A 
  +27.62   * B 
  -26.00   * C 
  -75.00   * A2 
  +19.50   * B2 
  -35.75   * C2 
  -19.50   * A * B 
  +109.25   * A * C 
  +17.75   * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Viscosity  = 
  -629.50000 
  +27.23500   * Temperatue 
  -9.55000   * Agitation Rate 
  -111.60000   * Pressure 
  -0.12000   * Temperatue2 
  +3.12000   * Agitation Rate2 
  -1.43000   * Pressure2 
  -0.31200   * Temperatue * Agitation Rate 
  +0.87400   * Temperatue * Pressure 
  +1.42000   * Agitation Rate * Pressure 
 
(b)  Perform the canonical analysis.  What type of surface has been found? 
 

Solution 
 Variable Critical Value 
 X1 2.1849596 
 X2 -0.871371 
 X3 2.7586015 
 Predicted Value at Solution  586.34437 
 

Eigevalues and Eigevectors 
 Variable 20.9229 2.5208 -114.694 

 X1 -0.02739 0.58118 0.81331 
 X2 0.99129 -0.08907 0.09703 
 X3 0.12883 0.80888 -0.57368 

 
The system is a saddle point. 
 
(c)  What operating conditions on x1, x2, and x3 lead to the stationary point? 
 
The stationary point is (x1, x2, x3) = (2.18496, -0.87167, 2.75860).  This is outside the design region.  It 
would be necessary to either examine contour plots or use numerical optimization methods to find desired 
operating conditions. 
 
(d)  What operating conditions would you recommend if it is important to obtain a viscosity that is as 

close to 600 as possible? 
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Any point on either of the contours showing a viscosity of 600 is satisfactory. 
 
 
11-12 Consider the three-variable central composite design shown below.  Analyze the data and draw 
conclusions, assuming that we wish to maximize conversion (y1) with activity (y2) between 55 and 60. 
 

 
Run 

Time 
(min) 

Temperature 
( C) 

Catalyst 
(%) 

Conversion (%) 
y1 

Activity 
y2 

1 -1.000 -1.000 -1.000 74.00 53.20 

2 1.000 -1.000 -1.000 51.00 62.90 

3 -1.000 1.000 -1.000 88.00 53.40 

4 1.000 1.000 -1.000 70.00 62.60 

5 -1.000 -1.000 1.000 71.00 57.30 

6 1.000 -1.000 1.000 90.00 67.90 

7 -1.000 1.000 1.000 66.00 59.80 

8 1.000 1.000 1.000 97.00 67.80 

9 0.000 0.000 0.000 81.00 59.20 

10 0.000 0.000 0.000 75.00 60.40 

11 0.000 0.000 0.000 76.00 59.10 

12 0.000 0.000 0.000 83.00 60.60 

13 -1.682 0.000 0.000 76.00 59.10 

14 1.682 0.000 0.000 79.00 65.90 

15 0.000 -1.682 0.000 85.00 60.00 

16 0.000 1.682 0.000 97.00 60.70 

17 0.000 0.000 -1.682 55.00 57.40 

18 0.000 0.000 1.682 81.00 63.20 

19 0.000 0.000 0.000 80.00 60.80 

20 0.000 0.000 0.000 91.00 58.90 

 
Quadratic models are developed for the Conversion and Activity response variables as follows: 
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Design Expert Output 
 Response: Conversion 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2555.73 9 283.97 12.76 0.0002 significant
 A 14.44 1 14.44 0.65 0.4391 
 B 222.96 1 222.96 10.02 0.0101 
 C 525.64 1 525.64 23.63 0.0007 
 A2 48.47 1 48.47 2.18 0.1707 
 B2 124.48 1 124.48 5.60 0.0396 
 C2 388.59 1 388.59 17.47 0.0019 
 AB 36.13 1 36.13 1.62 0.2314 
 AC 1035.13 1 1035.13 46.53 < 0.0001 
 BC 120.12 1 120.12 5.40 0.0425 
 Residual 222.47 10 22.25 
 Lack of Fit 56.47 5 11.29 0.34 0.8692 not significant 
 Pure Error 166.00 5 33.20 
 Cor Total 287.28 19 
 
 The Model F-value of 12.76 implies the model is significant.  There is only 
 a 0.02% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 4.72  R-Squared 0.9199 
 Mean 78.30  Adj R-Squared 0.8479 
 C.V. 6.02  Pred R-Squared 0.7566 
 PRESS 676.22  Adeq Precision 14.239 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 81.09 1 1.92 76.81 85.38 
 A-Time 1.03 1 1.28 -1.82 3.87 1.00 
 B-Temperature 4.04 1 1.28 1.20 6.88 1.00 
 C-Catalyst 6.20 1 1.28 3.36 9.05 1.00 
 A2 -1.83 1 1.24 -4.60 0.93 1.02 
 B2 2.94 1 1.24 0.17 5.71 1.02 
 C2 -5.19 1 1.24 -7.96 -2.42 1.02 
 AB 2.13 1 1.67 -1.59 5.84 1.00 
 AC 11.38 1 1.67 7.66 15.09 1.00 
 BC -3.87 1 1.67 -7.59 -0.16 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Conversion  = 
  +81.09 
  +1.03  * A 
  +4.04  * B 
  +6.20  * C 
  -1.83  * A2 
  +2.94  * B2 
  -5.19  * C2 
  +2.13  * A * B 
  +11.38  * A * C 
  -3.87  * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Conversion  = 
  +81.09128 
  +1.02845  * Time 
  +4.04057  * Temperature 
  +6.20396  * Catalyst 
  -1.83398  * Time2 
  +2.93899  * Temperature2 
  -5.19274  * Catalyst2 
  +2.12500  * Time * Temperature 
  +11.37500  * Time * Catalyst 
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  -3.87500  * Temperature * Catalyst 
 
Design Expert Output 
 Response: Activity 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 256.20 9 28.47 9.16 0.0009 significant
 A 175.35 1 175.35 56.42 < 0.0001 
 B 0.89 1 0.89 0.28 0.6052 
 C 67.91 1 67.91 21.85 0.0009 
 A2 10.05 1 10.05 3.23 0.1024 
 B2 0.081 1 0.081 0.026 0.8753 
 C2 0.047 1 0.047 0.015 0.9046 
 AB 1.20 1 1.20 0.39 0.5480 
 AC 0.011 1 0.011 3.620E-003 0.9532 
 BC 0.78 1 0.78 0.25 0.6270 
 Residual 31.08 10 3.11 
 Lack of Fit 27.43 5 5.49 7.51 0.0226 significant 
 Pure Error 3.65 5 0.73 
 Cor Total 287.28 19 
 
 The Model F-value of 9.16 implies the model is significant.  There is only 
 a 0.09% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.76  R-Squared 0.8918 
 Mean 60.51  Adj R-Squared 0.7945 
 C.V. 2.91  Pred R-Squared 0.2536 
 PRESS 214.43  Adeq Precision 10.911 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 59.85 1 0.72 58.25 61.45 
 A-Time 3.58 1 0.48 2.52 4.65 1.00 
 B-Temperature 0.25 1 0.48 -0.81 1.32 1.00 
 C-Catalyst 2.23 1 0.48 1.17 3.29 1.00 
 A2 0.83 1 0.46 -0.20 1.87 1.02 
 B2 0.075 1 0.46 -0.96 1.11 1.02 
 C2 0.057 1 0.46 -0.98 1.09 1.02 
 AB -0.39 1 0.62 -1.78 1.00 1.00 
 AC -0.038 1 0.62 -1.43 1.35 1.00 
 BC 0.31 1 0.62 -1.08 1.70 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Conversion  = 
  +59.85 
  +3.58   * A 
  +0.25   * B 
  +2.23   * C 
  +0.83   * A2 
  +0.075   * B2 
  +0.057   * C2 
  -0.39   * A * B 
  -0.038   * A * C 
  +0.31   * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Conversion  = 
  +59.84984 
  +3.58327   * Time 
  +0.25462   * Temperature 
  +2.22997   * Catalyst 
  +0.83491   * Time2 
  +0.074772   * Temperature2 
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  +0.057094   * Catalyst2 
  -0.38750   * Time * Temperature 
  -0.037500   * Time * Catalyst 
  +0.31250   * Temperature * Catalyst 
 
Because many of the terms are insignificant, the reduced quadratic model is fit as follows: 
 
Design Expert Output 
 Response: Activity 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 253.20 3 84.40 39.63 < 0.0001 significant 
 A 175.35 1 175.35 82.34 < 0.0001 
 C 67.91 1 67.91 31.89 < 0.0001 
 A2 9.94 1 9.94 4.67 0.0463 
 Residual 34.07 16 2.13 
 Lack of Fit 30.42 11 2.77 3.78 0.0766 not significant 
 Pure Error 3.65 5 0.73 
 Cor Total 287.28 19 
 
 The Model F-value of 39.63 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.46  R-Squared 0.8814 
 Mean 60.51  Adj R-Squared 0.8591 
 C.V. 2.41  Pred R-Squared 0.6302 
 PRESS 106.24  Adeq Precision 20.447 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
 Intercept 59.95 1 0.42 59.06 60.83 
 A-Time 3.58 1 0.39 2.75 4.42 1.00 
 C-Catalyst 2.23 1 0.39 1.39 3.07 1.00 
 A2 0.82 1 0.38 0.015 1.63 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Activity  = 
  +59.95 
  +3.58  * A 
  +2.23  * C 
  +0.82  * A2 
 
  Final Equation in Terms of Actual Factors: 
 
   Activity  = 
  +59.94802 
  +3.58327  * Time 
  +2.22997  * Catalyst 
  +0.82300  * Time2 
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The contour plots visually describe the models while the overlay plots identifies the acceptable region for 
the process. 
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11-13 A manufacturer of cutting tools has developed two empirical equations for tool life in hours (y1) 
and for tool cost in dollars (y2).  Both models are linear functions of steel hardness (x1) and 
manufacturing time (x2).  The two equations are 
 

212

211

4323
2510

xxŷ
xxŷ

 

 
and both equations are valid over the range -1.5 x1 1.5.  Unit tool cost must be below $27.50 and life 
must exceed 12 hours for the product to be competitive.  Is there a feasible set of operating conditions for 
this process?  Where would you recommend that the process be run? 
 
The contour plots below graphically describe the two models.  The overlay plot identifies the feasible 
operating region for the process. 
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11-14 A central composite design is run in a chemical vapor deposition process, resulting in the 
experimental data shown below.  Four experimental units were processed simultaneously on each run of 
the design, and the responses are the mean and variance of thickness, computed across the four units. 
 

x1 x2 y  2s  
-1 -1 360.6 6.689 
-1 1 445.2 14.230 
1 -1 412.1 7.088 
1 1 601.7 8.586 

1.414 0 518.0 13.130 
-1.414 0 411.4 6.644 

0 1.414 497.6 7.649 
0 -1.414 397.6 11.740 
0 0 530.6 7.836 
0 0 495.4 9.306 
0 0 510.2 7.956 
0 0 487.3 9.127 

 
(a) Fit a model to the mean response.  Analyze the residuals. 
 
Design Expert Output 
 Response: Mean Thick 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 47644.26 5 9528.85 16.12 0.0020 significant 
 A 22573.36 1 22573.36 38.19 0.0008 
 B 15261.91 1 15261.91 25.82 0.0023 
 A2 2795.58 1 2795.58 4.73 0.0726 
 B2 5550.74 1 5550.74 9.39 0.0221 
 AB 2756.25 1 2756.25 4.66 0.0741 
 Residual 3546.83 6 591.14 
 Lack of Fit 2462.04 3 820.68 2.27 0.2592 not significant 
 Pure Error 1084.79 3 361.60 
 Cor Total 51191.09 11 
 
 The Model F-value of 16.12 implies the model is significant.  There is only 
 a 0.20% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 24.31  R-Squared 0.9307 
 Mean 472.31  Adj R-Squared 0.8730 
 C.V. 5.15  Pred R-Squared 0.6203 
 PRESS 19436.37  Adeq Precision 11.261 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 505.88 1 12.16 476.13 535.62 
  A-x1 53.12 1 8.60 32.09 74.15 1.00 
  B-x2 43.68 1 8.60 22.64 64.71 1.00 
  A2 -20.90 1 9.61 -44.42 2.62 1.04 
  B2 -29.45 1 9.61 -52.97 -5.93 1.04 
  AB 26.25 1 12.16 -3.50 56.00 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Mean Thick  = 
  +505.88 
  +53.12   * A 
  +43.68   * B 
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  -20.90   * A2 
  -29.45   * B2 
  +26.25   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Mean Thick  = 
  +505.87500 
  +53.11940   * x1 
  +43.67767   * x2 
  -20.90000   * x12 
  -29.45000   * x22 
  +26.25000   * x1 * x2 
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A modest deviation from normality can be observed in the Normal Plot of Residuals; however, not enough 
to be concerned. 
 
(b) Fit a model to the variance response.  Analyze the residuals. 
 
Design Expert Output 
 Response: Var Thick 
         ANOVA for Response Surface 2FI Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 65.80 3 21.93 35.86 < 0.0001 significant 
 A 41.46 1 41.46 67.79 < 0.0001 
 B 15.21 1 15.21 24.87 0.0011 
 AB 9.13 1 9.13 14.93 0.0048 
 Residual 4.89 8 0.61 
 Lack of Fit 3.13 5 0.63 1.06 0.5137 not significant 
 Pure Error 1.77 3 0.59 
 Cor Total 70.69 11 
 
 The Model F-value of 35.86 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.78  R-Squared 0.9308 
 Mean 9.17  Adj R-Squared 0.9048 
 C.V. 8.53  Pred R-Squared 0.8920 
 PRESS 7.64  Adeq Precision 18.572 
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  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 9.17 1 0.23 8.64 9.69 
  A-x1 2.28 1 0.28 1.64 2.91 1.00 
  B-x2 -1.38 1 0.28 -2.02 -0.74 1.00 
  AB -1.51 1 0.39 -2.41 -0.61 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Var Thick  = 
  +9.17 
  +2.28   * A 
  -1.38   * B 
  -1.51   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Var Thick  = 
  +9.16508 
  +2.27645   * x1 
  -1.37882   * x2 
  -1.51075   * x1 * x2 
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The residual plots are not acceptable.  A transformation should be considered.  If not successful at 
correcting the residual plots, further investigation into the two apparently unusual points should be made. 
 
(c) Fit a model to the ln(s2).  Is this model superior to the one you found in part (b)? 
 
Design Expert Output 
 Response: Var Thick Transform: Natural log Constant: 0 
         ANOVA for Response Surface 2FI Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 0.67 3 0.22 36.94 < 0.0001 significant 
 A 0.46 1 0.46 74.99 < 0.0001 
 B 0.14 1 0.14 22.80 0.0014 
 AB 0.079 1 0.079 13.04 0.0069 
 Residual 0.049 8 6.081E-003 
 Lack of Fit 0.024 5 4.887E-003 0.61 0.7093 not significant 
 Pure Error 0.024 3 8.071E-003 
 Cor Total 0.72 11 
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 The Model F-value of 36.94 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.078  R-Squared 0.9327 
 Mean 2.18  Adj R-Squared 0.9074 
 C.V. 3.57  Pred R-Squared 0.8797 
 PRESS 0.087  Adeq Precision 18.854 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 2.18 1 0.023 2.13 2.24 
  A-x1 0.24 1 0.028 0.18 0.30 1.00 
  B-x2 -0.13 1 0.028 -0.20 -0.068 1.00 
  AB -0.14 1 0.039 -0.23 -0.051 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Ln(Var Thick)  = 
  +2.18 
  +0.24   * A 
  -0.13   * B 
  -0.14   * A * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Ln(Var Thick)  = 
  +2.18376 
  +0.23874   * x1 
  -0.13165   * x2 
  -0.14079   * x1 * x2 
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The residual plots are much improved following the natural log transformation; however, the two runs 
still appear to be somewhat unusual and should be investigated further.  They will be retained in the 
analysis. 
 
(d) Suppose you want the mean thickness to be in the interval 450±25.  Find a set of operating conditions 

that achieve the objective and simultaneously minimize the variance. 
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The contour plots describe the two models while the overlay plot identifies the acceptable region for the 
process. 
 
(e) Discuss the variance minimization aspects of part (d).  Have you minimized total process variance? 
 
The within run variance has been minimized; however, the run-to-run variation has not been minimized 
in the analysis.  This may not be the most robust operating conditions for the process. 
 
 
11-15 Verify that an orthogonal first-order design is also first-order rotatable. 
 
To show that a first order orthogonal design is also first order rotatable, consider 
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since all covariances between i  and j are zero, due to design orthogonality. Furthermore, we have: 
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)ŷ(V

1

2
22

1  

 
which is a function of distance from the design center (i.e. x=0), and not direction.  Thus the design must 
be rotatable.  Note that n is, in general, the number of points in the exterior portion of the design.  If there 

are nc centerpoints, then 
)nn(

)ˆ(V
c

2

0 . 

 
 
11-16 Show that augmenting a 2k design with nc center points does not affect the estimates of the i (i=1, 

2, . . . , k), but that the estimate of the intercept 0 is the average of all 2k + nc observations. 
 
In general, the X matrix for the 2k design with nc center points and the y vector would be: 
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Therefore, 
c

k n
gˆ

2
0

0 , which is the average of all c
k n2 observations, while k

i
i

gˆ
2

, which does 

not depend on the number of center points, since in computing the contrasts gi, all observations at the 
center are multiplied by zero. 
 
 
11-17 The rotatable central composite design.  It can be shown that a second-order design is rotatable if 
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composite design these conditions lead to 41 /
fn  for rotatability, where nf is the number of points in 

the factorial portion. 
 
The balance between +1 and -1 in the factorial columns and the orthogonality among certain column in 
the X matrix for the central composite design will result in all odd moments being zero.  To solve for  
use the following relations: 
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11-18 Verify that the central composite design shown below blocks orthogonally. 
 

 Block 1   Block 2   Block 3  
x1 x2 x3 x1 x2 x3 x1 x2 x3 
0 0 0 0 0 0 -1.633 0 0 
0 0 0 0 0 0 1.633 0 0 
1 1 1 1 1 -1 0 -1.633 0 
1 -1 -1 1 -1 1 0 1.633 0 
-1 -1 1 -1 1 1 0 0 -1.633 
-1 1 -1 -1 -1 -1 0 0 1.633 
      0 0 0 
      0 0 0 

 
Note that each block is an orthogonal first order design, since the cross products of elements in different 
columns add to zero for each block.  To verify the second condition, choose a column, say column x2.  
Now 
 

k

u
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2 33413 , and n=20 
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For blocks 1 and 2, 
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and condition 2 is satisfied by blocks 1 and 2.  For block 3, we have  
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And condition 2 is satisfied by block 3.  Similar results hold for the other columns. 
 
 
11-19 Blocking in the central composite design.  Consider a central composite design for k = 4 variables 
in two blocks.  Can a rotatable design always be found that blocks orthogonally? 
 
To run a central composite design in two blocks, assign the nf factorial points and the n01 center points to 
block 1 and the 2k axial points plus n02 center points to block 2.  Both blocks will be orthogonal first order 
designs, so the first condition for orthogonal blocking is satisfied. 
 
The second condition implies that  
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However, 
m

fim nx 2 in block 1 and 
m

imx 22 2 in block 2, so 
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Since 4 fn  if the design is to be rotatable, then the design must satisfy 
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It is not possible to find rotatable central composite designs which block orthogonally for all k.  For 
example, if k=3, the above condition cannot be satisfied.  For k=2, there must be an equal number of 
center points in each block, i.e. nc1 = nc2.  For k=4, we must have nc1 = 4 and nc2 = 2. 
 
 
11-20 How could a hexagon design be run in two orthogonal blocks? 
 
The hexagonal design can be blocked as shown below.  There are nc1 = nc2 = nc center points with nc even. 
 

1 2
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Put the points 1,3,and 5 in block 1 and 2,4,and 6 in block 2.  Note that each block is a simplex. 
 
 
11-21 Yield during the first four cycles of a chemical process is shown in the following table.  The 
variables are percent concentration (x1) at levels 30, 31, and 32 and temperature (x2) at 140, 142, and 
144 F.  Analyze by EVOP methods. 
 

   Conditions   
Cycle (1) (2) (3) (4) (5) 
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1 60.7 59.8 60.2 64.2 57.5 
2 59.1 62.8 62.5 64.6 58.3 
3 56.6 59.1 59.0 62.3 61.1 
4 60.5 59.8 64.5 61.0 60.1 

 
Cycle:   n=1  Phase 1 
Calculation of Averages       Calculation of Standard Deviation 
Operating Conditions  (1) (2) (3) (4) (5)  
(i) Previous Cycle Sum      Previous Sum S= 
(ii) Previous Cycle Average      Previous Average = 
(iii) New Observation 60.7 59.8 60.2 64.2 57.5 New S=Range x fk,n 
(iv) Differences      Range= 
(v) New Sums 60.7 59.8 60.2 64.2 57.5 New Sum S= 
(vi) New Averages 60.7 59.8 60.2 64.2 57.5 New average S = New Sum S/(n-1)= 
 

Calculation of Effects  Calculation of Error Limits  

52432
1 yyyyA  

3.55 
For New Average:  S

n
2

 
 

52432
1 yyyyB  

-3.55 
For New Effects:  S

n
2

 
 

52432
1 yyyyAB  

-0.85 
For CIM:  S

n
.781

 
 

15243 4
2
1 yyyyyCIM  

-0.22   

 
Cycle:   n=2  Phase 1 
Calculation of Averages       Calculation of Standard Deviation 
Operating Conditions  (1) (2) (3) (4) (5)  
(i) Previous Cycle Sum 60.7 59.8 60.2 64.2 57.5 Previous Sum S= 
(ii) Previous Cycle Average 60.7 59.8 60.2 64.2 57.5 Previous Average = 
(iii) New Observation 59.1 62.8 62.5 64.6 58.3 New S=Range x fk,n=1.38 
(iv) Differences 1.6 -3.0 -2.3 -0.4 -0.8 Range=4.6 
(v) New Sums 119.8 122.6 122.7 128.8 115.8 New Sum S=1.38 
(vi) New Averages 59.90 61.30 61.35 64.40 57.90 New average S = New Sum S/(n-1)=1.38 

 
Calculation of Effects  Calculation of Error Limits  

52432
1 yyyyA  

3.28 
For New Average:  S

n
2

 
1.95 
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2
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Cycle:   n=3  Phase 1 
Calculation of Averages       Calculation of Standard Deviation 
Operating Conditions  (1) (2) (3) (4) (5)  
(i) Previous Cycle Sum 119.8 122.6 122.7 128.8 115.8 Previous Sum S=1.38 
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(ii) Previous Cycle Average 59.90 61.30 61.35 64.40 57.90 Previous Average =1.38 
(iii) New Observation 56.6 59.1 59.0 62.3 61.1 New S=Range x fk,n=2.28 
(iv) Differences 3.30 2.20 2.35 2.10 -3.20 Range=6.5 
(v) New Sums 176.4 181.7 181.7 191.1 176.9 New Sum S=3.66 
(vi) New Averages 58.80 60.57 60.57 63.70 58.97 New average S = New Sum S/(n-1)=1.38 

 
Calculation of Effects  Calculation of Error Limits  

52432
1 yyyyA  

2.37 
For New Average:  S

n
2

 
2.11 

52432
1 yyyyB  

-2.37 
For New Effects:  S

n
2

 
2.11 

52432
1 yyyyAB  

-0.77 
For CIM:  S

n
.781

 
1.74 

15243 4
2
1 yyyyyCIM  

1.72   

 
Cycle:   n=4  Phase 1 
Calculation of Averages       Calculation of Standard Deviation 
Operating Conditions  (1) (2) (3) (4) (5)  
(i) Previous Cycle Sum 176.4 181.7 181.7 191.1 176.9 Previous Sum S=3.66 
(ii) Previous Cycle Average 58.80 60.57 60.57 63.70 58.97 Previous Average =1.83 
(iii) New Observation 60.5 59.8 64.5 61.0 60.1 New S=Range x fk,n=2.45 
(iv) Differences -1.70 0.77 -3.93 2.70 -1.13 Range=6.63 
(v) New Sums 236.9 241.5 245.2 252.1 237.0 New Sum S=6.11 
(vi) New Averages 59.23 60.38 61.55 63.03 59.25 New average S = New Sum S/(n-1)=2.04 

 
Calculation of Effects  Calculation of Error Limits  

52432
1 yyyyA  

2.48 
For New Average:  S

n
2

 
2.04 

52432
1 yyyyB  

-1.31 
For New Effects:  S

n
2

 
2.04 

52432
1 yyyyAB  

-0.18 
For CIM:  S

n
.781

 
1.82 

15243 4
2
1 yyyyyCIM  

1.46   

 
From studying cycles 3 and 4, it is apparent that A (and possibly B) has a significant effect.  A new phase 
should be started following cycle 3 or 4. 
 
 
11-22 Suppose that we approximate a response surface with a model of order d1, such as y=X1 1+ , when 
the true surface is described by a model of order d2>d1; that is E(y)= X1 1+ X2 2. 
 
(a) Show that the regression coefficients are biased, that is, that E( 1 )= 1+A 2, where A=(X’

1X1)-

1X’
1X2. A is usually called the alias matrix. 
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1
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22111
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1
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1
1
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βXβXXXX

yXXX

yXXXβ
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''
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E

EˆE
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'
1

'
1 XXXXA

1
1  

 
(a) If d1=1 and d2=2, and a full 2k is used to fit the model, use the result in part (a) to determine the alias 

structure. 
 
