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Foreword

For some time I have had it in mind to write a book which would 
substantiate my claim that it is now possible to make the study 
of education properly scientific. It seems to me at this moment 
that my contribution to the study can best be put in the form of 
several short books, each devoted to a particular part of the 
educational field, rather than, as I originally thought, into a 
single comprehensive volume. I offer this book as the first in 
such a series; in it I restrict myself to elementan’ mathematics, 
and mainly to the algebra and theory of numbers.

Perhaps this book will seem to others to be mainly another book 
about mathematics teaching continuing a line of development I 
have already exemplified in other writings; for me, it represents 
a radical departure. Now I know that only awareness is 
educable, I have found it possible to come up with original 
answers appropriate to many of the areas of educational 
endeavor — answers of a universality which ensure that they are, 
indeed, solutions to problems and not merely bright ideas. What 
characterizes this book is that it is concerned with people
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The Common Sense o f Teaching Mathematics

becoming aware of how to use their own manifestations, as 
perceivers, actors, verbalizers and thinkers, in order to gather 
mathematics on the way. It must therefore sen e any learner of 
mathematics, whoever he is.

The study of the education of awareness has yielded tools which 
can be used to grasp unequivocally the whole universe of 
education: the method of investigation coincides with the field 
of application, and knowing replaces knowledge as the cardinal 
notion. Since knowing produces knowledge, but not the other 
way round, this book shows how everyone can be a producer 
rather than a consumer of mathematical knowledge. 
Mathematics can be owned as a means of mathematizing the 
universe, just as the power of verbalizing molds itself to all the 
manifold demands of experience.

In this book I show mathematization in action, giving only just 
enough detail to display what it is, and leaving the elaboration of 
these sketches to the reader. In this way he will find how much 
he has learned through the extent to which he can add to its 
content himself.

It is obvious that learning anything always exacts a price — the 
learner must always give some of his attention, his effort and his 
time in exchange for learning. It is also obvious that where 
spontaneous self-generated learning is concerned the learner 
willingly pays what is required, whereas in school he often does 
not. My contention is that he cheerfully pays up when the 
learning he wants to acquire dictates the price, but that he will 
refuse if the price is higher than it need be, or if he is offered the
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Foreword

wrong goods in exchange. One criterion, I suggest, for the 
validity of the existence of a science of education is in its ability 
to make accurate estimates of the cost of learning.

Making the cost fit the learning requires that we know, in detail, 
what elements must be offered to the learner of a topic because 
he does not already have them and cannot invent them, and 
must therefore pay for. In an article, “A Prelude to the Science of 
Education," reprinted as an Appendix to this volume, I discuss 
this matter fully and show how ‘‘units of learning" can be 
precisely calculated. A consequence of the analysis is that we 
also know exactly what does not have to be offered by anyone 
because the learner is able to invent it for himself.

A second aspect of the cost of learning is what is required of an 
individual learner for him to become the master of what he 
learns. Here it is not possible to predict exactly what each 
learner will need to pay, since much will depend on him, but 
where the matter involved is a skill, as in most of the 
mathematics discussed in this book, we need to know that 
masteiy demands practice, and that awareness must precede 
practice. Teachers can minimize this feature of the cost of 
learning by finding those situations which carry the correct 
awarenesses and by suggesting exercises which provide the 
facility that shows that the awarenesses are functional. The book 
gives many examples to show how this can be done.

In restricting the scope of this first volume to elementary 
mathematics it is my hope that many teachers of elementary 
school can be helped to abandon their belief that mathematics is
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The Common Sense o f Teaching Mathematics

not for them, and achieve a new confidence through the 
discovery that they can indeed function as mathematicians, 
whatever the lessons of their previous experience. If this 
happens they may want to test their growth by transferring their 
insights to mathematical areas that may require additional 
fimctionings. Two of these will be the subject of further books in 
this series: on geometry and on analysis.

Caleb Gattegno 
New York City 
August 1973
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Part I
Actions Which Generate 

Numerals





1 The Set of One’s Fingers

The content of this chapter is discussed from the point of view of 
the activity of a teacher and some children, but it would be as 
well for the reader to take some time looking at his own hands 
held in front of him, palms towards himself, following some of 
the activities described.

Since for most of us our fingers will obey instructions from our 
will, a preliminary game goes as follows.

Teacher: Hold your hands in front o f you with 
all the fingers sketched out. Now fold 
down your right index finger (or your 
left thumb, or both thumbs, etc.)*

* We will subsequently use the convenient verb forms 'fold' and unfold."
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Actions Which Generate Numerals

Each time the teacher gives an instruction he folds the same 
fingers himself.

Teacher: Do with yow  fingers exactly what I 
do with mine.

He watches the students fold fingers corresponding to his. It 
does not matter whether they choose to make their left and right 
hands correspond to his, or whether they reverse them, provided 
the exact correspondence of fingers can be seen. This 
preliminary game is quickly mastered as the will can usually act 
immediately on the muscle tone of the fingers.*

The teacher then folds one or two fingers on one or both hands 
and asks the students to do what he has done. If they do this 
successfully, he folds an additional finger or fingers and asks 
them to do the same.

It may be interesting to readers at this stage to note that there 
are ten choices of showing only one finger, forty-five of showing 
only two fingers, one hundred and twenty of showing three, two 
hundred and ten of four, and two hundred and fifty-two of five. 
The order of these numbers is reversed for the number of ways

Nevertheless the game can lead to some somatic awarenesses. Not all our fingers respond 
equally readily to our will; some people find some configurations extremely difficult to produce. 
Besides the possibility tha t this could lead to a useful physio-psychological test, die discovery of 
how little one owns one's soma may have consequences for one s self-education. Practicing these 
games may make some people less rigid, more supple in their soma and in their mind. Where 
configurations need a considerable effort for their production, the teacher may drop them for the 
purpose of moving ahead with the m athem atical investigation. Not all configurations are 
required for this end; only the knowing tha t is produced by the activity.
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1 The Set o f One s Fingers

of showing six, seven, eight or nine fingers. There is one way of 
showing no fingers and one way of showing all ten fingers. The 
following table demonstrates, at this stage of the game, the 
enormous variety of showings that are available.

number of fingers 0 1 2 3 4 5 6 7 8 9  10

number of choices 1 10 45 120 210 252 210 120 45 10 1

The table with its obvious richness may suggest to teachers how 
little they have exploited the set of fingers that eveiyone carries 
around with him every day. In particular it may suggest how 
they can show the classes of equivalent sets of fingers which 
exemplify what we call cardinal numbers. As well as this 
important awareness there is another still more important for 
our purpose. It concerns complementary subsets. Since each 
finger can be characterized as folded or unfolded, and the two 
states are mutually exclusive, any subset of unfolded fingers can 
be matched with another subset made by changing the state of 
each finger on both hands. The union of the two subsets is 
always the whole set of fingers.

To bring this out we may change the game.

Teacher: Look at my hands. You can see some 
o f my fingers but not all o f them. (He 
turns his hands momentarily to show 
the folded fingers.) Will you unfold 
your fingers corresponding to my 
folded ones, and fold those 
corr esponding to my unfolded ones?

9
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If the class clearly understands the instruction they can produce 
a very large number of configurations.

Three pairs of complementary subsets.

The game with the hands is fun as long as its demands on the 
students do not become too great. As we have noticed, some 
configurations are difficult to make, and the teacher can create a 
sense of relief at a certain moment by proposing a shift to a 
verbal system which is more restricted and easier to deal with. 
He can ask the students to call out the numeral describing the 
count of their unfolded fingers after he has told them his.
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1 The Set o f One s Fingers

Clearly the 252 configurations of five unfolded fingers will now 
all be associated with the same sound. This is the restriction of 
the verbal system referred to above. The students experience the 
fact that a large variety of subsets will only trigger one sound, 
and if the teacher is sensitive to the importance of the 
association he will not hurry to stop his class from becoming 
deeply aware — by acting in the situation, not by being told 
about it — that the sounds for 1, 2, 3, 4, 5, 6, 7, 8, 9 describe 
many configurations. Each therefore applies to several different 
sets of fingers, although zero and ten in the present context each 
apply to only one set.

But the ease of uttering as against the difficulty of showing also 
permits awareness to be focused on the constancy of the pairing 
of the sounds — tiuo with eight and eight with tivo, for example. 
A new opportunity has arisen for a new awareness.

Now the exercise becomes the recognition that it is possible to 
shift from one pair of sounds to another. Bv reversal, for 
example, (2,8) becomes (8,2). By folding or unfolding one or 
more fingers a given pair of sounds can be changed into another; 
the passage from (2,8) to (1,9) or (3,7) for example, comes from 
allowing one finger to pass from the subset of folded fingers into 
the subset of unfolded fingers, or vice-versa.

Students soon realize that the teacher is not necessary to the 
game and by looking at their own hands they are able 
simultaneously to see a pair of complementan' subsets and to 
act upon it to produce either the same pair of numerals or a 
related pair.
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Though there are so many configurations there are only a small 
number of pairs of sounds needed to describe them: (zero, ten), 
(one, nine), (tiuo, eight), (three, seven), (four, six), (five, five). 
Exactly six if we are not interested in the order of the sounds; 
eleven if we are.

In the students' minds is now a wealth of experience of subsets 
of the set of fingers together with a move towards organizing it.*

In a similar way it is easy to find the subsets of the set of fingers 
when one of them, a thumb say, is taken out of circulation by 
folding it down and regarding it as immovable during the 
exercise. But it may not be necessary to do this. We shall see that 
an alternative route to the same results exists when we come to 
introduce the conventional numerals and replace a pair of 
sounds with a pair of signs.

If the students do not as yet own either the sounds or the signs 
of these numerals, a preliminary exercise will yield them. For 
this it is useful to obtain from the students a number of times 
the soimd of each numeral simultaneously with showing an 
appropriate subset of fingers.

j t  _  #
For instance it can now be brought out that since the folding of some fingers produces a t the 

same time a configuration of unfolded ones, there m ust be the same num ber of subsets for two 
complementary cardinals. Indeed, to show two fin gel's requires tha t eight have been folded, so
to each choice of two particular fingers corresponds a particular choice of eight, and vice-veisa. If

t
we use the notation

10
to indicate the num ber of different choices of two fingers from the whole

set of ten fingers, then we can express this awareness by writing the following equivalences:

1 ° V
f
10 10

~ i 10
[ i o

(
10

l ° J 1 ° , U ) UJ , 8 ;

10 I 10 10 _ 10

, 3 J l 7 ) U J  U )

12



1 The Set o f One s Fingers

Alternative ways of showing one and four.

Not too far in the future this will become an instance of an 
important theorem in combinatorics, that

ini f n
VP; vn-p

whose foundation can now be laid at the beginning of a 
mathematical education.

After the appropriate sound (one, two, etc.) has been uttered 
correctly several times for various subsets, the sign (1 ,2, etc.) is

13



written lip. As the ten numerals are produced in any order to 
match the correct showing of subsets of fingers, the following 
table of signs is built up:

1 2 3 4 5 6 7 8 9  (10)

The sequence can be read from 1 to 9, or from 9 to 1 , or in any 
order.

It must be insisted upon that the whole purpose of the exercise 
is to give students the experience that some of what they can do 
with their fingers can also be done with the set of sounds and 
the set of signs — that is, they can present any of the possible 
subsets on their fingers, and therefore can also utter or show any 
one of the numerals which correspond to the subsets.

To return to the main thread of the game, we may now write 
(7,) on the chalkboard and ask the students if anyone knows 
what must be written in the blank space for the whole set of 
fingers to be accounted for. Since this is an exercise they have 
already practiced, there is little doubt that one or more students 
will answer three and that one or more will be able to enter 3 in 
the blank space. From this pair, (7,3) all the other pairs can be 
deduced and afterwards written up and uttered. With their eyes 
shut the students can now be asked to give the appropriate 
member of a pair when the teacher gives the other.

The crucial awareness here is that the folding of any one finger 
takes it out of the set represented by the numeral on one side of 
the comma and puts it into the set represented by the numeral 
on the other side. This transformation is so simple for most

Part I
Actions Which Generate Numerals
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1 The Set o f One s Fingers

people to master and to become aware of that we can expect the 
students to learn that any pair can generate all others so that 
only one pair needs to be remembered bv name. This is a 
measure of the cost to the memory of this mastery. One pair 
must be memorized but all pairs will be retained since none is 
more striking than another and, in fact, each one is capable of 
generating all of the others.

Once this material has been explored it is another very easy 
game to link the complementan- pairs of numerals in nine to the 
complementary pairs in ten. The link can be made in two ways, 
first by finding the two sets of reversed pairs corresponding to 
any given pair of complements in ten. For instance, given the 
pair (4,6) one finger can be removed from either subset to give 
(3,6) or (4,5) and these pairs reversed to give (6,3) and (5,4). 
This can be done for each pair of complements in ten. Secondly, 
taking any pair of complements in nine, say (3,6) it can be used 
to deduce all the other pairs by folding or unfolding fingers in 
order to shift them from one subset to the other.

Of the eleven possible ways of writing complements in ten:

(0,10), (1,9), (2,8), (3,7), (4,6),

(5,5), (6,4), (7,3), (8,2), (9,1), (10,0),

we know that our indifference to the order of the two numerals 
reduces the list to only six:

(0,10), (1,9), (2,8), (3,7), (4,6), (5,5)

15
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Similarly we may reduce the list of complements in nine to:

(0,9), (1,8), (2,7), (3,6), (4,5)

In fact our activities have established that any one of the pairs in 
either list can sene as the germ from which all the others in 
both lists can be generated.

It is clearly a possible development of the game that we may be 
tempted to make to consider what would happen if two fingers, 
both thumbs say, are regarded as fixed and immovable and to 
deduce the five pairs of complements in eight, utter them, and 
write them down as:

(0,8),(1,7),(2,6), (3,5), (4,4).

If this development is chosen and pursued through all the pairs 
down to (0,1) it is an advantage to articulate the total collection 
of pairs as fully as possible so that, for example, (2, ) produces 
the correct response as a complement in ten, or nine, or eight, 
etc., given in any order. Whatever practice students have in this 
area will only be available to them for future use if all the 
articulations are working so that none is just a memory track but 
rather a link between numerals in specific circumstances 
defined by the name of the total set.

The collection of pairs may be written to give horizontally the set 
of complementan’ pairs in ten or nine, etc., and to give vertically
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1 The Set o f One s Fingers

the various complements to a particular numeral taken in 
different sets:

(0,10) (1,9) (2,8) (3,7) (4,6)
(0,9) (1,8) (2,7) (3,6) (4,5)
(0,8) (1,7) (2,6) (3,5) (4,4)
(0,7) (1,6) (2,5) (3,4)
(0,6) (1,5) (2,4) (3,3)
(0,5) (1,4) (2,3)
(0,4) (1,3) (2,2)
(0,3) (1,2)
(0,2) (1,1)
(0,1)

The table shows that there are far fewer pairs to remember, even 
if all pairs had to be retained bv drill, than shown in the usual 
lists of addition facts. Moreover we know that only one pair 
needs to be retained to make the whole table deducible through 
a process of folding or unfolding fingers in order to move 
horizontally, or of fixing or unfixing fingers in order to move 
vertically. But this is not the only direction in which 
development can take place. We know that a number of 
numerals in the English language trigger certain responses by 
their formation; for example, the termination:

— tv in forty or sixty, or the termination — teen  in fourteen or 
sixteen.

17



It is easy therefore to introduce as names for sets of fingers 
nine-ty (when one thumb is fixed,) eight-ty (traditionally eigh
ty) seven-ty, six-ty, for-ty, and (as we accept the irregular 
spelling of four-ty) accept five-ty, three-ty, tivo-ty and one-ty. 
These are names for the cardinal of the set when the sound -ty is 
associated with the fingers while one, two, three, etc., have the 
same meaning as before. If we write seven-ty as 70 we can 
uniformly represent the -ty sound bv 0. So we can write out a 
second line of our table:

1 2 3 4 5 6 7 8 9  
10 20 30 40 50 60 70 80 90

P a r ti
Actions Which Generate Numerals

We notice that one-ty had already been given another name, ten. 
It is at once obvious that if we play the game of complements on 
our fingers just as we did before, but this time putting -ty at the 
end of the naming of the numerals, we obtain, using the written 
signs,

(70,20), (50,40), (30,60), etc.

as pairs describing the complements in nine-ty.

