
Chapter 2
C++ Fundamentals

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals

• Reuse existing code in your programs with
#include

• Obtain input data from the user and display
information to the user with cin and cout

• Evaluate and create arithmetic expressions
• Use operations on objects
• Get input, show output

The C++ Programming Language

• A C++ program is a sequence of characters created
with a text editor and stored as a file.

• this is the source code
• The file type is usually .cpp

CourseGrade.cpp

General Forms

• General forms provide information to create
syntactically correct programs

• Anything in yellow boldface must be written exactly
as shown (cout << for example)

• Anything in italic represents something that must be
supplied by the user

• The italicized portions are defined elsewhere

General Form for a program

// Comment
#include-directive(s)
using namespace std;
int main() {

object-initializations
statement(s)
return 0;

}

Example C++ program
// This C++ program gets a number from the
// user and displays that value squared

#include <iostream> // for cout cin endl

using namespace std;
int main() {
double x;

cout << "Enter a number: ";
 cin >> x;
 cout << "x squared: " << (x * x) << endl;

return 0;
}

The compiler

• The compiler
• reads source code in a character by character fashion
• reports errors whenever possible
• reports warnings to help avoid errors
• conceptually replaces #includes with the source code

of the #included file

#include directives

• General form: #include-directive
#include <include-file>

-or-
#include "include-file"

• < > causes a search of the system folder(s)
• these files should be found automatically.

• The form with " " first searches the working folder
before searching the system folder(s)

• the " " indicates a new file from your working folder.

Pieces of a C++ Program

• A token is the smallest recognizable unit in a
programming language.

• C++ has four types of tokens:
• special symbols
• keywords
• identifiers
• constants

Tokens

• Each color represents a different type of token
special symbol identifier reserved-identifier

literal comment

// Comment: This is a complete C++ program
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!";
return 0;

}

Special Symbols

• One or two character sequences (no spaces).

// < > () { << ; } !=

• Some special symbols mean different things in
different contexts.

Identifiers

• There are some standard (always available with the
C++ compiler) identifiers:
endl sqrt string width std

• The programmer can make up new identifiers
test1 x1 aNumber MAXIMUM A_1

Identifiers

• Identifiers have from 1 to 32 characters:
'a'..'z' 'A'..'Z' '0'..'9' '_'

• Identifiers should start with a letter: a1 is legal, 1a is not
(can also start with underscore _

• C++ is case sensitive. A and a are different.
• Which of these are valid identifiers?

a) abc e) ABC i) a_1
b) m/h f) 25or6to4 j) student Number
c) main g) 1_time k) string
d) double h) first name l) ______

Reserved Identifiers

• Word like tokens with a pre-defined meaning that can't
be changed (reserved-identifiers)
double int

• Some of the keywords in the text :
bool class for operator typedef
case do if return void
char else long switch while

Literals

• floating-point literals
1.234 -12.5 0.0 0. .0 1e10 0.1e-5

• string literals
"character between double quotes"

• integer literals
-1 0 1 -32768 +32767

• character literals
'A' 'b' '\n' '1'

Comments

• Provide internal documentation
• Helps us understand program that we must read--

including our own
• Can be used as pseudo code within a program and

later changed into C++ or left as is to provide
documentation
// on one line or

 /*
between slash star and star slash

 */

Common Operations on Objects

• Common Operations for many classes of objects
include these four

• Declaration Construct an object
• Initialization Initialize the state of an object
• Assignment Modify the state of an object
• Input Modify the state of an object
• Output Inspect the state of an object

Declare and Initialize Variables

• No initial state (values):
type identifier;
double aNumber; // garbage value

type identifier , identifier , … , identifier ;
int a, b, c; // all have garbage values

• Supply initial state (values):
type identifier = initial-state;
double aNumber = 0.0;
string name = "Chris Plumber";

type identifier = identifier (initial-state);
string address("1040 E 4th");

Output with cout

• Programs must communicate with users
• This can be done with keyboard input statements and

screen output statements
• A C++ statement is composed of several components

properly grouped together to perform some
operation.