In this situation, we have assumed the true surface to be first order, when it is really second order.  If a full 
factorial is used for k=2, then 

 

X1 = 

0 1 2

1 1 1
1 1 1
1 1 1
1 1 1

    X2 = 

11

1
1
1
1

22

1
1
1
1 1

1
1

1
12

  and    A = 
1 1 0
0 0 0
0 0 0

 

 

Then, E 1  = E

2

1

22110

12

22

11

2

1

0

2

1

0

000
000
011

ˆ
ˆ
ˆ

 

 
The pure quadratic terms bias the intercept. 
 
(b) If d1=1, d2=2 and k=3, find the alias structure assuming that a 23-1 design is used to fit the model. 

 

X1 = 

0 1 2 3

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

   X2 = 

11

1
1
1
1

22

1
1
1
1

33

1
1
1
1

12

1
1
1

1

13

1
1

1
1

23

1
1
1

1

   and   A = 

1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

 

 

Then, E 1  = E

123

132

231

2222110

23

13

12

33

22

11

3

2

1

0

3

2

1

0

001000
010000
100000
000011

ˆ
ˆ
ˆ
ˆ

 

 
(d) If d1=1, d2=2, k=3, and the simplex design in Problem 11-3 is used to fit the model, determine the 

alias structure and compare the results with part (c). 
 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

11-39 

X1 = 

0 1 2 3

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

   X2 = 

11

0
2
0
2

22

2
0
2
0

33

1
1
1
1

12

0
0
0
0

13

0
2

0
2

23

2
0

2
0

   and A = 

1 1 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0

 

 

Then, E 1  = E 
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33
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3

2

1

0

3

2

1

0

000011
100000
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Notice that the alias structure is different from that found in the previous part for the 23-1 design.  In 
general, the A matrix will depend on which simplex design is used. 
 
 
11-23 In an article (“Let’s All Beware the Latin Square,” Quality Engineering, Vol. 1, 1989, pp. 453-
465) J.S. Hunter illustrates some of the problems associated with 3k-p fractional factorial designs.  Factor A 
is the amount of ethanol added to a standard fuel and factor B represents the air/fuel ratio.  The response 
variable is carbon monoxide (CO) emission in g/m2.  The design is shown below. 
 
 Design Observations 

A B x1 x2 y y 
0 0 -1 -1 66 62 
1 0 0 -1 78 81 
2 0 1 -1 90 94 
0 1 -1 0 72 67 
1 1 0 0 80 81 
2 1 1 0 75 78 
0 2 -1 1 68 66 
1 2 0 1 66 69 
2 2 1 1 60 58 

 
Notice that we have used the notation system of 0, 1, and 2 to represent the low, medium, and high levels 
for the factors.  We have also used a “geometric notation” of -1, 0, and 1.  Each run in the design is 
replicated twice. 
 
(a)  Verify that the second-order model 
 

21
2
2

2
121 0904540754578 xx.x.x.x.x..ŷ  

 
is a reasonable model for this experiment.  Sketch the CO concentration contours in the x1, x2 space. 
 
In the computer output that follows, the “coded factors” model is in the -1, 0, +1 scale. 
 
Design Expert Output 
 Response: CO Emis 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1624.00 5 324.80 50.95 < 0.0001 significant 
 A 243.00 1 243.00 38.12 < 0.0001 
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 B 588.00 1 588.00 92.24 < 0.0001 
 A2 81.00 1 81.00 12.71 0.0039 
 B2 64.00 1 64.00 10.04 0.0081 
 AB 648.00 1 648.00 101.65 < 0.0001 
 Residual 76.50 12 6.37 
 Lack of Fit 30.00 3 10.00 1.94 0.1944 not significant 
 Pure Error 46.50 9 5.17 
 Cor Total 1700.50 17 
 
 The Model F-value of 50.95 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.52  R-Squared 0.9550 
 Mean 72.83  Adj R-Squared 0.9363 
 C.V. 3.47  Pred R-Squared 0.9002 
 PRESS 169.71  Adeq Precision 21.952 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 78.50 1 1.33 75.60 81.40 
  A-Ethanol 4.50 1 0.73 2.91 6.09 1.00 
  B-Air/Fuel Ratio -7.00 1 0.73 -8.59 -5.41 1.00 
  A2 -4.50 1 1.26 -7.25 -1.75 1.00 
  B2 -4.00 1 1.26 -6.75 -1.25 1.00 
  AB -9.00 1 0.89 -10.94 -7.06 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   CO Emis  = 
  +78.50 
  +4.50   * A 
  -7.00   * B 
  -4.50   * A2 
  -4.00   * B2 
  -9.00   * A * B 

 

C O Emis

A: Ethanol

B
: A

ir/
Fu

el
 R

at
io

-1 -0.5 0 0.5 1

-1.00
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0.00

0.50

1.00
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70
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2 2 2

2 2 2

2 2 2

 
 

(b) Now suppose that instead of only two factors, we had used four factors in a 34-2 fractional factorial 
design and obtained exactly the same data in part (a).  The design would be as follows: 

 
 Design Observations 

A B C D x1 x2 x3 x4 y y 
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0 0 0 0 -1 -1 -1 -1 66 62 
1 0 1 1 0 -1 0 0 78 81 
2 0 2 2 +1 -1 +1 +1 90 94 
0 1 2 1 -1 0 +1 0 72 67 
1 1 0 2 0 0 -1 +1 80 81 
2 1 1 0 +1 0 0 -1 75 78 
0 2 1 2 -1 +1 0 +1 68 66 
1 2 2 0 0 +1 +1 -1 66 69 
2 2 0 1 +1 +1 -1 0 60 58 

 
Confirm that this design is an L9 orthogonal array. 
 
This is the same as the design in Table 11-22. 
 
(c) Calculate the marginal averages of the CO response at each level of the four factors A, B, C, and D.  

Construct plots of these marginal averages and interpret the results.  Do factors C and D appear to 
have strong effects?  Do these factors really have any effect on CO emission?  Why is their apparent 
effect strong? 

 

A: A

C
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 E
m

is

One Factor P lot

0 1 2
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76
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B: B

C
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C: C

C
O

 E
m

is

One Factor P lot

0 1 2
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D: D

C
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m

is

One Factor P lot

0 1 2
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67

76

85

94

 
 
Both Factors C and D appear to have an effect on CO emission.  This is probably because both C and D 
are aliased with components of interaction involving A and B, and there is a strong AB interaction. 
 
(a) The design in part (b) allows the model 
 

4

1

4

1

2
0

i i
iiiii xxy  

 
to be fitted.  Suppose that the true model is 

 
4

1

4

1

2
0

i i ji
jiijiiiii xxxxy  

 
Show that if j represents the least squares estimates of the coefficients in the fitted model, then 
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Let   X1 =  
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Then, A X X X X1 1
1

1 2
' '  =  A = 

00210121
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11-24 Suppose that you need to design an experiment to fit a quadratic model over the region 

11 ix , i=1,2   subject to the constraint 121 xx .  If the constraint is violated, the process will 
not work properly.  You can afford to make no more than n=12 runs.  Set up the following designs: 
 
(a) An “inscribed” CCD with center points at 021 xx  
 

x1 x2 
-0.5 -0.5 
0.5 -0.5 

-0.5 0.5 
0.5 0.5 

-0.707 0 
0.707 0 
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0 -0.707 
0 0.707 
0 0 
0 0 
0 0 
0 0 

 
(a)* An “inscribed” CCD with center points at 25021 .xx  so that a larger design could be fit within 

the constrained region 
 

x1 x2 
-1 -1 

0.5 -1 
-1 0.5 

0.5 0.5 
-1.664 -0.25 
1.164 -0.25 
-0.25 -1.664 
-0.25 1.164 
-0.25 -0.25 
-0.25 -0.25 
-0.25 -0.25 
-0.25 -0.25 

 
(a) An “inscribed” 32 factorial with center points at 25.021 xx  
 

x1 x2 
-1 -1 

-0.25 -1 
0.5 -1 
-1 -0.25 

-0.25 -0.25 
0.5 -0.25 
-1 0.5 

-0.25 0.5 
0.5 0.5 

-0.25 -0.25 
-0.25 -0.25 
-0.25 -0.25 

 
(a) A D-optimal design. 
 

x1 x2 
-1 -1 
1 -1 

-1 1 
1 0 
0 1 
0 0 

-1 0 
0 -1 
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0.5 0.5 
-1 -1 
1 -1 

-1 1 

 
(a) A modified D-optimal design that is identical to the one in part (c), but with all replicate runs at the 

design center. 
 

x1 x2 
1 0 
0 0 
0 1 

-1 -1 
1 -1 

-1 1 
-1 0 
0 -1 

0.5 0.5 
0 0 
0 0 
0 0 

 
(a) Evaluate the 1)( XX  criteria for each design. 

 
 (a) (a)* (b) (c) (d) 

1XX  
0.5 0.00005248 0.007217 0.0001016 0.0002294 

 
(a) Evaluate the D-efficiency for each design relative to the D-optimal design in part (c). 
 

 (a) (a)* (b) (c) (d) 
D-efficiency 24.25% 111.64% 49.14% 100.00% 87.31% 

 
(a) Which design would you prefer?  Why? 
 
The offset CCD, (a)*, is the preferred design based on the D-efficiency.  Not only is it better than the D-
optimal design, (c), but it maintains the desirable design features of the CCD. 
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11-25 Consider a 23 design for fitting a first-order model. 
 
(a) Evaluate the D-criterion 1)( XX  for this design. 

 
1)( XX  = 2.441E-4 

 
(b) Evaluate the A-criterion 1)( XXtr   for this design. 
 

1)( XXtr = 0.5 
 
(c) Find the maximum scaled prediction variance for this design.  Is this design G-optimal? 
 

4111
2

xXXxxx NŷNVarv .  Yes, this is a G-optimal design. 

 
 
11-26 Repeat Problem 11-25 using a first order model with the two-factor interaction. 
 

1)( XX  = 4.768E-7 

 
1)( XXtr = 0.875 

 

7111
2

xXXxxx NŷNVarv .  Yes, this is a G-optimal design. 

 
 
11-27 A chemical engineer wishes to fit a calibration curve for a new procedure used to measure the 
concentration of a particular ingredient in a product manufactured in his facility.  Twelve samples can be 
prepared, having known concentration.  The engineer’s interest is in building a model for the measured 
concentrations.  He suspects that a linear calibration curve will be adequate to model the measured 
concentration as a function of the known concentrations; that is, where x is the actual concentration.  Four 
experimental designs are under consideration.  Design 1 consists of 6 runs at known concentration 1 and 6 
runs at known concentration 10.  Design 2 consists of 4 runs at concentrations 1, 5.5, and 10.  Design 3 
consists of 3 runs at concentrations 1, 4, 7, and 10.  Finally, design 4 consists of 3 runs at concentrations 1 
and 10 and 6 runs at concentration 5.5. 
 
(a) Plot the scaled variance of prediction for all four designs on the same graph over the concentration 

range.  Which design would be preferable, in your opinion? 
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Scaled Variance of Prediction

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9

Design 4

Design 3

Design 2

Design 1

 
 
Because it has the lowest scaled variance of prediction at all points in the design space with the exception 
of 5.5, Design 1 is preferred. 
 
(b) For each design calculate the determinant of  1)( XX  .  Which design would be preferred according 

to the “D” criterion? 
 

Design 1)( XX  

1 0.000343 
2 0.000514 
3 0.000617 
4 0.000686 

 
Design 1 would be preferred. 
 
(c) Calculate the D-efficiency of each design relative to the “best” design that you found in part b. 
 

Design D-efficiency 
1 100.00% 
2 81.65% 
3 74.55% 
4 70.71% 

 
(a) For each design, calculate the average variance of prediction over the set of points given by x = 1, 1.5, 

2, 2.5, . . ., 10.  Which design would you prefer according to the V-criterion? 
 

Average Variance of Prediction 
Design Actual Coded 

1 1.3704 0.1142 
2 1.5556 0.1296 
3 1.6664 0.1389 
4 1.7407 0.1451 
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Design 1 is still preferred based on the V-criterion. 
 
 (e) Calculate the V-efficiency of each design relative to the best design you found in part (d). 
 

Design V-efficiency 
1 100.00% 
2 88.10% 
3 82.24% 
4 78.72% 

 
(f) What is the G-efficiency of each design? 
 

Design G-efficiency 
1 100.00% 
2 80.00% 
3 71.40% 
4 66.70% 

 
 
11-28 Rework Problem 11-27 assuming that the model the engineer wishes to fit is a quadratic.  
Obviously, only designs 2, 3, and 4 can now be considered. 
 

Scaled Variance of Prediction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9

Design 4

Design 3

Design 2

2

 
 
Based on the plot, the preferred design would depend on the region of interest.  Design 4 would be 
preferred if the center of the region was of interest; otherwise, Design 2 would be preferred. 
 

Design 1)( XX  

2 4.704E-07 
3 6.351E-07 
4 5.575E-07 

 
Design 2 is preferred based on 1)( XX . 
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Design D-efficiency 
2 100.00% 
3 90.46% 
4 94.49% 

 
Average Variance of Prediction 
Design Actual Coded

2 2.441 0.2034
3 2.393 0.1994
4 2.242 0.1869

 
Design 4 is preferred. 
 

Design V-efficiency 
2 91.89% 
3 93.74% 
4 100.00% 

 
Design G-efficiency 

2 100.00% 
3 79.00% 
4 75.00% 

 
 
11-29 An experimenter wishes to run a three-component mixture experiment.  The constraints are the 
components proportions are as follows: 
 

7.04.0
3.01.0
4.02.0

3

2

1

x
x
x

 

 
(a) Set up an experiment to fit a quadratic mixture model.  Use n=14 runs, with 4 replicates.  Use the D-

criteria. 
 

Std x1 x2 x3 
1 0.2 0.3 0.5 
2 0.3 0.3 0.4 
3 0.3 0.15 0.55 
4 0.2 0.1 0.7 
5 0.4 0.2 0.4 
6 0.4 0.1 0.5 
7 0.2 0.2 0.6 
8 0.275 0.25 0.475 
9 0.35 0.175 0.475 

10 0.3 0.1 0.6 
11 0.2 0.3 0.5 
12 0.3 0.3 0.4 
13 0.2 0.1 0.7 
14 0.4 0.1 0.5 

 
(a) Draw the experimental design region. 
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A: x1 
0.50 

B: x2 
0.40 

C: x3 
0.70 

0.40 0.10 

0.20 

 

2 

2 

2 

2 

 
 
(c) Set up an experiment to fit a quadratic mixture model with n=12 runs, assuming that three of these 

runs are replicated.  Use the D-criterion. 
 

Std x1 x2 x3 
1 0.3 0.15 0.55 
2 0.2 0.3 0.5 
3 0.3 0.3 0.4 
4 0.2 0.1 0.7 
5 0.4 0.2 0.4 
6 0.4 0.1 0.5 
7 0.2 0.2 0.6 
8 0.275 0.25 0.475 
9 0.35 0.175 0.475 

10 0.2 0.1 0.7 
11 0.4 0.1 0.5 
12 0.4 0.2 0.4 
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A: x1 
0.50 

B: x2 
0.40 

C: x3 
0.70 

0.40 0.10 

0.20 

 

2 

2 2 

 
 
(d) Comment on the two designs you have found. 
 
The design points are the same for both designs except that the edge center on the x1-x3 edge is not 
included in the second design.  None of the replicates for either design are in the center of the 
experimental region.  The experimental runs are fairly uniformly spaced in the design region. 
 
 
11-30 Myers and Montgomery (1995) describe a gasoline blending experiment involving three mixture 
components.  There are no constraints on the mixture proportions, and the following 10 run design is 
used. 
 

Design Point x1 x2 x3 y(mpg) 
1 1 0 0 24.5, 25.1 
2 0 1 0 24.8, 23.9 
3 0 0 1 22.7, 23.6 
4 ½ ½ 0 25.1 
5 ½ 0 ½ 24.3 
6 0 ½ ½ 23.5 
7 1/3 1/3 1/3 24.8, 24.1 
8 2/3 1/6 1/6 24.2 
9 1/6 2/3 1/6 23.9 

10 1/6 1/6 2/3 23.7 
 

(a) What type of design did the experimenters use? 
 
A simplex centroid design was used. 
 
(b) Fit a quadratic mixture model to the data.  Is this model adequate? 
 
Design Expert Output 
 Response: y 
         ANOVA for Mixture Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
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 Model 4.22 5 0.84 3.90 0.0435 significant 
Linear Mixture 3.92 2 1.96 9.06 0.0088 
 AB 0.15 1 0.15 0.69 0.4289 
 AC 0.081 1 0.081 0.38 0.5569 
 BC 0.077 1 0.077 0.36 0.5664 
 Residual 1.73 8 0.22 
 Lack of Fit 0.50 4 0.12 0.40 0.8003 not significant 
 Pure Error 1.24 4 0.31 
 Cor Total 5.95 13 
 
 The Model F-value of 3.90 implies the model is significant.  There is only 
 a 4.35% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.47  R-Squared 0.7091 
 Mean 24.16  Adj R-Squared 0.5274 
 C.V. 1.93  Pred R-Squared 0.1144 
 PRESS 5.27  Adeq Precision 5.674 
 
  Coefficient  Standard 95% CI 95% CI 
 Component Estimate DF Error Low High 
  A-x1 24.74 1 0.32 24.00 25.49 
  B-x2 24.31 1 0.32 23.57 25.05 
  C-x3 23.18 1 0.32 22.43 23.92 
  AB 1.51 1 1.82 -2.68 5.70 
  AC 1.11 1 1.82 -3.08 5.30 
  BC -1.09 1 1.82 -5.28 3.10 
 
  Final Equation in Terms of Pseudo Components: 
 
   y  = 
  +24.74   * A 
  +24.31   * B 
  +23.18   * C 
  +1.51   * A * B 
  +1.11   * A * C 
  -1.09   * B * C 
 
  Final Equation in Terms of Real Components: 
 
   y  = 
  +24.74432   * x1 
  +24.31098   * x2 
  +23.17765   * x3 
  +1.51364   * x1 * x2 
  +1.11364   * x1 * x3 
  -1.08636   * x2 * x3 
 
The quadratic terms appear to be insignificant.  The analysis below is for the linear mixture model: 
 
Design Expert Output 
 Response: y 
         ANOVA for Mixture Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3.92 2 1.96 10.64 0.0027 significant 
Linear Mixture 3.92 2 1.96 10.64 0.0027 
 Residual 2.03 11 0.18 
 Lack of Fit 0.79 7 0.11 0.37 0.8825 not significant 
 Pure Error 1.24 4 0.31 
 Cor Total 5.95 13 
 
 The Model F-value of 10.64 implies the model is significant.  There is only 
 a 0.27% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.43  R-Squared 0.6591 
 Mean 24.16  Adj R-Squared 0.5972 
 C.V. 1.78  Pred R-Squared 0.3926 
 PRESS 3.62  Adeq Precision 8.751 
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  Coefficient  Standard 95% CI 95% CI 
 Component Estimate DF Error Low High 
  A-x1 24.93 1 0.25 24.38 25.48 
  B-x2 24.35 1 0.25 23.80 24.90 
  C-x3 23.19 1 0.25 22.64 23.74 
 
  Adjusted  Adjusted  Approx t for H0 
 Component Effect DF Std Error Effect=0 Prob > |t| 
  A-x1 1.16 1 0.33 3.49 0.0051 
  B-x2 0.29 1 0.33 0.87 0.4021 
  C-x3 -1.45 1 0.33 -4.36 0.0011 
 
  Final Equation in Terms of Pseudo Components: 
 
   y  = 
  +24.93   * A 
  +24.35   * B 
  +23.19   * C 
 
  Final Equation in Terms of Real Components: 
 
   y  = 
  +24.93048   * x1 
  +24.35048   * x2 
  +23.19048   * x3 
 
(c) Plot the response surface contours.  What blend would you recommend to maximize the MPG? 
 

A: x1
1.00

B: x2
1.00

C: x3
1.00

0.00 0.00

0.00

y

23.4

23.6

23.8

24

24.2

24.4

24.6

24.8

2

2 2

 
 
To maximize the miles per gallon, the recommended blend is x1 = 1, x2 = 0, and x3 = 0. 
 
 
11-31 Consider the bottle filling experiment in Example 6-1.  Suppose that the percent carbonation (A) is 
a noise variable (in coded units 12

z ). 
 
(a) Fit the response model to these data.  Is there a robust design problem? 
 
From the analysis below, the AB interaction appears to have some importance.  Because of this, there is 
opportunity for improvement in the robustness of the process. 
 
Design Expert Output 
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 Response: Fill Height 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 73.00 7 10.43 16.69 0.0003 significant 
 A 36.00 1 36.00 57.60 < 0.0001 
 B 20.25 1 20.25 32.40 0.0005 
 C 12.25 1 12.25 19.60 0.0022 
 AB 2.25 1 2.25 3.60 0.0943 
 AC 0.25 1 0.25 0.40 0.5447 
 BC 1.00 1 1.00 1.60 0.2415 
 ABC 1.00 1 1.00 1.60 0.2415 
 Pure Error 5.00 8 0.63 
 Cor Total 78.00 15 
 
 The Model F-value of 16.69 implies the model is significant.  There is only 
 a 0.03% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.79  R-Squared 0.9359 
 Mean 1.00  Adj R-Squared 0.8798 
 C.V. 79.06  Pred R-Squared 0.7436 
 PRESS 20.00  Adeq Precision 13.416 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
 Intercept 1.00 1 0.20 0.54 1.46 
 A-Carbination 1.50 1 0.20 1.04 1.96 1.00 
 B-Pressure 1.13 1 0.20 0.67 1.58 1.00 
 C-Speed 0.88 1 0.20 0.42 1.33 1.00 
 AB 0.38 1 0.20 -0.081 0.83 1.00 
 AC 0.13 1 0.20 -0.33 0.58 1.00 
 BC 0.25 1 0.20 -0.21 0.71 1.00 
 ABC 0.25 1 0.20 -0.21 0.71 1.00 
 
  Final Equation in Terms of Coded Factors: 
   
   Fill Height  = 
  +1.00 
  +1.50   * A 
  +1.13   * B 
  +0.88   * C 
  +0.38   * A * B 
  +0.13   * A * C 
  +0.25   * B * C 
  +0.25   * A * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Fill Height  = 
  -225.50000 
  +21.00000   * Carbination 
  +7.80000   * Pressure 
  +1.08000   * Speed 
  -0.75000   * Carbination * Pressure 
  -0.10500   * Carbination * Speed 
  -0.040000   * Pressure * Speed 
  +4.00000E-003   * Carbination * Pressure * Speed 
 
(b) Find the mean model and either the variance model or the POE. 
 
The mean model in coded terms is: 
 

BC.C.B..z,yEz 2508801310011x  
 
Contour plots of the mean model and POE are shown below: 
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(c) Find a set of conditions that result in mean fill deviation as close to zero as possible with minimum 

transmitted variability from carbonation. 
 
The overlay plot below identifies a region that meets these requirements.  The Pressure should be set at its 
low level and the Speed should be set between approximately 0.0 and 0.5 in coded terms. 
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11-32 Consider the experiment in Problem 11-12.  Suppose that temperature is a noise variable ( 12

z  
in coded units).  Fit response models for both responses.  Is there a robust design problem with respect to 
both responses?  Find a set of conditions that maximize conversion with activity between 55 and 60, and 
that minimize the variability transmitted from temperature. 
 
The following is the analysis of variance for the Conversion response.  Because of a significant BC 
interaction, there is some opportunity for improvement in the robustness of the process with regards to 
Conversion. 
 
Design Expert Output 
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 Response: Conversion 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 2555.73 9 283.97 12.76 0.0002 significant
 A 14.44 1 14.44 0.65 0.4391 
 B 222.96 1 222.96 10.02 0.0101 
 C 525.64 1 525.64 23.63 0.0007 
 A2 48.47 1 48.47 2.18 0.1707 
 B2 124.48 1 124.48 5.60 0.0396 
 C2 388.59 1 388.59 17.47 0.0019 
 AB 36.13 1 36.13 1.62 0.2314 
 AC 1035.13 1 1035.13 46.53 < 0.0001 
 BC 120.12 1 120.12 5.40 0.0425 
 Residual 222.47 10 22.25 
 Lack of Fit 56.47 5 11.29 0.34 0.8692 not significant 
 Pure Error 166.00 5 33.20 
 Cor Total 287.28 19 
 
 The Model F-value of 12.76 implies the model is significant.  There is only 
 a 0.02% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 4.72  R-Squared 0.9199 
 Mean 78.30  Adj R-Squared 0.8479 
 C.V. 6.02  Pred R-Squared 0.7566 
 PRESS 676.22  Adeq Precision 14.239 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 81.09 1 1.92 76.81 85.38 
 A-Time 1.03 1 1.28 -1.82 3.87 1.00 
 B-Temperature 4.04 1 1.28 1.20 6.88 1.00 
 C-Catalyst 6.20 1 1.28 3.36 9.05 1.00 
 A2 -1.83 1 1.24 -4.60 0.93 1.02 
 B2 2.94 1 1.24 0.17 5.71 1.02 
 C2 -5.19 1 1.24 -7.96 -2.42 1.02 
 AB 2.13 1 1.67 -1.59 5.84 1.00 
 AC 11.38 1 1.67 7.66 15.09 1.00 
 BC -3.87 1 1.67 -7.59 -0.16 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Conversion  = 
  +81.09 
  +1.03  * A 
  +4.04  * B 
  +6.20  * C 
  -1.83  * A2 
  +2.94  * B2 
  -5.19  * C2 
  +2.13  * A * B 
  +11.38  * A * C 
  -3.87  * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Conversion  = 
  +81.09128 
  +1.02845  * Time 
  +4.04057  * Temperature 
  +6.20396  * Catalyst 
  -1.83398  * Time2 
  +2.93899  * Temperature2 
  -5.19274  * Catalyst2 
  +2.12500  * Time * Temperature 
  +11.37500  * Time * Catalyst 
  -3.87500  * Temperature * Catalyst 
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The following is the analysis of variance for the Activity response.  Because there is not a significant 
interaction term involving temperature, there is no opportunity for improvement in the robustness of the 
process with regards to Activity. 
 