If we happen to have followed the earlier development, 
described above as a temptation, we shall now have additional 
pairs such as (20,50) in the same line as (0,70) and be able to 
draw up a triangular table corresponding to the earlier one 
which will give all the complements ending in -ty in eighty, 
seventy, etc.

18



1 The Set o f One s Fingers

Ten-ty (which when written looks like 100, with a second zero 
after the one in 10) can be treated as we treated ten and we get 
(0,100), (10,90), (20,80), (30,70), (40,60), (50,50) as the set of 
pairs o f-ty complements in ten-ty.

If we call ten-ty one hundred, five-ty fifty, three-ty thirty and 
tivo-ty twenty, we are back in the cultural fold and no one else 
need hear the unconventional sounds. But we have managed to 
obtain something remarkable at a very little cost. The game with 
the fingers can generate an indefinite set of pairs of 
complements by a mere change of the sound associated with the 
fingers. By uttering hundred after one, two, three, etc., and 
writing 00 for it after the signs 1, 2, 3, etc., we can know at once 
that (200,700) is a pair of complements in 900 because (2,7) is a 
pair of complements in 9.

Ten-hundred is called one thousand and it can be written 1000 
since 10 is the written form for ten and 00 is the termination for 
hundred.

Similarly by calling each finger thousand we can form the pairs 
that are complementary in ten thousand and in nine thousand 
by using what we already know. Our knowledge can be extended 
to millions, billions, trillions, etc., just as easily.

What we have done so far is to use the insights provided by the 
game with the fingers to see how much of it is a matter of 
labeling and how much of it is an activity transferable to other 
numerals. What is transferable is the transformation effected by 
folding or unfolding fingers on the perception of a configuration

19



of folded and unfolded fingers. Because each student can do this 
for himself, as a game played by his will with a concomitant 
awareness, the labeling appears as a simple and regular 
convention supplied from the out-side. In a veiy short time we 
have supplied the student with a vast net which has caught a 
multitude of relationships, easy to recall and remember, linked 
together, and with which we shall do a great deal in the next 
chapters.

One more game played with fingers can now be offered to the 
children. It will sene them well, but it needs to be done with 
care if it is to convey all the invaluable experience that can be 
found in it.

Let two students stand in front of the rest, facing them, with 
their hands raised so that they can be seen, palms towards 
themselves. The student on the left (from the watchers’ point of 
view) “fixes” one of his thumbs. The teacher explains that the 
one able to use all his fingers calls them by no special name, but 
that the other calls them -ty. The two students show some 
fingers, folding the others.

Part I
Actions Which Generate Numerals

Two ways of showing forty-seven.
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1 The Set o f One s Fingers

The other students read what they see, first reading the fingers 
of the student on the left, for-ty; then reading the fingers of the 
one on the right, seven sav. Said quickly this sounds like forty- 
seven. The folded fingers, the ones not seen, can also be read. 
The sound heard will be fifty-three. The largest possible 
numeral that can be read, when all fingers are showing, is 
ninety-ten or one hunched. So forty-seven and fifty-three are 
complements in one hunched. After a few exercises of this kind 
it can be expected that the complement of any two-digit numeral 
in one hundred can be found.

A third student joins the other two on the left (that he is on the 
left is unseen by the class) and “fixes" one of his thumbs. His 
fingers are called hundred. The three students fold whichever 
fingers they choose and the class then reads from their left what 
can be seen, attaching hundred or -ty or nothing depending 
upon which student s fingers they are reading at the time. They 
may then read the unseen fingers, also from the left. For 
example, to seven hundred forty-six corresponds two hundred 
fifty-four, each is a complement of the other in one thousand. 
(The conventional ‘and* that is usually spoken can be dealt with 
later, as can the irregularities in the -ty and -teen formations 
that have already been met.)

Any number of such examples can be worked out before the 
students are asked to say how they obtain complements in a 
hundred or a thousand (or ten thousand, one hunched 
thousand, etc., if more students are used in front of the class.) 
The students will be able to articulate this if only the teacher 
makes them note, in case it has escaped them, that all but one of 
the students have a thumb 'fixed' and that when this was done a

21



few lessons earlier it was in order to provide the complements in 
nine.

The significance of this game is that the students acquire the 
procedure in their flesh; that they have experienced what part of 
the procedure is a generalization; and that they have seen that 
the usual notation of numerals is based on the fact that we add a 
new name when we move from one ‘column' (a standing 
student) to the next.

But we cannot fail to notice that the only student with all his 
fingers free is the first and that this irregularity in the sequence 
must have some significance. Only the first student has the 
possibility of not only showing all the units of the first place (1 , 
2, 3, 4, 5, 6, 7, 8, 9) but of showing one of the second place as 
well (10). But if we modified the procedure by fixing a thumb of 
the first student and freeing the rest, we would not produce the 
traditional notation; and if we fixed a thumb on each student’s 
hands we would not be able to show ten or hundred, etc. The 
traditional notation is a hybrid, as the irregularity 
demonstrates."

This exploitation of a game with fingers shows how the students 
may learn how to name any numeral in the ordinary system; to 
name its complement in the smallest set whose written form

P a r ti
Actions Which Generate Numerals

It may be objected tha t this irregularity only emerges because we have tried to use sets of 
fingers to model the Hindu-Arabic num eration system and that it would no t be a problem if we 
had used tire model of bundling' objects in tens, hundreds, and so on. But this would then seem 
to attack the commonly-held view th a t the choice of base for our ordinary num eration system 
was a  consequence of our having a particular set of fingers.
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1 The Set o f One s Fingers

ends with as many zeros as there are students in the standing 
game; to write the numerals in the following table, and the pairs 
of complements in any of the numerals in the table (or the 
numerals in the left hand column, at least.)

Table growing from To to T3

1 2 3 4 5 6 7 8 9

10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900

1000 2000 3000 4000 5000 6000 7000 8000 9000 

and so on.

23





2 Reading and W riting 
Num erals in any Base

The game with students described at the end of the first chapter 
led to a sequence of tables of numerals which need never come 
to an end. The extension of the sequence of tables is one way of 
exploiting to the full the knowledge obtained from the finger 
game. We will now show another way of looking at this 
accumulated experience in order to extend the students' 
awareness so that new fields or new ideas are offered to them as 
restructurations of that experience. In doing this we will be 
encouraging them to act as mathematicians and we can claim to 
be educating the mathematician in every child rather than 
giving them more material to assimilate.

First we see that notation in the ordinary system uses commas* 
in its written form to indicate thousands, millions (or thousands

In the United Kingdom as in the rest of Europe spaces are now used instead of commas.
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of thousands,) billions (or thousands of millions,) etc.* telling us 
that we could recast our earlier presentation by using a different 
device to lessen the burden on memory. We can therefore regard 
T2 as the key.

T2 1 2 3 4 5 6 7 8 9  
10 20 30 40 50 60 70 80 90
100 200 300 400 500 600 700 800 900

With the table written on the chalkboard, and with a pointer to 
indicate the signs, the teacher can elicit from the students the 
name of any numeral up to 999. By touching not more than one 
sign in each line, and by moving from the bottom line to the top, 
he can expect them to respond by uttering the sounds they 
already know for each distinct sign in the table. In most cases if 
the sounds are made in quick succession they yield at once the 
usual sound of a numeral — four hundred sixty-three, for 
instance. In a relatively small number of cases the conventional 
sounds are formed irregularly and have to be learned. Some of 
these we have already discussed in chapter one; others that have 
to be known are eleven, twelve, thirteen, fifteen and the regular 
formations with -teen.

To obtain the written signs for these numerals we give a 
convention of writing in a vertical column starting from the

P a r ti
Actions Which Generate Numerals

it . .This structure is also culturally specific. In East India, for instance, the traditional grouping is 
hundreds, hundreds of hundreds, etc.
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2 Reading and Writing Numerals in any Base

3
bottom and ch opping terminal zeros. Thus 2 is read, eight

8
hundred tiuenty-three.

4
7

4
is read seuen hundred four while 7 is read seventy-four.

A number of such vertical writings must be given to make sure
2

that singularities like and , and sav, 2 are read correctly, and
2

can be written correctly when given in sounds bv the teacher or 
another student.*

In order to pass from this vertical notation to the traditional 
horizontal notation we first of all deal with the three-figure 
numerals starting with those without a gap in any of the three 
possible places.

We agree, for example, to transform each triad according to the 
following schemas:

In no case is it justified to read the numerals as a sequence of digits (as if one read the first 
example above as eight tu'o three.) It may be all right to read a telephone or car registration 
numeral as a string of digits since no personality — or property except tha t of distinguishability 
— is attached to either. But a num ber has personality and 111, for example, is a very special 
entity, being equivalent to 3x37, in the ordinary system. It is essential, a t least in the work 
discussed in this chapter, to give full names to all num erals since we are learning how to read 
and write them.
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3 3 3

2 2 2-n

8 8 8

I 1

3__

2 

8

3

2

8

8 82 823 is replaced by 823.

The teacher can use the pointer with the table to produce triads 
which are written first vertically and then horizontally by 
students. He can choose examples which demand closer and 
closer watchfulness if they are not to be confused.

2 8 1 4 4 5
5 3 4 9 5 4
7 9 6 5 9 9
752 938 641 594 954 945

This is the first test on the way to mastery. The second comes 
when complete triads are now shown and only one or two signs 
are indicated. Vertically there is no ambiguity, but horizontally, 
unless the place of a digit is given by some indicator, there can 
be doubt. 2 may be 2 or 20 or 200.

The place holder zero may be best understood by starting with a 
numeral which does not use the second line of the table. We 
agree to place something to keep the other digits apart and 0 
looks capable of doing just that. 603 says that 6 and 3 are not 
contiguous, whereas 63 says that they are.
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2 Reading and Writing Numerals in any Base

Once a zero has occupied one empty space, two zeros can occupy 
two empty spaces. So 200, say, gains a new meaning. Earlier it 
was twerity-ty. Now it says: There are two hundreds, no -ty's 
and no unnamed ones. (The latter we shall call from now on 
units of zero order, either because they belong to To or because 
there are no zeros in their written form. 27 has seven units of 
zero order and two units of the first order. The nomenclature 
can be practiced on a number of examples until it is thoroughly 
fluent. 453 has three units of zero order, five of the first order 
and four of the second.)

We will accept 002 or 012 or 020 as correct ways of writing 
numerals pointed out on T2. In fact we shall need these 
formations when we write numerals such as one thousand (and) 
two. Later on we shall omit writing zeros if this does not create 
ambiguity and if we already have an agreed notation, as with 10, 
20, etc.

We are now equipped to introduce the writing of any numeral.

We write in succession along a horizontal line a sequence of 
three-figure numerals:

453 772 564 822 934

If we rewrite 934 it can be easily read. We now place a comma to 
the left and then one figure to the left of that. That is, we write in 
rapid succession
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934

,934

2,934

P a r ti
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This can be read if the teacher gives the sound thousand to the 
comma, for the sound of the numeral will then be two thousand 
nine hundred (and) thirty-four, which is what anyone able to 
read numerals will say.

The next step is to place another digit on the left to produce say 
22,934 which will be sounded tiventy-two thousand nine 
hundred (and) thirty-four. Another digit, giving 822,934, will be 
sounded exactly as if it were composed of two numerals of three 
digits, the first being succeeded by the sound thousand. Taking 
other examples, each based on sets of three non-zero figures, we 
learn to read numerals of four, five or six figures.

Continuing the process for the next comma three places to the 
left of the first, and calling it million, we read 4,822,934; 
64,822,934; 564,822,934; and any similar seven, eight or nine- 
figure numerals. By naming the commas further to the left 
billion and trillion we can now read numerals of up to fifteen 
digits.

Once this has been conquered we may go back to shorter 
numerals and consider what happens if zeros appear. Numerals 
such as 1,002; 40,008; 400,005; 2,000,007 are much more easily 
spoken given their written forms than written down from their 
names. In order to conquer the written form we may recognize 
that we have based our work on Table T2 and limited ourselves
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2 Reading and Writing Numerals in any Base

to triads of figures. Let us accept this temporarily as a rule for all 
written forms so that when we hear a numeral which does not 
sound like a triad we know that a zero must appeal· somewhere 
in it. Some such numerals we are already familiar with; we 
regard two hundred as a single soimd capable of being 
combined with other soimds, but when we hear it sounded alone 
we know its written form is 200. But we will use our new rule to 
cover a case like tiventy-three, which we will write 023, where 
the 23 tells us what sound to make and the 0 merely makes it up 
to a three-digit sign. The zero has thus become a figure but it 
only has meaning within our written convention, so we will say 
that when it is at the left of a triad it is nonsignificant.* When 
the written numeral is spoken the zero has no sound but can be 
represented by a deliberately observed silence. So, in the 
example 400,005, say, the 400 is sounded four hundred, the 
comma takes the sound thousand, and the last triad is given 
only the sound five; one of the zeros is for the silent hundred 
and the other for the silent -ty. Giving examples with one or two 
silences will provide the opportunity to practice this convention 
which harmonizes all possible cases.

Because we are concerned with establishing an exact 
correspondence between the sounds and the signs for numerals 
so that the students are able to pass without hesitation from one 
to the other, the teacher will find that the technique of dictation 
can play an important part in pinpointing the problems. A 
procedure that may be foimd helpful is for the teacher to start by

If however another triad with some non-zero figures is placed on its left, the zero changes its 
role to tha t of placeholder and becomes significant.
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dictating numerals and for the students to write solutions on the 
chalkboard, the remaining students being invited to approve or 
correct the results. Next the teacher can dictate while the 
students write their solutions on paper, exchanging papers to 
compare answers, the teacher intervening only when the 
students are completely lost, and only then by working a similar 
example on the chalkboard with the class as a whole. Finally 
students in pairs can dictate to each other and check their 
solutions in turn. The last phase gives the teacher the chance to 
observe whether mastery has been attained.

As an interlude in the reading and writing of Hindu-Arabic 
numerals, the Roman system can be introduced. This is not just 
a device to instruct the students in an historic but still-used 
notation; it is rather an occasion to consider and compare 
various inspirations directed at solving one particular problem 
and for evaluating what has been achieved so far. If we call the 
signs I, V, X by the names of the letters, by simple iteration of 
these sounds we can speak any of the following:

I II III IV V
VI VII VIII IX X
XI XII XIII XIV XV
XVI XVII XVIII XIX XX

It is clear that, if we interpret V as the set of fingers of one hand, 
X or X as the contents of two hands, and XV of three, etc., the 
system is consistent and reflects better than the Hindu-Arabic 
system the way one hand, then two hands, etc., are being looked 
at. Its drawbacks will not be in the area of notation.
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2 Reading and Writing Numerals in any Base

We also notice that the above arrangement shows that it is 
possible to have a system that includes more than one notational 
base. If we continued with the Roman numerals, L would appear 
as another turning point in the notation, then C, then D, then M, 
and so on.

Examples of mixed bases other than the above form part of most 
systems of units of measurement. Clocks use seconds, minutes, 
hours and days that refer to base sixty, sixty and twenty-four.*

Base is the name given to the first point in a sequence of 
numerals at which a shift to a higher order takes place. On the 
common system, as it is arranged in T3, T4, etc. (see page 23,) 
each line has the same structure and starts as an iteration of ten, 
giving ten-ty on T2, ten (ten-ty) on T3, ten (ten [ten-ty]) on T4, 
etc.

We can generate the complete system of numerals by using the 
pointer in a systematic way: first on TO, then introducing 10 
which enables 11, 12, 13, . . . 19 to be indicated, then 
introducing 20 which yields 21, 22, . . . 29, and so on up to 90 
and 91-99, which is the explicit content of Tl. This is followed 
by the introduction of 100 which can be associated with each 
combination already made to take us up to 199, then the 
introduction of 200, which will take us up to 299, and so on up 
to 999, which completes T2.

