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CHAPTER 15
Fluids and Elasticity

In this chapter, we will aim to understand 
macroscopic systems that flow or deform.  We will 

study the connection between density, pressure, and 
buoyancy (i.e. the “tendency to sink or float”).  At the 
end of the chapter, we investigate “non-rigid” bodies 

under conditions of stress.
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In everyday speech, we tend to use the terms 
“fluid” and “liquid” interchangeably.  In fact, a 
fluid is a substance that flows, and therefore 
both gases and liquids are fluids (as are 
plasmas, but that’s beyond the scope of PHYS 
212).
In a gas, each molecule* moves freely in 
space, occasionally colliding with other
molecules or with the walls of its container.  The latter collisions, 
taken on average, are said to exert pressure on the walls.
Gases are also compressible.  Since most of the volume (𝑉) of a 
container of gas consists of empty space, this volume can easily be 
increased or decreased.
*or atom, depending on the type of gas.
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On the other hand, liquids are effectively 
incompressible (their volumes can only be 
changed by a tiny fraction).  The molecules of 
a liquid are very close together; they interact 
weakly with each other – weak enough that 
they can flow past each other, but strong 
enough that the interactions can affect the 
physical properties of the flow.
Liquids will deform to fit the shape of their 
container, and in the absence of any external 
factors, they will have a well-defined surface.
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Volume and Density
In studying fluids and thermodynamics, we 
frequently require the parameter of a 
system’s volume.  The SI unit for volume is 
the cubic meter (m3).  However, this is a very 
large quantity for most areas of research 
(although not for marine science!)  
The most common metric unit for volume is 
the liter (L).  There are 1000 liters in 1 m3.  In 
many fields (particularly medicine), the cubic 
centimeter (cm3) is used.  There are 1000 
cm3 in 1 L, and 106 cm3 in 1 m3.  To see this, 
note that 1 m = 100 cm, so
1 m3 = (1 m)3 = (100 cm)3 = (100)3 cm3 = 106 cm3.
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Volume and Density cont’
Every object or system of objects has both a 
mass and a volume.  The ratio of these 
parameters is the mass density, ρ

𝜌 =
𝑚

𝑉
(Often, we just use the term “density”.  
However, there are many other types of 
density used in different areas of physics, so 
it’s a good idea to be specific).
As the ratio of a mass to a volume, mass density has SI units of 
kg/m3.  Often, it is more appropriate to use g/cm3  (1 g/cm3 = 1000 
kg/m3).  The table shown here illustrates a few mass densities.  Note 
that all physical data such as this will be provided for you on exams.
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RDK STT. 15.1 
15.XX

A piece of glass is broken into two pieces of different size.  
Rank pieces a, b, and c in order of mass density (from 
largest to smallest).

A 𝑎 > 𝑐 > 𝑏

B 𝑏 > 𝑐 > 𝑎

C All pieces have the same density
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RDK Ex. 15.3

A rectangular swimming pool is 6.0 m wide by 12.0 m long.  Its depth slopes linearly from a 
1.0 m depth at one end to a 3.0 m depth in the other.  What is the mass of the water in the 
pool?

Solution:  in class
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Consider a container that is filled with a fluid, and a 
small portion of the container’s inner surface, which 
has area 𝐴.  As we learned in the last section, the 
fluid’s molecules are constantly colliding with this 
surface.  Averaged over time, this represents a force, 
 𝐹, applied to the surface. 
The pressure at this portion of the surface is defined as the ratio of 
the force’s magnitude to the area on which the force is exerted:

𝑝 =
𝐹

𝐴
(try not to confuse pressure with linear momentum, which also uses 
the symbol 𝑝).
As the ratio of a force to an area, pressure has SI units of N/m2.  A 
common SI term is the Pascal (1 Pa = 1 N/m2).
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A simple device for measuring pressure is shown below.  We’ll 
discuss it in class.  This device is the basis for a tire pressure gauge.
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Causes of Pressure
There are two primary contributions to pressure.  The first is 
gravitational – the fluid is pulled down toward the bottom of its 
container, causing pressure on the bottom surface (what type of 
force exists at the surface?  Think back to PHYS 211).  Since it can 
flow, the sides of the container beneath the fluid’s surface 
experience pressure as well.  
The second contribution is thermal.  As mentioned previously, 
collisions between the molecules and the container walls exert tiny 
forces on the walls.  The net force due to all of the collisions results 
in a pressure.  This force depends on the number of collisions per 
unit time, which depends on the average speed of the molecules, 
which depends on their temperature (more about that in a future 
chapter).
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Pressure in Gases
In a container of gas (of the size you might find in the lab), the 
gravitational contribution to pressure is negligible, since the 
gravitational force on an individual molecule is tiny (its gravitational 
acceleration does little to affect its speed, which can be 100s or 
1000s of m/s).  We can safely assume that the pressure is constant 
everywhere in the container.
If we reduce the number of molecules in the container, the pressure 
decreases accordingly, simply because there are fewer collisions per 
unit time.  Removing all of the molecules results in a pressure of 0 
Pa.  However, it is not possible to remove all of the molecules in a 
container.  A “vacuum” really just refers to a situation where the 
pressure is at least a few orders of magnitude lower than 
atmospheric pressure.
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Atmospheric Pressure
The earth’s atmosphere can be thought 
of as an extraordinarily tall container 
(with “imaginary” walls).  With a height 
of 10’s of km, the gravitational 
contribution to density and pressure is 
noticeable – the density slowly 
decreases with increasing height.  

The average pressure of the atmosphere at sea level is 101.3 kPa.  
This is defined as one atmosphere: 

1 atm = 101.3 kPa = 1.0135 × 105 Pa

Note that the atm is not an SI unit.
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Pressure in Liquids
Due to gravity, a liquid will settle to the bottom 
of its container.  The pressure at the surface is 𝑝0

(usually 1 atm). As we will see, the pressure 𝑝
within the liquid depends on the depth 𝑑 below 
the surface.  Assume for now that the liquid has a 
mass density ρ, and is at rest (it’s not flowing) –
therefore, Newton’s 2nd law tells us that it must 

be in equilibrium, with  𝐹net = 0.  
We will examine a cylinder of liquid of cross-section area 𝐴 and 
height 𝑑, extending downward from the surface.  There are 3 forces 
acting on the cylinder: gravitational (𝑚𝑔), a force 𝑝0𝐴 pushing 
downward on the top of the cylinder, and a force 𝑝𝐴 pushing upward 
on the bottom of the cylinder.
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Pressure in Liquids cont’
Since the upward and downward forces must 
balance, we find that 

𝑝𝐴 = 𝑝0𝐴 + 𝑚𝑔
Furthermore, we know that the volume of the 
cylinder is 𝑉 = 𝐴𝑑, and that its mass is 𝑚 =
𝜌𝑉 = 𝜌𝐴𝑑.  Combining these equations, 
we find that the hydrostatic pressure at a depth 𝒅 below the 
surface of a liquid is

𝑝 = 𝑝0 + 𝜌𝑔𝑑

(the term “hydrostatic” indicates that the fluid is not moving).  Note 
that this derivation assumes that the density of the liquid is constant 
with depth; i.e. that the liquid is incompressible.
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Pressure in Liquids – Resulting Properties
Based on the preceding equation, we can 
see that the situation shown in the top 
figure is not possible (the two cylinders are 
open to the atmosphere).  If 𝑑1 > 𝑑2, then 
the pressure at the bottom of the narrow 
cylinder would be greater than that at the 
bottom of the wide cylinder, and the liquid 
would flow until the levels equalized.  
Altogether, we can say that a connected 
liquid in hydrostatic equilibrium rises to 
the same height in all open regions of the 
container.  If one or both of the cylinders
has a closed top, the situation is different, as shown in Example 15.4



