Chapter 1

- Objectives: to learn
- The difference between data and information
- What a database is, the various types of databases, and why they are valuable assets for decision making
- The importance of database design
- How modern databases evolved from file systems
- About flaws in file system data management
- The main components of the database system
- The main functions of a database management system (DBMS)

S275 Fall 2010

Introduction

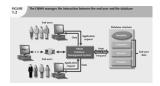
- Good decisions require good information derived from raw facts
- Data is managed more efficiently when stored in a database
- Databases solve many of the problems encountered in data management
 - Used in most modern settings involving data:
 - Business, Research, Administration
- Important to understand how databases work and interact with other applications
- Data Management:
 - the discipline of generating, storing, & retrieving data
- A "Core" activity of any organization $_{\mbox{\tiny CS275\,Fall}\ 2010}$

Data vs. Information

- Data are raw facts
 - Information is the result of processing raw data to reveal meaning
 - Information requires context to reveal meaning
 - Raw data must be formatted for storage, processing, and presentation
- Data: building blocks of information
 - Information produced by processing data
 - Information used to reveal meaning in data
 - Accurate, relevant, timely information is the key to good decision making
 - Good decision making is the key to organizational survival

CS275 Fall 2010

3


Introducing the Database

- Database: shared, integrated computer structure that stores a collection of:
 - End-user data: raw facts of interest to end user
 - **Metadata**: data about data
 - Provides description of data characteristics and relationships in data
 - Complements and expands value of data
- Database management system (DBMS): collection of programs
 - Manages structure and controls access to data

S275 Fall 2010

Role and Advantages of the DBMS

- DBMS is the intermediary between the user and the database
 - Database structure stored as file collection
 - Can only access files through the DBMS
- · DBMS enables data to be shared
- DBMS integrates many users' views of the data

CS275 Fall 2010

Role and Advantages of the DBMS

- Advantages of a DBMS:
 - Improved data sharing
 - Improved data security
 - Better data integration
 - Minimized data inconsistency
- Results in:
 - Improved data access
 - Improved decision making
 - Increased end-user productivity as it
 - Promotes integrated view of organization's operations
 - · Reduces the probability of data inconsistency
 - enables producing quick answers to ad hoc queries

CS275 Fall 2010

6

Types of Databases

- Databases can be classified according to:
 - 1. Number of users
 - Database location(s)
 - 3. Expected type and extent of use
- **Single-user database** supports only one user at a time
 - Desktop database: single-user; runs on PC
- Multiuser database supports multiple users at the same time
 - Workgroup
 - Enterprise

CS275 Fall 2010

Types of Databases

- Centralized database: data located at one site
- **Distributed database**: data distributed across several different sites
- **Operational database**: supports a company's day-to-day operations
 - Transactional or production database
- **Data warehouse**: stores data used for tactical or strategic decisions

CS275 Fall 2010

Types of Data in Databases

- Unstructured data exist in their original state
- Structured data result from formatting
 - Structure applied based on type of processing to be performed
- Semistructured data have been processed to some extent
- Extensible Markup Language (XML) represents data elements in textual format
 - XML database supports semistructured XML data

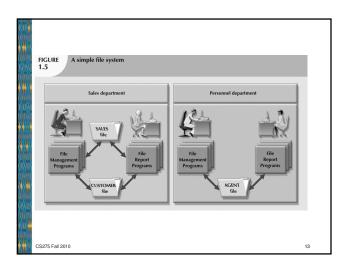
CS275 Fall 2010 9

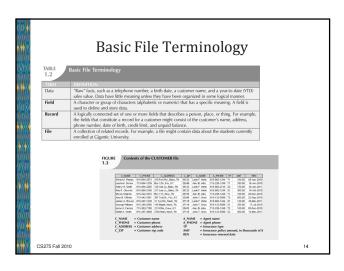
Why Database Design Is Important

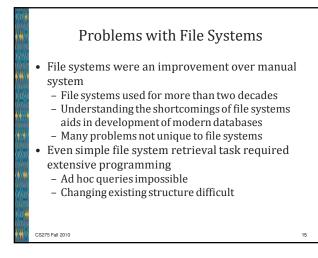
- Database design focuses on design of database structure used for end-user data
 - Designer must identify database's expected use
- Well-designed database:
 - Facilitates data management
 - Generates accurate and valuable information
- Poorly designed database:
 - Causes difficult-to-trace errors
 - Ultimately can lead to poor decisions and failure of an organization.