■)£ • • • t i l lThese systems are not 'pure' since although they use the idea of changing into units of a 
higher order they also use decimal num eration within each order; as in writing, for example, a 
time of 2 hours 32 minutes 54 seconds.
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We shall assume that we have learned how to order the 
sequence of pointings on T2 in such a way that the recitation of 
sounds from one to nine hundred ninety nine covers the same 
set of soimds in the same order as anyone would use. As we 
associate each utterance with showing a distinct and 
recognizable object (here this is the particular gesture of the 
pointer,) we have produced what we can legitimately call 
counting. The recitation of the proper sounds on its own does 
not constitute coimting since we reserve this word to indicate 
that we have answered the question “how many?”. This requires 
recitation together with a step-by-step passage from object to 
object in a set with the aim of exhausting the set without 
repetition or omission.

Finding a name for the base is a special problem which becomes 
very easy to solve when one looks at T2; it is generally confused 
because of the irregularity that we have already noticed in the 
common system — that ten is the name for the full set of fingers 
of the first student in the finger game. Let us insert a vertical 
line on T2 separating it into two parts, one containing the first 
column and the other not containing it.

1 2 3 4 5 6 7 8 9
10 20 30 40 50 60 70 80 90
100 200 300 400 500 600 700 800 900

The base for the set on the left in the illustration is 4, the first 
unit in To which is not allowed in the set.
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2 Reading and Writing Numerals in any Base

Hence there is no system with a base of 10 since 10 as we write 
it (and sound it) belongs to the second line of Ti, T2, . . . ,  and all 
systems will contain it.* If we want to have a system with more 
than 9 units we have to widen it so that it contains the extra 
units. The letters of various alphabets will guarantee a sufficient 
supply of signs for most practical purposes. For instance, A, B, 
put after 9 give us what is called a duodecimal system and the 
extension of the next lines of T2 by adding.40, BO, and/100, £00.

Once we are clear that the truncation or extension of T2 gives a 
system of numeration in any base, all we have learned to do in 
the common system remains true for all the others. The 
difference lies only in the labeling of the sequence of numerals.

Thus in base 4 we may only use signs from the set on the left of 
the table on page 34. If we observe the agreed order we produce 
the following sequence:

1, 2, 3,10,11,12,13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101 
and so on.

The sounds we give these numerals will be what we have already 
learned to use in the ordinary system of numeration which, for 
the mathematician, is not in any way privileged.

■ X * ·  1 1 - 1  „Alternatively we can say tha t 10 is the sign and “ten" the sound for any base whatever. So it is
still true that the base of the common system is 10, but now we see tha t when we are working in
various bases we need some other system of signs to determ ine precisely which base we are to
use.
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In this chapter we are only concerned with reading and writing 
numerals. In the next chapters we will extend our powers and do 
much more with the elements that we have been able to single 
out and synthesize. So we will not study operations on numerals 
here but only note that what we have gathered so far· permits us 
to ask questions like the following:

1 If we call alternate numerals odd or even 
according to whether their set includes 1 or not, 
what are the characteristics of these two sets in the 
various systems of numeration? (This can be put 
differently, and perhaps more provocatively, by 
asking, “When is 11, for example, an even 
number?”)

2 Could 101 and 32 be the written results of 
counting the same set of objects in two different 
systems?

3 What are the complements in 100 of the following 
numerals, read as belonging to the systems whose 
bases are indicated by the Roman numerals?

23 in (IV) (V) (VI)
34 in (V) (VI)
45 in (VI)
56 in (VII) (VIII) (IX) 
67 in (VIII) (EX) (X) 
78 in (EX) (X)
89 in (X)

(X)

Can you account for the answers? Can you find 
other numerals which behave similarly?
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2 Reading and Writing Numerals in any Base

4 We will say that the numeral A precedes the 
numeral B in any system (and write A < B or B > 
A) if in the ordered sequence of sounds starting 
with one the soimd of A is heard before the sound 
of B. (For systems in any base between 2 and 9 — 
i.e. which use only those signs used in the common 
system-that is equivalent to saying that the soimd 
of A is heard before the sound of B in the recitation 
of the common system.)

Which numeral immediately succeeds 

13<iv) 24<v> n id i)  344(v) 555(vi) ?

Which numeral immediately precedes 

looe») 1,000<IV> 10,000(») 876(IX) 300(,v) ?
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3 Exploiting Complementary 
Numerals

All the pairs of numerals that can be generated as complements 
within the same numeral in a particular numeration system will 
be called equivalent. So, for example, all the pairs we found in 
the common system in the first chapter, and all those we could 
have found in any base in the second chapter, which together 
form 10, or 100, or 1000, etc., are therefore equivalent. Since the 
pairs (3,7) and (6,4) can be found on the fingers of two hands, 
we shall write (3,7) ~ (6,4) and read this as, “the pairs three- 
seven and six-four are equivalent" or “the pair three-seven is 
equivalent to the pair six-four.” This statement only links the 
two pairs, but since both are formed by partitioning the same set 
of fingers, we should be able to show this as well. We try:

(0,10) ~ (1,9) ~ (2,8) ~ (3,7) ~ (4,6) ~ (5,5)
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The bringing together of all these observations still does not 
explicitly say that we are partitioning the same set. A more 
dynamic notation is needed. An arrow will perhaps sene this 
purpose; and, furthermore, the appearance of two numerals at 
one end of the arrow and one numeral at the other will indicate 
that two elements merge into one, or that one element is 
partitioned into two.

Adopting the traditional notation of addition to convey the 
notion of merging, say, 3 and 7 to form the set 10, we may write

3 + 7 -» 10 or 10 -> 3 + 7

An operation, which we are calling addition, and which displays 
the properties of activities with the fingers that we have already 
explored, must satisfy statements in this new notation that we 
have formerly acknowledged in the old. So we must be able to 
write, for instance,

3 + 7 ~ 7  + 3 —»10

This indifference to the order of addition is usually referred to as 
the com m utative p ro p erty  of addition.

We can use an arrow where we have previously used an 
equivalence sign since it is legitimate to think of having done 
something to the written form of a pair to make it look different 
from before:

3 + 7 —> 7 + 3 —»10

P a r ti
Actions Which Generate Numerals
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3 Exploiting Complementary Numerals

Slimming up our knowledge from the first chapter we may give 
the following statements as a sample of the many more that 
could be written:

10—> 1 + 9 —»2 + 8 —>3 + 7 —>4 + 6 —»5 + 5 —>6 + 4 —» 7 + 3 —>8 
+ 2 —> 9 + 1

100 -» 10 + 90 -> 20 + 80 -» 30 + 70 -> 40 + 60 -» 50 + 50 -> 60 + 
40 -> 70 + 30-> 80 + 20-> 90 + 10

1000 -> 100 + 900 -» 200 + 800 -> etc.

In the common notational system that we are now using we can 
easily shift to the complements of numerals which lie between 
those mentioned above. For instance since 40 is the complement 
of 60 in 100, a numeral before or beyond 40 will be paired with a 
numeral beyond or before 60 respectively. In fact if we operate 
as follows the example can indicate how we can treat a number 
of cases so that the solution to the question, “what is the 
complement of such-and-such in such-and-such?” will be 
generally available.

Let us write any digit and immediately above it, its complement 
in 10. We put another digit on the immediate left of the first so 
that we have formed a numeral with units of both the zero and 
first orders. We add another digit above so that with the earlier 
complement it will now give us the complement in 100. We now 
put another digit on the left and form the complement of the 
new numeral in 1000, and so on.
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2 (complement in 10) 52 (complement in 100)
8 48

652 (complement in 1000)
348

(It is instructive to compare this with a similar game in which 
successive digits are placed on the right instead of the left.)

What we have just done makes it easier to formalize what we 
have already learned from the finger game with the standing 
students. If we now introduce equivalent notations that we have 
already met together with a new one, we can practice writing 
them with numerals drawn from any table T„.

(652,348) ~ (0,1000) or 652 + 348 ~ 1000 or 652
+348
1000

What we want to do now is to reverse the relationships above 
and to call the finding of a complement the finding of the 
difference between, say, 1000 and 348 or 1000 and 652, and 
write it as a subtraction in either horizontal or vertical notation.

1000-348 or 1000 ; 1000-652 or 1000
-348 -652

Part I
Actions Which Generate Numerals

If we return to the fingers game, we can interpret folding as a 
disappearance, a taking away, and look at subtraction as taking 
2 or 8 away from 10, or 348 or 652 away from 1000. All these 
expressions really mean, “find the complement,” and if we are
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3 Exploiting Complementary Numerals

adept at this in any notation and using any equivalent form, we 
shall be less easily put off. So it is recommended that the 
students should meet exercises presented in a number of ways 
and for the language to be fixed only when it can trigger all the 
equivalent forms involved. A page of exercises might then look 
like this;

1 10 — 7»  ; 100 — 5 1 -  ; 1,000 -  428 ~

2 Find the differences iqO 1000 10,000
-  42 ~ 574 ~ 6,513

3 Put the complement where the arrow points

17 —»(in 1,000) 35 ^ ( in  100) 213-»(in
10 ,000 )

4 Put the following numerals in order as they appear 
in the sequence of counting numerals:

• complement of 528 in 1,000

• difference 1,000 — 491

* (3) 1000 

-  617

• what is left when 373 is taken from 1,000

742
• the missing numeral in +

1,000
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The background experience that we can transfer from base to 
base we shall call the algebra of the situation. The ease of 
transfer from one base to another depends on an awareness that 
the algebra remains the same and that only the labels are 
necessarily different. Every time we find we have reached the 
way we operate in a situation we have reached the algebra in it, 
and this awareness enables us to distinguish, among the words 
used, those which refer to the inherent dynamics of the situation 
and those which are required because of its specificity. The two 
instructions,

find the complement of 11(1V) in 100, and 

find the complement of 11<V) in 100,

refer to the same operations but necessarily yield different 
answers since there is a difference in the meaning of the 
numerals between one situation and the other.

Rather than make enormous efforts to avoid such situations 
because they could create confusion, teachers will be well 
advised, on the contrary, to use these situations systematically 
so that the students can disentangle the elements which cause 
the confusion.

The following game may also help in the disentangling of 
operations and labels.

Since the set of one's fingers is a datum that cannot be generally 
changed we will take it as an absolute. But on the other hand if
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3 Exploiting Complementary Numerals

we are gradually unfolding the fingers in order to label them, we 
know that any of them could be unfolded first and that any set of 
fingers could be labeled 10. Suppose we start from closed fists 
and unfold first the left thumb, saying one for it, then the 
adjacent index finger, saying two, then the adjacent middle 
finger, saying ten. If we follow the implications of this action, by 
saying to ourselves that we are only allowed to use 1 and 2 as 
units of zero order, we know that this corresponds to a vertical 
line being drawn on T2 immediately to the right of 2, 20 and 
200. So counting one’s set of fingers can be understood as 
equivalent to counting with the numerals on the left of this line 
in T2. The names of the fingers will therefore be 1, 2, 10,11, 12, 
20, 21, 22,100, 101. We could reach the total in another way by 
counting the 10's, which would give 1 . . .  2 .. . 10, and since 10 
tens is an equivalent expression for one hundred, and there is 
still one finger unaccounted for, the set of fingers can be labeled 
1010»)

Among the lessons that this game can teach us, apart from 
making the distinction between the set of fingers as an absolute 
and giving it a name which differs according to the labeling 
procedure used, we can note:

1 the numerals describing the whole set of fingers 
are not arbitrary; there are nine different 
possibilities because there are nine positions for 
the vertical line in T2;

2 the smallest base is (II) (the corresponding system 
of numeration is called binary;)

3 in the binary system each of us has 10 hands;
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4 the set of fingers could also be called 1111111111 
in a system we might call “base I”;

5 the set of fingers could never be labeled 15; why 
not?

Returning now to our treatment of subtraction we can look at 
the problem of finding the difference between two numerals by 
taking the complement of one in the other.

Since we already know how to find the complement of any 
numeral in another which has 1 as its first figure followed by as 
many zeros as there are digits in the given numeral, we can 
change a given pair of numerals into an equivalent pair by 
adding that complement to both and then finding the difference. 
For example, to find the difference between 71 and 48 we can 
add 29 to both and obtain an equivalent pair (100,77) where the 
difference is immediately seen as 23.

Let us make this explicit on a number of examples of subtraction 
which we shall work out in the common system.

The difference between 232 and 184, which can be written as:

232232 — 184 or or even (232,184)
-  184

will not change if we move 16 steps along the ordered set of the 
increasing numerals and replace both numerals by 248 and 200. 
We can then hear that the difference is 48. This we can write:
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3 Exploiting Complementary Numerals

232- 184->248-200-> 48

or 232 _ 248
- 184 - 200

48
or (232,184) ~ (248,200) ~ (48,0.)

Another possibility' would have been to find the complement of 
184 in 200, or 16, and then add 32 to 16. The thinking could be

232
 ̂ drawing a loop to indicate that we askillustrated by

ourselves first what is the complement of the whole of the 
second numeral in the numeral 2, which is always read two 
hundred in that position; and this being 16 we can now add 16 
and 32 to get the difference equivalent to the one asked for. A 
subtraction has been replaced bv finding a complement followed 
by an addition.

Let us now consider a sequence of subtractions in which the 
length of the numerals and the bases vary.

A 11,213 
-6,758

In this, 11 has to be considered 
as 10 + 1 and the new form is 
clear;

1U.213
-6,758:

the complement is 3,242 to be 
added to 1,213; answer: 4,455.
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B 101,202 
-  09,844

Similarly we write the 
complement of 09 thousand in 
100 thousand (or 90,156.)

D01,202
-091Î44)

to be added to 01,202, giving 
91,358

C 324,165 
-  187,668

In this case the notation needs 
amental support for we can 
consider 3 as 2 + 1 and find 
, complement of 187,668 in

200,000 (or 012,332) which we 
add to 124,165 that was left 
over. The answer is 136,497.

When we change base of numeration we operate exactly as 
above but remind ourselves that we no longer write 10 — 1 as 9 
but as the last zero order unit in this system.

D In base (VI) 
123,203
-44,344

/Î23,203
t44,344)

Again we consider the 
“loop" and write the 
complement of 44,344 
in 100,000 in that base, 
(or 11,212) and add it to 
23,203 getting 34,415.
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E In base(II) 

101,100,111 
-10,111,010

1(01,100,111
^ 10, 111 . 010^

F In base (XII) 
402,133,408 

-AB,9QA,BA9

The "loop” tells us that 
the complement of 
10,111,010 in
100.000. 000, (or
01.000. 101) is to be 
added to 01,100,111; 
answer 10,101,100.

Since B ~ 10 — 1 in this 
system and 4 is 1 + 3 we 
find the complement of 
Of AB,98A,BA9 in
100.000. 000 oi-
lO,231,012 and add it to 
02,133,408 and obtain 
12,364,4L4.

All these subtractions show that the finding of a complement is a 
routine operation and that every subtraction can be replaced by 
an addition. We can now consider how to use complements to 
speed up these additions.

We shall work first in the common base of numeration and give 
an example with four digits:
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3678
3678 + 5689 or in the vertical notation

+5689

P a r ti
Actions Which Generate Numerals

Since we know that 311 is the complement of 689 in 1,000, we 
shift that amount from the top numeral to the bottom one and

3367
have and the answer is read immediately as 9367 and

+6000 J
written from the left.

But we could also have noted that 322 is the complement of 678 in
1,000 and taken that amount from the bottom numeral to give it to

4,000
the top one, or _ _ „ „ also immediatelv readable as 9367. r +5,367

This transforming of the given operation in some examples 
which sound, look, and therefore are, easier to manage, will no 
doubt simplify the work on longer examples.

Because addition and subtraction are inverse operations it 
seems not only reasonable but in the nature of things to use 
them together as we did here to solve any problem which seems 
to contain only one of them.*

■Jfc· . .Readers will have noticed that no word has been said about carrying  in the transform ation of
addition proposed here. Indeed this operation only appears if we do not move towards using the
artefact of the complements that generate zeros and thus eliminate the need for any addition.
The only question that rem ains to be looked into refers to the case when it is not possible to shift
the com plem ent from one addend to the other. This is easily treated by generating zeros
alternately o r in sequence and then ju s t reading the answer, as in the following example:

430,121 -+ 410,055
+583,634 +603,700 or 1,013,755
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3 Exploiting Complementary Numerals

In this approach (based essentially on complements,) we have 
not yet shifted from dealing with numerals to dealing with 
numbers since awareness of the properties of numerals is all we 
have needed to find the kind of answers we are after. Numerals 
are such well organized sets of soimds, or of written signs, that 
their use inevitably generates some meanings even though some 
other meanings which can also be carried by them are not yet 
made explicit.

