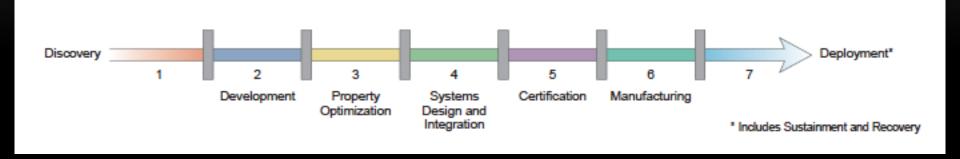
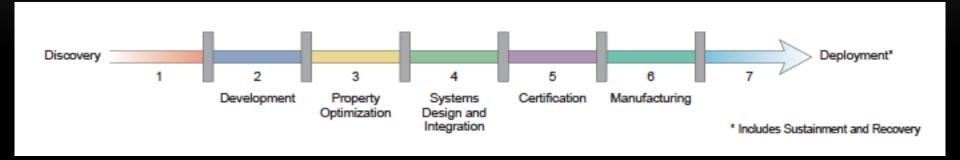
CENTER FOR HIERARCHICAL MATERIALS DESIGN


P. W. Voorhees, G. B. Olson

Northwestern University

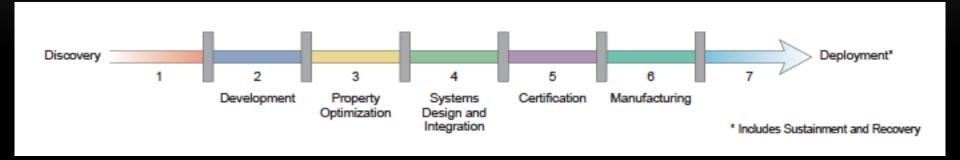
J. DePablo

University of Chicago


MATERIALS DEVELOPMENT

This is a very long and arduous (expensive) process:

- It typically requires 10-20 years to insert new materials in an application
- Example: it took 20 years to move Li-ion batteries from discovery to marketplace. Still ongoing today: automotive batteries


MATERIALS DEVELOPMENT

Reason:

- Intuitive development of new materials
- Trial and error experimentation
- Inability to predict material properties for a given composition and processing sequence

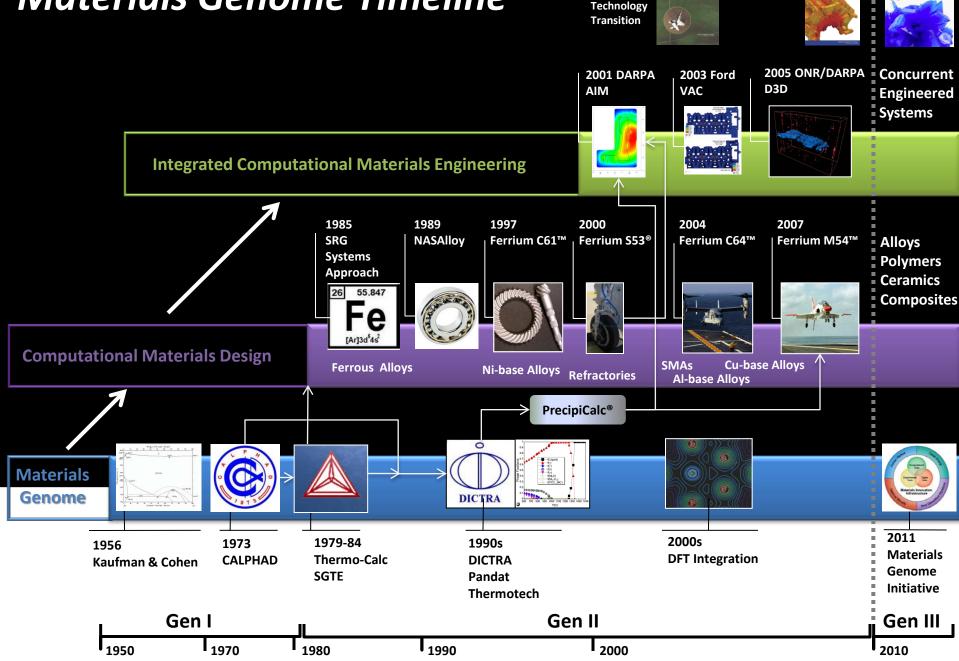
MATERIALS DEVELOPMENT

Solution:

 Integrate computations, experimental tools, and digital data to speed up the design process

Materials Genome Initiative for Global Competitiveness

June 2011



Fundamental databases and tools enabling reduction of the 10-20 year materials creation and deployment cycle by 50% or more

National Science and Technology Council (NSTC)/ Office of Science and Technology Policy (OSTP)

Materials Genome Timeline

2008 NMAB

ICME

2011

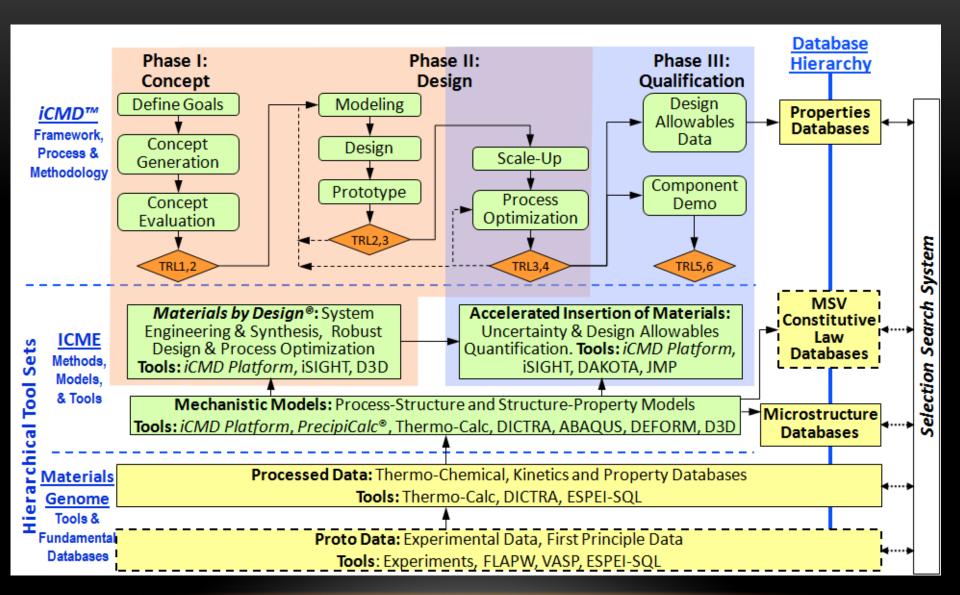
OSTP

2004 NMAB

Accelerating

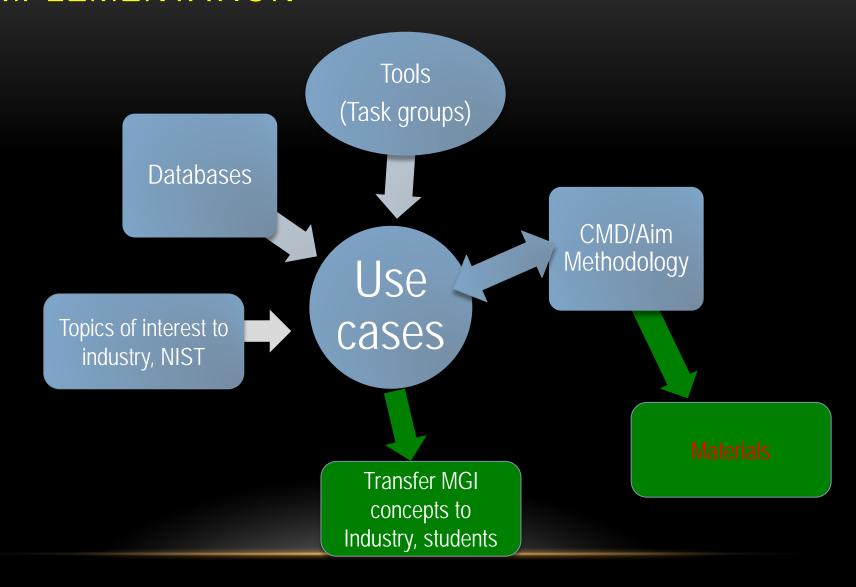
NIST CENTER OF EXCELLENCE IN ADVANCED MATERIALS

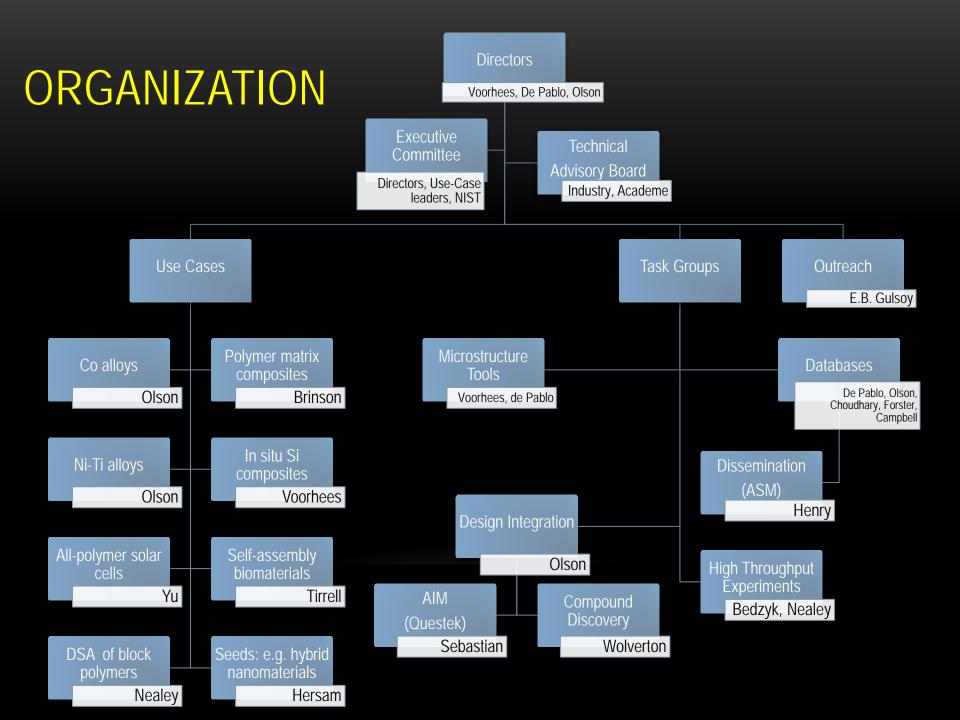
- Center for Hierarchical Materials Design: CHiMaD
- \$5 million per year
- Organizations involved:


Co Directors: Greg Olson (Northwestern), Juan DePablo (University of Chicago)

OBJECTIVES OF CHIMAD

- Create a collaborative environment and concentration of scientific and technical capability to accelerate materials discovery and development
- Provide opportunities to transition new breakthroughs in advanced materials to industry
- Convene multidisciplinary and multi-sector communities for in-depth discussions.
- Provide training opportunities for scientists and engineers in materials metrology
- Foster the development of integrated computation, modeling and data-driven tools
- Foster the discovery of new materials
- Establish opportunities for extended collaborations with NIST


HOW CAN WE ACCOMPLISH THESE GOALS?


- Leverage our long history of materials design and collaborative research
- Use Case Groups
 - focus on particular materials of industrial and scientific importance
 - involve industrial collaborators
 - transfer the design methodology to industry and other stakeholders.
- Tool development
 - Develop community standard codes for both hard and soft materials design
 - Develop materials databases that are motivated by topics of the use groups
 - Develop experimental methods for rapid assessment of materials properties
- Convene workshops on issues that are central to the implementation of the MGI
- Interact closely with NIST

IMPLEMENTATION

DATABASES

- Will contain CALPHAD protodata: tie lines, thermochemical data, elastic constants, as well as higher level data such as interfacial energies
- Start with metals relevant to the work group projects, and then extend to soft materials
- Standardized metadata describing error estimates that are needed in incorporation into higher level CALPHAD databases
- Unlike assessed CALPHAD databases, which can be proprietary, this will be open
- Thus, we hope to make this a repository for information on new systems in the future
- Statistical learning can be applied to this database to aid in material discovery
- Perhaps incorporate the Open Quantum Mechanical database