Design Expert Output 
 Response: Activity 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 256.20 9 28.47 9.16 0.0009 significant
 A 175.35 1 175.35 56.42 < 0.0001 
 B 0.89 1 0.89 0.28 0.6052 
 C 67.91 1 67.91 21.85 0.0009 
 A2 10.05 1 10.05 3.23 0.1024 
 B2 0.081 1 0.081 0.026 0.8753 
 C2 0.047 1 0.047 0.015 0.9046 
 AB 1.20 1 1.20 0.39 0.5480 
 AC 0.011 1 0.011 3.620E-003 0.9532 
 BC 0.78 1 0.78 0.25 0.6270 
 Residual 31.08 10 3.11 
 Lack of Fit 27.43 5 5.49 7.51 0.0226 significant 
 Pure Error 3.65 5 0.73 
 Cor Total 287.28 19 
 
 The Model F-value of 9.16 implies the model is significant.  There is only 
 a 0.09% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.76  R-Squared 0.8918 
 Mean 60.51  Adj R-Squared 0.7945 
 C.V. 2.91  Pred R-Squared 0.2536 
 PRESS 214.43  Adeq Precision 10.911 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 59.85 1 0.72 58.25 61.45 
 A-Time 3.58 1 0.48 2.52 4.65 1.00 
 B-Temperature 0.25 1 0.48 -0.81 1.32 1.00 
 C-Catalyst 2.23 1 0.48 1.17 3.29 1.00 
 A2 0.83 1 0.46 -0.20 1.87 1.02 
 B2 0.075 1 0.46 -0.96 1.11 1.02 
 C2 0.057 1 0.46 -0.98 1.09 1.02 
 AB -0.39 1 0.62 -1.78 1.00 1.00 
 AC -0.038 1 0.62 -1.43 1.35 1.00 
 BC 0.31 1 0.62 -1.08 1.70 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Conversion  = 
  +59.85 
  +3.58   * A 
  +0.25   * B 
  +2.23   * C 
  +0.83   * A2 
  +0.075   * B2 
  +0.057   * C2 
  -0.39   * A * B 
  -0.038   * A * C 
  +0.31   * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Conversion  = 
  +59.84984 
  +3.58327   * Time 
  +0.25462   * Temperature 
  +2.22997   * Catalyst 
  +0.83491   * Time2 
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  +0.074772   * Temperature2 
  +0.057094   * Catalyst2 
  -0.38750   * Time * Temperature 
  -0.037500   * Time * Catalyst 
  +0.31250   * Temperature * Catalyst 
 
Because many of the terms are insignificant, the reduced quadratic model is fit as follows: 
 
Design Expert Output 
 Response: Activity 
         ANOVA for Response Surface Quadratic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 253.20 3 84.40 39.63 < 0.0001 significant 
 A 175.35 1 175.35 82.34 < 0.0001 
 C 67.91 1 67.91 31.89 < 0.0001 
 A2 9.94 1 9.94 4.67 0.0463 
 Residual 34.07 16 2.13 
 Lack of Fit 30.42 11 2.77 3.78 0.0766 not significant 
 Pure Error 3.65 5 0.73 
 Cor Total 287.28 19 
 
 The Model F-value of 39.63 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.46  R-Squared 0.8814 
 Mean 60.51  Adj R-Squared 0.8591 
 C.V. 2.41  Pred R-Squared 0.6302 
 PRESS 106.24  Adeq Precision 20.447 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
 Intercept 59.95 1 0.42 59.06 60.83 
 A-Time 3.58 1 0.39 2.75 4.42 1.00 
 C-Catalyst 2.23 1 0.39 1.39 3.07 1.00 
 A2 0.82 1 0.38 0.015 1.63 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Activity  = 
  +59.95 
  +3.58  * A 
  +2.23  * C 
  +0.82  * A2 
 
  Final Equation in Terms of Actual Factors: 
 
   Activity  = 
  +59.94802 
  +3.58327  * Time 
  +2.22997  * Catalyst 
  +0.82300  * Time2 
 
Contour plots of the mean models for the responses along with POE for Conversion are shown below: 
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The overlay plot shown below identifies a region near the center of the design space that meets the 
constraints for the process. 
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11-33 An experiment has been run in a process that applies a coating material to a wafer.  Each run in the 
experiment produced a wafer, and the coating thickness was measured several times at different locations 
on the wafer.  Then the mean y1, and standard deviation y2 of the thickness measurement was obtained.  
The data [adapted from Box and Draper (1987)] are shown in the table below. 
 

Run Speed Pressure Distance Mean (y1) Std Dev (y2) 
1 -1.000 -1.000 -1.000 24.0 12.5 
2 0.000 -1.000 -1.000 120.3 8.4 
3 1.000 -1.000 -1.000 213.7 42.8 
4 -1.000 0.000 -1.000 86.0 3.5 
5 0.000 0.000 -1.000 136.6 80.4 
6 1.000 0.000 -1.000 340.7 16.2 
7 -1.000 1.000 -1.000 112.3 27.6 
8 0.000 1.000 -1.000 256.3 4.6 
9 1.000 1.000 -1.000 271.7 23.6 
10 -1.000 -1.000 0.000 81.0 0.0 
11 0.000 -1.000 0.000 101.7 17.7 
12 1.000 -1.000 0.000 357.0 32.9 
13 -1.000 0.000 0.000 171.3 15.0 
14 0.000 0.000 0.000 372.0 0.0 
15 1.000 0.000 0.000 501.7 92.5 
16 -1.000 1.000 0.000 264.0 63.5 
17 0.000 1.000 0.000 427.0 88.6 
18 1.000 1.000 0.000 730.7 21.1 
19 -1.000 -1.000 1.000 220.7 133.8 
20 0.000 -1.000 1.000 239.7 23.5 
21 1.000 -1.000 1.000 422.0 18.5 
22 -1.000 0.000 1.000 199.0 29.4 
23 0.000 0.000 1.000 485.3 44.7 
24 1.000 0.000 1.000 673.7 158.2 
25 -1.000 1.000 1.000 176.7 55.5 
26 0.000 1.000 1.000 501.0 138.9 
27 1.000 1.000 1.000 1010.0 142.4 

 
(a) What type of design did the experimenters use?  Is this a good choice of design for fitting a quadratic 

model? 
 
The design is a 33.  A better choice would be a 23 central composite design.  The CCD gives more 
information over the design region with fewer points.   
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(b) Build models of both responses. 
 
The model for the mean is developed as follows: 
 
Design Expert Output 
 Response: Mean 
         ANOVA for Response Surface Reduced Cubic Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 1.289E+006 7 1.841E+005 60.45 < 0.0001 significant 
 A 5.640E+005 1 5.640E+005 185.16 < 0.0001 
 B 2.155E+005 1 2.155E+005 70.75 < 0.0001 
 C 3.111E+005 1 3.111E+005 102.14 < 0.0001 
 AB 52324.81 1 52324.81 17.18 0.0006 
 AC 68327.52 1 68327.52 22.43 0.0001 
 BC 22794.08 1 22794.08 7.48 0.0131 
 ABC 54830.16 1 54830.16 18.00 0.0004 
 Residual 57874.57 19 3046.03 
 Cor Total 1.347E+006 26 
 
 The Model F-value of 60.45 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 55.19  R-Squared 0.9570 
 Mean 314.67  Adj R-Squared 0.9412 
 C.V. 17.54  Pred R-Squared 0.9056 
 PRESS 1.271E+005  Adeq Precision 33.333 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 314.67 1 10.62 292.44 336.90 
  A-Speed 177.01 1 13.01 149.78 204.24 1.00 
  B-Pressure 109.42 1 13.01 82.19 136.65 1.00 
  C-Distance 131.47 1 13.01 104.24 158.70 1.00 
  AB 66.03 1 15.93 32.69 99.38 1.00 
  AC 75.46 1 15.93 42.11 108.80 1.00 
  BC 43.58 1 15.93 10.24 76.93 1.00 
  ABC 82.79 1 19.51 41.95 123.63 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Mean  = 
  +314.67 
  +177.01   * A 
  +109.42   * B 
  +131.47   * C 
  +66.03   * A * B 
  +75.46   * A * C 
  +43.58   * B * C 
  +82.79   * A * B * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Mean  = 
  +314.67037 
  +177.01111   * Speed 
  +109.42222   * Pressure 
  +131.47222   * Distance 
  +66.03333   * Speed * Pressure 
  +75.45833   * Speed * Distance 
  +43.58333   * Pressure * Distance 
  +82.78750   * Speed * Pressure * Distance 
 
The model for the Std. Dev. response is as follows.  A square root transformation was applied to correct 
problems with the normality assumption. 
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Design Expert Output 
 Response: Std. Dev. Transform: Square root Constant: 0 
         ANOVA for Response Surface Linear Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 116.75 3 38.92 4.34 0.0145 significant 
 A 16.52 1 16.52 1.84 0.1878 
 B 26.32 1 26.32 2.94 0.1001 
 C 73.92 1 73.92 8.25 0.0086 
 Residual 206.17 23 8.96 
 Cor Total 322.92 26 
 
 The Model F-value of 4.34 implies the model is significant.  There is only 
 a 1.45% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.99  R-Squared 0.3616 
 Mean 6.00  Adj R-Squared 0.2783 
 C.V. 49.88  Pred R-Squared 0.1359 
 PRESS 279.05  Adeq Precision 7.278 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 6.00 1 0.58 4.81 7.19 
  A-Speed 0.96 1 0.71 -0.50 2.42 1.00 
  B-Pressure 1.21 1 0.71 -0.25 2.67 1.00 
  C-Distance 2.03 1 0.71 0.57 3.49 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Sqrt(Std. Dev.)  = 
  +6.00 
  +0.96   * A 
  +1.21   * B 
  +2.03   * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Sqrt(Std. Dev.)  = 
  +6.00273 
  +0.95796   * Speed 
  +1.20916   * Pressure 
  +2.02643   * Distance 
 
Because Factor A is insignificant, it is removed from the model.  The reduced linear model analysis is 
shown below: 
 
Design Expert Output 
 Response: Std. Dev. Transform: Square root Constant: 0 
         ANOVA for Response Surface Reduced Linear Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 100.23 2 50.12 5.40 0.0116 significant 
 B 26.32 1 26.32 2.84 0.1051 
 C 73.92 1 73.92 7.97 0.0094 
 Residual 222.68 24 9.28 
 Cor Total 322.92 26 
 
 The Model F-value of 5.40 implies the model is significant.  There is only 
 a 1.16% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 3.05  R-Squared 0.3104 
 Mean 6.00  Adj R-Squared 0.2529 
 C.V. 50.74  Pred R-Squared 0.1476 
 PRESS 275.24  Adeq Precision 6.373 
 
  Coefficient  Standard 95% CI 95% CI 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

11-63 

 Factor Estimate DF Error Low High VIF 
  Intercept 6.00 1 0.59 4.79 7.21 
  B-Pressure 1.21 1 0.72 -0.27 2.69 1.00 
  C-Distance 2.03 1 0.72 0.54 3.51 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Sqrt(Std. Dev.)  = 
  +6.00 
  +1.21   * B 
  +2.03   * C 
 
  Final Equation in Terms of Actual Factors: 
 
   Sqrt(Std. Dev.)  = 
  +6.00273 
  +1.20916   * Pressure 
  +2.02643   * Distance 
 
The following contour plots graphically represent the two models: 
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(c) Find a set of optimum conditions that result in the mean as large as possible with the standard 

deviation less than 60. 
 
The overlay plot identifies a region that meets the criteria of the mean as large as possible with the 
standard deviation less than 60.  The optimum conditions in coded terms are approximately Speed = 1.0, 
Pressure = 0.75 and Distance = 0.25. 
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11-34 A variation of Example 6-2.  In example 6-2 we found that one of the process variables 
(B=pressure) was not important.  Dropping this variable produced two replicates of a 23 design.  The data 
are shown below. 
 

C D A(+) A(-) y  2s  
- - 45, 48 71, 65 57.75 121.19 
+ - 68, 80 60, 65 68.25 72.25 
- + 43, 45 100, 104 73.00 1124.67 
+ + 75, 70 86, 96 81.75 134.92 

 
Assume that C and D are controllable factors and that A is a noise factor. 
 
(a) Fit a model to the mean response. 
 
The following is the analysis of variance with all terms in the model: 
 
Design Expert Output 
 Response: Mean 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 300.05 3 100.02 
 A 92.64 1 92.64   
 B 206.64 1 206.64   
 AB 0.77 1 0.77   
 Pure Error 0.000 0  
 Cor Total 300.05 3 
 
Based on the above analysis, the AB interaction is removed from the model and used as error. 
 
Design Expert Output 
 Response: Mean 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
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 Model 299.28 2 149.64 195.45 0.0505 not significant 
 A 92.64 1 92.64 121.00 0.0577 
 B 206.64 1 206.64 269.90 0.0387 
 Residual 0.77 1 0.77 
 Cor Total 300.05 3 
 
 The Model F-value of 195.45 implies there is a 5.05% chance that a "Model F-Value"  
 this large could occur due to noise. 
 
 Std. Dev. 0.87  R-Squared 0.9974 
 Mean 70.19  Adj R-Squared 0.9923 
 C.V. 1.25  Pred R-Squared 0.9592 
 PRESS 12.25  Adeq Precision 31.672 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 70.19 1 0.44 64.63 75.75 
  A-Concentration 4.81 1 0.44 -0.75 10.37 1.00 
  B-Stir Rate 7.19 1 0.44 1.63 12.75 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Mean  = 
  +70.19 
  +4.81   * A 
  +7.19   * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Mean  = 
  +70.18750 
  +4.81250   * Concentration 
  +7.18750   * Stir Rate 
The following is a contour plot of the mean model: 
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(b) Fit a model to the ln(s2) response. 
 
The following is the analysis of variance with all terms in the model: 
 
Design Expert Output 
 Response: Variance Transform: Natural log Constant: 0 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
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  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 4.42 3 1.47 
 A 1.74 1 1.74   
 B 2.03 1 2.03   
 AB 0.64 1 0.64   
 Pure Error 0.000 0  
 Cor Total 4.42 3 
 
Based on the above analysis, the AB interaction is removed from the model and applied to the residual 
error. 
 
Design Expert Output 
 Response: Variance Transform: Natural log Constant: 0 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 3.77 2 1.89 2.94 0.3815 not significant 
 A 1.74 1 1.74 2.71 0.3477 
 B 2.03 1 2.03 3.17 0.3260 
 Residual 0.64 1 0.64 
 Cor Total 4.42 3 
 
 The "Model F-value" of 2.94 implies the model is not significant relative to the noise.  There is a 
 38.15 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 0.80  R-Squared 0.8545 
 Mean 5.25  Adj R-Squared 0.5634 
 C.V. 15.26  Pred R-Squared -1.3284 
 PRESS 10.28  Adeq Precision 3.954 
 
  Coefficient  Standard 95% CI 95% CI 
 Factor Estimate DF Error Low High VIF 
  Intercept 5.25 1 0.40 0.16 10.34 
  A-Concentration -0.66 1 0.40 -5.75 4.43 1.00 
  B-Stir Rate 0.71 1 0.40 -4.38 5.81 1.00 
 
  Final Equation in Terms of Coded Factors: 
 
   Ln(Variance)  = 
  +5.25 
  -0.66   * A 
  +0.71   * B 
 
  Final Equation in Terms of Actual Factors: 
 
   Ln(Variance)  = 
  +5.25185 
  -0.65945   * Concentration 
  +0.71311   * Stir Rate 
 
The following is a contour plot of the variance model in the untransformed form: 
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(c) Find operating conditions that result in the mean filtration rate response exceeding 75 with minimum 

variance. 
 
The overlay plot shown below identifies the region required by the process: 
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(d) Compare your results with those from Example 11-6 which used the transmission of error approach.  

How similar are the two answers. 
 
The results are very similar.  Both require the Concentration to be held at the high level while the stirring 
rate is held near the middle. 
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Chapter 12  
Experiments with Random Factors 

Solutions 
 
 
12-1 A textile mill has a large number of looms.  Each loom is supposed to provide the same output of 
cloth per minute.  To investigate this assumption, five looms are chosen at random and their output is noted 
at different times.  The following data are obtained: 
 
 Loom      Output (lb/min)  
 1 14.0 14.1 14.2 14.0 14.1 
 2 13.9 13.8 13.9 14.0 14.0 
 3 14.1 14.2 14.1 14.0 13.9 
 4 13.6 13.8 14.0 13.9 13.7 
 5 13.8 13.6 13.9 13.8 14.0 
 
(a)  Explain why this is a random effects experiment.  Are the looms equal in output?  Use  = 0.05. 
 
The looms used in the experiment are a random sample of all the looms in the manufacturing area.  The 
following is the analysis of variance for the data: 
 
Minitab Output 
ANOVA: Output versus Loom 
 
Factor     Type Levels Values 
Loom     random      5     1     2     3     4     5 
 
Analysis of Variance for Output   
 
Source      DF         SS         MS       F      P 
Loom         4    0.34160    0.08540    5.77  0.003 
Error       20    0.29600    0.01480 
Total       24    0.63760  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 Loom      0.01412   2   (2) + 5(1) 
 2 Error     0.01480       (2) 
 
(b)  Estimate the variability between looms. 
 

014120
5

01480085402 ...
n

MSMSˆ EModel  

 
(c)  Estimate the experimental error variance. 
 

014802 .MSˆ E  
 
(d)  Find a 95 percent confidence interval for 222 . 
 

12880111
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(e)  Analyze the residuals from this experiment.  Do you think that the analysis of variance assumptions are 

satisfied? 
 
There is nothing unusual about the residual plots; therefore, the analysis of variance assumptions are 
satisfied. 
 

0.20.10.0-0.1-0.2

2

1

0

-1

-2

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is Output)

 

14.114.013.913.8

0.2

0.1

0.0

-0.1

-0.2

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is Output)

 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

12-3 

54321

0.2

0.1

0.0

-0.1

-0.2

Loom

R
es

id
ua

l

Residuals Versus Loom
(response is Output)

 
 
 
12-2 A manufacturer suspects that the batches of raw material furnished by her supplier differ 
significantly in calcium content.  There are a large number of batches currently in the warehouse.  Five of 
these are randomly selected for study.  A chemist makes five determinations on each batch and obtains the 
following data: 
 
 Batch 1  Batch 2  Batch 3  Batch 4  Batch 5 
 23.46 23.59 23.51 23.28    23.29 
 23.48 23.46 23.64 23.40    23.46 
 23.56 23.42 23.46 23.37    23.37 
 23.39 23.49 23.52 23.46    23.32 
 23.40 23.50 23.49 23.39    23.38 
 
(a)  Is there significant variation in calcium content from batch to batch? Use  = 0.05.  
 
Yes, as shown in the Minitab Output below, there is a difference. 
 
Minitab Output 
ANOVA: Calcium versus Batch 
 
Factor     Type Levels Values 
Batch    random      5     1     2     3     4     5 
 
Analysis of Variance for Calcium  
 
Source      DF         SS         MS       F      P 
Batch        4   0.096976   0.024244    5.54  0.004 
Error       20   0.087600   0.004380 
Total       24   0.184576  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 Batch     0.00397   2   (2) + 5(1) 
 2 Error     0.00438       (2) 
 
(b)  Estimate the components of variance. 
 

. .
.2 024244 004380
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0 00397
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.2 0 004380MSE  

 
(c)  Find a 95 percent confidence interval for 222 . 
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(d)  Analyze the residuals from this experiment. Are the basic analysis of variance assumptions satisfied? 
 
There are five residuals that stand out in the normal probability plot.  From the Residual vs. Batch plot, we 
see that one point per batch appears to stand out.  A natural log transformation was applied to the data but 
did not change the results of the residual analysis.  Further investigation should probably be performed to 
determine if these points are outliers. 
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12-3 Several ovens in a metal working shop are used to heat metal specimens.  All the ovens are supposed 
to operate at the same temperature, although it is suspected that this may not be true.  Three ovens are 
selected at random and their temperatures on successive heats are noted.  The data collected are as follows: 
 
 Oven      Temperature     
  1    491.50    498.30    498.10    493.50    493.60 
  2    488.50    484.65    479.90    477.35 
  3    490.10    484.80    488.25    473.00    471.85    478.65 
 
(a)  Is there significant variation in temperature between ovens?  Use  = 0.05. 
 
The analysis of variance shown below identifies significant variation in temperature between the ovens. 
 
Minitab Output 
General Linear Model: Temperature versus Oven 
 
Factor     Type Levels Values  

23.5323.5123.4923.4723.4523.4323.4123.3923.3723.35
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Oven     random      3 1 2 3 
 
Analysis of Variance for Temperat, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Oven        2     594.53     594.53     297.27    8.62  0.005 
Error      12     413.81     413.81      34.48 
Total      14    1008.34   
 
Expected Mean Squares, using Adjusted SS 
 
Source       Expected Mean Square for Each Term 
 1 Oven      (2) +  4.9333(1) 
 2 Error     (2) 
 
Error Terms for Tests, using Adjusted SS 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 Oven         12.00     34.48  (2) 
 
Variance Components, using Adjusted SS 
 
Source    Estimated Value 
Oven                53.27 
Error               34.48 
 
(b)  Estimate the components of variance. 
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(c)  Analyze the residuals from this experiment. Draw conclusions about model adequacy.   
 
There is a funnel shaped appearance in the plot of residuals versus predicted value indicating a possible 
non-constant variance.  There is also some indication of non-constant variance in the plot of residuals 
versus oven.  The inequality of variance problem is not severe. 
 

100-10

2

1

0

-1

-2

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is Temperat)

 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

12-7 

495490485480

10

0

-10

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is Temperat)

 

321

10

0

-10

Oven

R
es

id
ua

l

Residuals Versus Oven
(response is Temperat)

 
 
 
12-4 An article in the Journal of the Electrochemical Society (Vol. 139, No. 2, 1992, pp. 524-532) 
describes an experiment to investigate the low-pressure vapor deposition of polysilicon.  The experiment 
was carried out in a large-capacity reactor at Sematech in Austin, Texas.  The reactor has several wafer 
positions, and four of these positions are selected at random.  The response variable is film thickness 
uniformity.  Three replicates of the experiments were run, and the data are as follows: 
 
 Wafer Position  Uniformity  
 1    2.76 5.67     4.49 
 2    1.43 1.70     2.19 
 3    2.34 1.97     1.47 
 4    0.94 1.36     1.65 
 
(a)  Is there a difference in the wafer positions?  Use  = 0.05. 
 
Yes, there is a difference. 
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Minitab Output 
ANOVA: Uniformity versus Wafer Position 
 
Factor     Type Levels Values 
Wafer Po  fixed      4     1     2     3     4 
 
Analysis of Variance for Uniformi 
 
Source      DF         SS         MS       F      P 
Wafer Po     3    16.2198     5.4066    8.29  0.008 
Error        8     5.2175     0.6522 
Total       11    21.4373  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 Wafer Po            2   (2) + 3Q[1] 
 2 Error      0.6522       (2) 
 
(b)  Estimate the variability due to wafer positions. 
 

. . .

2
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(c)  Estimate the random error component. 
 

.2 0 6522  
 
(d)  Analyze the residuals from this experiment and comment on model adequacy. 
 
Variability in film thickness seems to depend on wafer position.  These observations also show up as 
outliers on the normal probability plot.  Wafer position number 1 appears to have greater variation in 
uniformity than the other positions. 
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12-5 Consider the vapor deposition experiment described in Problem 12-4. 
 
(a)  Estimate the total variability in the uniformity response. 
 

23702652205848122 ...ˆˆ  
 
(b)  How much of the total variability in the uniformity response is due to the difference between positions 

in the reactor? 
 

708450
23702
58481

22

2
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ˆˆ
ˆ

 

 
(c) To what level could the variability in the uniformity response be reduced, if the position-to-position 

variability in the reactor could be eliminated?  Do you believe this is a significant reduction? 
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The variability would be reduced from 2.2370 to 652202 .ˆ  which is a reduction of approximately: 
 

%
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.. 71
23702

6522023702  

 
 
12-6 An article in the Journal of Quality Technology (Vol. 13, No. 2, 1981, pp. 111-114) describes and 
experiment that investigates the effects of four bleaching chemicals on pulp brightness. These four 
chemicals were selected at random from a large population of potential bleaching agents.  The data are as 
follows: 
 
 Chemical          Pulp Brightness     
 1  77.199 74.466 92.746 76.208 82.876 
 2  80.522 79.306 81.914 80.346 73.385 
 3  79.417 78.017 91.596 80.802 80.626 
 4  78.001 78.358 77.544 77.364 77.386 
 
(a)  Is there a difference in the chemical types?  Use  = 0.05.  
 
The computer output shows that the null hypothesis cannot be rejected.  Therefore, there is no evidence that 
there is a difference in chemical types. 
 
Minitab Output 
ANOVA: Brightness versus Chemical 
 
Factor     Type Levels Values 
Chemical random      4     1     2     3     4 
 
Analysis of Variance for Brightne 
 
Source      DF         SS         MS       F      P 
Chemical     3      53.98      17.99    0.75  0.538 
Error       16     383.99      24.00 
Total       19     437.97  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 Chemical   -1.201   2   (2) + 5(1) 
 2 Error      23.999       (2) 
 
(b)  Estimate the variability due to chemical types. 
 

. .
.
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5
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MS MS
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Treatment E

 

which agrees with the Minitab output. 
Because the variance component cannot be negative, this likely means that the variability due to chemical 
types is zero. 
 
(c)  Estimate the variability due to random error. 
 