The treatment of addition and subtraction of numerals in any 
base given in the preceding chapters makes it clear that we can 
perform these operations without the meaning that relates them 
to the coefficients of polynomials (see chapter 7, p. 66.)
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4 Introducing One Aspect o f 
Division

With the experience of numerals gained so far it proves possible 
to meet almost all the demands of “long division” defined as 
repeated subtraction. By showing that long division can be done 
without any prior knowledge of multiplication, we give readers 
the chance to compare this presentation with another, given in 
Gattegno Mathematics Book 2, and to determine which is 
epistemologically more sound.*

We already know how to subtract any numeral from another 
whatever number of digits they have and whatever the base that is 
used. So if we define division as repeated subtraction it is clear that 
we need only go on subtracting one numeral horn the other as 
many times as it is possible to do so and then coimt up how many

The alternative approach develops multiplication before division and is based on the use of 
Algebricks. Some such change of approach is eventually necessary since the m ethod of 
complements is restricted to providing a model tha t is only adequate for the operations of 
addition and subtraction.
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subtractions have been made. The subtracted numeral is called the 
divisor, the one it is subtracted horn is the dividend, the number of 
times it is subtracted is called the quotient, and what is left of the 
dividend is called the remainder. The quotient therefore tells us 
how many times the divisor is contained in the dividend. We may 
write the operations in the traditional wav; for example:

says that it was possible to subtract 3 twice from 6 and that 
there was no remainder.

Clearly this example leads to an infinity of others if we merely 
put the same number of zeros after the 3 and the 6:

_2 2 2
30)60 300)600 3000)6000

-30 -300 -3000
30 300 3000

-30 -300 -3000
0 0 g

and so on

If we have 31 instead of 30 but keep the 60 as before, we have 
(where r indicates the remainder:)



4 Introducing One Aspect o f Division

1 r 29 

3l) 60

-31
29

Had it been 29 instead of 30 we would have had:

2 r 2 
29) 60

-29
31

-29
2

So long as the number of subtractions is not large the procedure 
is tolerable but it becomes tedious long before the number of 
subtractions reaches the hundreds. It would not be a practicable 
method for finding, say, how many times 29 is contained in 
15,358. But we can pause and ask ourselves if we know 
something that will enable us to economize on our efforts. Since 
one hundred is another name for ten-ty, tivo hundred for 
tiuenty-ty, tivo hundred ninety for tiventy-nine -ty, we could 
subtract 290 each time and coimt 10 in the quotient for each 
subtraction. In this example it is even possible to subtract 
(twenty-nine)-ty-ty, or twenty-nine hundred, and count 100 in 
the quotient for each subtraction of 2900.

Each cluster of divisors that we subtract at one time we call a 
partial quotient and the total of the partial quotients is the 
actual quotient.
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Treated in this way the example works out as follows

529 r 17
29) 15,358

-2,900 100
12,458
-2,900 100

9,558
-2,900 100

6,658
-2,900 100

3,758
-2,900 100

858
-290 10

568
-290 10
278
-29 1
249

-29 1
220

-29 1
191

-29 1
162
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-29 1
133

-29 1
104
-29 1

75
-29 1

46
-29 1

17

We could have saved some time in the last nine steps had we 
noticed that 278 is reasonably close to 290. So we could give 12 
to the 278 and 10 times 29 again (giving a total to the partial 
quotients of 530.) Then to recoup what we gave we take one of 
the 29’s (reducing the quotient to 529) and use it to supply the 
12, leaving 29 — 12 or 17 as the remainder.

At a technical level we see that the kind of procedure we have 
just outlined enables us to tackle divisions, without any 
conscious prior acquaintance with multiples as a system, in any 
base of numeration and with numerals of any size. The 
procedure will, no doubt, in many cases be tedious to carry out; 
nevertheless it can be done. Whether it should be is, as we have 
already suggested, a question for the reader to answer. A reason 
for teaching it may well be that its clumsiness and tedium act as 
a motivation to students to become aware of ways in which the 
particularities of the examples enable the procedure to be 
compressed or re-organized. If this is so, teaching long division
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is to motivate students to become more alert to the 
characteristics of numerals, to be less clumsy and more 
imaginative. It may also have additional value in teaching what 
programming a computation requires.

Since any numeral can be composed of the numerals which can 
be found in one of the (T„) tables, it will always be possible to 
perform a long division by using only what we have learned this 
far. Such exercises will contribute to an education of the 
student’s flair and resourcefulness as he discovers that he can 
save himself much time by taking certain steps.

Looking at the number of digits in the dividend will show what is the 
largest number of zeros that can be put on the light of the divisor and 
still form a numeral that can be subtracted horn the dividend. It will 
not be necessary to perform more than 10-1 such subtractions to reach 
a new dividend with at least one digit fewer than the original one.

Treating this dividend like the first we can again find that not 
more than 10-1 successive subtractions will reduce the number 
of digits in the dividend. And so on until a dividend with the 
same number of digits as the divisor is reached. This last 
division will never require more than 10-1 subtractions of the 
original divisor to produce a dividend smaller than the divisor. 
This last dividend will be the remainder. The quotient will be 
obtained by counting the successive partial quotients with the 
same number of zeros and reading the sequence as one numeral. 
As this study shows, this kind of long division can be carried out 
in any base since we have spoken of numerals, zeros and 10-1 
only.
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5 A Model for the Algebra of 
Arithmetic

In modern mathematics the word algebra is used to mean a set 
together with an internal operation which associates to any pair 
of elements of the set another element of the same set. The set is 
then said to be structured by the operation. One and the same 
set can be the basis for more than one algebra if more operations 
are introduced. The different outcomes of the various operations 
are distinguished by being labeled differently. In this chapter we 
shall provide a number of algebras compatible with (i.e. which 
do not contradict) a set of rods with certain properties. This will 
make available models of algebraic structures so that the 
perception of what is done with the rods generates an awareness 
of operations on sets.

The set of rods we use is sometimes called Algebricks to suggest 
that their main purpose is to display algebra.
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There is no intrinsically mathematical reason, only convenience, 
for choosing 1 sq. cm. prisms from 1 to 10 cm. long. The choice 
does indeed allow students to acquire spatial experience of the 
metric system and it permits a small amount of material to 
produce a considerable number of rods. This gives the illusion 
that the set of rods, though actually finite, is indefinite and can 
be conceived, by a leap of the imagination, as being infinite. 
Rods of one length are of one color, and conversely. This allows 
the quick recognition that they form classes of equivalence by 
length, and the separation into particular subsets that may be 
needed in certain circumstances.

Since the rods are of equal cross-section they can be assembled 
into trains of many lengths. The colors may suggest that we 
stress the segments, or we may regard a train as a whole.

The unify ing characteristic of the rods is actually a concept, that 
of the length or volume of the rods. Whenever it will not create 
confusion we shall use the word rod for its length (or perhaps its 
volume; the context will tell.) A length can be perceived as a shift 
of awareness when one’s eyes move from one extremity of a 
segment to the other.

It is in the succession of two movements of one's eyes when a 
train of two rods is scanned that we find the basic experience for 
the addition of lengths. (This is similar to the way in which we 
convince ourselves that tw o heaps of objects have been added.)

The psychological basis of algebra being the mental dynamic 
that makes us go from two things of a kind to one of the same
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kind, or vice-versa, vve see that we can define addition as an 
operation upon the rods by putting any two of them end-to-end 
and substituting for the constituent pair of lengths the unique 
length separating the extremities of the train. That our eyes (and 
our touch, particularly in the case of blind people) also 
experience this merging of two lengths into one makes the 
awareness more apparent and the definition more easy to 
accept.

We are acting simultaneously at four levels:

1 the action of placing rods end-to-end,

2 the simultaneous perception of a train and of its 
components,

3 the recognition that there is a host of possible 
choices of pairs to put end-to-end,

4 the awareness that the sum is both generated by 
the train and distinct from it, and is only there if 
we will it to be.

Placing rods end-to-end is an action which carries an 
indifference with respect to the order in which they are placed 
end-to-end. This indifference becomes a property of the 
addition called com m utativity.

If r and g are signs accepted as referring to a red and a green rod 
respectively, r + g is in no way a better form than g + r. It is 
customary when one becomes aware of a property of an 
operation to state it explicitly and we call such a statement an
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axiom. So we now know that because of our initial indifference 
with respect to the order in which we place two rods end-to-end 
we can write:

l . a  + b ~ b  + a(~  being read as “is equivalent to") to express 
the fact that the order of the rods is immaterial.

Note that we are also indifferent to the orientation or direction 
of the train in space.

Play with the rods very quickly yields the fact that trains can 
have more than two cars. To feel that here is a possibility that 
must be reconciled with the definition of addition as involving 
only two rods is to have become sensitive to the situation, 
critical of what one thinks and says, and determined to act (in 
this case) as a mathematician. It is obvious that in everyday 
language we can readily accept that a train is made of rods end- 
to-end although a third rod can only be end-to-end with one of 
the others and not both. If we experience this tension in the 
mind and yield to it to attempt to reconcile the words with the 
perception, we may discover that we have made some progress 
in awareness and are therefore better able to see further than 
before.

Indeed, if we ignore the rods and think only of their lengths, the 
operation of addition allows us to focus at one moment on the 
component lengths and at another on the single length that 
replaces the components. If we look at a train composed of three 
rods (lengths) we can also visualize it in two wavs as composed 
of two lengths end-to-end, and thus as a situation falling under

Part II
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our definition of addition. Letting a,b, c represent the lengths of 
three rods, (o + b) and (b + c) can represent the perceptions of 
the single lengths equivalent to the lengths a and b or b and c 
end-to-end. Using this notation we can write about the train 
made of the lengths a,b,c that

(a + b) + c ~ a + (b + c)

since we can ignore the join between a and b or the join between 
b and c. Since we have now reconciled the existence of trains of 
three lengths with our definition of addition we can give 
ourselves the freedom to write the train as an addition even 
when the parentheses are removed. So we may say, as a 
definition, that a + b + e is a new way of writing the above 
equivalence:

2. a + b + c ~ (a + b) + c ~ a + (b + c.)

The above definition describes a property of addition, called 
associativity7, whose main function has been to raise the mind 
to a level from which it can preserve the validity7 of addition as 
an operation on only two elements and integrate trains of three 
lengths into the class of additions. As soon as we realize that the 
definition of addition is saved whilst its restriction has been 
opened up, we see that the role of the associative property is to 
put infinity within the reach of addition and make addition into 
a truly mathematical operation. From now on when we look at a 
set on which addition has been defined (as w ith the set of rods 
we are using as a model) we shall know:
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1 that any pair of elements can be merged into (or 
mapped onto) a third, their sum;

2 that the act of adding another element to the pair 
is equivalent to adding it to their sum;

3 that this can be repeated indefinitely so that, 
although the sum can only be foimd for a finite 
number of elements, it can be extended again and 
again.

This precise examination of what is actually involved in our 
actions, in our thoughts, and in our perceptions, helps us to be 
“with” what we are doing and to claim exactly what we know and 
no more. In particular we see that the functioning of a 
mathematician is in fact the functioning of any mind with some 
polarization of attention on certain aspects of awareness, and 
not an awareness that only some specially gifted people enjoy. 
There is no more “abstraction” to the activity than when a two- 
year-old replaces meanings by words. There is no more 
“generalization” than in his use of nouns to refer to classes of 
objects.

We encountered a problem when we considered a train of three 
rods and it led to significant progress through our awareness of 
associativity. What advance may be experienced when we 
become aware that a train could have a single car? Is it really a 
train? Or can we make it a train by some newr definition?

Indeed we can if we conceive of an imaginary car which can be 
paired with the given single car to form a train of two cars

Part II
Actions Which Generate Algebra
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without affecting the length. This imaginary train we can call 
zero and write 0 for it.

3 .a  + 0 ~ 0  + a ~ o

summarizes what we have in mind. Zero is the length of a rod 
which when put end-to-end with any other rod forms a train 
whose length is that of the given rod. Although no such rods 
exist, our mind can produce as many as it wants and place each 
of them end-to-end with any other rod, including another zero 
rod.

Returning to our capacity to stress, for a train of two cars, either 
the lengths of the component cars, or of the whole train, or of 
both at the same time, we can ask ourselves whether the triplet 
a, b, (a + b) can be handled to produce new awarenesses. Let us 
use c instead of (a + b) to convey in another way that we are 
thinking of it as a whole. Then we may write a + b ~ c and three 
variations of it arising from our indifference about the order of 
the equivalence (usually called the symmetry o f equivalence) 
and about the order of the addition (commutativity):

c ~ a + b  b + a ~ c  c ~ b + a

If we omit the datum b and write a + D ~ c, where the box sign 
indicates an omission and we call the form of the writing an 
equation, we can write three variations of it:

c ~ a + □ [] + a ~ c  c ~[] + a
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and by omitting a or c instead of b we can write another eight 
equations:

[ ] + b ~ c  b +[] ~ c [] ~ a + b [] ~ b + a

c ~ [] + b c ~ b + [] a + b ~ [] b + a ~ []

All these variations represent awareness of some indifference 
made explicit.

All of these equations, thought of as relating to the rods, 
correspond to the existence of a gap in the triplet. But from 
another point of view what is at one moment a gap can be 
perceived as a difference in length. We will write c — b to mean 
the difference between the lengths which we can interpret as 
that part of the length of (which is not covered up by b.) This 
gives us immediate access to alternative ways of writing some of 
the above equations:

c — b ~ a ] — b ~ a

a ~ c — b a ~ □ — b

c — a ~b □ ~ o ~ b
b ~ c — a !> -□  - o

c — [] ~ a c - b - n
a ~ c —[] □ ~c  — b

c - o ~  □ C“ D ~ b
□ ~ c - a b ~ c - □

We have shown that it is possible to construct thirty-two 
distinguishable statements for even’ triplet linked by addition 
and subtraction. This can offer students an awareness that given 
a simple relationship such as a + b ~ c it is possible to transform 
it into 31 others. Specific “problems" can be characterized by the
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form that they transcribe into; the inner dynamics of the whole 
situation can then be used to change that one into any other in 
the set. When students have seen that one relationship enables 
them to think of many others that will do as well, they see that it 
is not necessary to memorize the 32 since each one mobilizes all 
the others, just as our thoughts immediately mobilize our speech 
and make it available for expression.

When we put two rods end-to-end we do not exclude the 
possibility that they may be the same color and the same length. 
Such a train displays repeated addition and since it is a special 
form of addition it will be possible to say things about it that do 
not apply to other kinds.

If two rods end-to-end are equal, when placed side-by-side they 
will form a rectangle. By focusing on this property we may 
differentiate repeated additions from other additions.

1
fig 1

As soon as we have noticed that rectangles can be formed with 
equal rods we notice that it was only our propensity to stress 
some properties and ignore others at our convenience that made 
us stress length exclusively in the consideration of addition. In 
fact a train can also be seen to be a rectangle, with an area as 
well as a length, and the special case we are now considering has 
brought it to our attention because we have transformed this 
rectangle into an equivalent one. The simultaneous presence of 
the two attributes of length and area will be the key that we can
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use either to connect trains and rectangles or to distinguish 
them according to our needs. The set of rods can now sen e as 
the model for a new operation which we shall call multiplication 
associated with the areas of rectangles.*

From a train made of rods of the same length we can obtain a 
rectangle both of whose dimensions are lengths of rods. In fact 
to each rectangle corresponds at least one other which is also 
made of rods of a single length and which can cover the first. 
(They are said to be congruent rectangles.) The two kinds of 
rods involved in the pair of rectangles have lengths which are 
equal respectively to the dimensions of either rectangle. When 
the rectangle is a square the two kinds of rods are equivalent.

Let us economize in the use of rods by representing the pair of 
rectangles with one rod for each dimension, placing them so as 
to form a cross. Placing two rods in a cross in this way 
symbolizes a product-tivo products, in fact, depending on which 
rod is placed first. Our indifference to this order will allow us to 
speak of the commutativity of this operation of multiplication.