PHYS 212 S’14 – Essentials of Physics II CHAPTER 15 – FLUIDS & ELASTICITY 

15.2  Pressure

Slide 16

Pressure in Liquids – Resulting Properties
As a result, the pressure is the same at all 
points on a horizontal line through a 
connected liquid in hydrostatic 
equilibrium.  This is shown in the bottom 
figure.  
Finally, changing the surface pressure from 
𝑝0 to 𝑝1results in a change in the pressure 
at depth 𝑑 from 𝑝 = 𝑝0 + 𝜌𝑔𝑑 to 𝑝′ =
𝑝1 + 𝜌𝑔𝑑.  The change in pressure is 
∆𝑝 = 𝑝1 − 𝑝0, and it is the same at all 
points in the fluid.  This is know as Pascal’s 
principle 
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RDK Ex. 15.9

A research submarine has a 20-cm-diameter window 8.0 cm thick.  The manufacturer says 
that the window can withstand forces up to 1.0 X 106 N.  If the pressure inside the 
submarine is maintained at 1.0 atm, what is the maximum safe depth of the submarine?

Solution:  in class
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Snow is a powdery white stuff that exists in other parts of the 
world.  People who live there sometimes use snowshoes to walk 
on the surface of deep snow.  Let’s discuss how these work.
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RDK Ex. 15.31

A gymnasium is 16 m high (from floor to ceiling).  By what percentage is the air pressure at 
the floor greater than the air pressure at the ceiling?

Solution:  in class



PHYS 212 S’14 – Essentials of Physics II CHAPTER 15 – FLUIDS & ELASTICITY 

15.3  Measuring and Using Pressure

Slide 20

The pressure gauge was described on slide 9.  It is important to 
realize that when the gauge isn’t “in use”, it’s still measuring the 
ambient pressure (1 atm or 101.3 kPa).  Since we usually want to 
measure pressures relative to the ambient pressure, the gauge is 
calibrated to give a reading of zero when it’s not “in use”.  Overall, 
we can say that the gauge pressure (𝑝𝑔, the value read off of the 
gauge) is related to the absolute pressure (𝑝) as

𝑝𝑔 = 𝑝 − 1 atm

Pressure gauges can be found in many labs on campus, particularly 
on gas cylinders.  You may also have seen them on the propane tank 
of a grill, where the pressure reading gives a good indication of the 
amount of propane remaining in the tank.
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Manometers
A manometer is a device used to 
measure gas pressure.  It is simply a 
U-shaped tube, connected to the gas 
container at one end and open to the 
atmosphere at the other end.  It is 
filled with a liquid of density ρ.
From section 15.2, we know that the 
pressure at the gas/liquid interface 
(point 1) is equal to 𝑝gas, and that the 
pressure at the top of the liquid 
column is 𝑝0 = 1 atm.  Furthermore, we know from slide 16 that 
𝑝1 = 𝑝2.  Therefore, we can easily calculate that

𝑝gas = 1 atm + 𝜌𝑔ℎ
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Barometers
A barometer is used to measure the atmospheric 
pressure (which can differ from 101.3 kPa).  We 
will discuss it in class.
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Other Units of Pressure
Several common (but non-SI) units of pressure are listed in the table 
below.
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Hydraulic Lift
Pascal’s principle tells us that connected 
columns of fluid can be used to transmit 
pressure from one point to another.