.2 23 999  
 
(d)  Analyze the residuals from this experiment and comment on model adequacy. 
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Two data points appear to be outliers in the normal probability plot of effects.  These outliers belong to 
chemical types 1 and 3 and should be investigated.  There seems to be much less variability in brightness 
with chemical type 4. 
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12-7 Consider the one-way balanced, random effects method.  Develop a procedure for finding a 100(1-

) percent confidence interval for 2 2 2/ ( ) . 
 

We know that P L U
2

2
1  

P L U1 1 1
2

2

2

2
 

P L U1 1 1
2 2

2
 

P L
L

U
U1 1

1
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2 2
 

 
 
12-8 Refer to Problem 12-1. 
 
(a) What is the probability of accepting H0 if 2  is four times the error variance 2 ? 

 

64214511
2

2

2

2

.
n

 

1 1 4a     2 25 5 20N a     0 035. , from the OC curve. 
 
 

(b) If the difference between looms is large enough to increase the standard deviation of an observation by 
20 percent, we wish to detect this with a probability of at least 0.80.  What sample size should be used? 

 

1 1 4a     2 25 5 20N a     0 05.    P accept( ) .0 2  

n..nP.n 440112001011101011 22  
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Trial and Error yields: 

 
n 2   P(accept) 
5 20 1.79 0.6 

10 45 2.32 0.3 
14 65 2.67 0.2 

 
Choose n  14, therefore N  70 

 
 
12-9 An experiment was performed to investigate the capability of a measurement system.  Ten parts 
were randomly selected, and two randomly selected operators measured each part three times.  The tests 
were made in random order, and the data below resulted. 
 
   Operator 1   Operator 2 
   Measurements   Measurements 
 Part -------------------------- ------------------------- 
 Number 1 2 3 1 2 3  
 1 50 49 50 50 48 51 
 2 52 52 51 51 51 51 
 3 53 50 50 54 52 51 
 4 49 51 50 48 50 51 
 5 48 49 48 48 49 48 
 6 52 50 50 52 50 50 
 7 51 51 51 51 50 50 
 8 52 50 49 53 48 50 
 9 50 51 50 51 48 49 
 10 47 46 49 46 47 48 
 
(a) Analyze the data from this experiment. 
 
Minitab Output 
ANOVA: Measurement versus Part, Operator 
 
Factor     Type Levels Values 
Part     random     10     1     2     3     4     5     6     7 
                           8     9    10 
Operator random      2     1     2 
 
Analysis of Variance for Measurem 
 
Source           DF         SS         MS       F      P 
Part              9     99.017     11.002   18.28  0.000 
Operator          1      0.417      0.417    0.69  0.427 
Part*Operator     9      5.417      0.602    0.40  0.927 
Error            40     60.000      1.500 
Total            59    164.850  
 
Source           Variance Error Expected Mean Square for Each Term 
                component term (using restricted model) 
 1 Part           1.73333   3   (4) + 3(3) + 6(1) 
 2 Operator      -0.00617   3   (4) + 3(3) + 30(2) 
 3 Part*Operator -0.29938   4   (4) + 3(3) 
 4 Error          1.50000       (4) 
 
(b) Find point estimates of the variance components using the analysis of variance method. 
 

2 MSE        .2 15  
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2 MS MS
n

AB E      . .2 0 6018519 15000000
3

0 , assume 2 =0 

2 MS MS
an

B AB      73331
32

60185190001852112 ...ˆ  

2 MS MS
bn

A AB      0
310

6018519041666702 ..ˆ , assume 2 =0 

 
All estimates agree with the Minitab output. 
 
 
12-10 Reconsider the data in Problem 5-6.  Suppose that both factors, machines and operators, are chosen 
at random. 
 
(a) Analyze the data from this experiment. 
 

   Machine  
Operator 1 2 3 4 

1 109 110 108 110 
 110 115 109 108 
     
2 110 110 111 114 
 112 111 109 112 
     
3 116 112 114 120 
 114 115 119 117 

 
The following Minitab output contains the analysis of variance and the variance component estimates: 
 
Minitab Output 
ANOVA: Strength versus Operator, Machine 
 
 
Factor     Type Levels Values 
Operator random      3     1     2     3 
Machine  random      4     1     2     3     4 
 
 
Analysis of Variance for Strength 
 
Source              DF         SS         MS       F      P 
Operator             2    160.333     80.167   10.77  0.010 
Machine              3     12.458      4.153    0.56  0.662 
Operator*Machine     6     44.667      7.444    1.96  0.151 
Error               12     45.500      3.792 
Total               23    262.958  
 
 
Source              Variance Error Expected Mean Square for Each Term 
                   component term (using restricted model) 
 1 Operator           9.0903   3   (4) + 2(3) + 8(1) 
 2 Machine           -0.5486   3   (4) + 2(3) + 6(2) 
 3 Operator*Machine   1.8264   4   (4) + 2(3) 
 4 Error              3.7917       (4) 
 
(b) Find point estimates of the variance components using the analysis of variance method. 
 

2 MSE        .2 379167  

2 MS MS
n

AB E      
. .

.2 7 44444 3 79167
2 182639  
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2 MS MS
an

B AB      . .
( )

2 415278 7 44444
3 2

0 , assume 2 0  

2 MS MS
bn

A AB      . .
( )

.2 8016667 7 44444
4 2

9 09028  

 
These results agree with the Minitab variance component analysis. 
 
 
12-11 Reconsider the data in Problem 5-13.  Suppose that both factors are random. 
 
(a) Analyze the data from this experiment. 
 

  Column Factor  
Row Factor 1 2 3 4 

1 36 39 36 32 
2 18 20 22 20 
3 30 37 33 34 

 
Minitab Output 
General Linear Model: Response versus Row, Column 
 
Factor     Type Levels Values  
Row      random      3 1 2 3 
Column   random      4 1 2 3 4 
 
Analysis of Variance for Response, using Adjusted SS for Tests 
 
Source       DF     Seq SS     Adj SS     Adj MS       F      P 
Row           2    580.500    580.500    290.250   60.40     ** 
Column        3     28.917     28.917      9.639    2.01     ** 
Row*Column    6     28.833     28.833      4.806      ** 
Error         0      0.000      0.000      0.000 
Total        11    638.250   
 
** Denominator of F-test is zero. 
 
Expected Mean Squares, using Adjusted SS 
 
Source         Expected Mean Square for Each Term 
 1 Row         (4) +        (3) +  4.0000(1) 
 2 Column      (4) +        (3) +  3.0000(2) 
 3 Row*Column  (4) +        (3) 
 4 Error       (4) 
 
Error Terms for Tests, using Adjusted SS 
 
Source         Error DF  Error MS  Synthesis of Error MS 
 1 Row                *     4.806  (3) 
 2 Column             *     4.806  (3) 
 3 Row*Column         *         *  (4) 
 
Variance Components, using Adjusted SS 
 
Source      Estimated Value 
Row                 71.3611 
Column               1.6111 
Row*Column           4.8056 
Error                0.0000 
 
(b) Estimate the variance components. 
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Because the experiment is unreplicated and the interaction term was included in the model, there is no 
estimate of MSE, and therefore, no estimate of 2 . 
        

2 MS MS
n

AB E      80564
1

0805642 ..ˆ  

2 MS MS
an

B AB      61111
13

80564638992 ...ˆ  

2 MS MS
bn

A AB      361171
14

8056425002902 ...ˆ  

 
These estimates agree with the Minitab output. 
 
 
12-12 Suppose that in Problem 5-11 the furnace positions were randomly selected, resulting in a mixed 
model experiment.  Reanalyze the data from this experiment under this new assumption.  Estimate the 
appropriate model components. 
 

  Temperature (°C)  
Position 800 825 850 

 570 1063 565 
1 565 1080 510 
 583 1043 590 
    
 528 988 526 

2 547 1026 538 
 521 1004 532 

 
The following analysis assumes a restricted model: 
 
Minitab Output 
ANOVA: Density versus Position, Temperature 
 
Factor     Type Levels Values 
Position random      2     1     2 
Temperat  fixed      3   800   825   850 
 
Analysis of Variance for Density  
 
Source               DF         SS         MS       F      P 
Position              1       7160       7160   16.00  0.002 
Temperat              2     945342     472671 1155.52  0.001 
Position*Temperat     2        818        409    0.91  0.427 
Error                12       5371        448 
Total                17     958691  
 
Source               Variance Error Expected Mean Square for Each Term 
                    component term (using restricted model) 
 1 Position            745.83   4   (4) + 9(1) 
 2 Temperat                     3   (4) + 3(3) + 6Q[2] 
 3 Position*Temperat   -12.83   4   (4) + 3(3) 
 4 Error               447.56       (4) 
 

2 MSE        564472 .ˆ  

2 MS MS
n

AB E      0
3

4484092ˆ  assume 2 0  
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bn
MSMSˆ EA2      83745

33
44871602 .ˆ  

 
These results agree with the Minitab output. 
 
 
12-13 Reanalyze the measurement systems experiment in Problem 12-9, assuming that operators are a 
fixed factor.  Estimate the appropriate model components. 
 
The following analysis assumes a restricted model: 
 
Minitab Output 
ANOVA: Measurement versus Part, Operator 
 
Factor     Type Levels Values 
Part     random     10     1     2     3     4     5     6     7 
                           8     9    10 
Operator  fixed      2     1     2 
 
Analysis of Variance for Measurem 
 
Source           DF         SS         MS       F      P 
Part              9     99.017     11.002    7.33  0.000 
Operator          1      0.417      0.417    0.69  0.427 
Part*Operator     9      5.417      0.602    0.40  0.927 
Error            40     60.000      1.500 
Total            59    164.850  
 
Source           Variance Error Expected Mean Square for Each Term 
                component term (using restricted model) 
 1 Part            1.5836   4   (4) + 6(1) 
 2 Operator                 3   (4) + 3(3) + 30Q[2] 
 3 Part*Operator  -0.2994   4   (4) + 3(3) 
 4 Error           1.5000       (4) 
 

2 MSE        500012 .ˆ  

n
MSMSˆ EAB2      0

3
500016018502 ..ˆ  assume 2 0  

bn
MSMSˆ EA2      583641

32
50000100185112 ...ˆ  

 
These results agree with the Minitab output. 
 
 
12-14 In problem 5-6, suppose that there are only four machines of interest, but the operators were selected 
at random. 
 
(a)  What type of model is appropriate?   
 
A mixed model is appropriate. 
 
(b)  Perform the analysis and estimate the model components. 
 
The following analysis assumes a restricted model: 
 
Minitab Output 
ANOVA: Strength versus Operator, Machine 
 
Factor     Type Levels Values 
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Operator random      3     1     2     3 
Machine   fixed      4     1     2     3     4 
 
Analysis of Variance for Strength 
 
Source              DF         SS         MS       F      P 
Operator             2    160.333     80.167   21.14  0.000 
Machine              3     12.458      4.153    0.56  0.662 
Operator*Machine     6     44.667      7.444    1.96  0.151 
Error               12     45.500      3.792 
Total               23    262.958  
 
Source              Variance Error Expected Mean Square for Each Term 
                   component term (using restricted model) 
 1 Operator            9.547   4   (4) + 8(1) 
 2 Machine                     3   (4) + 2(3) + 6Q[2] 
 3 Operator*Machine    1.826   4   (4) + 2(3) 
 4 Error               3.792       (4) 
 

2 MSE        79232 .ˆ  

2 MS MS
n

AB E      8261
2

792344472 ...ˆ  

bn
MSMSˆ EA2      5479

24
7923167802 ...ˆ  

 
These results agree with the Minitab output. 
 
 
12-15 By application of the expectation operator, develop the expected mean squares for the two-factor 
factorial, mixed model.  Use the restricted model assumptions.  Check your results with the expected mean 
squares given in Table 12-11 to see that they agree. 
 
The sums of squares may be written as 
 

a

i
.....iA yybnSS

1

2 ,     
b

j
....j.B yyanSS

1

2     

a

i

b

j
....j...i.ijAB yyyynSS

1 1

2 ,     
a

i

b

j

n

k
...ijkE yySS

1 1 1

2  

 
Using the model ijkijjiijky , we may find that  
 

.......

.ijijji.ij

.j.j.j.

..i.ii..i

y

y

y
y

 

 
Using the assumptions for the restricted form of the mixed model, . 0 , 0j. , which imply that 

0.. .  Substituting these expressions into the sums of squares yields 
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a

i

b

j

n

k
.ijijkE

a

i

b

j
....j...i.ij.iijAB

b

j
....j.jB

a

i
.....i.iA

SS

)nSS

anSS

bnSS

1 1 1

2

1 1

2

1

2

1

2

 

 
Using the assumption that 0ijkE , V ijk( ) 0 , and 0'k'j'iijkE , we may divide each sum of 
squares by its degrees of freedom and take the expectation to produce 

 

2

1 1

22

1

22

1

22

11

1

1

E

a

i

b

j
.iijAB

b

j
jB

a

i
.iiA

MSE

E
ba

nMSE

b
anMSE

E
a
bnMSE

 

 
Note that BMSE and EMSE are the results given in Table 8-3.  We need to simplify AMSE  and 

ABMSE .  Consider AMSE  
 

a

i
iA

a

i
iA

a

i

a

i
.iiA

a
bnnMSE

b
a

a

a
a
bnMSE

ctscrossproduEE
a
bnMSE

1

222

2

1

22

1 1

222

1

1

1

0
1

 

 

since ij is 210
a

a,NID .  Consider ABMSE  

 

22

2

1 1

2

1 1

22

11
11

11

nMSE

a
a

b
b

ba
nMSE

E
ba

nMSE

AB

a

i

b

j
AB

a

i

b

j
.iijAB
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Thus AMSE and ABMSE agree with table 12-8. 
 
 
12-16 Consider the three-factor factorial design in Example 12-6.  Propose appropriate test statistics for all 
main effects and interactions.  Repeat for the case where A and B are fixed and C is random. 
 
If all three factors are random there are no exact tests on main effects.  We could use the following: 
 

BCAC

ABCC

BCAB

ABCB

ACAB

ABCA

MSMS
MSMSF:C

MSMS
MSMSF:B

MSMS
MSMSF:A

 

 
If A and B are fixed and C is random, the expected mean squares are (assuming the restricted for m of the 
model): 
 

 F F R R  
 a b c n  
Factor i j k l E(MS) 

i  0 b c n 
1

2
22

a
bcnbn i  

j  a 0 c n 
1

2
22

b
acnan j  

k  a b 1 n 2 2abn  

ij  0 0 c n 
11

2
22

ba
cnn ji  

ik  0 b 1 n 2 2bn  

jk  a 0 1 n 2 2an  

ijk  0 0 1 n 2 2n  

lijk  1 1 1 1 2  
 

These are exact tests for all effects. 
 
 
12-17 Consider the experiment in Example 12-7.  Analyze the data for the case where A, B, and C are 
random. 
 
Minitab Output 
ANOVA: Drop versus Temp, Operator, Gauge 
 
Factor     Type Levels Values 
Temp     random      3    60    75    90 
Operator random      4     1     2     3     4 
Gauge    random      3     1     2     3 
 
Analysis of Variance for Drop     
 
Source                 DF         SS         MS       F      P 
Temp                    2    1023.36     511.68    2.30  0.171 x 
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Operator                3     423.82     141.27    0.63  0.616 x 
Gauge                   2       7.19       3.60    0.06  0.938 x 
Temp*Operator           6    1211.97     202.00   14.59  0.000 
Temp*Gauge              4     137.89      34.47    2.49  0.099 
Operator*Gauge          6     209.47      34.91    2.52  0.081 
Temp*Operator*Gauge    12     166.11      13.84    0.65  0.788 
Error                  36     770.50      21.40 
Total                  71    3950.32  
 
x Not an exact F-test. 
 
Source                 Variance Error Expected Mean Square for Each Term 
                      component term (using restricted model) 
 1 Temp                  12.044   *   (8) + 2(7) + 8(5) + 6(4) + 24(1) 
 2 Operator              -4.544   *   (8) + 2(7) + 6(6) + 6(4) + 18(2) 
 3 Gauge                 -2.164   *   (8) + 2(7) + 6(6) + 8(5) + 24(3) 
 4 Temp*Operator         31.359   7   (8) + 2(7) + 6(4) 
 5 Temp*Gauge             2.579   7   (8) + 2(7) + 8(5) 
 6 Operator*Gauge         3.512   7   (8) + 2(7) + 6(6) 
 7 Temp*Operator*Gauge   -3.780   8   (8) + 2(7) 
 8 Error                 21.403       (8) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source                  Error DF  Error MS  Synthesis of Error MS 
 1 Temp                     6.97    222.63   (4) + (5) - (7) 
 2 Operator                 7.09    223.06   (4) + (6) - (7) 
 3 Gauge                    5.98     55.54   (5) + (6) - (7) 
 
Since all three factors are random there are no exact tests on main effects.  Minitab uses an approximate F 
test for the these factors. 
 
 
12-18 Derive the expected mean squares shown in Table 12-14. 
 

 F R R R  
 a b c n  
Factor i j k l E(MS) 

i  0 b c n 
1

2
2222

a
bcncnbnn i  

j  a 1 c n 2 2 2an acn  

k  a b 1 n 2 2 2an abn  

ij  0 1 c n 2 2 2n cn  

ik  0 b 1 n 2 2 2n bn  

jk  a 1 1 n 2 2an  

ijk  0 1 1 n 2 2n  

ijkl  1 1 1 1 2  
 
 
12-19 Consider a four-factor factorial experiment where factor A is at a levels, factor B is at b levels, factor 
C is at c levels, factor D is at d levels, and there are n replicates.  Write down the sums of squares, the 
degrees of freedom, and the expected mean squares for the following cases. Do exact tests exist for all 
effects?  If not, propose test statistics for those effects that cannot be directly tested.  Assume the restricted 
model on all cases.  You may use a computer package such as Minitab. 
 
The four factor model is: 
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kljljkilikijlkjiijklhy  

ijklhijklikljklijlijk  
 
To simplify the expected mean square derivations, let capital Latin letters represent the factor effects or 

variance components.  For example, A
bcdn

a
i
2

1
, or B acdn 2 . 

 
(a)  A, B, C, and D are fixed factors. 
 

 F F F F R  
 a b c d n  
Factor i j k l h E(MS) 

i  0 b c d n 2 A  
j  a 0 c d n 2 B  
k  a b 0 d n 2 C  

l
 a b c 0 n 2 D  

( ) ij  0 0 c d n 2 AB  
( ) ik  0 b 0 d n 2 AC  
( ) il  0 b c 0 n 2 AD  
( ) jk  a 0 0 d n 2 BC  
( ) jl  a 0 c 0 n 2 BD  
( ) kl  a b 0 0 n 2 CD  
( ) ijk  0 0 0 d n 2 ABC  
( ) ijl  0 0 c 0 n 2 ABD  
( ) jkl  a 0 0 0 n 2 BCD  
( ) ikl  0 b 0 0 n 2 ACD  
( )ijkl  0 0 0 0 n 2 ABCD  

( )ijkl h  1 1 1 1 1 2  
 
There are exact tests for all effects.  The results can also be generated in Minitab as follows: 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
Factor     Type Levels Values 
A         fixed      2     H     L 
B         fixed      2     H     L 
C         fixed      2     H     L 
D         fixed      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13    0.49  0.492 
B            1       0.13       0.13    0.01  0.921 
C            1       1.13       1.13    0.09  0.767 
D            1       0.13       0.13    0.01  0.921 
A*B          1       3.13       3.13    0.25  0.622 
A*C          1       3.13       3.13    0.25  0.622 
A*D          1       3.13       3.13    0.25  0.622 
B*C          1       3.13       3.13    0.25  0.622 
B*D          1       3.13       3.13    0.25  0.622 
C*D          1       3.13       3.13    0.25  0.622 
A*B*C        1       3.13       3.13    0.25  0.622 
A*B*D        1      28.13      28.13    2.27  0.151 
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A*C*D        1       3.13       3.13    0.25  0.622 
B*C*D        1       3.13       3.13    0.25  0.622 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 A                  16   (16) + 16Q[1] 
 2 B                  16   (16) + 16Q[2] 
 3 C                  16   (16) + 16Q[3] 
 4 D                  16   (16) + 16Q[4] 
 5 A*B                16   (16) + 8Q[5] 
 6 A*C                16   (16) + 8Q[6] 
 7 A*D                16   (16) + 8Q[7] 
 8 B*C                16   (16) + 8Q[8] 
 9 B*D                16   (16) + 8Q[9] 
10 C*D                16   (16) + 8Q[10] 
11 A*B*C              16   (16) + 4Q[11] 
12 A*B*D              16   (16) + 4Q[12] 
13 A*C*D              16   (16) + 4Q[13] 
14 B*C*D              16   (16) + 4Q[14] 
15 A*B*C*D            16   (16) + 2Q[15] 
16 Error       12.38       (16) 
 
(b) A, B, C, and D are random factors. 
 

 R R R R R  
 a b c d n  
Factor i j k l h E(MS) 

i  1 b c d n 2 ABCD ACD ABD ABC AD AC AB A  
j  a 1 c d n 2 ABCD BCD ABD ABC BD BC AB B  
k  a b 1 d n 2 ABCD ACD BCD ABC AB BC CD C  

l
 a b c 1 n 2 ABCD ACD BCD ABD BD AD CD D  

( ) ij  1 1 c d n 2 ABCD ABC ABD AB  
( ) ik  1 b 1 d n 2 ABCD ABC ACD AC  
( ) il  1 b c 1 n 2 ABCD ABD ACD AD  
( ) jk  a 1 1 d n 2 ABCD ABC BCD BC  
( ) jl  a 1 c 1 n 2 ABCD ABD BCD BD  
( ) kl  a b 1 1 n 2 ABCD ACD BCD CD  
( ) ijk  1 1 1 d n 2 ABCD ABC  
( ) ijl  1 1 c 1 n 2 ABCD ABD  
( ) jkl  a 1 1 1 n 2 ABCD BCD  
( ) ikl  1 b 1 1 n 2 ABCD ACD  
( )ijkl  1 1 1 1 n 2 ABCD  

( )ijkl h  1 1 1 1 1 2  
 
No exact tests exist on main effects or two-factor interactions.  For main effects use statistics such as: 
 

A F
MS MS MS MS
MS MS MS MS

A ABC ABD ACD

AB AC AD ABCD
:  

 

For testing two-factor interactions use statistics such as:  AB F
MS MS
MS MS

AB ABCD

ABC ABD
:  

 
The results can also be generated in Minitab as follows: 
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Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A        random      2     H     L 
B        random      2     H     L 
C        random      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13      ** 
B            1       0.13       0.13      ** 
C            1       1.13       1.13    0.36  0.843 x 
D            1       0.13       0.13      ** 
A*B          1       3.13       3.13    0.11  0.796 x 
A*C          1       3.13       3.13    1.00  0.667 x 
A*D          1       3.13       3.13    0.11  0.796 x 
B*C          1       3.13       3.13    1.00  0.667 x 
B*D          1       3.13       3.13    0.11  0.796 x 
C*D          1       3.13       3.13    1.00  0.667 x 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    9.00  0.205 
A*C*D        1       3.13       3.13    1.00  0.500 
B*C*D        1       3.13       3.13    1.00  0.500 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
x Not an exact F-test. 
 
** Denominator of F-test is zero. 
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 A          1.7500   *   (16) + 2(15) + 4(13) + 4(12) + 4(11) + 8(7) + 8(6) 
                            + 8(5) + 16(1) 
 2 B          1.3750   *   (16) + 2(15) + 4(14) + 4(12) + 4(11) + 8(9) + 8(8) 
                            + 8(5) + 16(2) 
 3 C         -0.1250   *   (16) + 2(15) + 4(14) + 4(13) + 4(11) + 8(10) + 8(8) 
                            + 8(6) + 16(3) 
 4 D          1.3750   *   (16) + 2(15) + 4(14) + 4(13) + 4(12) + 8(10) + 8(9) 
                            + 8(7) + 16(4) 
 5 A*B       -3.1250   *   (16) + 2(15) + 4(12) + 4(11) + 8(5) 
 6 A*C        0.0000   *   (16) + 2(15) + 4(13) + 4(11) + 8(6) 
 7 A*D       -3.1250   *   (16) + 2(15) + 4(13) + 4(12) + 8(7) 
 8 B*C        0.0000   *   (16) + 2(15) + 4(14) + 4(11) + 8(8) 
 9 B*D       -3.1250   *   (16) + 2(15) + 4(14) + 4(12) + 8(9) 
10 C*D        0.0000   *   (16) + 2(15) + 4(14) + 4(13) + 8(10) 
11 A*B*C      0.0000  15   (16) + 2(15) + 4(11) 
12 A*B*D      6.2500  15   (16) + 2(15) + 4(12) 
13 A*C*D      0.0000  15   (16) + 2(15) + 4(13) 
14 B*C*D      0.0000  15   (16) + 2(15) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 A             0.56         *   (5) + (6) + (7) - (11) - (12) - (13) + (15) 
 2 B             0.56         *   (5) + (8) + (9) - (11) - (12) - (14) + (15) 
 3 C             0.14      3.13   (6) + (8) + (10) - (11) - (13) - (14) + (15) 
 4 D             0.56         *   (7) + (9) + (10) - (12) - (13) - (14) + (15) 
 5 A*B           0.98     28.13   (11) + (12) - (15) 
 6 A*C           0.33      3.13   (11) + (13) - (15) 
 7 A*D           0.98     28.13   (12) + (13) - (15) 
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 8 B*C           0.33      3.13   (11) + (14) - (15) 
 9 B*D           0.98     28.13   (12) + (14) - (15) 
10 C*D           0.33      3.13   (13) + (14) - (15) 
 
(c)  A is fixed and B, C, and D are random. 
 