OUTREACH

- ASM Action in Education Committee, Materials Genome Toolset dissemination to materials UG programs
- Integration in NU ICME MS and Predictive Science & Engineering Design (PSED) doctoral programs
- Workshops with the community:
 - Databases: standards, coordination and composition
- First workshop at NIST:
 - Database development
- A MGI seminar series broadcast to NIST, jointly hosted by Northwestern, the University of Chicago, and Argonne
- Summer schools
- Yearly TAB meetings

TOOLS

- Evolutionary Strategies (design of microstructure)
- Theoretically Informed Coarse Grained (TICG) Models
- Prediction of GISAXS, SAXS
- Community standard phase field code
- High throughput experiments and calculations

Cobalt Alloy Design

G. Olson (NU), D. Dunand (NU), D. Seidman (NU), P. Voorhees (NU), M. Stan (NAISE, ANL) C. Wolverton (NU)

Motivation:

- Need turbine blade alloys that exceed the use temperatures of Ni-based superalloys
- Wear resistant ambient temperature applications to replace Be-Cu

Goals:

- Near-term: Ambient temperature bushing alloy
- Long-term: High-temperature aeroturbine superalloy

Nanodispersion-Strengthened Shape Memory Alloys

G. Olson (NU), D. Dunand (NU), W-K. Liu (NU) D. Seidman (NU), A. Umantsev (FS), C. Wolverton (NU)

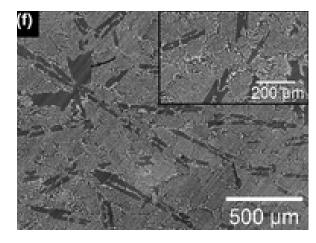
Motivation:

- Widely used in medical, aerospace and automotive sectors
- Current alloys are susceptible to instability after many cycles

Goals:

- Near-term: Pd-stabilized alloys for medical devices
- Long-term: High-temperature aeroturbine superalloy

In-Situ Si Composite Materials


P. Voorhees (NU), J. De Pablo (UC), W. Chen (NU), S. Davis (NU), C. Wolverton (NU)

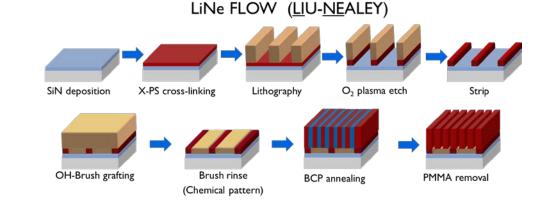
Motivation:

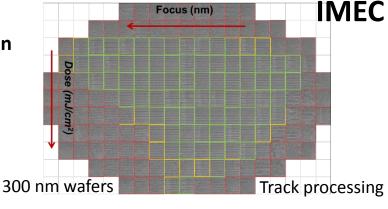
- Corrosion resistant, tough alloys
- Avoid the complications of classical ceramic processing, such as sintering
- Employ insitu Si-composites

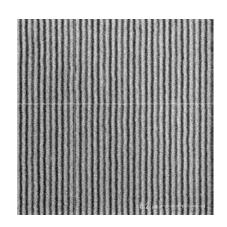
Goals:

- Near-term: A multicomponent eutectic growth model
- Long-term: A tough, castable Si alloy

Si-CrSi₂ composite
(Fischer and Schuh, J. Am Ceram. Soc, 2012)


Directed Self-Assembly of Block Polymers

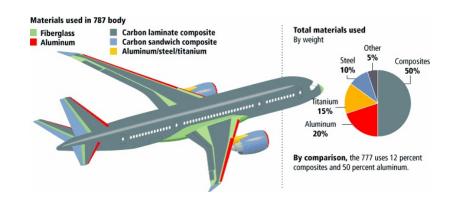

P. Nealey (UC), J.J. de Pablo (UC), H. Jaeger (UC), M. Olvera de la Cruz (NU), S. Sibener (UC), L. Yu (UC)


MOTIVATION

Lithography

- Workhorse of semiconductor industry
- Important fraction of cost of electronic devices
- Need for new materials and processes for next-generation lithography
- Sub-10 nm patterning
- Need for metrology
- Need for design tools