In the figure, a force  𝐹1 is applied to a piston 

of area 𝐴1, while a force  𝐹2 is applied to a 
piston of area 𝐴2.  Both pistons are also 
subjected to the atmospheric pressure 𝑝0.
Since the pressure at points 1 and 2 must be equal, we can write

𝑝0 +
𝐹1

𝐴1
= 𝑝0 +

𝐹2

𝐴2
+ 𝜌𝑔ℎ

Or,

𝐹2 =
𝐴2

𝐴1
𝐹1 − 𝜌𝑔ℎ𝐴2
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Hydraulic Lift cont’
In the case that ℎ is small, the last term in 
the previous equation can be neglected, 
resulting in 

𝐹2 =
𝐴2

𝐴1
𝐹1

If 𝐴2 ≫ 𝐴1, a very large mass (resulting in a 
very large 𝐹2 = 𝑚𝑔) can be supported by a

relatively small force 𝐹1.  This is the principle of the hydraulic lift. 
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Hydraulic Lift cont’
If we wish to actually raise the mass –
rather than simply support it – we need 
only to push piston down.  Since the total 
volume of the fluid is constant (it’s 
incompressible), pushing the piston down 
by a distance 𝑑1 will raise the opposite
piston (the one that supports the mass) by a distance

𝑑2 =
𝐴1

𝐴2
𝑑1

Thus, there is a trade-off in designing the cylinder areas of a 
hydraulic lift:  if the ratio 𝐴2/𝐴1 is large, a small force can support a 
large mass, but the piston must be moved a large distance in order 
to raise the heavy mass by a small amount.
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RDK Ex. 15.41

A 55 kg cheerleader uses an oil-filled hydraulic lift to hold four 110 kg football players at a 
height of 1.0 m.  If her piston is 16 cm in diameter, what is the diameter of the football 
players’ piston?

Solution:  in class
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Buoyancy refers to the ability (or lack thereof) of a particular object 
to float in a particular fluid.  As you may expect, the ability to float 
depends on properties of both the object and the fluid.  It is not 
strictly a property of the object’s mass – the textbook points out 
that a penny will sink in the ocean while an aircraft carrier will float.

The ability of an object to float depends upon 

(among other things), the buoyant force,  𝐹𝐵.  This is 
the upward force that you feel when you try to hold 
a beach ball under water, for instance.  It arises due 
to the pressure gradient with depth; the greater 
pressure at the bottom of the object means that the 
upward force exceeds the downward force, resulting 

in a net upward  𝐹𝐵. 
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To visualize the buoyant force, first picture a container of fluid in 
hydrostatic equilibrium.  Now, imagine that we place an imaginary 
boundary around an arbitrary portion of the fluid. As this portion is 
in equilibrium, the net vertical force acting on it is zero – thus, the 
buoyant force is equal in magnitude to the weight of the portion of 
fluid:  𝐹𝐵 = 𝑚𝑔.
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Now, we’re going to imagine removing the fluid within the boundary 
and replacing it with an object of the same shape and size.  Since the 
fluid surrounding this object hasn’t changed, it must be supplying 

the same  𝐹𝐵 as before – regardless of the weight of the new object. 

In other words,  𝐹𝐵 is determined not by the weight of the object, but

by the weight of the fluid that it displaces.  This 
is Archimedes’ Principle.
For example, if a fluid has density 𝜌𝑓 and the 

object displaces a volume 𝑉𝑓 of fluid, the mass 

of the displaced fluid is 𝑚𝑓 = 𝜌𝑓𝑉𝑓, and its 

weight is 𝑚𝑓𝑔 = 𝜌𝑓𝑉𝑓𝑔.  Archimedes’ principle 

tells us that the magnitude of the buoyant 
force is 𝐹𝐵 = 𝜌𝑓𝑉𝑓𝑔.
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The most common buoyancy problem is simply 
this:  will a given object sink or float in a 
particular fluid, and if it floats, what fraction of 
it lies above and below the fluid surface?
To answer this question, we need to draw a free-
body diagram to analyze the net vertical force
acting on the object (the net horizontal force is zero).  The forces to 

consider are  𝐹𝐵 (directed upward) and the object’s weight, 𝑚𝑔, 
directed downward.
Since we’re comparing the magnitudes 𝜌𝑓𝑉𝑓𝑔 and 𝑚𝑔, we can 

cancel a factor of 𝑔 and simply compare the mass of the displaced 
fluid (𝝆𝒇𝑽𝒇) and the mass of the object (𝒎).
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The three possibilities are shown below.  We’ll discuss them in class.  
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Properties of a Floating Object
A floating object is in static equilibrium, and 
therefore