 F R R R R  
 a b c d n  
Factor i j k l h E(MS) 

i  0 b c d n 2 ABCD ACD ABD ABC AD AC AB A  
j  a 1 c d n 2 BCD ABD BC B  
k  a b 1 d n 2 BCD BC CD C  

l
 a b c 1 n 2 BCD BD CD D  

( ) ij  0 1 c d n 2 ABCD ABC ABD AB  
( ) ik  0 b 1 d n 2 ABCD ABC ACD AC  
( ) il  0 b c 1 n 2 ABCD ABD ACD AD  
( ) jk  a 1 1 d n 2 BCD BC  
( ) jl  a 1 c 1 n 2 BCD BD  
( ) kl  a b 1 1 n 2 BCD CD  
( ) ijk  0 1 1 d n 2 ABCD ABC  
( ) ijl  0 1 c 1 n 2 ABCD ABD  
( ) jkl  a 1 1 1 n 2 BCD  
( ) ikl  0 b 1 1 n 2 ABCD ACD  
( )ijkl  0 1 1 1 n 2 ABCD  

( )ijkl h  1 1 1 1 1 2  
 
No exact tests exist on main effects or two-factor interactions involving the fixed factor A.  To test the fixed 
factor A use 
 

A F
MS MS MS MS
MS MS MS MS

A ABC ABD ACD

AB AC AD ABCD
:  

 

Random main effects could be tested by, for example:  D F
MS MS
MS MS

D ABCD

ABC ABD
:  

 

For testing two-factor interactions involving A use:  AB F
MS MS
MS MS

AB ABCD

ABC ABD
:  

 
The results can also be generated in Minitab as follows: 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A         fixed      2     H     L 
B        random      2     H     L 
C        random      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13      ** 
B            1       0.13       0.13    0.04  0.907 x 
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C            1       1.13       1.13    0.36  0.761 x 
D            1       0.13       0.13    0.04  0.907 x 
A*B          1       3.13       3.13    0.11  0.796 x 
A*C          1       3.13       3.13    1.00  0.667 x 
A*D          1       3.13       3.13    0.11  0.796 x 
B*C          1       3.13       3.13    1.00  0.500 
B*D          1       3.13       3.13    1.00  0.500 
C*D          1       3.13       3.13    1.00  0.500 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    9.00  0.205 
A*C*D        1       3.13       3.13    1.00  0.500 
B*C*D        1       3.13       3.13    0.25  0.622 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
x Not an exact F-test. 
 
** Denominator of F-test is zero. 
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 A                   *   (16) + 2(15) + 4(13) + 4(12) + 4(11) + 8(7) + 8(6) 
                            + 8(5) + 16Q[1] 
 2 B         -0.1875   *   (16) + 4(14) + 8(9) + 8(8) + 16(2) 
 3 C         -0.1250   *   (16) + 4(14) + 8(10) + 8(8) + 16(3) 
 4 D         -0.1875   *   (16) + 4(14) + 8(10) + 8(9) + 16(4) 
 5 A*B       -3.1250   *   (16) + 2(15) + 4(12) + 4(11) + 8(5) 
 6 A*C        0.0000   *   (16) + 2(15) + 4(13) + 4(11) + 8(6) 
 7 A*D       -3.1250   *   (16) + 2(15) + 4(13) + 4(12) + 8(7) 
 8 B*C        0.0000  14   (16) + 4(14) + 8(8) 
 9 B*D        0.0000  14   (16) + 4(14) + 8(9) 
10 C*D        0.0000  14   (16) + 4(14) + 8(10) 
11 A*B*C      0.0000  15   (16) + 2(15) + 4(11) 
12 A*B*D      6.2500  15   (16) + 2(15) + 4(12) 
13 A*C*D      0.0000  15   (16) + 2(15) + 4(13) 
14 B*C*D     -2.3125  16   (16) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 A             0.56         *   (5) + (6) + (7) - (11) - (12) - (13) + (15) 
 2 B             0.33      3.13   (8) + (9) - (14) 
 3 C             0.33      3.13   (8) + (10) - (14) 
 4 D             0.33      3.13   (9) + (10) - (14) 
 5 A*B           0.98     28.13   (11) + (12) - (15) 
 6 A*C           0.33      3.13   (11) + (13) - (15) 
 7 A*D           0.98     28.13   (12) + (13) - (15) 
 
(d) A and B are fixed and C and D are random. 
 

 F F R R R  
 a b c d n  
Factor i j k l h E(MS) 

i  0 b c d n 2 ACD AD AC A  
j  a 0 c d n 2 BCD BC BD B  
k  a b 1 d n 2 CD C  

l
 a b c 1 n 2 CD D  

( ) ij  0 0 c d n 2 ABCD ABC ABD AB  
( ) ik  0 b 1 d n 2 ACD AC  
( ) il  0 b c 1 n 2 ACD AD  
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( ) jk  a 0 1 d n 2 BCD BC  
( ) jl  a 0 c 1 n 2 BCD BD  
( ) kl  a b 1 1 n 2 CD  
( ) ijk  0 0 1 d n 2 ABCD ABC  
( ) ijl  0 0 c 1 n 2 ABCD ABD  
( ) jkl  a 0 1 1 n 2 BCD  
( ) ikl  0 b 1 1 n 2 ACD  
( )ijkl  0 0 1 1 n 2 ABCD  

( )ijkl h  1 1 1 1 1 2  
 
There are no exact tests on the fixed factors A and B, or their two-factor interaction AB.  The appropriate 
test statistics are:   
 

A F
MS MS
MS MS

B F
MS MS
MS MS

A ACD

AC AD

B BCD

BC BD

:

:
 

AB F
MS MS
MS MS

AB ABCD

ABC ABD
:  

 
The results can also be generated in Minitab as follows: 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A         fixed      2     H     L 
B         fixed      2     H     L 
C        random      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13    1.96  0.604 x 
B            1       0.13       0.13    0.04  0.907 x 
C            1       1.13       1.13    0.36  0.656 
D            1       0.13       0.13    0.04  0.874 
A*B          1       3.13       3.13    0.11  0.796 x 
A*C          1       3.13       3.13    1.00  0.500 
A*D          1       3.13       3.13    1.00  0.500 
B*C          1       3.13       3.13    1.00  0.500 
B*D          1       3.13       3.13    1.00  0.500 
C*D          1       3.13       3.13    0.25  0.622 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    9.00  0.205 
A*C*D        1       3.13       3.13    0.25  0.622 
B*C*D        1       3.13       3.13    0.25  0.622 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
x Not an exact F-test. 
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 A                   *   (16) + 4(13) + 8(7) + 8(6) + 16Q[1] 
 2 B                   *   (16) + 4(14) + 8(9) + 8(8) + 16Q[2] 
 3 C         -0.1250  10   (16) + 8(10) + 16(3) 
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 4 D         -0.1875  10   (16) + 8(10) + 16(4) 
 5 A*B                 *   (16) + 2(15) + 4(12) + 4(11) + 8Q[5] 
 6 A*C        0.0000  13   (16) + 4(13) + 8(6) 
 7 A*D        0.0000  13   (16) + 4(13) + 8(7) 
 8 B*C        0.0000  14   (16) + 4(14) + 8(8) 
 9 B*D        0.0000  14   (16) + 4(14) + 8(9) 
10 C*D       -1.1563  16   (16) + 8(10) 
11 A*B*C      0.0000  15   (16) + 2(15) + 4(11) 
12 A*B*D      6.2500  15   (16) + 2(15) + 4(12) 
13 A*C*D     -2.3125  16   (16) + 4(13) 
14 B*C*D     -2.3125  16   (16) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 A             0.33      3.13   (6) + (7) - (13) 
 2 B             0.33      3.13   (8) + (9) - (14) 
 5 A*B           0.98     28.13   (11) + (12) - (15) 
 
(e) A, B and C are fixed and D is random. 
 

 F F F R R  
 a b c d n  
Factor i j k l h E(MS) 

i  0 b c d n 2 AD A  
j  a 0 c d n 2 BD B  
k  a b 0 d n 2 CD C  

l
 a b c 1 n 2 D  

( ) ij  0 0 c d n 2 ABD AB  
( ) ik  0 b 0 d n 2 ACD AC  
( ) il  0 b c 1 n 2 AD  
( ) jk  a 0 0 d n 2 BCD BC  
( ) jl  a 0 c 1 n 2 BD  
( ) kl  a b 0 1 n 2 CD  
( ) ijk  0 0 0 d n 2 ABCD ABC  
( ) ijl  0 0 c 1 n 2 ABD  
( ) jkl  a 0 0 1 n 2 BCD  
( ) ikl  0 b 0 1 n 2 ACD  
( )ijkl  0 0 0 1 n 2 ABCD  

( )ijkl h  1 1 1 1 1 2  
 
There are exact tests for all effects.  The results can also be generated in Minitab as follows: 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A         fixed      2     H     L 
B         fixed      2     H     L 
C         fixed      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
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A            1       6.13       6.13    1.96  0.395 
B            1       0.13       0.13    0.04  0.874 
C            1       1.13       1.13    0.36  0.656 
D            1       0.13       0.13    0.01  0.921 
A*B          1       3.13       3.13    0.11  0.795 
A*C          1       3.13       3.13    1.00  0.500 
A*D          1       3.13       3.13    0.25  0.622 
B*C          1       3.13       3.13    1.00  0.500 
B*D          1       3.13       3.13    0.25  0.622 
C*D          1       3.13       3.13    0.25  0.622 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    2.27  0.151 
A*C*D        1       3.13       3.13    0.25  0.622 
B*C*D        1       3.13       3.13    0.25  0.622 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 A                   7   (16) + 8(7) + 16Q[1] 
 2 B                   9   (16) + 8(9) + 16Q[2] 
 3 C                  10   (16) + 8(10) + 16Q[3] 
 4 D         -0.7656  16   (16) + 16(4) 
 5 A*B                12   (16) + 4(12) + 8Q[5] 
 6 A*C                13   (16) + 4(13) + 8Q[6] 
 7 A*D       -1.1563  16   (16) + 8(7) 
 8 B*C                14   (16) + 4(14) + 8Q[8] 
 9 B*D       -1.1563  16   (16) + 8(9) 
10 C*D       -1.1563  16   (16) + 8(10) 
11 A*B*C              15   (16) + 2(15) + 4Q[11] 
12 A*B*D      3.9375  16   (16) + 4(12) 
13 A*C*D     -2.3125  16   (16) + 4(13) 
14 B*C*D     -2.3125  16   (16) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
 
12-20 Reconsider cases (c), (d) and (e) of Problem 12-19.  Obtain the expected mean squares assuming the 
unrestricted model.  You may use a computer package such as Minitab.  Compare your results with those 
for the restricted model. 
 
A is fixed and B, C, and D are random. 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A         fixed      2     H     L 
B        random      2     H     L 
C        random      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13      ** 
B            1       0.13       0.13      ** 
C            1       1.13       1.13    0.36  0.843 x 
D            1       0.13       0.13      ** 
A*B          1       3.13       3.13    0.11  0.796 x 
A*C          1       3.13       3.13    1.00  0.667 x 
A*D          1       3.13       3.13    0.11  0.796 x 
B*C          1       3.13       3.13    1.00  0.667 x 
B*D          1       3.13       3.13    0.11  0.796 x 
C*D          1       3.13       3.13    1.00  0.667 x 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    9.00  0.205 
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A*C*D        1       3.13       3.13    1.00  0.500 
B*C*D        1       3.13       3.13    1.00  0.500 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
x Not an exact F-test. 
 
** Denominator of F-test is zero. 
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using unrestricted model) 
 1 A                   *   (16) + 2(15) + 4(13) + 4(12) + 4(11) + 8(7) + 8(6) 
                            + 8(5) + Q[1] 
 2 B          1.3750   *   (16) + 2(15) + 4(14) + 4(12) + 4(11) + 8(9) + 8(8) 
                            + 8(5) + 16(2) 
 3 C         -0.1250   *   (16) + 2(15) + 4(14) + 4(13) + 4(11) + 8(10) + 8(8) 
                            + 8(6) + 16(3) 
 4 D          1.3750   *   (16) + 2(15) + 4(14) + 4(13) + 4(12) + 8(10) + 8(9) 
                            + 8(7) + 16(4) 
 5 A*B       -3.1250   *   (16) + 2(15) + 4(12) + 4(11) + 8(5) 
 6 A*C        0.0000   *   (16) + 2(15) + 4(13) + 4(11) + 8(6) 
 7 A*D       -3.1250   *   (16) + 2(15) + 4(13) + 4(12) + 8(7) 
 8 B*C        0.0000   *   (16) + 2(15) + 4(14) + 4(11) + 8(8) 
 9 B*D       -3.1250   *   (16) + 2(15) + 4(14) + 4(12) + 8(9) 
10 C*D        0.0000   *   (16) + 2(15) + 4(14) + 4(13) + 8(10) 
11 A*B*C      0.0000  15   (16) + 2(15) + 4(11) 
12 A*B*D      6.2500  15   (16) + 2(15) + 4(12) 
13 A*C*D      0.0000  15   (16) + 2(15) + 4(13) 
14 B*C*D      0.0000  15   (16) + 2(15) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 A             0.56         *   (5) + (6) + (7) - (11) - (12) - (13) + (15) 
 2 B             0.56         *   (5) + (8) + (9) - (11) - (12) - (14) + (15) 
 3 C             0.14      3.13   (6) + (8) + (10) - (11) - (13) - (14) + (15) 
 4 D             0.56         *   (7) + (9) + (10) - (12) - (13) - (14) + (15) 
 5 A*B           0.98     28.13   (11) + (12) - (15) 
 6 A*C           0.33      3.13   (11) + (13) - (15) 
 7 A*D           0.98     28.13   (12) + (13) - (15) 
 8 B*C           0.33      3.13   (11) + (14) - (15) 
 9 B*D           0.98     28.13   (12) + (14) - (15) 
10 C*D           0.33      3.13   (13) + (14) - (15) 
 
A and B are fixed and C and D are random. 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A         fixed      2     H     L 
B         fixed      2     H     L 
C        random      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13    1.96  0.604 x 
B            1       0.13       0.13    0.04  0.907 x 
C            1       1.13       1.13    0.36  0.843 x 
D            1       0.13       0.13      ** 
A*B          1       3.13       3.13    0.11  0.796 x 
A*C          1       3.13       3.13    1.00  0.667 x 
A*D          1       3.13       3.13    0.11  0.796 x 
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B*C          1       3.13       3.13    1.00  0.667 x 
B*D          1       3.13       3.13    0.11  0.796 x 
C*D          1       3.13       3.13    1.00  0.667 x 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    9.00  0.205 
A*C*D        1       3.13       3.13    1.00  0.500 
B*C*D        1       3.13       3.13    1.00  0.500 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
x Not an exact F-test. 
 
** Denominator of F-test is zero. 
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using unrestricted model) 
 1 A                   *   (16) + 2(15) + 4(13) + 4(12) + 4(11) + 8(7) + 8(6) 
                            + Q[1,5] 
 2 B                   *   (16) + 2(15) + 4(14) + 4(12) + 4(11) + 8(9) + 8(8) 
                            + Q[2,5] 
 3 C         -0.1250   *   (16) + 2(15) + 4(14) + 4(13) + 4(11) + 8(10) + 8(8) 
                            + 8(6) + 16(3) 
 4 D          1.3750   *   (16) + 2(15) + 4(14) + 4(13) + 4(12) + 8(10) + 8(9) 
                            + 8(7) + 16(4) 
 5 A*B                 *   (16) + 2(15) + 4(12) + 4(11) + Q[5] 
 6 A*C        0.0000   *   (16) + 2(15) + 4(13) + 4(11) + 8(6) 
 7 A*D       -3.1250   *   (16) + 2(15) + 4(13) + 4(12) + 8(7) 
 8 B*C        0.0000   *   (16) + 2(15) + 4(14) + 4(11) + 8(8) 
 9 B*D       -3.1250   *   (16) + 2(15) + 4(14) + 4(12) + 8(9) 
10 C*D        0.0000   *   (16) + 2(15) + 4(14) + 4(13) + 8(10) 
11 A*B*C      0.0000  15   (16) + 2(15) + 4(11) 
12 A*B*D      6.2500  15   (16) + 2(15) + 4(12) 
13 A*C*D      0.0000  15   (16) + 2(15) + 4(13) 
14 B*C*D      0.0000  15   (16) + 2(15) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 A             0.33      3.13   (6) + (7) - (13) 
 2 B             0.33      3.13   (8) + (9) - (14) 
 3 C             0.14      3.13   (6) + (8) + (10) - (11) - (13) - (14) + (15) 
 4 D             0.56         *   (7) + (9) + (10) - (12) - (13) - (14) + (15) 
 5 A*B           0.98     28.13   (11) + (12) - (15) 
 6 A*C           0.33      3.13   (11) + (13) - (15) 
 7 A*D           0.98     28.13   (12) + (13) - (15) 
 8 B*C           0.33      3.13   (11) + (14) - (15) 
 9 B*D           0.98     28.13   (12) + (14) - (15) 
10 C*D           0.33      3.13   (13) + (14) - (15) 
 
(e) A, B and C are fixed and D is random. 
 
Minitab Output 
ANOVA: y versus A, B, C, D 
 
Factor     Type Levels Values 
A         fixed      2     H     L 
B         fixed      2     H     L 
C         fixed      2     H     L 
D        random      2     H     L 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1       6.13       6.13    1.96  0.395 
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B            1       0.13       0.13    0.04  0.874 
C            1       1.13       1.13    0.36  0.656 
D            1       0.13       0.13      ** 
A*B          1       3.13       3.13    0.11  0.795 
A*C          1       3.13       3.13    1.00  0.500 
A*D          1       3.13       3.13    0.11  0.796 x 
B*C          1       3.13       3.13    1.00  0.500 
B*D          1       3.13       3.13    0.11  0.796 x 
C*D          1       3.13       3.13    1.00  0.667 x 
A*B*C        1       3.13       3.13    1.00  0.500 
A*B*D        1      28.13      28.13    9.00  0.205 
A*C*D        1       3.13       3.13    1.00  0.500 
B*C*D        1       3.13       3.13    1.00  0.500 
A*B*C*D      1       3.13       3.13    0.25  0.622 
Error       16     198.00      12.38 
Total       31     264.88  
 
x Not an exact F-test. 
 
** Denominator of F-test is zero. 
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using unrestricted model) 
 1 A                   7   (16) + 2(15) + 4(13) + 4(12) + 8(7) + Q[1,5,6,11] 
 2 B                   9   (16) + 2(15) + 4(14) + 4(12) + 8(9) + Q[2,5,8,11] 
 3 C                  10   (16) + 2(15) + 4(14) + 4(13) + 8(10) + Q[3,6,8,11] 
 4 D          1.3750   *   (16) + 2(15) + 4(14) + 4(13) + 4(12) + 8(10) + 8(9) 
                            + 8(7) + 16(4) 
 5 A*B                12   (16) + 2(15) + 4(12) + Q[5,11] 
 6 A*C                13   (16) + 2(15) + 4(13) + Q[6,11] 
 7 A*D       -3.1250   *   (16) + 2(15) + 4(13) + 4(12) + 8(7) 
 8 B*C                14   (16) + 2(15) + 4(14) + Q[8,11] 
 9 B*D       -3.1250   *   (16) + 2(15) + 4(14) + 4(12) + 8(9) 
10 C*D        0.0000   *   (16) + 2(15) + 4(14) + 4(13) + 8(10) 
11 A*B*C              15   (16) + 2(15) + Q[11] 
12 A*B*D      6.2500  15   (16) + 2(15) + 4(12) 
13 A*C*D      0.0000  15   (16) + 2(15) + 4(13) 
14 B*C*D      0.0000  15   (16) + 2(15) + 4(14) 
15 A*B*C*D   -4.6250  16   (16) + 2(15) 
16 Error     12.3750       (16) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 4 D             0.56         *   (7) + (9) + (10) - (12) - (13) - (14) + (15) 
 7 A*D           0.98     28.13   (12) + (13) - (15) 
 9 B*D           0.98     28.13   (12) + (14) - (15) 
10 C*D           0.33      3.13   (13) + (14) - (15) 
 
 
12-21 In Problem 5-17, assume that the three operators were selected at random.  Analyze the data under 
these conditions and draw conclusions.  Estimate the variance components. 
 
Minitab Output 
ANOVA: Score versus Cycle Time, Operator, Temperature 
 
Factor     Type Levels Values 
Cycle Ti  fixed      3    40    50    60 
Operator random      3     1     2     3 
Temperat  fixed      2   300   350 
 
Analysis of Variance for Score    
 
Source                        DF         SS         MS       F      P 
Cycle Ti                       2    436.000    218.000    2.45  0.202 
Operator                       2    261.333    130.667   39.86  0.000 
Temperat                       1     50.074     50.074    8.89  0.096 
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Cycle Ti*Operator              4    355.667     88.917   27.13  0.000 
Cycle Ti*Temperat              2     78.815     39.407    3.41  0.137 
Operator*Temperat              2     11.259      5.630    1.72  0.194 
Cycle Ti*Operator*Temperat     4     46.185     11.546    3.52  0.016 
Error                         36    118.000      3.278 
Total                         53   1357.333  
 
Source                        Variance Error Expected Mean Square for Each Term 
                             component term (using restricted model) 
 1 Cycle Ti                              4   (8) + 6(4) + 18Q[1] 
 2 Operator                     7.0772   8   (8) + 18(2) 
 3 Temperat                              6   (8) + 9(6) + 27Q[3] 
 4 Cycle Ti*Operator           14.2731   8   (8) + 6(4) 
 5 Cycle Ti*Temperat                     7   (8) + 3(7) + 9Q[5] 
 6 Operator*Temperat            0.2613   8   (8) + 9(6) 
 7 Cycle Ti*Operator*Temperat   2.7562   8   (8) + 3(7) 
 8 Error                        3.2778       (8) 
 
The following calculations agree with the Minitab results: 
 

2 MSE        2777832 .ˆ  

2 MS MS
n

ABC E      75622
3

2777783546296112 ...ˆ  

2 MS MS
an

BC E      2731514
32

277778391667882 ...ˆ  

2 MS MS
bn

AC E      261320
33

277778362963052 ...ˆ  

2 MS MS
abn

C E      077167
332

2777783666671302 ...ˆ  

 
 
12-22 Consider the three-factor model 
 

ijkjkijkjiijky  
 
Assuming that all the factors are random, develop the analysis of variance table, including the expected 
mean squares.  Propose appropriate test statistics for all effects. 
 

Source DF E(MS) 
A a-1 2 2 2c bc  

B b-1 2 2 2 2c a ac  

C c-1 2 2 2a ab  

AB (a-1)(b-1) 2 2c  

BC (b-1)(c-1) 2 2a  

Error (AC + ABC) b(a-1)(c-1) 2  
Total abc-1  

 

There are exact tests for all effects except B.  To test B, use the statistic F
MS MS

MS MS
B E

AB BC
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12-23 The three-factor model for a single replicate is 
 

yijk i j k ij jk ik ijk ijk( ) ( ) ( ) ( )  
 
If all the factors are random, can any effects be tested?  If the three-factor interaction and the ( )ij  
interaction do not exist, can all the remaining effects be tested. 
 
The expected mean squares are found by referring to Table 12-9, deleting the line for the error term ( )ijk l  
and setting n=1.  The three-factor interaction now cannot be tested; however, exact tests exist for the two-
factor interactions and approximate F tests can be conducted for the main effects.  For example, to test the 
main effect of A, use 
 

F
MS MS
MS MS

A ABC

AB AC
 

 
If ( )ijk  and ( )ij can be eliminated, the model becomes  
 

ijkijkikjkijkjiijky  
 

For this model, the analysis of variance is 
 

Source DF E(MS) 
A a-1 2 2 2b bc  

B b-1 2 2 2a ac  

C c-1 2 2 2 2a b ab  

AC (a-1)(c-1) 2 2b  

BC (b-1)(c-1) 2 2a  

Error (AB + ABC) c(a-1)(b-1) 2  
Total abc-1  

 
There are exact tests for all effect except C.  To test the main effect of C, use the statistic: 
 

F
MS MS

MS MS
C E

BC AC
 

 
 
12-24 In Problem 5-6, assume that both machines and operators were chosen randomly.  Determine the 
power of the test for detecting a machine effect such that  2 2 , where  2   is the variance component 
for the machine factor.  Are two replicates sufficient? 
 

1
2

2 2

an

n
 

If 2 2 , then an estimate of 2 2 379. , and an estimate of 2 2 7 45n . , from the analysis 
of variance table. Then 
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491222
457

793231 ..
.

.  

 
and the other OC curve parameters are 1 3  and 2 6 .  This results in 0 75. approximately, with 

0 05. , or 0 9. with 0 01. .  Two replicates does not seem sufficient. 
 
 
12-25 In the two-factor mixed model analysis of variance, show that Cov 21 a, j'iij   for 

i i'. 
 

Since 
a

i
ij

1

0 (constant) we have 0
1

a

i
ijV , which implies that 

2

2

2

1

1

011

02
22

1

0
2

2

a
,Cov

,Covaaa

,Cov
!a!

!a
a

aa

,Cov
a

V

j'iij

j'iij

j'iij

j'iij

a

i
ij

 

 
 
12-26 Show that the method of analysis of variance always produces unbiased point estimates of the 
variance component in any random or mixed model. 
 
Let g be the vector of mean squares from the analysis of variance, chosen so that E(g) does not contain any 
fixed effects.  Let 2  be the vector of variance components such that E( )g A 2 , where A is a matrix of 
constants. Now in the analysis of variance method of variance component estimation, we equate observed 
and expected mean squares, i.e. 
 

gAssA=g -122 ˆ  
 

Since -1A  always exists then, 
 

22-1-1-12 ssAA=gAgA=s EEE  
 

Thus 2 is an unbiased estimator of 2 .  This and other properties of the analysis of variance method are 
discussed by Searle (1971a). 
 