We note th a t len gth and area are spatial or geometrical properties; the rods act as an 
algebraic model only when we put the stress on operating, changing, transforming, etc.
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Here too we can break through the restriction implicit in the use 
of a pair in our definition of multiplication. A tower of three rods 
can be reduced to a cross in two ways, as shown in writing (a x 
b) x c or a x (b x c.) Our indifference with respect to which 
alternative we take entitles us to define the two expressions as 
equivalent, which in turn allows us to write a tower w ithout any 
parentheses at all: a x b x c . S  o multiplication is associative.

This is compatible with our model since we may substitute a 
train of rods for a cross made of two rods. Placing a third rod 
across gives either a cross in the first case or a tower of three 
rods in the other. These are therefore equivalent and the 
procedure shows how we may change a cross into a tower and 
vice-versa.

Multiplication therefore has the two properties:

(1 ) a x b ~ b x a

(2) a x (b x c) ~ (o x b) x c ~ a x b x c

and (2) can be extended to any number of factors or divisors, as 
the single components are called.

fig. 3
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By making multiplication associative we have absorbed the set 
of crosses into the set of towers. If we now wish to integrate the 
“towers" of single rods into the set of towers, we can substitute 
for a single rod the “cross" made by placing a white rod on top. 
This cross suggests the definition of the unit or identity element 
for multiplication by saying that:

(3) a x 1 ~ 1 x a ~ a.

The similarity of the two structures of addition and 
multiplication is now complete.

We have two algebras defined on the rods-the algebra of 
addition defined for trains of rods, and the algebra of 
multiplication defined for towers of rods. A link between these 
two algebras is through a relationship called the d istribu tive 
law or the factoring  law depending on the direction of the 
relationship, in which multiplication and addition are 
considered and shown (in notation or with the rods) to be 
different.

Or in writing:

(4) a x ( b  + c ) ~ a * b  + a x c .

Reading it from left to right, we can say we have distributed a 
over both b and c. Whereas if we read from right to left, we can 
say that we have taken a as a common factor.

Part II
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T

fig 4

Another way to summarize (4) is to read the left hand side as 
saying “add first and then multiply” and the right as saying 
“multiply first and then add together”. The distributive law is 
the link between addition and multiplication regarded as 
autonomous operations. The fact that the operations were 
linked a priori (because multiplication was introduced as 
repeated addition) has not been used in the model in which 
trains and crosses are distinct and coexist.

Just as subtraction was introduced as the operation inverse to 
addition, division can be introduced as the operation inverse to
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multiplication. Given a multiplicative relationship like a x b ~ c, 
it will yield a number of equations; for example, □ x b ~ c or a x 
□ ~ c. (There are many alternative writings arising from the 
symmetry of ~ and the commutativity of x.) We can agree that 
these may also be written c - r b ~ Do r c  + o ~ D .

We can also relate division to the awareness that if a x b ~ c then 
c can be obtained by the repeated addition of a (b times) or the 
repeated addition of b (o times.) So it will be possible to exhaust c 
by the repeated subtraction of a or of b. If a and c are both 
lengths, then b is a numeral saying how many times a is 
contained in c or how many a s there are in c or how many times

b
a goes into c. We write c + a ~ b for this or, alternatively, a)c .

In an earlier chapter we operated a long division on numerals, 
asking how many times one numeral could be subtracted from 
another. The notation we used was similar to that used here. We 
note, though, that we cannot have a remainder in examples like 
those we have just encountered whereas we almost certainly will 
when we repeatedly subtract one numeral from another at 
random. Looking back we see that long division can be 
considered as the operation which yields the largest multiple of 
the divisor which is smaller than the dividend. This relates 
division to multiplication which, traditionally, it has always 
followed. We shall see in the next chapter that we can indeed 
speed up the process of finding the quotient in a long division 
when we know an adequate number of numerical products.

Nowhere in this chapter have we used the procedure of 
measuring rods to generate numerals. It has been shown to be

Part II
Actions Which Generate Algebra

74



5 A Model fo r the Algebra o f Arithmetic

possible to start with an awareness of algebra and to use the 
rods to exemplify operations on lengths or on areas before 
measurement is introduced. We can see, therefore, that it is not 
only possible to teach algebra before arithmetic but entirely 
reasonable to do so, since to obtain arithmetic we shall have to 
introduce the measurement of rods by each other and integrate 
this with all we already know about how rods relate to each 
other. The next chapter takes care of this development.
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6 Integers and Fractions

The Generation of Integers and Fractions

With a set of Algebricks we can form, and display all at once, all 
the different ways of making a particular length that the rods 
will allow. The way in which the rods are cut ensures that any 
length that can be made with rods (except the length made by a 
single white rod) can also be made in other ways. The set of all 
the ways of making a particular length with rods produces an 
equivalence class: all the trains in the set are equivalent since 
they have the same length. We will give the name integer to any 
such equivalence class. An integer will therefore have all the 
properties which are given by the construction of the class.
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(fig 5)

The figure on p. 51 shows some particular cases. We call each 
pattern of rods a table o f partitions.

Since the length of each rod can be formed from a train of white 
rods each table will include a row of white rods. If we focus on 
this property we see that integers can be treated as part of a 
sequence of lengths comprising 1 , 2 , 3 , . . .  white rods. We have 
therefore linked the integers with numerals by looking at the 
white rows. But we can now notice that two successive integers 
differ by the same length, the length of a white rod, which can be 
taken to be a unit.

The integers can be named by counting the rows of white rods in 
any base, but to reach their other properties we must study the 
other rows of the tables.

PartH I
Numbers as Numerals Provided with a

w h i te

n

red light green p in k
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Where one of the rows in a table is a single rod it is apparent 
that one entity can synthesize the integer. This understanding 
can be carried over to other cases, where the length of the rows 
is greater than the length of an orange rod, by a flight of the 
imagination.

Those rows in any table which are formed of just two rods will 
yield complementary lengths and hence provide another link 
with our work in the earlier chapters. We can study these rows 
as they appear in the various tables of partitions and notice that, 
by re-ordering the rows if necessary, we can produce a 
decreasing sequence of lengths at the left of each row and an 
increasing sequence of lengths at the right. The separation of the 
two sequences will produce “staircases" which can be re-united 
to generate a different length. This at once gives a vision of the 
link with the sets of complements as we have already 
encountered them (p. 9 and p. 24) and further reduces the 
burden on memory.

1 1
- h ---------------------- 1 1 _ _L_-------------------

1 l
— n ---------------- 1 1 _____U -------------
— r n ------------- n  . i _______L_----------
------------- h ---------- n  i _________ L .-------

1 t — 1 , L ___ ---------------- L-i-----i i ------------------- L -
______ L

---------------------- h  L
_____ L

(fig 6)

Nothing in the rods tells us that we have to call the white rod 
“one" so the same sets of complementan7 pairs can give us an 
infinite number of pairs of complementan7 numerals. For 
example, if the white rod is called successively “ten", “hundred”, 
etc., the pair (7,3) can be re-named (70,30), (700,300), etc.
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Studying staircases in their own right will give us an entry into 
arithmetic progressions — sequences of numbers such that the 
difference between one number and the next is constant. In 
particular we can once again discover the odd and even numbers 
by separating the rods into two sequences whose common 
difference is the length of a red rod.

Because we can link what we are now doing to our earlier 
experiences we see that we have at least two different models of 
the properties of the entities we first called numerals and are 
now calling integers. For instance, when we are naming the 
integers by counting the row of white rods, one, two . . . ,  we shall 
again meet the problem of which one to call “ten”. In the present 
model because each length is perceived as an entity and because 
successive lengths differ by a white unit, any length, except the 
white one, can serve as a base and be called “ten”. Suppose that 
we restrict ourselves to making lengths and white and red rods 
only, then we see that we can readily make trains of increasing 
length by following the pattern:

white; red; red and white; red and red; red and red and white;

etc., and that there is in theoiy no limit to the lengths we can 
construct. We can therefore, if we choose, decide to call the red 
rod “ten" and arrive at the successive numerals:

1 ; 10; 10+ 1 -  11 ; 10 + 10 ~ 100; 10 + 10 + 1 ~ 101; etc.

PartH I
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6 Integers and Fractions

Similarly we could decide to call any other rod 10 and use the 
labels 1, 2, 3, . . .  up to the length of the rod preceding the one 
we have decided to call 10.

We will not discuss the relation between the models in any more 
detail here. We only need to notice that we have not had to 
abandon anything we had already learned when we moved to 
the Algebricks model and that this new model enables us to see 
with our eyes what we had earlier perceived with our ears. The 
actions we described and formalized in the previous chapter will 
enable us to endow the integers with properties which were not 
so visible when we were working only at the level of numerals.

Returning to the tables of partitions, let us look at the rows we 
have not yet studied — those composed of 3, 4, 5, . . . rods. 
Consider the table of partitions based on the length of the dark 
green rod. Some of its rows contain exactly three rods: for 
example, three reds, or one white, one red and one light green. 
When we form these rows we can inspect them to see whether 
the same set of rods can be re-arranged to give any more 
distinguishable rows. The order (w,r,g) is only one of six 
possible arrangements of the same rods, the others being (iv,g,r) 
(r,g,iv) (r,w,g) (g,w,r) (g,r,w.)
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(fig 7)

All six belong to the table of partitions of the dark green rod; we 
say they form the set o f permutations of the white, red and light 
green rods. The other row containing three rods — three reds — 
will not yield any further arrangements since a change in the 
order of the rods will not lead to rows which are distinguishably 
different.

The table of partitions of the dark green rod also includes rows 
containing four rods; one of these is a row of two white and two 
red rods. In this case the colors of the rods are neither all 
different nor all the same.

(fig 8)
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6 Integers and Fractions

Working systematically in order to find all the permutations of a 
set of rods, which is necessary if the complete table of partitions 
is to be constructed, can teach us a great deal since we must 
develop criteria for generating the permutations, and they do 
not come at once to mind.

The completion of a few tables of partitions, which requires a good 
deal of the learner since they are so rich, gives experience which 
can lead to an astonishing amount of mathematics. An awareness 
of one's actions will produce the necessary generalizations — that 
is, the formalization of these actions independently of the 
particular objects which have been manipulated.

The activity of partition-making justifies the decision to call the 
classes of equivalent lengths numbers, and we see that 
particular numbers have all the properties which are 
simultaneously displayed by the complete table of partitions. 
Since the white row, which provides the numeral for a particular 
class, can be scattered on the table or piled in a heap, we can 
become aware that the number is associated with a cardinal — 
the cardinal of the set of rods in the white row. In this way trains 
can be transformed into sets, and although this is not a 
mathematical transformation it senes a mathematical 
awareness: anything we can do with sets can be mirrored by 
actions involving the white rows of the tables of partitions.

The reader will find in Appendix B a schema showing how many 
of the chapters of elementan mathematics can be generated 
from a study of partitions.
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The next step we take has striking consequences, relating the 
world of integers to the world of fractions. It is based on the 
awareness that any rod can be used to measure, and therefore to 
name, any of the rows in the partitions.

If we measure rods with the white rod the names we obtain 
coincide with the numerals of the white rows in the appropriate 
tables of partitions. Thus the red rod is equivalent to 2 white 
rods, or l r  ~ 2iv; the light green is equivalent to 3 white rods, or 
lg ~ 3w; and so on.

If we now measiue the white rod with other rods we need a new set 
of names. On the whole these names coincide with the ordinals — 
i.e. the names: first, second, third, fourth, fifth, etc. — except that 
one of these names is not needed and another is changed:

The white is called one half (not “one second”) of the red;
one third of the light green; 
one fourth of the pink; 
one fifth  of the yellow;

and so on.

The rule is very simple and the notation quite consistent. If a 
train A” is equivalent to a train of, say, 19 white rods, then a 
white rod is called one nineteenth of A'.

PartH I
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The notation X ~ 19w yields another form, w -----xX, where x
J 19
1 1 1 1is read as "of. Hence are the notations for the
2 3 4 ’ 5

relationships which are the inverses of 2, 3 ,4, 5 , . . .

We can now proceed to the naming of any rod using any other 
rod as the measure. For example, to find the name of the black 
rod when measured by the brown rod, we only need to know:

1 that the name of a white rod measured bv a brown
rod is one eighth, written-; and8

2 that there are 7 rods in the white train which is 
equivalent to a black rod.

Each rod being called one eighth, the name of the black will be 
seven eighths.

If we write (b,f) to mean that the black rod is measured with a 
brown (tan) rod, then we can also write:

( 1 + 1 + 1+1+1+1+1,8) or (7,8) or Z .
8

Let us note that as soon as we know the name of one rod 
measured by another we at once know the name for the
reciprocal situation. For example, the name of the brown

8
measured by the black, or (f,b) is 7 . This immediately provides 

a doubling of knowledge at no extra cost.
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7 ftPairs like L and _ are called reciprocal fractions.
8 7

From the tables of partitions we can now obtain equivalent 
expressions for each rod measured by another. For example, 
considering the pair (5,7) and the table of partitions of the 
yellow rod, we have

5 4+1 3+2 2+2+1
----  ^  --------------- />«/ --------------  / v  ------------------------  / v

7 7 7 7
or

5 4 1 3 2 2 2 1
—  —  -4- —  ^  ^

7 7 7 7 7  7 7 7

We could also, of course, replace 7 by any of the 63 equivalent 
expressions obtained from the table of partitions of the black 
rod, but although possible this has no uses apart from bringing 
the awareness that complicated writings can be produced.

Other classes of equivalence are more useful. It is instinctive to 
construct the classes that are obtained by measuring each rod by each 
of the other 9 rods in turn. Here is a part of the array that is obtained:

P a r tll l
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1 1 1 1w ----x  r ------ v e ~
2 3

— X  p ~ 
4 5 *  y -

o 1 O
r ~ 2 x  w ~ — x  q ~

3 J
X  p  ~ o 1 5

x  y ~

0 3 3g ~ 3  x w ~ — x r ~ 7  x P ~4
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6 Integers and Fractions

p  ~ 4 x id ^ 2 x r  ~ 4— x q ~
3

In chapter 10 we make a different study of the set of fractions 
that arise from measuring one rod by another.
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7 The M athematics o f Numbers

In this chapter we shall apply what we have learned so far to 
bring to life certain properties of numbers which have fascinated 
mankind for millennia in all parts of the world. We shall not 
follow a historical development, but instead gather together a 
number of properties that lead to a deeper acquaintance with 
numbers.

Up to this point we have mainly been concerned with the 
sequence of numbers, exemplified by the numerals we use for 
counting, and with the operations that can be performed on all 
numbers. These are two extreme positions: in the first we are 
concerned with what distinguishes any number from every other 
number — that is, that it occupies a unique position in the 
numerical order; in the second we are concerned with perfectly 
general ways of combining numbers to form other numbers — 
that is, we completely ignore the individuality of the particular 
numbers we operate on. In between these two positions is one 
which takes an interest in those attributes which are shared by
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some numbers blit not by all; it is this position which leads to 
the study that mathematicians call number theory.

Although we have not deliberately gone in this direction so far, 
we can give two elementan’ examples which show how what we 
are going to do relates to what we have already done.

1 We look at the tables of partitions of numbers and 
notice that some contain a row of red rods only 
and that others do not. We can label the numbers 
odd or even if their respective partitions include a 
row of red rods with or without a white rod. This 
labeling then corresponds with the labeling of the 
numerals that we have already introduced.

We can easily perceive that a general property (or 
theorem) concerning these numbers is: “When two 
numbers of the same parity are added the result is 
even, while it is odd if the parities differ.”

The proof is implicit in the fact that if two trains 
have only red rods, so has their sum, and that if 
both trains have red rods together with a white 
rod, the two whites can be replaced bv another red 
rod.

2 If the table of partitions of a number contains at 
least one train made of rods of one color other 
than white, the number is called eomposite. Non
composite numbers, except 1, are called prime, 
and there are clearly many such numbers.