𝐹𝐵 = 𝜌𝑓𝑉𝑓𝑔 = 𝑚0𝑔 = 𝜌0𝑉0𝑔

If we aren’t in a situation of neutral buoyancy, 
then the volume of the object and the volume of 
displaced fluid are not the same, since a portion 
of the object lies above the fluid’s surface.  
Rearranging the above equation, we find that 
the volume of displaced fluid is

𝑉𝑓 =
𝜌0

𝜌𝑓
𝑉0

Since 𝜌0 < 𝜌𝑓 (a necessary condition to float), we know that a 

portion of the object must exist above the surface (see: icebergs).
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Boats
Let’s examine a highly simplified 
version of a boat.  It consists of a 
solid steel bottom of mass 𝑚0

and area 𝐴, with four massless 
but rigid sidewalls of height ℎ.

Since steel is denser than water, the bottom plate on its own will 
sink.  However, the presence of the sidewalls allows the boat to 
displace a volume of water that is much greater than the volume of 
the steel alone.  Most of this volume is air, with a very small 𝜌.
The boat will float if 𝜌avg < 𝜌𝑓, where𝜌avgis the boat’s average 

density.  In this case, the boat’s volume is 𝑉 = 𝐴ℎ, so its average 
density is𝜌avg = 𝑚0/𝐴ℎ (only the steel bottom contributes to the 

mass).
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Boats cont’
Therefore, the boat will float if

𝑚0

𝐴ℎ
< 𝜌𝑓

A better question would be how high must the sidewalls 
be in order for the boat to float?  Rearranging the 
previous equation gives us our answer:

ℎmin =
𝑚0

𝜌𝑓𝐴

Many of you may know that boats have a “draft” specification. This is 
a measurement of the vertical distance from the waterline to the 
keel (the bottom of the hull).  This indicates the minimum depth of 
water in which the boat can safely navigate.
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RDK Ex. 15.15

A 2.0 cm x 2.0 cm x 6.0 cm stick floats in water with its long axis vertical.  The length of the 
block above water is 2.0 cm.  What is the block’s mass density?

Solution:  in class
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RDK Ex. 15.20

You and your friends are playing in the swimming pool with a beach ball of 60-cm diameter.  
How much force would be needed to push the ball completely under water?

Solution:  in class
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A ball floats in water with ¾ of its volume submerged.  Then, we take the 
ball and place it in a container of oil, which has a mass density that is half 
as great as that of water.  What happens to the ball? 

A It floats, with ½ of its volume submerged

B It floats, with ¾ of its volume submerged

C It experiences neutral buoyancy

D It sinks
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Sadly, not every fluid problem is a static one.  We are often required 
to examine fluids that flow, an area of study known as fluid 
dynamics.  In truth, fluid dynamics is an incredibly complex field, due 
to the nature of the interactions of a fluid with itself and its 
container.  However, we can still draw some simple conclusions at 
the level of PHYS 212 by using an ideal-fluid model.  This model 
makes three assumptions:
1. The fluid is incompressible (already, not so accurate for gasses!)
2. The fluid is nonviscous. Viscosity represents a resistance to flow 

(pancake syrup is more viscous than water, for example).  
Physically, viscosity is related to kinetic friction (PHYS 211!).