 
12-27 Invoking the usual normality assumptions, find an expression for the probability that a negative 
estimate of a variance component will be obtained by the analysis of variance method.  Using this result, 
write a statement giving the probability that   2 0  in a one-factor analysis of variance.  Comment on the 
usefulness of this probability statement. 
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Suppose 2 1 2MS MS
c

, where MSi for i=1,2 are two mean squares and c is a constant. The 

probability that 02ˆ  (negative) is 

2

1

2

1

2

2

1

1

2

1
21

2 100
MSE
MSE

FP
MSE
MSE

MSE
MS
MSE

MS

P
MS
MS

PMSMSPˆP v,u  

 
where u is the number of degrees of freedom for MS1 and v is the number of degrees of freedom for MS2 .  
For the one-way model, this equation reduces to 
 

P P F
n

P F nka N a a N a, ,
2

1

2

2 2 10
1

1  

 

where 
2

2

k .  Using arbitrary values for some of the parameters in this equation will give an 

experimenter some idea of the probability of obtaining a negative estimate of 02ˆ .   
 
 
12-28 Analyze the data in Problem 12-9, assuming that the operators are fixed, using both the unrestricted 
and restricted forms of the mixed models.  Compare the results obtained from the two models. 
 
The restricted model is as follows: 
 
Minitab Output 
ANOVA: Measurement versus Part, Operator 
 
Factor     Type Levels Values 
Part     random     10     1     2     3     4     5     6     7 
                           8     9    10 
Operator  fixed      2     1     2 
 
Analysis of Variance for Measurem 
 
Source           DF         SS         MS       F      P 
Part              9     99.017     11.002    7.33  0.000 
Operator          1      0.417      0.417    0.69  0.427 
Part*Operator     9      5.417      0.602    0.40  0.927 
Error            40     60.000      1.500 
Total            59    164.850  
 
Source           Variance Error Expected Mean Square for Each Term 
                component term (using restricted model) 
 1 Part            1.5836   4   (4) + 6(1) 
 2 Operator                 3   (4) + 3(3) + 30Q[2] 
 3 Part*Operator  -0.2994   4   (4) + 3(3) 
 4 Error           1.5000       (4) 
 
The second approach is the unrestricted mixed model. 
 
Minitab Output 
ANOVA: Measurement versus Part, Operator 
 
Factor     Type Levels Values 
Part     random     10     1     2     3     4     5     6     7 
                           8     9    10 
Operator  fixed      2     1     2 
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Analysis of Variance for Measurem 
 
Source           DF         SS         MS       F      P 
Part              9     99.017     11.002   18.28  0.000 
Operator          1      0.417      0.417    0.69  0.427 
Part*Operator     9      5.417      0.602    0.40  0.927 
Error            40     60.000      1.500 
Total            59    164.850  
 
Source           Variance Error Expected Mean Square for Each Term 
                component term (using unrestricted model) 
 1 Part            1.7333   3   (4) + 3(3) + 6(1) 
 2 Operator                 3   (4) + 3(3) + Q[2] 
 3 Part*Operator  -0.2994   4   (4) + 3(3) 
 4 Error           1.5000       (4) 
 

Source Sum of 
Squares 

DF Mean 
Square 

E(MS) F-test F 

A 0.416667 a-1=1 0.416667 2 2

2

1

1n bn a

i
i

a

 
AB

A

MS
MS

F  0.692 

B 99.016667 b-1=9 11.00185 2 2 2n an  
AB

B

MS
MS

F  18.28 

AB 5.416667 (a-1)(b-1)=9 0.60185 2 2n  
E

AB

MS
MS

F  0.401 

Error  60.000000 40 1.50000 2    
Total 164.85000 nabc-1=59     

 
In the unrestricted model, the F-test for B is different. The F-test for B in the unrestricted model should 
generally be more conservative, since MSAB will generally be larger than MSE.  However, this is not the 
case with this particular experiment. 
 
 
12-29 Consider the two-factor mixed model.  Show that the standard error of the fixed factor mean  (e.g. A) 
is 21bn/MS AB . 
 
The standard error is often used in Duncan’s Multiple Range test.  Duncan’s Multiple Range Test requires 
the variance of the difference in two means, say 
 

..m..i yyV  
 
where rows are fixed and columns are random.  Now, assuming all model parameters to be independent, we 
have the following: 
 

b

j

n

k
mjk

b

j

n

k
ijk

b

j
mj

b

j
ijmi..m..i bnbnbb

yy
1 11 111

1111  

 
and 
 

bn
n

bn
bn

bn
bn

b
b

b
b

yyV ..m..i

22
2

2
2

2
2

2
2

2 21111  
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Since MSAB  estimates 2 2n , we would use  
 

2 MS
bn

AB  

 
as the standard error to test the difference.  However, the table of ranges for Duncan’s Multiple Range test 
already include the constant 2.  
 
 
12-30 Consider the variance components in the random model from Problem 12-9. 
 
(a) Find an exact 95 percent confidence interval on 2. 
 

f MS f MSE E

f

E E

fE E2
2

2

1 2
2

, ,
 

4324
5140

3459
5140 2

.
.

.
.  

1011 2 4562. .  
 
(b) Find approximate 95 percent confidence intervals on the other variance components using the 

Satterthwaite method. 
 

2  and 2  are negative, and the Satterthwaithe method does not apply.  The confidence interval on 2  
is 
 

2 MS MS
an

B AB          73331
32

60185190001852112 ...ˆ  

018268

91
60185190

9
0018521

6018519000185211

111

22

2

22

2
.

..
..

ba
MS

b
MS

MSMSr
ABB

ABB  

r rO

r r, ,

2

2
2

2
2

1 2
2  

189502
73331018268

5575217
73331018268 2

.
..

.
..  

0 79157 6 347592. .  
 
 
12-31 Use the experiment described in Problem 5-6 and assume that both factor are random.  Find an exact 
95 percent confidence interval on  2.  Construct approximate 95 percent confidence interval on the other 
variance components using the Satterthwaite method. 
 

2 MSE        .2 379167  
f MS f MSE E

f

E E

fE E2
2

2

1 2
2

, ,
 

404
79167312

3423
79167312 2

.

.
.

.  
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19494 10 34092. .  
 

Satterthwaite Method: 
 

2 MS MS
n

AB E      
. .

.2 7 44444 3 79167
2 182639  

29402

12
791673

32
444447

791673444447

11

22

2

22

2

.
..

..

df
MS

ba
MS

MSMS
r

E

EAB

EAB  

r r

r r, ,

2

2
2

2
2

1 2
2  

 

099980
82639129402

959187
82639129402 2

.
..

.
..  

052640 41905772. .  
 

2 0  , this variance component does not have a confidence interval using Satterthwaite’s Method. 
 

2 MS MS
bn

A AB      090289
24

44444716667802 ...ˆ  

641081

32
444447

2
1666780

4444471666780

111

22

2

22

2
.

..
..

ba
MS

a
MS

MSMSr
ABA

ABA  

r r

r r, ,

2

2
2

2
2

1 2
2  

( . )( . )
.

( . )( . )
.

164108 9 09028
653295

164108 9 09028
0 03205

2  

2 28348 465456372. .  
 
 

12-32 Consider the three-factor experiment in Problem 5-17 and assume that operators were selected at 
random.  Find an approximate 95 percent confidence interval on the operator variance component. 
 

2 MS MS
abn

C E      077167
332

2777783666671302 ...ˆ  

900851

36
277783

2
66667130

27778366667130

1

22

2

22

2
.

..
..

df
MS

c
MS

MSMSr

E

EC

EC  

r r

r r, ,

2

2
2

2
2

1 2
2  

045040
077167900851

154679
077167900851 2

.
..

.
..  

146948 4298 665322. .  
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12-33 Rework Problem 12-30 using the modified large-sample approach described in Section 12-7.2.  
Compare the two sets of confidence intervals obtained and discuss. 
 

O
B ABMS MS

an
2 2          73331

32
60185190001852112 ...ˆ O  

363660
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7027118346809011831
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.
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6
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2
22
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2

2111
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2
2
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22
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2
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.V

.......V

MSMSccGMScHMScGV

L

L

ABBABBL

 

L VL . . .2 17333 083275 082075  
 
 
12-34 Rework Problem 12-32 using the modified large-sample method described in Section 12-7.2.  
Compare this confidence interval with he one obtained previously and discuss. 
 

2 MS MS
abn
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2
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L VL . . .2 7 07716 20 95112 2 49992  
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Chapter 13 
Nested and Split-Plot Designs 

 Solutions 
 
 
In this chapter we have not shown residual plots and other diagnostics to conserve space.  A complete 
analysis would, of course, include these model adequacy checking procedures. 
 
13-1  A rocket propellant manufacturer is studying the burning rate of propellant from three production 
processes.  Four batches of propellant are randomly selected from the output of each process and three 
determinations of burning rate are made on each batch.  The results follow.  Analyze the data and draw 
conclusions. 
 
 Process 1 Process 2 Process 3  
 Batch 1 2 3 4 1 2 3 4 1 2 3 4 
  25 19 15 15 19 23 18 35 14 35 38 25 
  30 28 17 16 17 24 21 27 15 21 54 29 
  26 20 14 13 14 21 17 25 20 24 50 33 
 
Minitab Output 
ANOVA: Burn Rate versus Process, Batch 
 
Factor           Type Levels Values 
Process         fixed      3     1     2     3 
Batch(Process) random      4     1     2     3     4 
 
Analysis of Variance for Burn Rat 
 
Source            DF         SS         MS       F      P 
Process            2     676.06     338.03    1.46  0.281 
Batch(Process)     9    2077.58     230.84   12.20  0.000 
Error             24     454.00      18.92 
Total             35    3207.64  
 
Source            Variance Error Expected Mean Square for Each Term 
                 component term (using restricted model) 
 1 Process                   2   (3) + 3(2) + 12Q[1] 
 2 Batch(Process)    70.64   3   (3) + 3(2) 
 3 Error             18.92       (3) 
 
There is no significant effect on mean burning rate among the different processes; however, different 
batches from the same process have significantly different burning rates. 
 
 
13-2 The surface finish of metal parts made on four machines is being studied.  An experiment is 
conducted in which each machine is run by three different operators and two specimens from each 
operator are collected and tested.  Because of the location of the machines, different operators are used on 
each machine, and the operators are chosen at random.  The data are shown in the following table.  
Analyze the data and draw conclusions. 
 
 Machine 1 Machine 2 Machine 3 Machine 4 
 Operator 1 2 3 1 2 3 1 2 3 1 2 3 
  79 94 46 92 85 76 88 53 46 36 40 62 
  62 74 57 99 79 68 75 56 57 53 56 47 
 
Minitab Output 
ANOVA: Finish versus Machine, Operator 
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Factor              Type Levels Values 
Machine            fixed      4     1     2     3     4 
Operator(Machine) random      3     1     2     3 
 
Analysis of Variance for Finish   
 
Source               DF         SS         MS       F      P 
Machine               3    3617.67    1205.89    3.42  0.073 
Operator(Machine)     8    2817.67     352.21    4.17  0.013 
Error                12    1014.00      84.50 
Total                23    7449.33  
 
Source               Variance Error Expected Mean Square for Each Term 
                    component term (using restricted model) 
 1 Machine                      2   (3) + 2(2) + 6Q[1] 
 2 Operator(Machine)   133.85   3   (3) + 2(2) 
 3 Error                84.50       (3) 
 
There is a slight effect on surface finish due to the different processes; however, the different operators 
running the same machine have significantly different surface finish. 
 
 
13-3 A manufacturing engineer is studying the dimensional variability of a particular component that is 
produced on three machines.  Each machine has two spindles, and four components are randomly selected 
from each spindle.  These results follow.  Analyze the data, assuming that machines and spindles are fixed 
factors. 
 
 Machine 1 Machine 2 Machine 3  
 Spindle 1 2 1 2 1 2  
  12 8 14 12 14 16  
  9 9 15 10 10 15 
  11 10 13 11 12 15 
  12 8 14 13 11 14   
 
Minitab Output 
ANOVA: Variability versus Machine, Spindle 
 
Factor             Type Levels Values 
Machine           fixed      3     1     2     3 
Spindle(Machine)  fixed      2     1     2 
 
Analysis of Variance for Variabil 
 
Source              DF         SS         MS       F      P 
Machine              2     55.750     27.875   18.93  0.000 
Spindle(Machine)     3     43.750     14.583    9.91  0.000 
Error               18     26.500      1.472 
Total               23    126.000  
 
There is a significant effects on dimensional variability due to the machine and spindle factors. 
 
 
13-4 To simplify production scheduling, an industrial engineer is studying the possibility of assigning 
one time standard to a particular class of jobs, believing that differences between jobs is negligible.  To see 
if this simplification is possible, six jobs are randomly selected.  Each job is given to a different group of 
three operators.  Each operator completes the job twice at different times during the week, and the 
following results were obtained.  What are your conclusions about the use of a common time standard for 
all jobs in this class?  What value would you use for the standard? 
 
 Job Operator 1 Operator 2 Operator 3  
 1 158.3 159.4 159.2 159.6 158.9 157.8 
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 2 154.6 154.9 157.7 156.8 154.8 156.3 
 3 162.5 162.6 161.0 158.9 160.5 159.5 
 4 160.0 158.7 157.5 158.9 161.1 158.5 
 5 156.3 158.1 158.3 156.9 157.7 156.9 
 6 163.7 161.0 162.3 160.3 162.6 161.8 
    
Minitab Output 
ANOVA: Time versus Job, Operator 
 
Factor          Type Levels Values 
Job           random      6     1     2     3     4     5     6 
Operator(Job) random      3     1     2     3 
 
Analysis of Variance for Time     
 
Source           DF         SS         MS       F      P 
Job               5    148.111     29.622   27.89  0.000 
Operator(Job)    12     12.743      1.062    0.69  0.738 
Error            18     27.575      1.532 
Total            35    188.430  
 
Source           Variance Error Expected Mean Square for Each Term 
                component term (using restricted model) 
 1 Job             4.7601   2   (3) + 2(2) + 6(1) 
 2 Operator(Job)  -0.2350   3   (3) + 2(2) 
 3 Error           1.5319       (3) 
 
The jobs differ significantly; the use of a common time standard would likely not be a good idea. 
 
 
13-5 Consider the three-stage nested design shown in Figure 13-5 to investigate alloy hardness.  Using 
the data that follow, analyze the design, assuming that alloy chemistry and heats are fixed factors and 
ingots are random. 
 
      Alloy Chemistry 
  1 2  
 Heats 1 2 3 1 2 3 
 Ingots 1 2 1 2 1 2 1 2 1 2 1 2 
  40 27 95 69 65 78 22 23 83 75 61 35 
  63 30 67 47 54 45 10 39 62 64 77 42 
 
Minitab Output 
ANOVA: Hardness versus Alloy, Heat, Ingot 
 
Factor              Type Levels Values 
Alloy              fixed      2     1     2 
Heat(Alloy)        fixed      3     1     2     3 
Ingot(Alloy Heat) random      2     1     2 
 
Analysis of Variance for Hardness 
 
Source               DF         SS         MS       F      P 
Alloy                 1      315.4      315.4    0.85  0.392 
Heat(Alloy)           4     6453.8     1613.5    4.35  0.055 
Ingot(Alloy Heat)     6     2226.3      371.0    2.08  0.132 
Error                12     2141.5      178.5 
Total                23    11137.0  
 
Source               Variance Error Expected Mean Square for Each Term 
                    component term (using restricted model) 
 1 Alloy                        3   (4) + 2(3) + 12Q[1] 
 2 Heat(Alloy)                  3   (4) + 2(3) + 4Q[2] 
 3 Ingot(Alloy Heat)    96.29   4   (4) + 2(3) 
 4 Error               178.46       (4) 
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Alloy hardness differs significantly due to the different heats within each alloy. 
 
 
13-6 Reanalyze the experiment in Problem 13-5 using the unrestricted form of the mixed model.  
Comment on any differences you observe between the restricted and unrestricted model results.  You may 
use a computer software package. 
 
Minitab Output 
ANOVA: Hardness versus Alloy, Heat, Ingot 
 
Factor              Type Levels Values 
Alloy              fixed      2     1     2 
Heat(Alloy)        fixed      3     1     2     3 
Ingot(Alloy Heat) random      2     1     2 
 
Analysis of Variance for Hardness 
 
Source               DF         SS         MS       F      P 
Alloy                 1      315.4      315.4    0.85  0.392 
Heat(Alloy)           4     6453.8     1613.5    4.35  0.055 
Ingot(Alloy Heat)     6     2226.3      371.0    2.08  0.132 
Error                12     2141.5      178.5 
Total                23    11137.0  
 
Source               Variance Error Expected Mean Square for Each Term 
                    component term (using unrestricted model) 
 1 Alloy                        3   (4) + 2(3) + Q[1,2] 
 2 Heat(Alloy)                  3   (4) + 2(3) + Q[2] 
 3 Ingot(Alloy Heat)    96.29   4   (4) + 2(3) 
 4 Error               178.46       (4) 
 
 
13-7 Derive the expected means squares for a balanced three-stage nested design, assuming that A is 
fixed and that B and C are random.  Obtain formulas for estimating the variance components. 
 

 F R R R  
 a b c n  
Factor i j k l E(MS) 

i  0 b c n 2222

1 ia
bcncnn  

j i( )  1 1 c n 222 cnn  

k ij( )  1 1 1 n 22 n  

( )ijk l  1 1 1 1 2  
 

2 MSE      
n

MSMS
ˆ EBC2     

cn
MSMS

ˆ BCAB2       

 
The expected mean squares can be generated in Minitab as follows: 
 
Minitab Output 
ANOVA: y versus A, B, C 
 
Factor     Type Levels Values 
A         fixed      2    -1     1 
B(A)     random      2    -1     1 
C(A B)   random      2    -1     1 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

13-5 

A            1      0.250      0.250    0.06  0.831 
B(A)         2      8.500      4.250    0.35  0.726 
C(A B)       4     49.000     12.250    2.13  0.168 
Error        8     46.000      5.750 
Total       15    103.750  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using restricted model) 
 1 A                   2   (4) + 2(3) + 4(2) + 8Q[1] 
 2 B(A)       -2.000   3   (4) + 2(3) + 4(2) 
 3 C(A B)      3.250   4   (4) + 2(3) 
 4 Error       5.750       (4) 
 
 
13-8 Repeat Problem 13-7 assuming the unrestricted form of the mixed model. You may use a computer 
software package. Comment on any differences you observe between the restricted and unrestricted model 
analysis and conclusions. 
 
Minitab Output 
ANOVA: y versus A, B, C 
 
Factor     Type Levels Values 
A         fixed      2    -1     1 
B(A)     random      2    -1     1 
C(A B)   random      2    -1     1 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1      0.250      0.250    0.06  0.831 
B(A)         2      8.500      4.250    0.35  0.726 
C(A B)       4     49.000     12.250    2.13  0.168 
Error        8     46.000      5.750 
Total       15    103.750  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using unrestricted model) 
 1 A                   2   (4) + 2(3) + 4(2) + Q[1] 
 2 B(A)       -2.000   3   (4) + 2(3) + 4(2) 
 3 C(A B)      3.250   4   (4) + 2(3) 
 4 Error       5.750       (4) 
 
In this case there is no difference in results between the restricted and unrestricted models. 
 
 
13-9 Derive the expected means squares for a balanced three-stage nested design if all three factors are 
random.  Obtain formulas for estimating the variance components.  Assume the restricted form of the 
mixed model.  
 

 R R R R  
 a b c n  
Factor i j k l E(MS) 

i  1 b c n 2222 bcncnn  

j i( )  1 1 c n 222 cnn  

k ij( )  1 1 1 n 22 n  

( )ijk l  1 1 1 1 2  
 

2 MSE      ( )2
MS MS

n
C B E

    
( ) ( )2

MS MS
cn

B A C B
     

( )2
MS MS

bcn
A B A

 

 
The expected mean squares can be generated in Minitab as follows: 
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Minitab Output 
ANOVA: y versus A, B, C 
 
Factor     Type Levels Values 
A        random      2    -1     1 
B(A)     random      2    -1     1 
C(A B)   random      2    -1     1 
 
Analysis of Variance for y        
 
Source      DF         SS         MS       F      P 
A            1      0.250      0.250    0.06  0.831 
B(A)         2      8.500      4.250    0.35  0.726 
C(A B)       4     49.000     12.250    2.13  0.168 
Error        8     46.000      5.750 
Total       15    103.750  
 
Source      Variance Error Expected Mean Square for Each Term 
           component term (using unrestricted model) 
 1 A         -0.5000   2   (4) + 2(3) + 4(2) + 8(1) 
 2 B(A)      -2.0000   3   (4) + 2(3) + 4(2) 
 3 C(A B)     3.2500   4   (4) + 2(3) 
 4 Error      5.7500       (4) 
 
 
13-10 Verify the expected mean squares given in Table 13-1. 
 

 F F R  
 a b n  
Factor i j l E(MS) 

i  0 b n 22

1 ia
bn  

ij  1 0 n 22

1 ijba
n  

lijk  1 1 1 2  
 

 R R R  
 a b n  
Factor i j l E(MS) 

i  1 b n 222 bnn  

ij  1 1 n 22 n  

lijk  1 1 1 2  
 

 F R R  
 a b n  
Factor i j l E(MS) 

i  0 b n 222

1 ia
bnn  

ij  1 1 n 22 n  

lijk  1 1 1 2  
 
 
13-11 Unbalanced designs.  Consider an unbalanced two-stage nested design with bj levels of B under the 
ith level of A and nij replicates in the ijth cell. 
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(a) Write down the least squares normal equations for this situation.  Solve the normal equations. 
 
The least squares normal equations are: 
 

a

i

b

j
...ijij

a

i
i.i..

i

yˆnˆnˆn
1 11

 

ib

j
..iijiji.i.ii yˆnˆnˆn

1

, for i a1 2, ,...,  

.ijijijiijijij yˆnˆnˆn , for i a1 2, ,...,  and j bi1 2, ,...,  

 
There are 1+a+b equations in 1+a+b unknowns. However, there are a+1linear dependencies in these 
equations, and consequently, a+1 side conditions are needed to solve them.  Any convenient set of a+1 
linearly independent equations can be used.  The easiest set is 0 , i 0 , for i=1,2,…,a.  Using these 
conditions we get  
 

0 , i 0 , ( ) .j i ijy  
 
as the solution to the normal equations.  See Searle (1971) for a full discussion. 
 
(b) Construct the analysis of variance table for the unbalanced two-stage nested design. 
 
The analysis of variance table is 
 

Source SS DF 

A 
..

...
a

i .i

..i

n
y

n
y 2

1

2
 a-1 

B 
a

i .i

..i
a

i

b

j ij

.ij

n
y

n
yi

1

2

1 1

2

 b.-a 

Error 
a

i

b

j ij

.ij
a

i

b

j

n

k
ijk

ii ij

n
y

y
1 1

2

1 1 1

2  n..-b 

Total 
..

...
a

i

b

j

n

k
ijk n

y
y

i ij 2

1 1 1

2  n..-1 

 
(c) Analyze the following data, using the results in part (b). 
 
 Factor A 1 2  
 Factor B 1 2 1 2 3  
  6 -3 5 2 1  
  4 1 7 4 0 
  8  9 3 -3 
    6 
    
Note that a=2, b1=2, b2=3, b.=b1+b2=5, n11=3, n12=2, n21=4, n22=3 and n23=3 
 

Source SS DF MS 
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A 0.13 1 0.13 
B 153.78 3 51.26 

Error 35.42 10 3.54 
Total 189.33 14  

 
The analysis can also be performed in Minitab as follows.  The adjusted sum of squares is utilized by 
Minitab’s general linear model routine. 
 
Minitab Output 
General Linear Model: y versus A, B 
 
Factor     Type Levels Values  
A         fixed      2 1 2 
B(A)      fixed      5 1 2 1 2 3 
 
Analysis of Variance for y, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
A           1      0.133      0.898      0.898    0.25  0.625 
B(A)        3    153.783    153.783     51.261   14.47  0.001 
Error      10     35.417     35.417      3.542 
Total      14    189.333   
 
 
13-12 Variance components in the unbalanced two-stage nested design.  Consider the model 
 

ijkijiijky   

ijn,...,,k
b,...,,j
a,...,,i

21
21
21

 

 
where A and B are random factors.  Show that 
 

2

2
0

2

2
2

2
1

2

E

AB

A

MSE

cMSE

ccMSE

 

 
where 
 

1

1

1

2

2

1 1 1

2

1

2

1

1 1

2

0

a
N

n
N

c

a

N
n

n
n

c

ab

n
n

N

c

a

i
.i

a

i

a

i

b

j

ij
b

j .i

ij

a

i

b

j .i

ij

ii

i
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See “Variance Component Estimation in the 2-way Nested Classification,” by S.R. Searle, Annals of 
Mathematical Statistics, Vol. 32, pp. 1161-1166, 1961. A good discussion of variance component 
estimation from unbalanced data is in Searle (1971a). 
 
 
13-13 A process engineer is testing the yield of a product manufactured on three machines.  Each 
machine can be operated at two power settings.  Furthermore, a machine has three stations on which the 
product is formed.  An experiment is conducted in which each machine is tested at both power settings, 
and three observations on yield are taken from each station.  The runs are made in random order, and the 
results follow.  Analyze this experiment, assuming all three factors are fixed. 
 