As soon as this distinction is made we have new 
possibilities for grouping numbers, as well as the 
possibility7 of discovering properties that
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7 The Mathematics o f Numbers

distinguish multiplicative and additive 
arithmetics. The number of partitions of an 
integer, which is an “additive" characteristic, 
increases as the number increases. But the 
expression of an integer as a product of primes, 
which is a multiplicative property, only requires its 
own prime factors, taken as many times as are 
necessary. It is a unique expression, completely 
characterizing the integer. Stressing the additive 
viewpoint distinguishes each integer from its 
successor, but the multiplicative viewpoint allows 
us to consider all integers together. The wealth of 
the additive viewpoint means extra difficulties; the 
relative poverty of the multiplicative approach 
makes generalization easier.

Through the many centuries in which men have studied 
numbers, the easier problems have been quickly exhausted, and 
we are left with a small number of problems which still tax the 
imaginations of the most talented mathematicians. Into the field 
of number theoiy only the most daring and hard-working 
mathematicians enter, and even they often have little to show.

In this book concerned with the teaching of elementary 
mathematics we shall restrict ourselves to the important and 
simple ideas — those which can be presented to elementary 
school students to improve their grasp of mathematics and their 
facility with numbers, and introduce them to the beauty and 
fascination of the properties of numbers.
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l  Prime Factors

We have seen that a cross represents a product. All numbers 
which are prime can only be represented by a cross composed of 
a rod or a train across a white rod. The composite numbers, in 
general, can be represented by a cross whose elements do not 
necessarily represent primes. Each element which does not 
represent a prime can be replaced by a cross. By continuing to 
substitute a cross for a rod or train as often as it can be done, we 
finally arrive at a tower, each component of which represents a 
prime. This tower will be considered to be the unique 
representation of the composite number — that is, we will ignore 
the alternative arrangements of the composing rods.

For example, the tower for 72 can be obtained as follows:

The cross 2 x 3 6  yields a tower 2 x 2 x 18, which yields 2 x 2 x 2  
x 9, followed b y 2 x 2 x 2 x 3 x 3 .  This is a tower of primes that 
we can write shortly as 23 x 32 since it has 3 red rods on top of a 
green cross.

From this example, we can see that any composite number N  
whose prime factors can be called a, b, c . . . k, say, can be 
represented by N  ~ a“ x bp x cr . . . kK where the Greek letters 
represent the number of times the factor represented by the 
Latin letter is found in the tower.

This form for N  expresses the “unicity theorem" we mentioned 
above. Only 72 is represented by 23 x 32; this form belongs to 72 
and to no other number. From it we can conclude that 72 is
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7 The Mathematics o f Numbers

divisible by 2, by 3, by 22, by 2 x 3 ,  by 23, by 32, by 22 x 3, by 2 x 
32, by 23 x 3, by 22 x 32 and by 23 x 32, since all these are seen to 
be factors of 72. (We do not include 1 since this is a factor of 
every number and so does not earn a place in a system of unique 
representations of numbers in terms of factors.)

Important facts follow from the possibility of such a form.

1 “If two numbers are divisible by the same number 
so are their sum and their difference.”

Indeed, if Ni ~ a x X and N2 ~ ax  Y
then JVi + Nz ~ (a x X) + (a x T) ~ a x (Ar + YJ
Similarly for Ni — N2.

2 Corollary: “If the sum of two numbers is divisible 
by a number which also divides one of the 
addends, it must divide the other.”

3 “Two successive integers cannot have the same 
prime factors.” For their difference 1 cannot be 
divided by any number besides 1.

4 We shall apply this last fact to obtain a celebrated 
and far reaching theorem, known as Euclid's 
Theorem: "The set of prime numbers is infinite.”

Proof: we shall prove that to assume that there is a 
prime number P larger than all others will lead to a 
contradiction.

Let us call N  the number obtained by adding 1 to 
the product of all the integers up to and including 
P. (We write P\ for this product.) i.e., N  ~ 1 x 2 x 3
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x 4 x . . .  x (P — 1) x P + 1 or N  ~ P\+1. Either N  
is prime or not. If it is, since it is clearly larger than 
P, the assumption that P is the largest is proved 
false. If N  is not prime it must have prime factors.
If these were smaller than P, they would have to 
divide the difference N  — P\, or 1, which is absurd.
Hence N  has prime factors larger than P, and this 
too contradicts the assumption that P is the largest 
prime.

That such questions can be asked so early in the study of 
numbers and require so little for their answer, although they 
refer to matters concerning infinity and make available a 
definite insight into the sequence of integers, is an indication of 
the power of the multiplicative theory of numbers.

2 Common Factors and Common Multiples

We now look at two other properties of numbers whose 
importance for further studies is considerable.

1 Let us make two different towers with prime 
lengths (i.e. rods or trains which are equivalent to 
a prime number of white rods) and let us form the 
set of their common factors by extracting from one 
tower all of the lengths or towers which are also 
contained in the other. These compose a tower 
which is contained in each of the two towers we 
began with.
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For example 23 x 32 x 7 (or 504) and 24 x 3 x 52 
(or 1200) have the following common factors: 2,3,
22, 2 x 3, 23, 23 x 3. Of these 23 x 3 is the highest 
common factor or, in short, H.C.F.

The great German mathematician Gauss proposed 
the notation (Ni, N2) for the H.C.F. of Ni and AT2.
Here (504,1200) ~ 24.

2 A tower is called a multiple of another tower if it is 
identical with it, or if it contains within itself a 
tower identical with the other. Clearly there is an 
infinity of towers that are multiples of a given 
tower since placing more lengths in towers is 
always permissible.

If we give ourselves two towers Ni and N2, it is easy to produce a 
tower which is a common multiple of Ni and N2. It will contain 
within itself towers identical with Ni and with N2.

By starting with any one of these common multiples it may be 
possible to obtain another by removing a rod or a train from it. 
This process can only go on so long as every one of the prime 
factors of Ni and iV2 remains in the common multiple. But each 
time we remove a factor which does not affect this property we 
reduce the common multiple tower. The lowest tower represents 
the lowest common multiple, or L.C.M., of Ni and iV2. In Gauss' 
notation this is written [Ni, N2]. For example, [504, 1200] ~ 
25,200.

An elegant theorem, also due to Gauss, can be written

(Ni ,N 2) x [Ni ,N 2] ~ Ni x N2

9 7



or, in words, “The product of any two numbers is equal to the 
product of their H.C.F. and their L.C.M.”

The proof w ith the towers of rods is illuminating. We leave it to 
readers to carry out on the above example, where the 
equivalence 24 x 25,200 ~ 504 x 1200 verifies the statement, 
and to assure themselves that the demonstration is perfectly 
general.

Part III
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To see that the words “highest" and “lowest” apply to two 
different sets of towers, and that although it is possible for the 
“highest” to be always smaller than the “lowest,” this is only an 
apparent contradiction, will certainly help students in this area 
of mathematics.

To help further we can show two other properties.

1 For the H.C.F. and L.C.M. of two towers to be 
equal it is necessary that Ni and Nz be the same 
number;

that is, if (Ni, N2) ~ [Ni, N2] 
thenNi ~ iV2.
Proof: (Ni, N2 ) is a divisor of both Ni and N 2 .

Since [Ni, N 2 ] contains all the divisors of Ni 
and/or IV2, the equality above implies that all 
divisors of Ni and AT2 are divisors of Ni or iV2, and 
that Ni and iV2 have no divisor that is not owned 
by the other.
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The iinicity theorem then makes Ni and N2 
identical.

2 The same phenomenon can be perceived when we 
ask a similar question about the sets common to 
two given sets, and the sets that simultaneously 
include these two given sets.

Let us consider two sets Si and S2. If they have elements in 
common we can extract them one by one, two by two, etc., until 
we have taken all of them together. This procedure produces 
successive sets of common elements, the largest of which is the 
one containing all the common elements. This set is called the 
intersection of the given sets.

Clearly, unless Si and S2 are chosen to make up the whole 
universe, there will be sets whose elements are all those of Si 
and all those of S2 and of some others. By removing these others 
one by one, or in larger numbers, we form a succession of sets 
that contain the elements of Si and S2, but each time with fewer 
and fewer elements not belonging to Si and S2. In this sense 
these sets get progressively “smaller” and when all the 
extraneous elements are removed we arrive at the “smallest" set 
containing both Si and S2. It is called the union of Si and S2.

While to reach the intersection we widen the set of common 
elements, to reach the union we narrow the set encompassing 
them. They are movements in opposite directions — the “inner" 
sets are smaller than the “outer” ones, although the inner ones 
are expanding and the outer ones are shrinking.
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3 Towers and Sets

The previous section dealt with two towers (or two sets.) It is 
obvious that we can consider any number of towers 
simultaneously and extend the definitions of H.C.F. and L.C.M. 
to any number of numbers.

Because multiplication is commutative and associative we can 
easily prove the following relationships (i.e. make sure that they 
actually hold:)

(1 )(N l,N 2)~ (N 2,N,)

(2) ((M, N2), N3) ~ (ATi, (N2, N3).)

Because of this latter property we can write (Ni, N2, N3) for the 
H.C.F. of three numbers. It follows that it can be extended to 4
numbers, then to 5, then to 6, etc., so that (Ni, N2, ............Nv)
has a precise meaning.

We can of course, think up questions using this notation, like 
the following:

What is ((Ni, N2), (iV2, N3))?
Is (Ni,N 2) ~ (M2 N22)?

What more can be said?
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Do we need to prove the same statements again when we 
replace the parentheses by brackets?

Can we mix these two kinds and ask questions about the 
results? For example, is

[(Ni, jV2), (iV2,iV3)] ~ ([JVi.Afc], [^2,N3])?

Can we construct and answer other questions o f this kind? I f  it 
is easier to perceive relationships betiveen sets in the algebra o f 
intersection and union, can we translate our findings from that 
field to that o f the theory o f numbers?

Working with rods it is clear that we shift from one field (set 
theory) to the other (number theory) by building towers where 
before we had only scattered rods. If readers try this they will 
recognize not only how theorems are discovered but also how 
perception helps in the proof of mathematical propositions.*

4 Powers and Roots

Let us consider now a tower made of rods of one color. Let us 
choose red since there are more red rods in a box of Algebricks 
than, for example, blue ones.

^  *
In iny Books S & 7 (see bibliography) readers will find a num ber of questions which will 

illustrate this way of working.
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This tower can be built up step by step and every time we place 
one more rod on the tower we can stop and speak about our 
actions and our perceptions using the language of 
multiplication.

For example, we can see that if z*6 (spoken “r to the sixth power”) 
represents a tower of 6 red rods, r6 can be divided by r, r2, r3, r4 
and r5, with the respective results r5, r4, r3, r2 and r.

Hence r6 ~ r x r5 ~ r2 x r4 ~ r3 x z·3, or z·6 ~ (z*3)2.
Also z'6 ~ r2 x z·4 ~ z·2 x (z·2 x z·2) ~ r2 x z*2 x z*2 ~ (z·2)3.
Again, z’6 -f z*4 ~ z·2, z·6 -r z*2 ~ z·4, etc.

If we know that the signs J~  (called “square root,”) *J~ (called 
“cube root,”) */~ (called “fourth root,”) etc., indicate the 
operations which are the respective inverses of squaring, cubing, 
raising to the fourth power, etc. then other statements are 
immediately available.

For example: yfr~ ~ r3 and y[r*~ ~ r2.

We use the case of z*6 as an illustration of what is possible. Many 
more statements could have been made before we reached r6, 
concerning r5, z*4, z·3, r2, relating them to each other in a number 
of ways.

For instance because r2 ~ yfr* and r ~ -Jr* , we can write 
expressions like the following:
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r ~ V Vr^ ~ yfr* .

The co-presence of many such statements in one’s mind is a 
similar phenomenon to the grasp of a collection of synonyms.

Once it is understood that all we can say about the tower of red 
rods is also true for towers of any other rod, it becomes clear 
that we have met the algebra of powers, or the theory of indices 
or exponents, and of their inverses, the roots.

Three developments at once become possible.

1 The theory of polynomials.

2 The extension of the set of exponents to include 
negative and fractional ones. 3

3 A correspondence between multiplication and 
addition (and between division and subtraction) 
sometimes called the theory of logarithms.

l Polynomials

Suppose we have a set of towers, each composed of repetitions 
of rods of the same color, but with different numbers of rods in 
each. Then we place any other rod across each tower. A 
polynomial is the name given to the form obtained by 
conceiving of the sum of all the products represented by the 
towers. The rod which is the basic constituent of each of the 
towers is called the argument, or base, of the polynomial, and 
the other rods are called coefficients.
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For instance A.P'+ B.F1- 1 + . . .  + M.t1 + N  is a polynomial, in 
which A, B . . .  M, N, are the coefficients and t is the argument, n 
is called the degree of the polynomial. We have systematically 
ordered the terms so that the exponents decrease from left to 
right. Sometimes the opposite order may be preferable, but even 
if the terms are not ordered at all the form is still that of a 
polynomial.

Numbers in the vulgar system are read as polynomials with ten 
as the argument and the numerals 0, 1, 2 . . .  9 as coefficients. 
The degree is calculable if we know that fen corresponds to 
degree 1, hundred to degree 2, thousand to degree 3 and million 
to degree 6, and that we can obtain any others by adding the 
degrees.

For example, seven million, three hundred and eighty-tivo 
thousand four hundred and fifty-six (in figures 7,382,456) is 
read as if it were

7 x 106 + (3 x 102 + 8 x 10 + 2) x 103 + (4 x 102 + 5 x 10 + 6) 

rather than

7 x 106 + 3 x 105 + 8 x 104 + 2 x 103 + 4 x 102 + 5 x 10 + 6 

The degree of the polynomial is 6.

Every reader of this chapter has had a lot of experience with 
polynomials — in saying the names of numerals or in reading 
them. Numerals can be defined as the matrix o f the coefficients. 
The matrix for the polynomial in the example above is 7382456. 
We see that the figures of a numeral only display the matrix, but
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that in speaking the numeral we reveal the underlying 
polynomial structure.

In the field of numerals it is a rule that no coefficient can exceed 
10 — 1. All modern notation for numerals is decimal. What 
distinguishes one system from another is not the presence or 
absence of 10, but the name for 10 — 1. Hence if we know that 
in the common system (where 10 — 1 is called 9) we use 
polynomials for our calculations, we know that they are also 
available in all other systems of numeration.

The following three examples are not found in my books for 
students. They can help readers become quick at some 
multiplications in any system of numeration, and therefore in 
the common system, which is used in the illustration.

Examples

1 We can formulate rules for certain special 
products based on the behavior of these 
polynomials. For example, The square o f a 
num ber ending in 5 (common system ) can 
be obtained by placing on the left o f 25 the 
product o f the coefficient o f the 1st degree 
(the num ber o f 10’s) and that number plus 
one, e.g. 652 is obtained from 6 x 7 or 42, 
followed by 25, or 4225.

Proof with the rods. (Although we use a geometrical 
demonstration here for its simplicity, we can still find the 
polynomial structure of the numerals in the way the lengths are
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composed.) We start with the representation of a number 
ending in 5, by taking a train made of orange rods followed on 
the right by a yellow one. To square this is to place trains 
identical to this one side by side until we get a square. This 
produces a large square containing at one corner a square made 
of 5 yellow rods, on the left of this square a rectangle made of 
orange rods, beneath the yellow square a yellow rectangle equal 
to the orange one, and finally an orange square.

5
nx 10 5

©
X

e

( f i g  9 )

By moving the orange rectangle so as to put it side by side with 
the yellow one we generate a rectangle whose width is equal to 
the length of an orange rod. Hence we now have a yellow square 
(5 x 5) an orange square (n x 10 x n x 10) and a rectangle (10 x 
n x 10.) The last two are multiples of 100, and there are n2 + n, 
or n x (n + 1) such 100's. The two zeros of the hundreds make 
room for the digits of 25 and we have proved our proposition.
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2 To multiply two numbers such as 66 x 64 we can 
apply the same dynamics. In the proof with the 
rods, instead of a yellow square we have a 
rectangle (6 x 4) at the top right corner. In place of 
5 x n x l 0  + 5 x n x l 0  put side by side to make 10 
x n x 10, we have 6 x 60 + 4 x 60 to make 10 x 60, 
which added to the square 60 x 60 gives the 
rectangle 70 x 60.