3. The flow is steady.  That is, at each point in space, the fluid 
velocity is constant; it does not fluctuate in time.  This is also 
called laminar flow, in contrast to turbulent flow.
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The Equation of Continuity
Imagine that we could track a single 
molecule of an ideal fluid as it flowed.  
The trajectory that it follows is called a 
streamline. 
In an ideal fluid, streamlines exhibit
three important properties:
• they never cross
• at any point, the molecule’s velocity is 

tangent to the streamline
• the speed is highest in regions where the 

streamlines are closest together
Where in the car photo do you think the air is 
traveling the fastest?
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The Equation of Continuity cont’
A bundle of neighboring streamlines is called a flow tube, as shown 
in the figures below.  Since streamlines never cross, all streamlines 
that cross plane 1 within area A1 will eventually cross plane 2 within 
area A2 (the only way to violate this would involve crossing of 
streamlines).  Thus, we can think of the flow tube as acting just like a 
real tube…the portions
of fluid inside and outside 
of the flow tube can never 
mix.
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The Equation of Continuity cont’
Now let’s track a particular volume of fluid as it traverses the flow 
tube.  We keep in mind that the fluid can not be created, destroyed, 
or stored – it can only move from one point to another.

As a result, if a volume V enters the flow 
tube through area A1 in a time ∆𝑡, then an 
equal volume V must leave the flow tube 
through area A2 during the same time 
interval.
To find this volume, we recall that velocity is 
the change in position divided by the change 
in time.  If the velocity while crossing 𝐴1 is 
𝑣1, then the fluid moves a distance ∆𝑥1 =
𝑣1∆𝑡, and likewise for 𝑣2 crossing 𝐴2.
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The Equation of Continuity cont’
Finally, since each volume is area multiplied by ∆𝑥, we can conclude 
that

𝑣1𝐴1 = 𝑣2𝐴2

This is the equation of continuity.  In plain 
english, it simply indicates that for an 
incompressible fluid, the volume entering 
one part of a flow tube must be matched 
by an equal volume leaving the flow tube 
at some point downstream.
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The Equation of Continuity cont’
This concept is easily* demonstrated by observing the 
downward flow of water from a faucet.  Due to 
gravitational acceleration, the water speeds up as it 
falls.  This must be accompanied by a corresponding 
narrowing of the water column, in order to satisfy the 
equation of continuity.
The volume flow rate is defined as 𝑄 = 𝑣𝐴; it has SI 
units of m3/s.  The equation of continuity tells us that 
the volume flow rate is constant at all points in a flow 
tube.

* well, it’s easier said than done.  Water isn’t a perfectly ideal fluid, and the internal 
workings of the faucet conspire to produce a water output that doesn’t really 
resemble a cylindrical tube.  Still, the narrowing is evident in this photo. 
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Bernoulli’s Equation
Our next task is to examine the flow from a viewpoint of energy 
conservation.  Looking back to PHYS 211, you will hopefully recall 
that this is expressed as

∆𝐾 + ∆𝑈 = 𝑊ext

That is, the sum of kinetic and 
potential energy changes by 
an amount equal to the work 
done on the system by any 
external forces.
The upcoming derivation will 
require frequent reference to 
this figure 
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Bernoulli’s Equation cont’
In this case, the system in question is the volume of fluid within the 
flow tube.  External work is done on this system by the pressure 
forces of the surrounding fluid (why can we ignore pressure forces 
from the fluid within the flow tube)?

At point 1, a force  𝐹1is exerted on the system due to the pressure of 
the fluid external to the flow tube.  This pushes the fluid at this 
point through a parallel displacement ∆ 𝑟1.  The work done on the 
fluid at this point is therefore

𝑊1 =  𝐹1 ∙ ∆ 𝑟1 =  𝐹1∆ 𝑟1 = 𝑝1𝐴1∆𝑥1 = 𝑝1𝑉
(this equation will be clarified in class)
The situation is the same at point 2, except than now the force is 
directed opposite to the displacement.  Here,