  Machine 1   Machine 2   Machine 3   
  Station 1 2 3 1 2 3 1 2 3  
 Power Setting 1 34.1 33.7 36.2 32.1 33.1 32.8 32.9 33.8 33.6  
  30.3 34.9 36.8 33.5 34.7 35.1 33.0 33.4 32.8 
  31.6 35.0 37.1 34.0 33.9 34.3 33.1 32.8 31.7 
 Power Setting 2 24.3 28.1 25.7 24.1 24.1 26.0 24.2 23.2 24.7 
  26.3 29.3 26.1 25.0 25.1 27.1 26.1 27.4 22.0 
  27.1 28.6 24.9 26.3 27.9 23.9 25.3 28.0 24.8 
 
The linear model is lijk)j(ikjkijjiijkly  

 
Minitab Output 
ANOVA: Yield versus Machine, Power, Station 
 
Factor             Type Levels Values 
Machine           fixed      3     1     2     3 
Power             fixed      2     1     2 
Station(Machine)  fixed      3     1     2     3 
 
Analysis of Variance for Yield    
 
Source                    DF         SS         MS       F      P 
Machine                    2     21.143     10.572    6.46  0.004 
Power                      1    853.631    853.631  521.80  0.000 
Station(Machine)           6     32.583      5.431    3.32  0.011 
Machine*Power              2      0.616      0.308    0.19  0.829 
Power*Station(Machine)     6     28.941      4.824    2.95  0.019 
Error                     36     58.893      1.636 
Total                     53    995.808  
 
Source                    Variance Error Expected Mean Square for Each Term 
                         component term (using restricted model) 
 1 Machine                           6   (6) + 18Q[1] 
 2 Power                             6   (6) + 27Q[2] 
 3 Station(Machine)                  6   (6) + 6Q[3] 
 4 Machine*Power                     6   (6) + 9Q[4] 
 5 Power*Station(Machine)            6   (6) + 3Q[5] 
 6 Error                     1.636       (6) 

 
 
13-14 Suppose that in Problem 13-13 a large number of power settings could have been used and that the 
two selected for the experiment were chosen randomly.  Obtain the expected mean squares for this 
situation and modify the previous analysis appropriately. 
 

 R F F R  
 2 3 3 3  
Factor i j k l E(MS) 

i  1 3 3 3 22 27  

j  2 0 3 3 222 99 j  
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( ) ij  1 0 3 3 22 9  

k j( )  2 1 0 3 222 3 )j(k  

( ) ( )ik j  1 1 0 3 22 3  

( )ijk l  1 1 1 1 2  
 
The analysis of variance and the expected mean squares can be completed in Minitab as follows: 
 
Minitab Output 
ANOVA: Yield versus Machine, Power, Station 
 
Factor             Type Levels Values 
Machine           fixed      3     1     2     3 
Power            random      2     1     2 
Station(Machine)  fixed      3     1     2     3 
 
Analysis of Variance for Yield    
 
Source                    DF         SS         MS       F      P 
Machine                    2     21.143     10.572   34.33  0.028 
Power                      1    853.631    853.631  521.80  0.000 
Station(Machine)           6     32.583      5.431    1.13  0.445 
Machine*Power              2      0.616      0.308    0.19  0.829 
Power*Station(Machine)     6     28.941      4.824    2.95  0.019 
Error                     36     58.893      1.636 
Total                     53    995.808  
 
Source                    Variance Error Expected Mean Square for Each Term 
                         component term (using restricted model) 
 1 Machine                           4   (6) + 9(4) + 18Q[1] 
 2 Power                   31.5554   6   (6) + 27(2) 
 3 Station(Machine)                  5   (6) + 3(5) + 6Q[3] 
 4 Machine*Power           -0.1476   6   (6) + 9(4) 
 5 Power*Station(Machine)   1.0625   6   (6) + 3(5) 
 6 Error                    1.6359       (6) 
 
 
13-15 Reanalyze the experiment in Problem 13-14 assuming the unrestricted form of the mixed model.  
You may use a computer software program to do this.  Comment on any differences between the restricted 
and unrestricted model analysis and conclusions. 
 
ANOVA: Yield versus Machine, Power, Station 
 
Factor             Type Levels Values 
Machine           fixed      3     1     2     3 
Power            random      2     1     2 
Station(Machine)  fixed      3     1     2     3 
 
Analysis of Variance for Yield    
 
Source                    DF         SS         MS       F      P 
Machine                    2     21.143     10.572   34.33  0.028 
Power                      1    853.631    853.631 2771.86  0.000 
Station(Machine)           6     32.583      5.431    1.13  0.445 
Machine*Power              2      0.616      0.308    0.06  0.939 
Power*Station(Machine)     6     28.941      4.824    2.95  0.019 
Error                     36     58.893      1.636 
Total                     53    995.808  
 
Source                    Variance Error Expected Mean Square for Each Term 
                         component term (using unrestricted model) 
 1 Machine                           4   (6) + 3(5) + 9(4) + Q[1,3] 
 2 Power                   31.6046   4   (6) + 3(5) + 9(4) + 27(2) 
 3 Station(Machine)                  5   (6) + 3(5) + Q[3] 
 4 Machine*Power           -0.5017   5   (6) + 3(5) + 9(4) 
 5 Power*Station(Machine)   1.0625   6   (6) + 3(5) 
 6 Error                    1.6359       (6) 
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There are differences between several of the expected mean squares.  However, the conclusions that could 
be drawn do not differ in any meaningful way from the restricted model analysis. 
 
 
13-16 A structural engineer is studying the strength of aluminum alloy purchased from three vendors.  
Each vendor submits the alloy in standard-sized bars of 1.0, 1.5, or 2.0 inches.  The processing of 
different sizes of bar stock from a common ingot involves different forging techniques, and so this factor 
may be important.  Furthermore, the bar stock if forged from ingots made in different heats.  Each vendor 
submits two tests specimens of each size bar stock from the three heats.  The resulting strength data 
follow.  Analyze the data, assuming that vendors and bar size are fixed and heats are random. 
 
  Vendor 1   Vendor 2   Vendor 3   
  Heat 1 2 3 1 2 3 1 2 3  
 Bar Size: 1 inch 1.230 1.346 1.235 1.301 1.346 1.315 1.247 1.275 1.324 
   1.259 1.400 1.206 1.263 1.392 1.320 1.296 1.268 1.315 
  1 1/2 inch 1.316 1.329 1.250 1.274 1.384 1.346 1.273 1.260 1.392 
   1.300 1.362 1.239 1.268 1.375 1.357 1.264 1.265 1.364 
  2 inch 1.287 1.346 1.273 1.247 1.362 1.336 1.301 1.280 1.319  
   1.292 1.382 1.215 1.215 1.328 1.342 1.262 1.271 1.323 
 

lijkjikjkijjiijkl )(y  

 
Minitab Output 
ANOVA: Strength versus Vendor, Bar Size, Heat 
 
Factor         Type Levels Values 
Vendor        fixed      3     1     2     3 
Heat(Vendor) random      3     1     2     3 
Bar Size      fixed      3   1.0   1.5   2.0 
 
Analysis of Variance for Strength 
 
Source                   DF         SS         MS       F      P 
Vendor                    2  0.0088486  0.0044243    0.26  0.776 
Heat(Vendor)              6  0.1002093  0.0167016   41.32  0.000 
Bar Size                  2  0.0025263  0.0012631    1.37  0.290 
Vendor*Bar Size           4  0.0023754  0.0005939    0.65  0.640 
Bar Size*Heat(Vendor)    12  0.0110303  0.0009192    2.27  0.037 
Error                    27  0.0109135  0.0004042 
Total                    53  0.1359034  
 
Source                   Variance Error Expected Mean Square for Each Term 
                        component term (using restricted model) 
 1 Vendor                           2   (6) + 6(2) + 18Q[1] 
 2 Heat(Vendor)           0.00272   6   (6) + 6(2) 
 3 Bar Size                         5   (6) + 2(5) + 18Q[3] 
 4 Vendor*Bar Size                  5   (6) + 2(5) + 6Q[4] 
 5 Bar Size*Heat(Vendor)  0.00026   6   (6) + 2(5) 
 6 Error                  0.00040       (6) 
 
 
13-17 Reanalyze the experiment in Problem 13-16 assuming the unrestricted form of the mixed model.  
You may use a computer software program to do this.  Comment on any differences between the restricted 
and unrestricted model analysis and conclusions. 
 
Minitab Output 
ANOVA: Strength versus Vendor, Bar Size, Heat 
 
Factor         Type Levels Values 
Vendor        fixed      3     1     2     3 
Heat(Vendor) random      3     1     2     3 
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Bar Size      fixed      3   1.0   1.5   2.0 
 
Analysis of Variance for Strength 
 
Source                   DF         SS         MS       F      P 
Vendor                    2  0.0088486  0.0044243    0.26  0.776 
Heat(Vendor)              6  0.1002093  0.0167016   18.17  0.000 
Bar Size                  2  0.0025263  0.0012631    1.37  0.290 
Vendor*Bar Size           4  0.0023754  0.0005939    0.65  0.640 
Bar Size*Heat(Vendor)    12  0.0110303  0.0009192    2.27  0.037 
Error                    27  0.0109135  0.0004042 
Total                    53  0.1359034  
 
Source                   Variance Error Expected Mean Square for Each Term 
                        component term (using unrestricted model) 
 1 Vendor                           2   (6) + 2(5) + 6(2) + Q[1,4] 
 2 Heat(Vendor)           0.00263   5   (6) + 2(5) + 6(2) 
 3 Bar Size                         5   (6) + 2(5) + Q[3,4] 
 4 Vendor*Bar Size                  5   (6) + 2(5) + Q[4] 
 5 Bar Size*Heat(Vendor)  0.00026   6   (6) + 2(5) 
 6 Error                  0.00040       (6) 
 
There are some differences in the expected mean squares.  However, the conclusions do not differ from 
those of the restricted model analysis. 
 
 
13-18 Suppose that in Problem 13-16 the bar stock may be purchased in many sizes and that the three 
sizes are actually used in experiment were selected randomly.  Obtain the expected mean squares for this 
situation and modify the previous analysis appropriately.  Use the restricted form of the mixed model. 
 
Minitab Output 
ANOVA: Strength versus Vendor, Bar Size, Heat 
 
Factor         Type Levels Values 
Vendor        fixed      3     1     2     3 
Heat(Vendor) random      3     1     2     3 
Bar Size     random      3   1.0   1.5   2.0 
 
Analysis of Variance for Strength 
 
Source                   DF         SS         MS       F      P 
Vendor                    2  0.0088486  0.0044243    0.27  0.772 x 
Heat(Vendor)              6  0.1002093  0.0167016   18.17  0.000 
Bar Size                  2  0.0025263  0.0012631    1.37  0.290 
Vendor*Bar Size           4  0.0023754  0.0005939    0.65  0.640 
Bar Size*Heat(Vendor)    12  0.0110303  0.0009192    2.27  0.037 
Error                    27  0.0109135  0.0004042 
Total                    53  0.1359034  
 
x Not an exact F-test. 
 
Source                   Variance Error Expected Mean Square for Each Term 
                        component term (using restricted model) 
 1 Vendor                           *   (6) + 2(5) + 6(4) + 6(2) + 18Q[1] 
 2 Heat(Vendor)           0.00263   5   (6) + 2(5) + 6(2) 
 3 Bar Size               0.00002   5   (6) + 2(5) + 18(3) 
 4 Vendor*Bar Size       -0.00005   5   (6) + 2(5) + 6(4) 
 5 Bar Size*Heat(Vendor)  0.00026   6   (6) + 2(5) 
 6 Error                  0.00040       (6) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source                    Error DF  Error MS  Synthesis of Error MS 
 1 Vendor                     5.75 0.0163762   (2) + (4) - (5) 
 
Notice that a Satterthwaite type test is used for vendor. 
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13-19 Steel in normalized by heating above the critical temperature, soaking, and then air cooling.  This 
process increases the strength of the steel, refines the grain, and homogenizes the structure.  An 
experiment is performed to determine the effect of temperature and heat treatment time on the strength of 
normalized steel.  Two temperatures and three times are selected.  The experiment is performed by 
heating the oven to a randomly selected temperature and inserting three specimens.  After 10 minutes one 
specimen is removed, after 20 minutes the second specimen is removed, and after 30 minutes the final 
specimen is removed.  Then the temperature is changed to the other level and the process is repeated.  
Four shifts are required to collect the data, which are shown below.  Analyze the data and draw 
conclusions, assume both factors are fixed. 
 
   Temperature (F) 
 Shift Time(minutes) 1500 1600 
 1 10 63 89 
  20 54 91 
  30 61 62 
 2 10 50 80 
  20 52 72 
  30 59 69 
 3 10 48 73 
  20 74 81 
  30 71 69 
 4 10 54 88 
  20 48 92 
  30 59 64 
 
This is a split-plot design.  Shifts correspond to blocks, temperature is the whole plot treatment, and time 
is the subtreatments (in the subplot or split-plot part of the design).  The expected mean squares and 
analysis of variance are shown below. 
  

 R F F R  
 4 2 3 1  
Factor i j k l E(MS) 

i (blocks) 1 2 3 1 22 6  

j (temp) 4 0 3 1 222 3123 j/  

ij  1 0 3 1 22 2  

k (time) 4 2 0 1 222 282 k/  

ik  1 2 0 1 22 2  

jk  4 0 0 1 222 312 jk/  

ijk  1 0 0 1 22  

lijk  1 1 1 1 2  (not estimable) 
 
The following Minitab Output has been modified to display the results of the split-plot analysis.  Minitab 
will calculate the sums of squares correctly, but the expected mean squares and the statistical tests are not, 
in general, correct.  Notice that the Error term in the analysis of variance is actually the three factor 
interaction. 
 
Minitab Output 
ANOVA: Strength versus Shift, Temperature, Time 
 
Factor     Type Levels Values 
Shift    random      4     1     2     3     4 
Temperat  fixed      2  1500  1600 
Time      fixed      3    10    20    30 
 
Analysis of Variance for Strength 



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

13-14 

                                                Standard     Split Plot 
Source            DF         SS         MS       F      P       F      P 
Shift              3     145.46      48.49    1.19  0.390 
Temperat           1    2340.38    2340.38   29.20  0.012   29.21  0.012 
Shift*Temperat     3     240.46      80.15    1.97  0.220 
Time               2     159.25      79.63    1.00  0.422    1.00  0.422 
Shift*Time         6     478.42      79.74    1.96  0.217 
Temperat*Time      2     795.25     397.63    9.76  0.013    9.76  0.013 
Error              6     244.42      40.74 
Total             23    4403.63  
 
Source            Variance Error Expected Mean Square for Each Term 
                 component term (using restricted model) 
 1 Shift             1.292   7   (7) + 6(1) 
 2 Temperat                  3   (7) + 3(3) + 12Q[2] 
 3 Shift*Temperat   13.139   7   (7) + 3(3) 
 4 Time                      5   (7) + 2(5) + 8Q[4] 
 5 Shift*Time       19.500   7   (7) + 2(5) 
 6 Temperat*Time             7   (7) + 4Q[6] 
 7 Error            40.736       (7) 
 
 
13-20 An experiment is designed to study pigment dispersion in paint.  Four different mixes of a 
particular pigment are studied.  The procedure consists of preparing a particular mix and then applying 
that mix to a panel by three application methods (brushing, spraying, and rolling).  The response 
measured is the percentage reflectance of the pigment.  Three days are required to run the experiment, and 
the data obtained follow.  Analyze the data and draw conclusions, assuming that mixes and application 
methods are fixed. 
 
   Mix  
 Day App Method 1 2 3 4  
 1 1 64.5 66.3 74.1 66.5  
  2 68.3 69.5 73.8 70.0 
  3 70.3 73.1 78.0 72.3 
 2 1 65.2 65.0 73.8 64.8 
  2 69.2 70.3 74.5 68.3 
  3 71.2 72.8 79.1 71.5 
 3 1 66.2 66.5 72.3 67.7 
  2 69.0 69.0 75.4 68.6 
  3 70.8 74.2 80.1 72.4   
   
This is a split plot design.  Days correspond to blocks, mix is the whole plot treatment, and method is the 
subtreatment (in the subplot or split plot part of the design).  The expected mean squares are: 
 

 R F F R  
 3 4 3 1  
Factor i j k l E(MS) 

i (blocks) 1 4 3 1 22 12  

j (temp) 3 0 3 1 222 393 j/  

ij  1 0 3 1 22 3  

k (time) 3 4 0 1 222 2124 k/  

ik  1 4 0 1 22 4  

jk  3 0 0 1 222 63 jk/  

ijk  1 0 0 1 22  

lijk  1 1 1 1 2  (not estimable) 
 
The following Minitab Output has been modified to display the results of the split-plot analysis.  Minitab 
will calculate the sums of squares correctly, but the expected mean squares and the statistical tests are not, 
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in general, correct.  Notice that the Error term in the analysis of variance is actually the three factor 
interaction. 
 
Minitab Output 
ANOVA: Reflectance versus Day, Mix, Method 
 
Factor     Type Levels Values 
Day      random      3     1     2     3 
Mix       fixed      4     1     2     3     4 
Method    fixed      3     1     2     3 
 
Analysis of Variance for Reflecta 
                                            Standard     Split Plot 
Source        DF         SS         MS       F      P       F      P 
Day            2      2.042      1.021    1.39  0.285 
Mix            3    307.479    102.493  135.77  0. 000 135.75  0.000 
Day*Mix        6      4.529      0.755    1.03  0.451 
Method         2    222.095    111.047  226.24  0.000  226.16  0.000 
Day*Method     4      1.963      0.491    0.67  0.625 
Mix*Method     6     10.036      1.673    2.28  0.105    2.28  0.105 
Error         12      8.786      0.732 
Total         35    556.930  
 
Source        Variance Error Expected Mean Square for Each Term 
             component term (using restricted model) 
 1 Day         0.02406   7   (7) + 12(1) 
 2 Mix                   3   (7) + 3(3) + 9Q[2] 
 3 Day*Mix     0.00759   7   (7) + 3(3) 
 4 Method                5   (7) + 4(5) + 12Q[4] 
 5 Day*Method -0.06032   7   (7) + 4(5) 
 6 Mix*Method            7   (7) + 3Q[6] 
 7 Error       0.73213       (7) 
 
 
13-21 Repeat Problem 13-20, assuming that the mixes are random and the application methods are fixed. 
 
The expected mean squares are: 
 

 R R F R  
 3 4 3 1  
Factor i j k l E(MS) 

i (blocks) 1 4 3 1 222 123  

j (temp) 3 1 3 1 222 193  

ij  1 1 3 1 22 3  

k (time) 3 4 0 1 2222 2124 k/  

ik  1 4 0 1 222 4  

jk  3 1 0 1 222 3  

ijk  1 1 0 1 22  

lijk  1 1 1 1 2  (not estimable) 
 
The F-tests are the same as those in Problem 13-20.  The following Minitab Output has been edited to 
display the results of the split-plot analysis.  Minitab will calculate the sums of squares correctly, but the 
expected mean squares and the statistical tests are not, in general, correct.  Again, the Error term in the 
analysis of variance is actually the three factor interaction. 
 
Minitab Output 
ANOVA: Reflectance versus Day, Mix, Method 
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Factor     Type Levels Values 
Day      random      3     1     2     3 
Mix      random      4     1     2     3     4 
Method    fixed      3     1     2     3 
 
Analysis of Variance for Reflecta 
                                            Standard        Split Plot 
Source        DF         SS         MS       F      P          F      P 
Day            2      2.042      1.021    1.35  0.328 
Mix            3    307.479    102.493  135.77  0.000     135.75  0.000 
Day*Mix        6      4.529      0.755    1.03  0.451 
Method         2    222.095    111.047   77.58  0.001 x   226.16  0.000 
Day*Method     4      1.963      0.491    0.67  0.625 
Mix*Method     6     10.036      1.673    2.28  0.105       2.28  0.105 
Error         12      8.786      0.732 
Total         35    556.930  
 
x Not an exact F-test. 
 
Source        Variance Error Expected Mean Square for Each Term 
             component term (using restricted model) 
 1 Day          0.0222   3   (7) + 3(3) + 12(1) 
 2 Mix         11.3042   3   (7) + 3(3) + 9(2) 
 3 Day*Mix      0.0076   7   (7) + 3(3) 
 4 Method                *   (7) + 3(6) + 4(5) + 12Q[4] 
 5 Day*Method  -0.0603   7   (7) + 4(5) 
 6 Mix*Method   0.3135   7   (7) + 3(6) 
 7 Error        0.7321       (7) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source         Error DF  Error MS  Synthesis of Error MS 
 4 Method          3.59     1.431   (5) + (6) - (7) 
 
 
13-22 Consider the split-split-plot design described in example 13-3.  Suppose that this experiment is 
conducted as described and that the data shown below are obtained.  Analyze and draw conclusions. 
 
  Technician  
   1   2    3   
 Blocks Dose Strengths 1 2 3 1 2 3 1 2 3 
  Wall Thickness 
 1 1 95 71 108 96 70 108 95 70 100 
  2 104 82 115 99 84 100 102 81 106 
  3 101 85 117 95 83 105 105 84 113 
  4 108 85 116 97 85 109 107 87 115 
 2 1 95 78 110 100 72 104 92 69 101 
  2 106 84 109 101 79 102 100 76 104 
  3 103 86 116 99 80 108 101 80 109 
  4 109 84 110 112 86 109 108 86 113 
 3 1 96 70 107 94 66 100 90 73 98 
  2 105 81 106 100 84 101 97 75 100 
  3 106 88 112 104 87 109 100 82 104 
  4 113 90 117 121 90 117 110 91 112 
 4 1 90 68 109 98 68 106 98 72 101 
  2 100 84 112 102 81 103 102 78 105 
  3 102 85 115 100 85 110 105 80 110 
  4 114 88 118 118 85 116 110 95 120 
 
Using the computer output, the F-ratios were calculated by hand using the expected mean squares found in 
Table 13-18.  The following Minitab Output has been edited to display the results of the split-plot 
analysis.  Minitab will calculate the sums of squares correctly, but the expected mean squares and the 
statistical tests are not, in general, correct.  Notice that the Error term in the analysis of variance is 
actually the four factor interaction. 
 
Minitab Output 
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ANOVA: Time versus Day, Tech, Dose, Thick 
 
Factor     Type Levels Values 
Day      random      4     1     2     3     4 
Tech      fixed      3     1     2     3 
Dose      fixed      3     1     2     3 
Thick     fixed      4     1     2     3     4 
 
Analysis of Variance for Time     
                                                Standard     Split Plot 
Source             DF         SS         MS       F      P       F      P 
Day                 3      48.41      16.14    3.38  0.029 
Tech                2     248.35     124.17    4.62  0.061    4.62  0.061 
Day*Tech            6     161.15      26.86    5.62  0.000 
Dose                2   20570.06   10285.03  550.44  0.000  550.30  0.000 
Day*Dose            6     112.11      18.69    3.91  0.004 
Tech*Dose           4     125.94      31.49    3.32  0.048    3.32  0.048 
Day*Tech*Dose      12     113.89       9.49    1.99  0.056 
Thick               3    3806.91    1268.97   36.47  0.000   36.48  0.000 
Day*Thick           9     313.12      34.79    7.28  0.000 
Tech*Thick          6     126.49      21.08    2.26  0.084    2.26  0.084 
Day*Tech*Thick     18     167.57       9.31    1.95  0.044 
Dose*Thick          6     402.28      67.05   17.13  0.000   17.15  0.000 
Day*Dose*Thick     18      70.44       3.91    0.82  0.668 
Tech*Dose*Thick    12     205.89      17.16    3.59  0.001    3.59  0.001 
Error              36     172.06       4.78 
Total             143   26644.66  
 
Source             Variance Error Expected Mean Square for Each Term 
                  component term (using restricted model) 
 1 Day               0.3155  15   (15) + 36(1) 
 2 Tech                       3   (15) + 12(3) + 48Q[2] 
 3 Day*Tech          1.8400  15   (15) + 12(3) 
 4 Dose                       5   (15) + 12(5) + 48Q[4] 
 5 Day*Dose          1.1588  15   (15) + 12(5) 
 6 Tech*Dose                  7   (15) + 4(7) + 16Q[6] 
 7 Day*Tech*Dose     1.1779  15   (15) + 4(7) 
 8 Thick                      9   (15) + 9(9) + 36Q[8] 
 9 Day*Thick         3.3346  15   (15) + 9(9) 
10 Tech*Thick                11   (15) + 3(11) + 12Q[10] 
11 Day*Tech*Thick    1.5100  15   (15) + 3(11) 
12 Dose*Thick                13   (15) + 3(13) + 12Q[12] 
13 Day*Dose*Thick   -0.2886  15   (15) + 3(13) 
14 Tech*Dose*Thick           15   (15) + 4Q[14] 
15 Error             4.7793       (15) 
 
 
13-23 Rework Problem 13-22, assuming that the dosage strengths are chosen at random.  Use the 
restricted form of the mixed model. 
 
The following Minitab Output has been edited to display the results of the split-plot analysis.  Minitab will 
calculate the sums of squares correctly, but the expected mean squares and the statistical tests are not, in 
general, correct.  Again, the Error term in the analysis of variance is actually the four factor interaction. 
 
Minitab Output 
ANOVA: Time versus Day, Tech, Dose, Thick 
 
Factor     Type Levels Values 
Day      random      4     1     2     3     4 
Tech      fixed      3     1     2     3 
Dose     random      3     1     2     3 
Thick     fixed      4     1     2     3     4 
 
Analysis of Variance for Time     
                                                Standard        Split Plot 
Source             DF         SS         MS       F      P          F      P 
Day                 3      48.41      16.14    0.86  0.509 
Tech                2     248.35     124.17    2.54  0.155       4.62  0.061 
Day*Tech            6     161.15      26.86    2.83  0.059 
Dose                2   20570.06   10285.03  550.44  0.000     550.30  0.000 
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Day*Dose            6     112.11      18.69    3.91  0.004 
Tech*Dose           4     125.94      31.49    3.32  0.048       3.32  0.048 
Day*Tech*Dose      12     113.89       9.49    1.99  0.056 
Thick               3    3806.91    1268.97   12.96  0.001 x    36.48  0.000 
Day*Thick           9     313.12      34.79    8.89  0.000 
Tech*Thick          6     126.49      21.08    0.97  0.475 x     2.26  0.084 
Day*Tech*Thick     18     167.57       9.31    1.95  0.044 
Dose*Thick          6     402.28      67.05   17.13  0.000      17.15  0.000 
Day*Dose*Thick     18      70.44       3.91    0.82  0.668 
Tech*Dose*Thick    12     205.89      17.16    3.59  0.001       3.59  0.001 
Error              36     172.06       4.78 
Total             143   26644.66  
 
x Not an exact F-test. 
 