In the same way as we did in the above example, we multiply 6 x 
7, and write 42, followed by 6 x 4 or 24, i.e. 4,224, as the name 
for 66 x 64.

This awareness provides at once a certain number of products 
which look difficult to find mentally but are now reducible to 
two easy operations.

To compile the list we can see that bv using the products of the 
complements in ten,

1 x 9 -  09 2 x 8 -  16 3 x 7 -  21 4 x 6 -  24 5 x 5 -  25,

we know all of the following products:

11 x 19 -  209 
21 x 29 -  609 
31 x 39 -  1209

12 x 18 -  216 
22 x 28 -  616 
32 x 38 -  1216

13 x 17 -  221 
23 x 27 -  621 
33 x 37 -  1221

14 x 16 -  224 
24 x 26 -  624

152 -  225 
252 -  625
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34 x 36 -  1224 352 -  1225 etc.

i.e. 45 products we no longer need to know by heart.

Note that many more products can be available because of other 
experiences the student has had. For instance, he knows 2052 if 
he knows, or can quickly find, 2(0) x 21 or 21 x 2(0). The 
product 42025 will then be so quickly obtained that it can be 
seen as the answer to 2052. To do 3352, he can multiply 33 x 34 
easily if he knows that 33 is 3 x 11 and that to multiply 34 by 11 
is to put 3 + 4 or 7 between 3 and 4. He can multiply 374 by 3, 
obtaining 1122, follow it by 5 x 5 or 25, and get 112225 as the 
square of 335. An interesting property of 37 makes this mental 
calculation especially easy: 3 x 37 -  111. This property enables 
us to multiply 37 by any multiple of 3 up to 27 as easily as we 
can multiply by 111

(37 x 6 -  222; 37 x 9 -  333; 37 x 27 -  999)

3 Another interesting but perhaps not very practical 
benefit of knowing about polynomials, is found in 
thinking of some numbers as polynomials in base 
100 or 1,000. We shall use a mixed notation, the 
vulgar system giving the name and the writing, 
while we think of the number as arranged 
differently.

When we multiply polynomials we use the distributive law 
because polynomials are terms added to each other. Hence if we 
recall that (o + b) x c is replaceable by a x c + b x c, when c is 
itself a sum (A + B) we have
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(a + b) x (A + B) ~ a x (A + B) + b x (A + B)
~ a * A + a x B + b x A + b x B

giving ns four terms in all.

This applies to such multiplications as

27 x 34
~ (20 + 7) x (30 +4)
~ 20 x 30 + 20 x4 + 7x  3 0 + 7 x 4  
~ 600 + 80 + 210 + 28 ~ 918.

Now two numbers of three or four figures each can yield four 
products if we think of them as composed of so many hundreds 
and so many units. 1213 can be read 12 x 100 + 13. Let us 
multiply it by 11 x 100 + 12.

Using the above form:

1213 x 1112
~ 12 x 100 x 11 x 100 + 12 x 12 x 100 + 13 x 11 x 100+12 x 13.

The product on the left of the polynomial can be read as 12 x 11 
hundred hundreds, the next two as (12 x 12 + 13 x 11) 
hundreds. Hence if we can easily find 11 x 12, 12 x 12, 13 x 11 
and 12 x 13, we can easily multiply mentally the two four-figure 
numbers.
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In this case vve know at once that 11 x 12 can be replaced by 
132, 11 x 13 by 143, 12 x 12 by 144, and 13 x 12 by 144 + 12 or 
156.

The written product, starting from the right, can be constructed 
in this way. Write 56 and cany one hundred; add 143 and 144 
and 1, giving 288 hunched; write 88 on the left of 56 and carry 2 
hunched hundreds; add this to 132 giving 134 hundred 
hundreds.

Hence 1213 x 1112 ~ 1,348,856.

As an example of a product in base 1000, let us take the square 
of 125,125. This is reducible since we know the square of 125 
(125 x 125 or 15,625) to writing 625 and carrying 15; doubling 
15625 before adding 15; hence writing 265 to the left of 625 and 
carrying 31, adding it to 15625.

Hence, 125,1252 ~ 15,656,265,625 — nice, even if not too 
practical.

Although to save time is important in life, such niceties cannot 
be justified today (except possibly for aesthetic reasons) as a 
necessaiy part of the elementary school curriculum. But for 
advanced students they can sene as a pointer to what can be 
attempted mentally as distinguished from what must be written 
or put into a machine or a computer. The fascination that has 
always been exerted by calculating prodigies clearly shows that 
men have appreciated the development of a specialized skill that 
goes far beyond mere usefulness.

PartH I
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It is interesting now to realize that all of us have been using 
polynomials implicitly while we were made to write and think in 
terms of the matrices of their coefficients.

2 Exponents

Towers made of rods of one color have a height that can be 
added to or subtracted from, and that can therefore serve as an 
“index” of what we are looking at.

Let us replace a tower of this kind by an L in which the 
horizontal part is a rod like the ones the tower is made of, and 
the vertical part is a rod that measures the height. Making a 
collection of such L’s we can play some games that will yield new 
chapters of algebra and arithmetic.

When we look at any vertical rod we can see it as made of trains 
of smaller rods. We already know from the table of partitions 
that there are a finite and definite number of trains we can use 
to make such a height. For instance an L with a vertical dark 
green rod can be replaced by 31 different L's, the vertical trains 
being different either by their composition or the order of the 
coaches.

If we consider the L whose horizontal rod is orange and the vertical 
a dark green, we can obtain 32 alternative names for one million.

If the horizontal rod is red we can get 32 alternative names for 64.

in
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That some of the names repeat themselves tells ns something 
about the way the notation was invented and where to be careful 
when teaching it. For instance 10,000 and 10 x 1,000 must be 
distinguished. The L for 10,000 is made of a vertical pink rod 
and an horizontal orange rod, while the vertical in the L for 10 x 
1000 is made of a white on top of a light green. Similarly
100,000 needs to be distinguished from 100 x 1,000. In speech, 
putting an s at the end of the name of the products 10 x 1000 
and 100 x 1000 (ten thousands and one hundred thousands) 
will serve to distinguish them.

Let us make the set of L's representing the sequence of numbers

stopping where we wish.

It is easy to name each by the usual label. (For 106, say, a million 
or for 2s, thirty-tivo.)

A number of relationships will become visible as soon as we use 
the tables of partitions for the vertical rods.

For instance, 25+5 or 210 can be written 32 x 32 or 322. Hence 
1024 ~ 322, which can be inverted to yield 32 ~ Vl024 . From 
this we can obtain that 2 ~ \[32 ~ \f~ Ml 024. From the sequence

43 ~ 82 ~ 64 ~ >/8192 we can extract 4 ~Vb4~^ X

10 ,102, 103 . . .  1010, . .
or 2, 22, 23 ........210, . . . .
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Fractional Exponents

Playing the game of finding new names for any numeral 
suggests that we not only look at the vertical rods in relation to a 
single rod but that we introduce fractional exponents to 
describe one particular way of generating a new name. For 
instance, to generate the L of 16 from the L of 32 we replace the 
vertical yellow rod by the pink one. If we write 32 -f- to say which 
L we started with and what we then did to the vertical rod, we 
get a new notation which describes the action of pushing out the 
yellow rod and replacing it with the pink one.

That 32 -f- is equivalent to 16 is made visible, for we first say 32 
but see 25 (an L) and that 2* is generated by the substitution of 
the pink for the yellow. 24 we see as an L but can name as 16.

As soon as fractional indices are introduced we have many new 
possibilities for writing the operations we have recorded before, 
and can therefore write relationships in new ways and read 
them easily.

1 2 1
e.g. 642 x325 x 102410

~ 8 x 4 x 2 ~ 64 x 1287

Mixing these notations we can write
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3 4 4

| V l 0 2 4  J x f i s i i f x J i  128 j 7

and work out the problems as easily as with integers.

Negative Exponents

Because we use rods on a table it may not occur to us to look at 
the possibility of turning L's upside down. Standing them on a 
mirror would do it easily, but holding an upside down L in one’s 
hand may suggest it as well.

What do we learn when we become aware that | or \~ are 
possible arrangements and when we link them to what we have 
already done?

Where formerly we added rods to the vertical to make trains, we can 
subtract the lengths of rods from the vertical until the subtrahend is 
larger than the minuend and yields a “negative" vertical length. The

We now have negative exponents to combine with fractional and 
integral exponents, numerals, roots and powers, and we can use 
them to invent any number of exercises. Numerous games suggest 
themselves and each student can choose his own examples.

Starting from something like 32 ~ 4 we can write equivalent 
expressions which use all we have learned up to this point.

notation explains n
obtained by dividing 25 by 28 (or 32 by 256) and named -  .

4

8 1
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1
4

~ 4 1~ 23 x 2 s ~ 2~2 and so on.

What is important is not the ability to find lots and lots of 
equivalent expressions, blit rather that one is aware that they 
exist because it is a power of one’s mind to perform 
transformations — at the verbal, notational and operational 
levels. In fact there are an infinite number of expressions for any 
one entity since combinations and permutations of
combinations and permutations can be piled on each other. To 
be an educated mathematician is to find that the appropriate 
expression that relates to a given challenge comes to mind in the 
way words do. To strive towards this facility is part of one’s 
mathematical education.

In the expanded study of exponents we have just carried out, 
notation as well as concepts grew out of an insight into the 
situation supplied by the shift from towers to L's. It proved 
adequate simply because the new notation blended so smoothly 
with all that preceded its introduction, and the extension of the 
concepts seemed so natural.

3 Logarithms

It will not take us long to notice that the exponential notation 
gives a mapping of one set of numbers into another and that 
while we multiply or divide numbers in the form of powers we 
only need to add or subtract the corresponding exponents. We 
discover that the correspondence between multiplication and 
addition and between division and subtraction generates a new
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extension of one’s powers of calculation and therefore should be 
acquired in one's own interest.

To illustrate, once we develop and come to own the table of the 
powers of 2,
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1 2  4
p  0 p \  pT.

8

23
16 32
2« 2s

64 128 256
2 6 27 2®

512 1024 2048 4096
110 |H 112

we can obtain at once the answers to problems like the following 
where all that is required is a numerical name for an expression.

322 322 ~ (2s)2 ~ 2‘° ~ 1024;

64 x 32 64 x 32 ~ 2s x 2s ~ 211 ~ 2048;

162 x 4 162 x 4 ~ (24)2 x 22 ~ 25 ~ 22 ~ 210 ~ 1024;

—  x 256 -  x 256 ~ 2 s x 28 ~ 28 5 ~ 23 ~ 8; and so on.

In these multiplications and divisions, we neither multiplied nor 
divided, but simply transformed the given expression to the 
point where the table provided the final reading. These 
calculations, like all others, are algebraic in character and need 
to be taught as such.

Logarithm is the name we give to the exponent when a certain 
number (or base) is raised to the power that makes it equivalent 
to another number. Thus the logarithm of 16 expressed to the 
base 2, is 4, or log216 = 4. We see that this is only an alternative
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description of the equivalence 16 ~ 24, and that we are now 
calling "logarithm” what we formerly called "exponent."

An interesting exercise in the study of logarithms is the 
problem: "How much of the content of a logarithm table can be 
produced if we are given only the logarithms of two different 
numbers in the same base?”

Let us work it out in the case of the “common logarithms" — that 
is, those with base 10.

We already know that logiolO is another name for 1. Suppose we 
are told that logi02 ~ .30103 and logi03 ~ .47711. We can find 
the logarithms of the powers of 2, 3 and 10 by merely doubling 
and trebling the above logarithms.

log 100 ~ log 102 ~ 2 x log 10 ~ 2 x 1 ~ 2; 
log8 ~ log23 ~ 3 x log 2 ~ 3 x .30103 ~ .90309;

and, by similar methods, log 4 ~ .60206
log 9 ~ 95422 
log 81 ~ 1.90844.

We can also find log 6 since log (2 x 3) ~ log 2+ log 3 ~ .77814. 
And log 12 ~ log (22 x 3) ~ 2 x log 2 + log 3

~ .60206+ .47711 
~ 1.07917.
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Calculations of some other values will employ subtraction and 
more complicated transformations.

10log 5 ~ lo g ----- log 10 — log 2 ~ 1 — .30103 ~ .69897;

log 25 ~ log (52) ~ 2 x .69897 ~ 1.39794;

log 72 ~ log (23 x 32) ~ 3 x .30103 + 2 x .47711 ~

.90309+ .95422 ~ 1.85731; and so on.

A table computed in this way shows that to fill the gaps of 7 and its 
multiples, 11 and its multiples (and so on, going through the prime 
numbers,) we will need to be told the common logarithms of the 
successive primes or shown how to find them independently. The 
second alternative is veiy complicated at this stage but we can see 
how we could proceed if log 7 is given and some gaps are filled, 
then log 11 is given and more gaps are filled, and so on.

It is now clear that we have put together a certain amount of 
mathematical experience that is important as mathematical 
“folklore” and that we can see how to teach only what is necessary, 
leaving the students to develop the rest independently.

In the case of logarithms we only need to know how to find 
those of the prime numbers. Indeed only 35 such logarithms 
need to be memorized to give the logarithms of all the integers up 
to 150. With them we could calculate mentally (with the degree of 
accuracy present in the estimation of these 35 logarithms) a vast 
number of complicated products, divisions, roots, etc. If we

PartHI
Numbers as Numerals Provided with an Algebra

118



7 The Mathematics o f Numbers

memorized these 35 logarithms and speeded lip our additions 
and subtractions we could appear as calculating prodigies.

For instance, it would be possible to work out something like 
V719 by replacing this particular challenge by others. We 
recognize that 719 is very near to 720, and that 720 ~ 8 x 9 x 10. 
The log of 720 can be foimd by additions, and the log of V720 byA
taking _ of the result.

9

Log 720 can be found by adding 1 to log 72, already calculated
1

above as 1.85731; -  of 2.85731 yields 0.31524 which tells us

that V719 falls between 2 and 2.5 (since log 25 ~ 1.39794, log 
2.5 -  .39794) but is much closer to 2 than 2.5. We suspect that it 
even falls between 2.1 and 2.2 (which we could check easily if we 
knew log 11.) This illustrates how far we can go without knowing 
by heart all the first 150 logarithms.

Though we need not expect such feats of everyone, and one can 
always buy a book of logarithm tables and do such calculations 
on paper, we still think that it is important to let teachers of 
elementary schools know that work of this kind can be 
undertaken by children of 8 or 9 if they are first allowed to make 
their own tables by calculating the logarithms of a few numbers. 
In this process they can discover the meaning of approximation, 
so that when we sav, as we did above, that V719 is a number 
between 2.1 and 2.2, the statement will make sense to them.
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We have studied questions which belong to the folklore of 
mathematics for the reason that people learn music or poetry: to 
enjoy them and to feel one’s mind expanded. A few of our 
students will choose to dedicate themselves to pure mathematics 
but all can entertain the questions of this chapter or those in a 
series of mathematics texts I have designed for students in 
elementary schools to use for independent study*. The level of 
difficulty does not go beyond what 8 to 11 year old students can 
easily handle. Books 5, 6 and 7 in this series contain further 
studies of numbers of the sort we have done here. In particular, 
polynomials are used to determine the transformation of 
numbers from one base of numeration into another, and 
approximation is studied and applied to the calculation of 
square roots and the calculus of errors.

The significance of what we have done here, and of what I have put 
in the text books, ties in the simultaneous consideration of the 
particularity of any problem encountered — so that we acquire the 
healthy trend of mind of letting each question guide us to its 
solution — and the ability to see what there is in the question that 
we have entertained that goes beyond its particularity.

This is what professional mathematicians do and this is what 
mathematical education is all about.

PartHI
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See the bibliography on page 129.
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8 Teaching M athematics to 
Teachers

Up to this point, readers of this book have been concerned with 
a new way of looking at mathematics through the awarenesses 
generated by the study of our set of fingers and of a model of 
algebra. Now we want to address ourselves to the people who 
teach mathematics and look more closely at what their job is. 
The teachers reading this book may ask, “How can we prepare 
ourselves as math teachers when we are so weak in our 
mathematical powers?” “Do we have to master mathematics in 
order to gather enough strength to be really helpful to our 
students?”