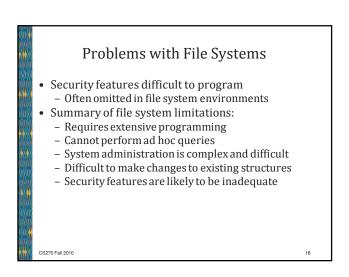
CS275 Fall 2010 10

Evolution of File Systems


- Reasons for studying file systems:
 - Complexity of database design is easier to understand
 - Understanding file system problems helps to avoid problems with DBMS systems
 - Knowledge of file system is useful for converting file system to database system
- File systems typically composed of collection of file folders, each tagged and kept in cabinet
 - Organized by expected use
- · Contents of each file folder are logically related
 - Manual systems were data repositories for small data collections & cumbersome for large collections


DS275 Fall 2010 11


Evolution of File Systems


- Computerized file systems
 - Data processing (DP) specialist converted computer file structure from manual system
 - Wrote software that managed the data
 - Designed the application programs
 - Initially, computer file systems resembled manual systems
- · As number of files increased, file systems evolved
 - Each file used its own application program to store, retrieve, and modify data
 - Each file was <u>owned by individual or department</u> that commissioned its creation

275 Fall 2010 1:

Structural and Data Dependence

- **Structural dependence**: access to a file is dependent on its own structure
 - All file system <u>programs must be modified</u> to conform to a new file structure
- **Structural independence**: change file structure without affecting data access
- Data dependence: access to data is dependent on the data characteristics
 - All file system <u>programs must be modified</u> to conform to new data characteristics
- Data independence: data storage characteristics do not affect data access

CS275 Fall 2010

Structural and Data Dependence

- Practical significance of data dependence is difference between logical and physical format
- Logical data format: how human views the data
- **Physical data format**: how computer must work with data
- Each program must contain:
 - Lines specifying opening of specific file type
 - Record specification
 - Field definitions

CS275 Fall 2010 18

Data Redundancy

- File system structure makes it difficult to combine data from multiple sources
 - Vulnerable to security breaches
- Organizational structure promotes storage of same data in different locations
 - Islands of information
- Data stored in different locations is unlikely to be updated consistently
- **Data redundancy**: same data stored unnecessarily in different places

CS275 Fall 2010 19

Effects of Data Redundancy

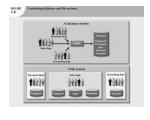
- **Data inconsistency**: different and conflicting versions of same data occur at different places
- **Data anomalies**: abnormalities when all changes in redundant data are not made correctly
 - Update anomalies
 - Insertion anomalies
 - Deletion anomalies

CS275 Fall 2010

Lack of Design and Data-Modeling Skills

- Most users lack the skill to properly design databases, despite multiple personal productivity tools being available
- Data-modeling skills are vital in the data design process
- Good data modeling facilitates communication between the designer, user, and the developer

CS275 Fall 2010 21

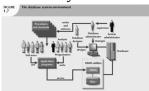

Database Systems

- Database system consists of logically related data stored in a single logical data repository
 - May be physically distributed among multiple storage facilities
 - DBMS eliminates most of file system's problems
 - Current generation stores data structures, relationships between structures, and access paths
 - Also defines, stores, and manages all access paths and components

CS275 Fall 2010 22

The Database System Environment

- **Database system**: defines and regulates the collection, storage, management, use of data
- Five major parts of a database system:
 - Hardware
 - Software
 - People
 - Procedures
 - Data


CS275 Fall 2010

The Database System Environment

- Hardware: all the system's physical devices
- **Software**: three types of software required:
 - Operating system software
 - DBMS software
 - Application programs and utility software
- People: (System and database administrators, Database designers, Systems analysts and programmers, End users
- **Procedures**: instructions and rules that govern the design and use of the database system
- Data: the collection of facts stored in the database