• The next slide has the first statement used to display
constants and object state to the screen

The cout statement

• The general form of a cout statement:
cout << expression-1 << expression-2 << expression-n ;

• Example
cout << "Grade: " << courseGrade << endl;

What happens with cout?

• When a cout statement is encountered, the
expressions are displayed on the screen in a manner
appropriate to the expression

• When encountered in a cout statement, endl
generates a new line on the console

• To properly use cout and endl your program must
have this code at the top of the file:
#include <iostream>
using namespace std;

What is the output?
#include <iostream> // for cout and endl
using namespace std; // so we don’t need std::

int main() {
double aDouble = 1.1;
string name = "Carpenter";

 cout << (3 * 2.5) << (2 * 3) << endl;
 cout << 2 * aDouble;
cout << name;

return 0; Output?
}

Assignment

• Certain objects have undefined state
double dunno, do_you;
cout << dunno << endl; // Output? ______

• The programmer can set the state of objects with
assignment operations of this form:
object-name = expression ;

• Examples:
dunno = 1.23;
do_you = dunno - 0.23;

Memory before and after

Object Old Modified
Name State State
dunno ? 1.23

do_you ? 1.0

• The expression must be a value that the object can store
(assignment compatible)
dunno = "Ohhh no, you can't do that"; // <- Error
string str;
str = 1.23; // <- Error also

Assignment Statement

• Write the values for bill and name
double bill;
string name;

bill = 10.00;
bill = bill + (0.06 * bill);
name = "Bee Bop";
name = "Hip Hop";

// bill is ___________?

// name is now ________?

Input with cin

• General forms :
cin >> object-1 ;

-or-

cin >> object-1 >> object-2 >> object-n ;
• Example: cin >> test1;

• When a cin statement is encountered
• the program pauses for user input
• the characters typed by the user are processed
• the object's state is changed to the value of the input

Input is Separated by Whitespace
blanks, tabs, newlines

#include <iostream> // for cout, cin, endl
#include <string> // for class string
using namespace std; // avoid writing std::

int main() {
string name;
cout << "Enter your name: ";

 cin >> name;
 cout << "Hello " << name;
return 0;

}

Dialogue when the user enters Dakota Butler
Note: WindowMaker is still waiting for a non-existent future cin

Enter your name: Dakota Butler
Hello Dakota

Arithmetic Expressions

• Arithmetic expressions consist of operators
+ - / * %

and operands like 40 payRate hours

• Example expression used in an assignment:
grossPay = payRate * hours;

• Example expression:
(40 * payRate) + 1.5 * payRate * (hours - 40)

• The previous expression has how many
operators ?___ operands ?___

Arithmetic Expressions

a numeric object x
or a numeric constant 100 or 99.5
or expression + expression 1.0 + x
or expression - expression 2.5 - x
or expression * expression 2 * x
or expression / expression x / 2.0
or (expression) (1 + 2.0)

• A recursive definition

Precedence of Arithmetic Operators

• Expressions with more than one operator require
some sort of precedence rules:
* / evaluated left to right order
- + evaluated left to right order

What is 2.0 + 4.0 - 6.0 * 8.0 / 6.0 ____

• Use (parentheses) for readability or to intentionally
alter an expression:
double C;
double F = 212.0;
C = 5.0 / 9.0 * (F - 32); // C = _____

#include <iostream> // for cin, cout, and endl
using namespace std;
int main() {
// Declare Objects
double x, y, z, average;

// Input: Prompt for input from the user
cout << "Enter three numbers: ";

 cin >> x >> y >> z;
 // Process:
 average = (x + y + z) / 3.0;
 // Output:
cout << "Average: " << average << endl;

return 0;
}

What is the complete dialogue with input
2.3 5.0 2.0

int Arithmetic

• int variables are similar to double, except they
can only store whole numbers (integers)
int anInt = 0;
int another = 123;
int noCanDo = 1.99; // <- ERROR