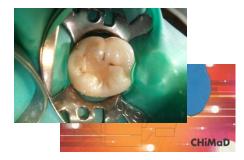
Initial Goals: Robust, pilot-line validated directed self-assembly for sub 10 nm lithography


- Search for new polymers and processing techniques
- Design materials and processes
- Validate by comparison to experiment
- Develop metrology tools and advanced simulation tools for non-equilibrium assembly

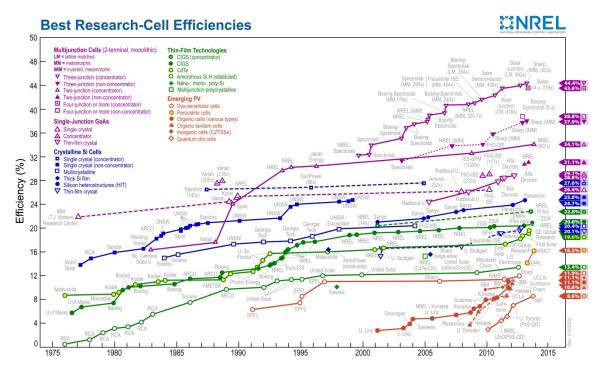
Polymer Matrix Composites

C. Brinson (NU), J.J. de Pablo (UC), Keten (NU), E. Luijten (NU)

MOTIVATION


- Composites are lightweight, corrosion resistant, tailorable, low cost
- Limited understanding of:
 - multiphase composite properties
 - simultaneous control of electrical/mechanical properties
 - long-term properties and durability under use conditions

Initial Goals: Comprehensive design of composite materials


- Control of surface-polymer interactions
- Tune thermomechanical and electric/dielectric properties
- Use of nanofillers for tuning of electrical conductivity, toughness and durability
- Multiscale prediction and design of materials with known electric, dielectric and mechanical properties

All-Polymer Organic Solar Cells

L. Yu (UC), J.J. de Pablo (UC), G. Galli (UC), M. Hersam (NU), H. Jaeger (UC), M. Olvera de la Cruz (NU), M. Tirrell (UC)

MOTIVATION

Energy

- Inorganic solar cells currently exhibit higher efficiency
- Rapidly improving performance of organic cells
- Organic cells made from earth abundant materials, light weight, stable, processing, morphology optimization

Initial Goals: Create all organic solar cells

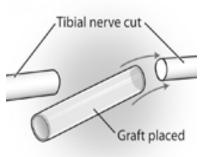
- Search for new design principles for electron accepting polymers
- Generate new materials with greater potential than fullerene derivatives as n-type materials
- Novel accepting polymers w. high mobility for organic electronics

Self-Assembly of Biomaterials

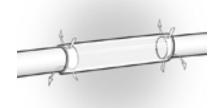
M. Tirrell (UC), J.J. de Pablo (UC), E. Luijten (NU), M. Olvera de la Cruz (NU), L. Yu (UC)

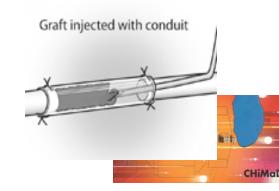
MOTIVATION

Military


- Improvised explosive devices (IEDs) cause severe blast and tissue loss injuries
- Improved body armor has improved survival rates and increased frequency of injury to limbs/digits

Civilians


- 2.8% of trauma patients have peripheral nerve damage
- Nerve injury costs \$7 billion dollars in the US alone
- 50,000 nerve repair procedures per year


Initial Goals: Create a self assembled matrix

- Injectable
- In situ gel formation
- Stiffness in range of neural tissue
- Promote growth and activity of Schwann cells

Seed Groups

- Solution processed nanomaterials and heterostructures:
 M. Hersam (NU), T. Marks (NU), Yu (UC), Galli (UC)
- Non-planar heterostructures: L. Lauhon (NU)
- Deformation processing: J. Caio (NU)

Materials Genome Initiative for Global Competitiveness

June 2011

Fundamental databases and tools enabling reduction of the 10-20 year materials creation and deployment cycle by 50% or more

National Science and Technology Council (NSTC)/ Office of Science and Technology Policy (OSTP)