𝑊2 =  𝐹2 ∙ ∆ 𝑟2 = −𝐹2∆𝑟2 = −𝑝2𝐴2∆𝑥2 = −𝑝2𝑉
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Bernoulli’s Equation cont’
Essentially, the pressure at point 1 tries to increase the speed of the 
fluid (it does positive work), while the pressure at point 2 tries to 
decrease its speed (negative work).  The net external work is 

𝑊ext = 𝑊1 + 𝑊2 = 𝑝1𝑉 − 𝑝2𝑉

Next, we will see how the potential energy of the system changes 
between point 1 and point 2.  This change is due to a difference in 
height between the two points.  From PHYS 211, you should recall 
that

∆𝑈 = 𝑚𝑔𝑦2 − 𝑚𝑔𝑦1 = 𝜌𝑉𝑔𝑦2 − 𝜌𝑉𝑔𝑦1

where we have once again used the relation 𝑚 = 𝜌𝑉.
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Bernoulli’s Equation cont’
Now we must examine the change in kinetic energy.  This is simply

∆𝐾 =
1

2
𝑚𝑣2

2 −
1

2
𝑚𝑣1

2 =
1

2
𝜌𝑉𝑣2

2 −
1

2
𝜌𝑉𝑣1

2

We can now combine the work, kinetic, and potential energy terms 
as shown on Slide 45, to produce

1

2
𝜌𝑉𝑣2

2 −
1

2
𝜌𝑉𝑣1

2 + 𝜌𝑉𝑔𝑦2 − 𝜌𝑉𝑔𝑦1 = 𝑝1𝑉 − 𝑝2𝑉

Finally, we can cancel out the volume 𝑉 from each term (this must
be the case, since we were working with an arbitrary 𝑉):

𝑝1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔𝑦1 = 𝑝2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔𝑦2
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Bernoulli’s Equation cont’
This is known as Bernoulli’s equation, named for Daniel Bernoulli 
(not to be confused with Jacob I, Jacob II, Johann I, Johann II, Johann 
III, Nicolaus I, or Nicolaus II Bernoulli – all fairly prominent scientists 
and mathematicians in their day).
In practice, Bernoulli’s equation is usually used as a conservation 
law.  It can be written

𝑝 +
1

2
𝜌𝑣2 + 𝜌𝑔𝑦 = constant

Examples 15.11 and 15.12 in the text provide some opportunity to 
practice using this equation.  
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How is the smoke drawn up a chimney affected when there is a wind 
blowing outside?

A Smoke rises more rapidly in the chimney

B Smoke is unaffected by the wind blowing

C Smoke rises more slowly up the chimney

D Smoke is forced back down the chimney
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RDK Ex. 15.59

A tree loses water due by the process of transpiration at a rate of 110 g/h.  This water is 
replaced by the upward flow of sap through vessels in the trunk.  If the trunk contains 2000 
vessels, each 100 µm in diameter, what is the upward speed of the sap in each vessel?  The 
density of tree sap is 1040 kg/m3.

Solution:  in class
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Venturi Tube
One relatively simple application of 
Bernoulli’s equation (coupled with 
the continuity equation) is the 
Venturi tube, which is used to 
measure the speed of a flowing gas.

We will discuss its operation in class.
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RDK Ex. 15.63

Air flows through the tube shown in the figure at a rate of 
1200 cm3/s.  Assume that air is an ideal fluid.  What is the 
height 𝒉 of mercury in the right side of the tube?