CS275 Fall 2010 24

The Database System Environment

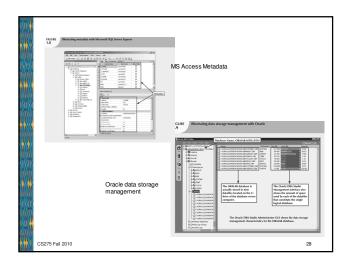
- Database systems are created and managed at different levels of complexity
- Database solutions must be cost-effective as well as tactically and strategically effective
- Database technology already in use affects selection of a database system

CS275 Fall 2010

25

DBMS Functions

- Most functions are transparent to end users
 - Can only be achieved through the DBMS
- Data dictionary management
 - DBMS stores definitions of data elements and relationships (metadata) in a **data dictionary**
 - DBMS looks up required data component structures and relationships
 - Changes automatically recorded in the dictionary
 - DBMS provides data abstraction and removes structural and data dependency


CS275 Fall 2010

00

DBMS Functions

- Data storage management
 - DBMS creates and manages complex structures required for data storage
 - Also stores related data entry forms, screen definitions, report definitions, etc.
 - DBMS stores the database in multiple physical data files
 - **Performance tuning**: activities that make the database perform more efficiently

CS275 Fall 2010

DBMS Functions

- Data transformation and presentation
 - DBMS transforms data entered to conform to required data structures
 - DBMS transforms physically retrieved data to conform to user's logical expectations
- Security management
 - DBMS creates a security system that enforces user security and data privacy
 - Security rules determine which users can access the database, which items can be accessed, etc.
- Multiuser access control
 - DBMS uses sophisticated algorithms to ensure concurrent access does not affect integrity

CS275 Fall 2010

DBMS Functions

- · Backup and recovery management
 - DBMS provides backup and data recovery to ensure data safety and integrity
 - Recovery management deals with recovery of database after a failure
 - Critical to preserving database's integrity
- Data integrity management
 - DBMS promotes and enforces integrity rules
 - Minimizes redundancy
 - Maximizes consistency
 - Data relationships stored in data dictionary used to enforce data integrity
- Integrity is especially important in transactionoriented database systems

DBMS Functions

- Database access languages and application programming interfaces
 - DBMS provides access through a query language
 - Query language is a nonprocedural language
 - Structured Query Language (SQL) is the de facto query language for relational databases
 - ANSII standard supported by majority of DBMS vendors

CS275 Fall 2010

DBMS Functions

- Database communication interfaces
 - Current DBMSs accept end-user requests via multiple different network environments
 - Communications accomplished in several ways:
 - End users generate answers to queries by filling in screen forms through Web browser
 - DBMS automatically publishes predefined reports on a Web
 - DBMS connects to third-party systems to distribute information via e-mail

Managing the Database System: A Shift in Focus

- Database system provides a framework in which strict procedures and standards enforced
 - Role of the IT professional changes from programming to managing organization's resources
- Database system enables more sophisticated use of the data
- Data structures created within the database and their relationships determine effectiveness
- Disadvantages of database systems:
 - Increased costs, Management complexity, Maintaining currency, Vendor dependence, Frequent upgrade/ replacement cycles

CS275 Fall 2010 33

Summary

- Data are raw facts
- Information is the result of processing data to reveal its meaning
- Accurate, relevant, and timely information is the key to good decision making
- Data are usually stored in a database
- DBMS implements a database and manages its contents
- Metadata is data about data
- Databases evolved from manual and computerized file systems

275 Fall 2010

Summary

- Database design defines the database structure
 - Well-designed database facilitates data management and generates valuable information
 - Poorly designed database leads to bad decision making and organizational failure
- In a file system, data stored in independent files
 - Each requires its own management program
- Database management systems were developed to address file system's inherent weaknesses
- Some limitations of file system data management:
 - Requires extensive programming
 - $\ System \ administration \ is \ complex \ and \ difficult$

S275 Fall 2010

35

Summary

- More limitations of file system data management:
 - Changing existing structures is difficult
 - Security features are likely inadequate
 - Independent files tend to contain redundant data
 - Structural and data dependency problems
- DBMS present database to end user as single repository
 - Promotes data sharing
 - Eliminates islands of information
- DBMS enforces data integrity, eliminates redundancy, and promotes security

S275 Fall 2010