• Division with int is also different
• performs quotient remainder whole numbers only
anInt = 9 / 2; // anInt = 4, not 4.5
anInt = anInt / 5; // What is anInt now? ____
anInt = 5 / 2; // What is anInt now? ____

The integer % operation

• The % operator returns the remainder

int anInt = 9 % 2; // anInt ___1___

anInt = 101 % 2; // What is anInt now? ___

anInt = 5 % 11; // What is anInt now? ___

anInt = 361 % 60; // What is anInt now? ___

int quarter;

quarter = 79 % 50 / 25; // What is quarter? ___

quarter = 57 % 50 / 25; // What is quarter? ___

int celcius, fahrenheit;

fahrenheit = 212;
celcius = 5 / 9 * (fahrenheit - 32);

// What is celcius? _____

Integer division, watch out

const objects

• It is sometimes convenient to have objects that cannot
have altered state.
const class-name identifier = expression; // use this form

-or-
const class-name identifier (expression);

Examples:
const double PI = 3.1415926;
const string ERROR_MESSAGE = "Nooooooo";

Errors would occur on assignment:
PI = 9.8;
cin >> ERROR_MESSAGE;

Mixing types

• There are many numeric types
• In general, if the type differ, promote the "smaller" to the

"larger"
• int + double will be a double

5 + 1.23

5.0 + 1.23

6.23

Another Algorithm Pattern:
Prompt then Input

• The Input/Process/Output programming pattern can
be used to help design many programs in the first
several chapters

• The Prompt then Input pattern also occurs frequently.
• The user is often asked to enter data
• The programmer must make sure the user is told

what to enter

Prompt then Input Pattern

Pattern	 Prompt then Input

Problem	 The user must enter something
Outline	 1) Prompt the user for input

2) Obtain the input
Code	
Example	

cout << "Enter your first name: ";
cin >> firstName;

Examples

• Instances of the Prompt then Input pattern:

cout << "Enter your first name: ";
cin >> firstName;

cout << "Enter accumulated credits: ";
cin >> credits;

Compile, Link, and Run time

• The compiler translates source code into
machine code

• The linker puts together several pieces of
machine code to create an executable program

• Errors occur at various times

Errors and Warnings

• compiletime—syntax errors that occur during
compilation (missing semicolon)

• warnings—code that appears risky, suggesting there
may be a future error (<type>> needs space)

• linktime—errors that occur when the linker cannot
find what it needs (missing .o file)

• runtime—errors that occur while the program is
executing (a file is not found)

• intent—the program does what was typed, not what
was intended (logic error produces wrong answer)

Errors Detected at Compiletime

• Generated while the compiler is processing the
source code

• Compiler reports violations of syntax rules.
• For example, the compiler will try to inform you of

the two syntax errors in this line
int student Number

Warnings generated by the compiler

• The compiler generates warnings when it discovers
something that is legal, but potentially problematic

• Example
double x, y, z;
y = 2 * x;

warning: unused variable 'z' [-Wunused-variable]
warning: variable 'x' is uninitialized when used here [-Wuninitialized]

Linktime Errors

• Errors that occur while trying to put together (link)
an executable program

• For example, we must always have a function named
main

• Main or MAINwon't do

Runtime Errors

• Errors that occur at runtime, that is, while the
program is running

• Examples
• Invalid numeric input by the user
• Dividing an integer by 0
• File not found when opening it (wrong name)
• Indexing a list element with the index is out of range

index

Intent Errors

• When the program does what you typed, not what
you intended

• Imagine this code
cout << "Enter sum: ";
cin >> n;
cout << " Enter n: ";
cin >> sum;
average = sum / n;

• Whose responsibility
is it to find this error?

When the program doesn't work

• If none of the preceding errors occur, the program
may still not be right

• The working program may not match the
specification because either

• The programmers did not match, or understand the
problem statement

• The problem statement may have been incorrect
• Someone may have changed the problem