Solution:  in class



PHYS 212 S’14 – Essentials of Physics II CHAPTER 15 – FLUIDS & ELASTICITY 

15.6 Elasticity

Slide 54

The subject of elasticity applies primarily to 
solids, although it is similar in spirit to many 
of the aspects of fluids that we have seen so 
far in this chapter.
Suppose that we have a solid rod of a 
particular material, of length 𝐿.  One end is 
clamped in place, while the other end can be 
stretched along the rod’s axis by an applied 

force  𝐹.
In PHYS 211, we only dealt with rigid (i.e. 
non-deformable) bodies.  However, a 
microscopic view of a real solid material 
suggests that it can be stretched, even if only 
very slightly.
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The bottom graph illustrates the relationship 
between the magnitude of the applied force 
and the increase in the rod’s length, ∆𝐿.  For 
small forces, this relationship is linear.  
Furthermore, if the force is removed, the rod 
will return to its original length.  This is 
referred to as the elastic region.  Stretching 
the rod past the elastic limit means that it is 
permanently deformed; removing the force 
no longer results in a return to the original 
length (ever loan a shirt to someone who’s a 
few sizes too large?  That’s what happened).
Finally, there will be an ultimate point at 
which the rod breaks. 
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In PHYS 212, we are only concerned with the 
linear region.  This linear relationship can be 
expressed as 

𝐹 = 𝑘∆𝐿
where 𝑘 is the slope of the 𝐹 vs. Δ𝐿 plot.  This 
equation is familiar…if we replaced the rod 
with a spring, this would simply be Hooke’s 
law.
Unlike the spring, here 𝑘 depends not only on 
the rod’s material, but also on its shape 
(length and cross-sectional area).  A long, 
narrow rod will elongate more easily than a 
short, stumpy rod.
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It would be beneficial to find a way to characterize the elastic 
properties of a particular material, irrespective of its shape.  
Referring to the figure, the elasticity is related to the spring constant 
of the individual molecular bonds in the material.
If a force is applied to the end of the rod, it is 
distributed across the area of the end face –
thus, the force pulling on each bond is 
proportional to 𝐹 / 𝐴.  The result of the force 
is that each bond is stretched by an amount 
proportional to ∆𝐿/𝐿 (since the entire rod 
stretches by ∆𝐿 and the number of bonds 
along the length of the rod is proportional to 
𝐿).
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There’s two unknown proportionality constants in the preceding 
description, but that’s OK.  Hooke’s law tells us that the force pulling 
on a bond is proportional to the distance by which the bond 
stretches.  In other words,

𝐹

𝐴
= 𝑌

∆𝐿

𝐿

The proportionality constant 𝑌 is called Young’s modulus, and it has 
SI units of N/m2.  To reiterate, it depends purely on a material’s 
composition, and not on its geometry.
In the preceding equation, 𝐹 / 𝐴 is termed the tensile stress applied 
to the rod (units of N/m2), and ∆𝐿/𝐿 is called strain (dimensionless).  
Thus, we see that 𝑌 is the ratio of tensile stress to strain.
We note, finally, that the preceding derivation is equally valid in the 
case of compressive – rather than tensile – stress. 
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Volume Stress and the Bulk Modulus
The concept of Young’s modulus only applies to an object that is 
being stretched or compressed along one axis.  As we have seen, an 
object that is submerged in a liquid is “squeezed” from all directions.
In this case, the term 𝐹 / 𝐴 is termed the volume stress, and in fact 
is identical to our definition of pressure.
In response to volume stress, an object will experience volume
strain, a fractional change in volume (∆𝑉/𝑉).  
Volume strain must be a negative number, 
since volume stress decreases the volume.
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Volume Stress and the Bulk Modulus cont’
As was the case 2 slides ago, volume stress and volume strain are 
proportional to each other:

𝐹

𝐴
= 𝑝 = −𝐵

∆𝑉

𝑉
where 𝐵 is called the bulk modulus of the material.  The negative 
sign ensures that both 𝑝 and 𝐵 are positive quantities.
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RDK Ex. 15.68

There is a disk of cartilage between each pair of vertebrae in your spine.  Young’s modulus 
for cartilage is 1.0 x 106 N/m2.  Supposed that a relaxed disk is 4.0 cm in diameter and 5.0 
mm thick.  If a disk in the lower spine supports half the weight of a 66 kg person, by how 
many mm does the disk compress?

Solution:  in class