Source             Variance Error Expected Mean Square for Each Term 
                  component term (using restricted model) 
 1 Day               -0.071   5   (15) + 12(5) + 36(1) 
 2 Tech                       *   (15) + 4(7) + 16(6) + 12(3) + 48Q[2] 
 3 Day*Tech           1.447   7   (15) + 4(7) + 12(3) 
 4 Dose             213.882   5   (15) + 12(5) + 48(4) 
 5 Day*Dose           1.159  15   (15) + 12(5) 
 6 Tech*Dose          1.375   7   (15) + 4(7) + 16(6) 
 7 Day*Tech*Dose      1.178  15   (15) + 4(7) 
 8 Thick                      *   (15) + 3(13) + 12(12) + 9(9) + 36Q[8] 
 9 Day*Thick          3.431  13   (15) + 3(13) + 9(9) 
10 Tech*Thick                 *   (15) + 4(14) + 3(11) + 12Q[10] 
11 Day*Tech*Thick     1.510  15   (15) + 3(11) 
12 Dose*Thick         5.261  13   (15) + 3(13) + 12(12) 
13 Day*Dose*Thick    -0.289  15   (15) + 3(13) 
14 Tech*Dose*Thick    3.095  15   (15) + 4(14) 
15 Error              4.779       (15) 
 
* Synthesized Test. 
 
Error Terms for Synthesized Tests 
 
Source              Error DF  Error MS  Synthesis of Error MS 
 2 Tech                 6.35     48.85   (3) + (6) - (7) 
 8 Thick               10.84     97.92   (9) + (12) - (13) 
10 Tech*Thick          15.69     21.69   (11) + (14) - (15) 
 
The expected mean squares can also be shown as follows: 
 

 R F R F R  
 4 3 3 4 1  
Factor i j k h l E(MS) 

i  1 3 3 4 1 222 3612  

j  4 0 3 4 1 22222 24812164 j)/(  

ij  1 0 3 4 1 222 124  

k  4 3 1 4 1 22222 4812123  

ik  1 3 1 4 1 22 12  

jk  4 0 1 4 1 222 164  

ijk  1 0 1 4 1 22 4  

h  4 3 3 0 1 22222 3369123 h/  

ih  1 3 3 0 1 222 93  

jh  4 0 3 0 1 22222 61234 jh/  

ijh  1 0 3 0 1 222 3  

kh  4 3 1 0 1 222 123  



Solutions from Montgomery, D. C. (2001) Design and Analysis of Experiments, Wiley, NY 
 

13-19 

ikh  1 3 1 0 1 22 3  

jkh  4 0 1 0 1 222 4  

ijkh  1 0 1 0 1 22  

lijk  1 1 1 1 1 2   
 
There are no exact tests on technicians j , dosage strengths k , wall thickness h , or the technician x 
wall thickness interaction jh .  The approximate F-tests are as follows: 

 
H0: j =0 
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Do not reject H0: j =0 

 
H0: k =0 
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73611

9
79134

6
04667

7913404667

96

22

2

22

2

.
..

..
MSMS

MSMS
q

ADCD

ADCD  

 
Reject H0: h =0 
 
H0: jh =0 

 

9770
309915717
779408121 .

..

..
MSMS

MSMS
F

ABDBCD

ABCDBD  

 
  F<1, Do not reject H0: jh =0 

 
 
13-24 Suppose that in Problem 13-22 four technicians had been used.  Assuming that all the factors are 
fixed, how many blocks should be run to obtain an adequate number of degrees of freedom on the test for 
differences among technicians? 
 
The number of degrees of freedom for the test is (a-1)(4-1)=3(a-1), where a is the number of blocks used.   
 

Number of Blocks (a) DF for test 
2 3 
3 6 
4 9 
5 12 

 
At least three blocks should be run, but four would give a better test. 
 
 
13-25 Consider the experiment described in Example 13-3.  Demonstrate how the order in which the 
treatments combinations are run would be determined if this experiment were run as (a) a split-split-plot, 
(b) a split-plot, (c) a factorial design in a randomized block, and (d) a completely randomized factorial 
design. 
 
(a)  Randomization for the split-split plot design is described in Example 13-3. 
(b)  In the split-plot, within a block, the technicians would be the main treatment and within a block-

technician plot, the 12 combinations of dosage strength and wall thickness would be run in random 
order.  The design would be a two-factor factorial in a split-plot. 

(c)  To run the design in a randomized block, the 36 combinations of technician, dosage strength, and 
wall thickness would be ran in random order within each block. The design would be a three factor 
factorial in a randomized block. 

(d)  The blocks would be considered as replicates, and all 144 observations would be 4 replicates of a 
three factor factorial. 
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Chapter 14 
Other Design and Analysis Topics 

Solutions 
 
 
14-1 Reconsider the experiment in Problem 5-22.  Use the Box-Cox procedure to determine if a 
transformation on the response is appropriate (or useful) in the analysis of the data from this experiment. 
 

DE SIG N-E XPE RT  P lo t
Cra ck G ro wth

L a m b d a
Cu rre n t =  1
Be st =  0 .1 1
L o w C.I. =  -0 .4 4
Hig h  C .I. =  0 .5 6

Re co m m e n d  tra n sfo rm :
L o g
 (L a m b d a  = 0 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

1.10

2.23

3.36

4.49

5.62

-3 -2 -1 0 1 2 3

 
 
With the value of lambda near zero, and since the confidence interval does not include one, a natural log 
transformation would be appropriate. 
 
 
14-2 In example 6-3 we selected a log transformation for the drill advance rate response.  Use the Box-
Cox procedure to demonstrate that this is an appropriate data transformation. 
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DE SIG N-E XPE RT  P lo t
Ad va n ce  Ra te

L a m b d a
Cu rre n t =  1
Be st =  -0 .2 3
L o w C.I. =  -0 .7 9
Hig h  C .I. =  0 .3 2

Re co m m e n d  tra n sfo rm :
L o g
 (L a m b d a  = 0 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

1.05

2.50

3.95

5.40

6.85

-3 -2 -1 0 1 2 3

 
 
Because the value of lambda is very close to zero, and the confidence interval does not include one, the 
natural log was the correct transformation chosen for this analysis. 
 
 
14-3 Reconsider the smelting process experiment in Problem 8-23, where a 26-3 fractional factorial 
design was used to study the weight of packing material stuck to carbon anodes after baking.  Each of the 
eight runs in the design was replicated three times and both the average weight and the range of the 
weights at each test combination were treated as response variables.  Is there any indication that that a 
transformation is required for either response? 
 

DE SIG N-E XPE RT  P lo t
We ig h t

L a m b d a
Cu rre n t =  1
Be st =  1 .3 3
L o w C.I. =  -0 .7 1
Hig h  C .I. =  4 .2 9

Re co m m e n d  tra n sfo rm :
No n e
 (L a m b d a  = 1 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

7.89

8.68

9.47

10.26

11.05

-3 -2 -1 0 1 2 3

DE SIG N-E XPE RT  P lo t
Ra n g e

L a m b d a
Cu rre n t =  1
Be st =  0 .5 8
L o w C.I. =  -1 .7 4
Hig h  C .I. =  2 .9 2

Re co m m e n d  tra n sfo rm :
No n e
 (L a m b d a  = 1 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

9.29

10.23

11.17

12.12

13.06

-3 -2 -1 0 1 2 3

 
 
There is no indication that a transformation is required for either response. 
 
 
14-4 In Problem 8-24 a replicated fractional factorial design was used to study substrate camber in 
semiconductor manufacturing.  Both the mean and standard deviation of the camber measurements were 
used as response variables.  Is there any indication that a transformation is required for either response? 
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DE SIG N-E XPE RT  P lo t
Ca m b e r Avg

L a m b d a
Cu rre n t =  1
Be st =  -0 .0 3
L o w C.I. =  -0 .7 9
Hig h  C .I. =  0 .7 4

Re co m m e n d  tra n sfo rm :
L o g
 (L a m b d a  = 0 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

8.76

9.62

10.49

11.35

12.22

-3 -2 -1 0 1 2 3

DE SIG N-E XPE RT  P lo t
Ca m b e r S tDe v

L a m b d a
Cu rre n t =  1
Be st =  0 .5 7
L o w C.I. =  -0 .0 3
Hig h  C .I. =  1 .1 6

Re co m m e n d  tra n sfo rm :
No n e
 (L a m b d a  = 1 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

6.40

8.05

9.70

11.35

13.00

-3 -2 -1 0 1 2 3

 
 
The Box-Cox plot for the Camber Average suggests a natural log transformation should be applied.  This 
decision is based on the confidence interval for lambda not including one and the point estimate of lambda 
being very close to zero.  With a lambda of approximately 0.5, a square root transformation could be 
considered for the Camber Standard Deviation; however, the confidence interval indicates that no 
transformation is needed. 
 
 
14-5 Reconsider the photoresist experiment in Problem 8-25.  Use the variance of the resist thickness at 
each test combination as the response variable.  Is there any indication that a transformation is required? 
 

DE SIG N-E XPE RT  P lo t
T h ick S tDe v

L a m b d a
Cu rre n t =  1
Be st =  -0 .0 4
L o w C.I. =  -0 .7 7
Hig h  C .I. =  0 .7 6

Re co m m e n d  tra n sfo rm :
L o g
 (L a m b d a  = 0 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

7.31

7.97

8.62

9.28

9.93

-3 -2 -1 0 1 2 3

 
 
With the point estimate of lambda near zero, and the confidence interval for lambda not inclusive of one, 
a natural log transformation would be appropriate. 
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14-6 In the grill defects experiment described in Problem 8-29 a variation of the square root 
transformation was employed in the analysis of the data.  Use the Box-Cox method to determine if this is 
the appropriate transformation. 
 

DE SIG N-E XPE RT  P lo t
c

L a m b d a
Cu rre n t =  1
Be st =  -0 .0 6
L o w C.I. =  -0 .6 9
Hig h  C .I. =  0 .7 4

Re co m m e n d  tra n sfo rm :
L o g
 (L a m b d a  = 0 )

k =  0 .5 6
(u se d  to  m a ke
re sp o n se  va lu e s
p o si ti ve )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

3.15

5.55

7.95

10.35

12.75

-3 -2 -1 0 1 2 3

 
 
Because the confidence interval for the minimum lambda does not include one, the decision to use a 
transformation is correct.  Because the lambda point estimate is close to zero, the natural log 
transformation would be appropriate.  This is a stronger transformation than the square root. 
 
 
14-7 In the central composite design of Problem 11-14, two responses were obtained, the mean and 
variance of an oxide thickness.  Use the Box-Cox method to investigate the potential usefulness of 
transformation for both of these responses.  Is the log transformation suggested in part (c) of that problem 
appropriate? 
 

DE SIG N-E XPE RT  P lo t
M e a n  T h ick

L a m b d a
Cu rre n t =  1
Be st =  -0 .2
L o w C.I. =  -3 .5 8
Hig h  C .I. =  3 .1 8

Re co m m e n d  tra n sfo rm :
No n e
 (L a m b d a  = 1 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

8.09

8.25

8.41

8.57

8.73

-3 -2 -1 0 1 2 3

DE SIG N-E XPE RT  P lo t
Va r T h ick

L a m b d a
Cu rre n t =  1
Be st =  -0 .4 7
L o w C.I. =  -2 .8 5
Hig h  C .I. =  1 .5 1

Re co m m e n d  tra n sfo rm :
No n e
 (L a m b d a  = 1 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

1.32

1.65

1.97

2.30

2.63

-3 -2 -1 0 1 2 3

 
 
The Box-Cox plot for the Mean Thickness model suggests that a natural log transformation could be 
applied; however, the confidence interval for lambda includes one.  Therefore, a transformation would 
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have a minimal effect.  The natural log transformation applied to the Variance of Thickness model 
appears to be acceptable; however, again the confidence interval for lambda includes one. 
 
 
14-8 In the 33 factorial design of Problem 11-33 one of the responses is a standard deviation.  Use the 
Box-Cox method to investigate the usefulness of transformations for this response.  Would your answer 
change if we used the variance of the response? 
 

DE SIG N-E XPE RT  P lo t
S td . De v.

L a m b d a
Cu rre n t =  1
Be st =  0 .2 9
L o w C.I. =  0 .0 1
Hig h  C .I. =  0 .6 1

Re co m m e n d  tra n sfo rm :
Sq u a re  Ro o t
 (L a m b d a  = 0 .5 )

k =  1 .5 8 2
(u se d  to  m a ke
re sp o n se  va lu e s
p o si ti ve )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

9.94

13.03

16.13

19.22

22.32

-3 -2 -1 0 1 2 3

 
 
Because the confidence interval for lambda does not include one, a transformation should be applied.  The 
natural log transformation should not be considered due to zero not being included in the confidence 
interval.  The square root transformation appears to be acceptable.  However, notice that the value of zero 
is very close to the lower confidence limit, and the minimizing value of lambda is between 0 and 0.5.  It is 
likely that either the natural log or the square root transformation would work reasonably well. 
 
 
14-9 Problem 11-34 suggests using the ln(s2) as the response (refer to part b).  Does the Box-Cox method 
indicate that a transformation is appropriate? 
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DE SIG N-E XPE RT  P lo t
Va ria n ce

L a m b d a
Cu rre n t =  1
Be st =  -1 .1 7
L o w C.I. =  -1 .5 3
Hig h  C .I. =  -0 .7 2

Re co m m e n d  tra n sfo rm :
In ve rse
 (L a m b d a  = -1 )

Lam bda

Ln
(R

es
id

ua
lS

S
)

B ox-C ox P lot for Power Transforms

3.85

7.28

10.70

14.13

17.56

-3 -2 -1 0 1 2 3

 
 
Because the confidence interval for lambda does not include one, a transformation should be applied.  The 
confidence interval does not include zero; therefore, the natural log transformation is inappropriate.  With 
the point estimate of lambda at –1.17, the reciprocal transformation is appropriate. 
 
 
14-10 A soft drink distributor is studying the effectiveness of delivery methods.  Three different types of 
hand trucks have been developed, and an experiment is performed in the company’s methods engineering 
laboratory.  The variable of interest is the delivery time in minutes (y); however, delivery time is also 
strongly related to the case volume delivered (x).  Each hand truck is used four times and the data that 
follow are obtained.  Analyze the data and draw the appropriate conclusions.  Use =0.05. 
 

  Hand Truck Type  
1 1 2 2 3 3 
y x y x y x 

27 24 25 26 40 38 
44 40 35 32 22 26 
33 35 46 42 53 50 
41 40 26 25 18 20 

 
From the analysis performed in Minitab, hand truck does not have a statistically significant effect on 
delivery time.  Volume, as expected, does have a significant effect. 
 
Minitab Output 
General Linear Model: Time versus Truck 
 
Factor     Type Levels Values  
Truck     fixed      3 1 2 3 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Volume      1    1232.07    1217.55    1217.55  232.20  0.000 
Truck       2      11.65      11.65       5.82    1.11  0.375 
Error       8      41.95      41.95       5.24 
Total      11    1285.67   
 
Term          Coef   SE Coef        T      P 
Constant    -4.747     2.638    -1.80  0.110 
Volume     1.17326   0.07699    15.24  0.000 
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14-11 Compute the adjusted treatment means and the standard errors of the adjusted treatment means for 
the data in Problem 14-10. 
 

adj ...i.i.i xxˆyy  

adj 3934
12
398

4
1391731

4
145

1 ..y .  

adj 2535
12
398

4
1251731

4
132

2 ..y .  

adj 8632
12
398

4
1341731

4
133

3 ..y .  

2
1

21
xx

...i
Ey.adj E

xx
n

MSS
.i

 

1511
50884

17337534
4
1245

2
1

2

1
.

.
...S

.y.adj  

1541
50884

17332531
4
1245

2
1

2

2
.

.
...S

.y.adj  

1451
50884

17335033
4
1245

2
1

2

3
.

.
...S

.y.adj  

 
The solutions can also be obtained with Minitab as follows: 
 
Minitab Output 
Least Squares Means for Time     
 
Truck      Mean   SE Mean 
1         34.39     1.151 
2         35.25     1.154 
3         32.86     1.145 
 
 
14-12 The sums of squares and products for a single-factor analysis of covariance follow.  Complete the 
analysis and draw appropriate conclusions.  Use  = 0.05. 
 

Source of Degrees of   Sums of  Squares and Products 
Variation Freedom x xy x 
Treatment 3 1500 1000 650 
Error 12 6000 1200 550 
Total 15 7500 2200 1200 

 
  Sums of Squares & Products  Adjusted   

Source df x xy y y df MS F0 
Treatment 3 1500 1000 650 - -   

Error 12 6000 1200 550 310 11 28.18  
Total 15 7500 2200 1200 559.67 14   
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Adjusted Treat.    244.67 3 81.56 2.89 
 
Treatments differ only at 10%. 
 
 
14-13 Find the standard errors of the adjusted treatment means in Example 14-4. 
 
From Example 14-4 y1 40 38. .  , adj y2 4142. .  , adj y3 37 78. .  

 

72310
60195

13242025
5
1542

2
1

2

1
.

.
...S

.y.adj  

74390
60195

13240026
5
1542

2
1

2

2
.

.
...S

.y.adj  

78710
60195

13242021
5
1542

2
1

2

3
.

.
...S

.y.adj  

 
 
14-14 Four different formulations of an industrial glue are being tested.  The tensile strength of the glue 
when it is applied to join parts is also related to the application thickness.  Five observations on strength 
(y) in pounds and thickness (x) in 0.01 inches are obtained for each formulation.  The data are shown in 
the following table.  Analyze these data and draw appropriate conclusions. 
 

   Glue Formulation    
1 1 2 2 3 3 4 4 
y x y x y x y x 

46.5 13 48.7 12 46.3 15 44.7 16 
45.9 14 49.0 10 47.1 14 43.0 15 
49.8 12 50.1 11 48.9 11 51.0 10 
46.1 12 48.5 12 48.2 11 48.1 12 
44.3 14 45.2 14 50.3 10 48.6 11 

 
From the analysis performed in Minitab, glue formulation does not have a statistically significant effect on 
strength.  As expected, glue thickness does affect strength. 
 
Minitab Output 
General Linear Model: Strength versus Glue 
 
Factor     Type Levels Values  
Glue      fixed      4 1 2 3 4 
 
Analysis of Variance for Strength, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Thick       1     68.852     59.566     59.566   42.62  0.000 
Glue        3      1.771      1.771      0.590    0.42  0.740 
Error      15     20.962     20.962      1.397 
Total      19     91.585   
 
Term          Coef   SE Coef        T      P 
Constant    60.089     1.944    30.91  0.000 
Thick      -1.0099    0.1547    -6.53  0.000 
 
Unusual Observations for Strength 
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Obs  Strength       Fit      SE Fit  Residual   St Resid 
  3   49.8000   47.5299      0.5508    2.2701      2.17R  
 
R denotes an observation with a large standardized residual. 
 
Expected Mean Squares, using Adjusted SS 
 
Source       Expected Mean Square for Each Term 
 1 Thick     (3) + Q[1] 
 2 Glue      (3) + Q[2] 
 3 Error     (3) 
 
Error Terms for Tests, using Adjusted SS 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 Thick        15.00     1.397  (3) 
 2 Glue         15.00     1.397  (3) 
 
Variance Components, using Adjusted SS 
 
Source    Estimated Value 
Error               1.397 
 
 
14-15 Compute the adjusted treatment means and their standard errors using the data in Problem 14-14. 
 

adj ...i.i.i xxˆyy  
adj 0847451200130099152461 .....y .  
adj 6447451280110099130482 .....y .  
adj 9147451220120099116483 .....y .  
adj 4347451280120099108474 .....y .  

2
1

21
xx

...i
Ey.adj E

xx
n

MSS
.i

 

53600
4058

45120013
5
1401

2
1

2

1
.

.
...S

.y.adj  

53860
4058

45128011
5
1401

2
1

2

2
.

.
...S

.y.adj  

53060
4058

45122012
5
1401

2
1

2

3
.

.
...S

.y.adj  

53190
4058

45128012
5
1401

2
1

2

4
.

.
...S

.y.adj  

 
The adjusted treatment means can also be generated in Minitab as follows: 
 
Minitab Output 
Least Squares Means for Strength 
 
Glue      Mean   SE Mean 
1        47.08    0.5355 
2        47.64    0.5382 
3        47.91    0.5301 
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4        47.43    0.5314 
 
 
14-16 An engineer is studying the effect of cutting speed on the rate of metal removal in a machining 
operation.  However, the rate of metal removal is also related to the hardness of the test specimen.  Five 
observations are taken at each cutting speed.  The amount of metal removed (y) and the hardness of the 
specimen (x) are shown in the following table. Analyze the data using and analysis of covariance. Use 

=0.05. 
 

  Cutting Speed (rpm)  
1000 1000 1200 1200 1400 1400 

y x y x y x 
68 120 112 165 118 175 
90 140 94 140 82 132 
98 150 65 120 73 124 
77 125 74 125 92 141 
88 136 85 133 80 130 

 
As shown in the analysis performed in Minitab, there is no difference in the rate of removal between the 
three cutting speeds.  As expected, the hardness does have an impact on rate of removal. 
 
Minitab Output 
General Linear Model: Removal versus Speed 
 
Factor     Type Levels Values  
Speed     fixed      3 1000 1200 1400 
 
Analysis of Variance for Removal, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Hardness    1     3075.7     3019.3     3019.3  347.96  0.000 
Speed       2        2.4        2.4        1.2    0.14  0.872 
Error      11       95.5       95.5        8.7 
Total      14     3173.6   
 
Term          Coef   SE Coef        T      P 
Constant   -41.656     6.907    -6.03  0.000 
Hardness   0.93426   0.05008    18.65  0.000 
Speed 
1000         0.478     1.085     0.44  0.668 
1200         0.036     1.076     0.03  0.974 
 
Unusual Observations for Removal  
 
Obs   Removal       Fit      SE Fit  Residual   St Resid 
  8    65.000    70.491       1.558    -5.491     -2.20R  
 
R denotes an observation with a large standardized residual. 
 
Expected Mean Squares, using Adjusted SS 
 
Source       Expected Mean Square for Each Term 
 1 Hardness  (3) + Q[1] 
 2 Speed     (3) + Q[2] 
 3 Error     (3) 
 
Error Terms for Tests, using Adjusted SS 
 
Source       Error DF  Error MS  Synthesis of Error MS 
 1 Hardness     11.00       8.7  (3) 
 2 Speed        11.00       8.7  (3) 
 
Variance Components, using Adjusted SS 
 
Source    Estimated Value 
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Error               8.677 
 
Means for Covariates 
 
Covariate      Mean     StDev 
Hardness      137.1     15.94 
 
Least Squares Means for Removal  
 
Speed      Mean   SE Mean 
1000      86.88     1.325 
1200      86.44     1.318 
1400      85.89     1.328 
 
 
14-17 Show that in a single factor analysis of covariance with a single covariate a 100(1- ) percent 
confidence interval on the ith adjusted treatment mean is 
 

2
1

2

112
1

xx

...i
Ena,...i.i E

xx
n

MStxxˆy  

 
Using this formula, calculate a 95 percent confidence interval on the adjusted mean of machine 1 in 
Example 14-4. 
 
The 100(1- ) percent interval on the ith adjusted treatment mean would be 
 

.iyadjna,...i.i Stxxˆy 112  

 
since ...i.i xxˆy is an estimator of the ith adjusted treatment mean.  The standard error of the 
adjusted treatment mean is found as follows: 
 

ˆVxxyVxxˆyVy.adjV ...i.i...i.i.i
2  

 

Since the yi.  and  are independent.  From regression analysis, we have
xxE

ˆV
2

.  Therefore, 

 

xx

...i

xx

...i
.i E

xx
nE

xx
n

y.adjV
2

2
222 1  

 
Replacing 2  by its estimator MSE, yields 
 

xx

...i
E.i E

xx
n

MSy.adjV̂
21  or 

2
1

21
xx

...i
E.i E

xx
n

MSy.adjS  

 

Substitution of this result into 
.1)1(,2....

ˆ
iyadjnaii Stxxy  will produce the desired 

confidence interval.  A 95% confidence interval on the mean of machine 1 would be found as follows: 
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3840.xxˆyy.adj ...i.i.i  

72310.y.adjS .i  

5913840
723102023840
723103840 110250

..
...
.t. ,.

 

 
Therefore, 96417938 1 .. , where 1 denotes the true adjusted mean of treatment one. 
 
 
14-18 Show that in a single-factor analysis of covariance with a single covariate, the standard error of the 
difference between any two adjusted treatment means is 
 

2
1

22
xx

...i
EyAdjyAdj E

xx
n

MSS
.j.i

 

...j.j...i.i.j.i xxˆyxxˆyy.adjy.adj  

......
ˆ.. jijiji xxyyyadjyadj  

 
The variance of this statistic is 
 

ˆVxxyVyVxxˆyyV .j.i.j.i.j.i.j.i
2  

xx

.j.i

xx

.j.i

E
xx

nE
xx

nn

2
2

2222 2  

 
Replacing 2 by its estimator MSE, , and taking the square root yields the standard error 
 

2
1

22
xx

...i
EyAdjyAdj E

xx
n

MSS
.j.i

 

 
 
14-19 Discuss how the operating characteristic curves for the analysis of variance can be used in the 
analysis of covariance. 
 
To use the operating characteristic curves, fixed effects case, we would use as the parameter 2,  
 

2

2
2

n

a i
 

 
The test has a-1 degrees of freedom in the numerator and a(n-1)-1 degrees of freedom in the denominator. 
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