In this chapter teachers will find suggestions for bringing 
themselves and each other to a state of awareness which will 
make them more competent as calculators and more effective 
with their students. This state will not come about through the 
study of mathematical ideas alone. It is rather the ability to look
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with the eyes of mathematicians, to activate the powers each of ns 
owns in common with mathematicians, that will help ns most.

To bring readers to a point where they know the mathematician 
in themselves is for me a challenge of working on their 
awareness. Since I know that only awareness is educable, how 
can I see the challenge otherwise? It may follow that teachers 
who wish to reach others will find, as I have, that in order to do 
so one must first become aware of one’s own awareness.

This subject of our study, mathematics, is a “science” which has 
been in existence for millennia. It has a history, and may be 
viewed as an edifice of accumulated results, ideas, theories and 
fashions. It is also an activity of the mind. It is probable that the 
nature of the activity has always been the same; a mathematician 
is a mathematician. But since throughout histoiy the mathematicians 
were not asked, or did not volunteer to describe, what the activity 
of their minds was, it was left to the onlookers to understand it. 
These commentators saw very different things, depending on the 
place or time in which they lived.

Some of the work that historians of mathematics did was veiy 
worthwhile. They produced expositions of what some outstanding 
men and women had done over the centuries and were able to 
reach some conclusions. They saw, for example, that advances in 
the histoiy of physics could be attributed to mathematicians 
having applied themselves to some models the physicists had 
produced.

Part IV
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The story of mathematics in the last few decades reveals that it 
has become an independent study, to a significant degree. The 
mathematicians of today work on mathematical challenges for 
their own sake. Structuring sets, setting axioms to link their 
elements in definite ways, and operating on them through the 
machineiy of "the method,” the mathematicians produce their 
works and publish them. No link with any other field is required 
for this.

What mathematicians of this school have not seen is that man's 
mind may function in such a way that he can study only those 
structures acceptable to it, that “the method” is perhaps the 
functioning of the brain. This being the case, mathematics 
always had its source in the awareness of what minds perceived 
in the outer or inner world. Today’s mathematics is historically 
unique in that it focuses particularly on the workings of the 
inner world while continuing to pursue the impacts of the outer.

Our ability to look at human activity in terms of awareness and 
functionings gives us, the people of today, the ability to see new 
things and discover new hopes for the future. When teachers 
prepare themselves and work with each other in this new 
perspective, they will remain in contact with mathematics, with 
the mind, and with their students.

Among the many different fimctionings of man s mind we can 
see two which go to make the mathematician and these are the 
awarenesses, first, of relationships as such, and second, of the 
dynamics o f the mind itself as it is involved in any functioning. 
Knowing this, teachers of mathematics can sen e their students
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best by bringing them to the state of watchfulness in which they 
perceive how one becomes aware of relationships and of the 
dynamics of the mind.

We saw, in Part I, any two subsets of fingers of our hands as 
linked, and how the relationship of complementarity could 
become the basis of arithmetic. In Part II, we worked out our 
chapters by singling out relationships and exploring what 
followed from recognizing that a certain dynamics was linked to 
these relationships.

Looking at elementary mathematics in the way we did in Parts I 
and II has shown us that in fact very little new needs to be 
taught to teachers, and through them to the school population, 
for them all to own mathematics. From that small amoimt of 
new material much more can be generated through the use of 
our natural endowments, the powers of transformation and 
imagery that we use in speech. Therefore, in our way of working, 
to know a “little” brings about the consciousness of the “lot" that 
is implicit in that little when coupled with the generating 
dynamics the mind can provide. To know these powers of the 
self is to recognize what we have known all along (though we 
made no use of our knowledge when we saw that from a few 
words we could make many sentences.)

What we present to students of any age is what they cannot 
possibly find within themselves; these are the specific labels and 
notations whose exact forms are neither necessary nor held in 
common in all parts of the world. That we do not spontaneously 
understand speech in other tongues tells us that words have no
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meaning of their own and need to be associated with things we 
can perceive. Even words of one’s own language that are not 
part of one’s experience cannot be understood. Therefore it is 
the teacher’s job to introduce to students the technical words of 
mathematics, words like “subtraction,” "logarithm,'’ “isomorphism,” 
and the various notations, and make them clear through 
examples or definitions. To teach will be to find a way to make 
people mobilize some energy to hold on to these things that they 
cannot invent, and to integrate this energy through the 
dynamics of the self so that what has been held comes to 
function as part of one’s whole self, in the way speech or actions 
do.

The most important lesson teachers can learn is that rather than 
teach mathematics we should strive to make people into 
mathematicians. That is to say, we should make people aware of 
certain powers they already possess which they can use in the 
same way that they are used by mathematicians. The 
professional mathematicians specialize in working on new 
challenges and publish their awarenesses; to a student, the 
challenge he is working on may seem just as new, though what 
he discovers may be already known. Since teachers should be 
more concerned with the dynamics of the mind as it functions in 
mathematical pursuits than in the novelty of the expression of 
an awareness, their preparation as mathematicians will be to 
become aware of particular functionings in themselves which 
they may later find to be educable in their students.

Specifically, the following points of focus will bring teachers 
closer to finding the mathematicians within themselves. 
Although they do not cover all the territory worth exploring,
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these touchstones alone, if carefully studied, will be sufficient to 
bring about a confidence and sense of direction in teachers 
which will allow them to continue their self-preparation on their 
own.

When teachers have completed the study of Parts I and II of this 
text, they are ready to reflect and become more deeply aware of 
what has happened to them. The bias we would like to develop 
in teachers is dual. On the one hand, we want to see them leave 
the atomic concept of knowing and see constellations linked to 
each other and explored as such, and on the other hand, to see 
that the dynamics of the mind can be at work in each item of a 
constellation as well as on the whole. Let us consider some 
examples:

l  Looking at the array (T„) on page 42 we can see

• that the signs evoke specific sounds and these in turn
specific signs, found in the top, middle or bottom rows 
according to how the sounds are formed (i.e. whether 
or not there is a suffix, and if there is, which one;) •

• that 10 belongs to all systems of numeration; therefore
we know that the difference between systems is in the 
units of the top row, one of them being replaced by ten 
(and giving its name to the base of numeration) and 
the ones after it being left out altogether;
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• that the activities, which form the mathematics
on the array, are independent of the base and 
therefore are learned once for all systems;

• that reading and writing numerals of any length
in any base requires one and the same mastery;

• that these activities do not require:

1 that a imit be defined;

2 the awareness that one can do many things 
with these numerals which one day will 
generate an awareness of quantity.

2 Just as the array provides powerful examples of the linguistic 
functionings behind numeration and will make each teacher 
acknowledge at once the presence of power and experience in 
any student of any age who has already used speech, there are a 
number of other important awarenesses about the support 
speech gives in the study of mathematics.

We can see that identity is a very restrictive kind of relationship 
concerned with actual sameness, that equality points at an 
attribute which does not change, and that equivalence is 
concerned with a wider relationship where one agrees that for 
certain purposes it is possible to replace one item by another.

Equivalence being the most comprehensive relationship it will 
be also the most flexible, and therefore the most useful. In the 
field of everyday experience to state that “he is on my right" is 
equivalent to saying “I am on his left,” and “I am taller than she” 
is equivalent to “she is shorter than I.” So we all know that we
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say only one of the equivalent sentences and do not ever use 
both at the same time, and that one statement implies the other; 
we know that as soon as we choose who to refer to first, we must 
use a particular pronoun to govern the verb and another one to 
govern the object. This mental dynamics belongs to 
mathematics as well, because we use language to describe all 
activities, including mathematics. So if we say that 4 + 1 is the 
same as 5, or vice-versa, we cannot be correct. We must say 
instead that 4 + 1 and 5 are two descriptions, two names for a 
given set. Using language in this way, in mathematics classes, 
will give us greater precision and at the same time, greater 
freedom.

Another important awareness that a closer study of the use of 
language will bring to teachers is that there is so much algebra 
in the way their own minds handle the universe of words. 
Becoming sensitive to one's power to make different words out 
of the limited number of basic soimds of his own language, or to 
record those words in writing with an even more limited number 
of signs, one finds that one already has access to permutations 
and combinations.

An awareness of what words cover will yield classes (for nouns,) 
structuration of classes into sub-classes by attributes, and the 
algebra of classes as reflected by adjectives (which can yield 
Venn diagrams.) Other algebraic structures such as groups, 
rings and fields will be seen as elementan’ when compared to 
the complex structures used in making sentences and 
statements, which are accessible to all children in all 
environments very early in life. Relating mathematics to 
language, we will see that it has the same essence as the
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meanings behind words. As such, mathematics will generate 
new awarenesses through a dynamic like the one at work in 
speech when meanings generate sequences of words.

For example, to calculate

is now simply a linguistic exercise within the algebras that 
govern numbers, known as powers of 2 in the decimal system, 
and including the various roots as inverses of powers. If we 
replace each term by the other name appropriate to this 
challenge, we read

2x16 32x2
4x8 2

or 1 + 32

or 33.

The calculation, then, is really a translation of a statement given 
in the language of powers and roots into one in the language of 
ordinary fractions, and a reading of the fractions with the 
understanding that the operations order us to rename them as 
integers where we can.

3 No problem in life is truly a problem unless it requires that 
we search for its solution. This generally requires that we

V512x \/67" Vl024 x \ f s 2

+
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transform the original challenge into others that can be more 
easily tackled. For example, lacking enough money to buy a 
house one has one problem which is quickly replaced by, 
“Where does one obtain money and on what terms?” The 
solution of the second problem is equivalent to a solution of the 
first.

In the meeting of mathematical problems we fimction in a 
similar manner. We transform the data to perceive a solution. 
Therefore to educate the mathematician in every teacher we 
invite him to work only on the procedure in order to find as 
many ways as he can to solve a problem, rather than to focus on 
the answer. A true spirit of yielding to problems brings about the 
emergence in one’s mind of a wealth of alternative routes. The 
teacher who works in this way will find that he has more 
initiative himself and at the same time more confidence and 
peace with respect to the workings of his students’ minds.

With this approach it is easier for students to realize that the 
form in which a problem is given by their teacher, or printed in a 
book, is not necessarily unique. Nor will they think that 
someone's wav of solving a certain kind of problem is better 
than all others. Each solution may be stamped uniquely by the 
uniqueness of the solver.

Students and teachers alike will have new ways of evaluating 
solutions to problems. Some can be called economical, some 
elegant, brilliant or far-fetched, some awkward, clumsy, long or 
tortuous, although all are correct and mathematically
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acceptable. Part of a teacher's preparation as a mathematician 
will be to cultivate a sense of all these distinctions.

4 If teachers, many of whom have thought of themselves for 
years as slow and clumsy at computation, can make themselves 
quick calculators, they may delight in this metamorphosis of 
themselves and find it an inspiration in their work with their 
students. The key to quick calculation is the understanding that 
all operations are algebraic even when figures and digits appear. 
To calculate well is to have strings of forms equivalent to each 
other triggered instantly by a given problem which work like a 
chain reaction until they have brought the original statement to 
a form whose reading is the expected or required answer.

For example, consider the equivalent forms generated by the 
following situation. A square of pink rods is placed on top of a 
square of blue rods in the corner. The uncovered L-shaped blue 
area is the difference between the two squares. With the white 
rod as unit we can write this difference 92 — 42. By moving the 
blue rods that are not covered by pink rods and turning them 
through a right angle, they can be replaced so that the blue area 
is transformed into a rectangle. Inspecting this rectangle we see 
that its length is the sum of the lengths of a blue rod and a pink 
rod, and that its width is the difference between these lengths. 
The area can be written (9 +4) x (9 — 4). Therefore we have an 
equivalence, 92 — 42 ~ (9 + 4) x (9 — 4).

By taking further instances we find that nothing in the algebra of 
this equivalence depends on the particular choice of rods. This 
generalization can be summarized by writing
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o2 _  b2 ~ (o + 6 ) x (o _  b )
where a and b are integers and the only restriction is that a must 
be greater than b.

If this equivalence is part of our stock-in-trade it can be 
triggered whenever a suitable question appears. So the need to 
calculate 132 — 82, say, will trigger (13 + 8) x (13 — 8) which 
will in turn trigger other equivalences until 105 is reached. But 
we may also turn to it in less obvious instances. For example, 
992 may trigger (99 + 1) x (99 — 1) + l 2, which will trigger 100 x 
98 + 1, which will trigger 9800 + 1, or 9801; and 37 x 43 may 
trigger the pattern (40 — 3) x (40 + 3) which in turn triggers 402 
— 32, which asks for (4 x 10)2 — 32, or 16 x 100 — 32, which 
triggers 1600 — 9, or 1600 — 10 + 1, or 1591.

We saw earlier that the square of numbers ending in 5 (in the 
decimal system) can be calculated through a simplified 
algorithm which applies to the product of two numbers whose 
units are complementary in ten and whose other figures are 
identical. (See Chapter 7, page 106.) This clusters 652 with 64 x 
66, 63 x 67, 62 x 68, 61 x 69. Remembering one pattern, we 
reap rewards in the many situations which have its particular 
attributes. The work with the rods has permitted us to 
understand this design, and view it as related to others which 
might otherwise have seemed curiosities.

When teachers who have used both the array (T„) and the rods 
notice that there are bases whose halves are also integers, they 
can understand that many of the above results which were 
obtained in the common system are valid in other systems, if
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one merely replaces —  x 10 by the appropriate numeral, and 
uses the table of products in that base in a similar fashion. For 
example in base (IV), 322 and 31 x 33; 222 and 21 x 23; 122 and 
11 x 13 follow the same rule as for 352 in the decimal system. If 
we know that 2 x l - 2 , 2 x 3 ~ 1 2  and 3 x 10 ~ 30, we then 
have 122 ~ 210, 11 x 13 -  203, 222 -  1210, 21 x 23 -  1203, 322 
~ 3010,31 x 33 ~ 3003.

A teacher who wants to become a quick calculator now has 
access to a sound strategy. The first task is to return to the 
examples in Parts I and II of this book and use them to evolve a 
number of personal “milestones”. These milestones, extended 
over the various fields of mathematics, will supply an important 
loose network of relationships. Then practice, with or without 
paper and pencil, will make it clear how little has to be 
remembered; one will see that to be a quick and reliable 
calculator is a matter of algebra, not memory.

5 As a teacher pursues the mathematician in himself, he will 
notice that he, like a good mathematician, has need of safeguards 
which warn him when he has gone astray. Teachers can acquire 
these if they will learn to ask the questions which bring one's 
attention to the crux and lead to the possession of criteria. 
Functioning criteria work by themselves and warn the learner 
that he has made an error. An error is not a thing to be ashamed 
of. On the contrary, it is a signal which says that mastery has not 
been achieved and the learner needs to do more work.
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The following are the sort of questions that will lead to the 
formation of criteria:

1 How can you say “this" if you know “that” about 
the situation when “this" and “that” are 
contradictory?

2 Is it necessary to use so much energy’ in carrying 
out this operation?

3 If you look more closely at this problem, doesn't it 
suggest its own solution?

These questions force awareness of what is particularly 
noticeable about a situation and nurture the scrutiny of a 
problem so as to unlock its unique solution.

Counter-examples are the most powerful means of disproving 
statements, and therefore the most useful to teachers. When one 
finds counter-examples easily, one knows that one's criteria are 
functioning well and no elaborate dis-proof is required.

When teachers, instead of marking answers right or wrong, can 
throw students back to the situation to find criteria through the 
questions put to them, they will know that they have been 
educated as mathematicians and can in their turn provide 
mathematical education for their students. There will be no 
need for anything else because criteria are the guides to truth 
and because one must oyvn them to be able to reach truth. It is 
they that will sen e students, and only they.
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6 Just as one can become aware of the dynamics of the mind, 
one can become aware of one’s imagery and its dynamic. To be 
good at mathematics involves a command of one’s imagery as it 
relates to the form of certain relationships. In a question

1
involving say, the form 25n, it is an image which links 25n to —

4

xlOOn or to 122!! or to 100x —. The dvnamic of imagery is at 
4 4

work in the process which replaces the given form successively by 
other forms. By establishing a number of forms as triggers, one has 
access to a number of patterns which help make calculation faster.

To be able to use some of these visual relationships is a help to 
memoiy, and in tiu n memory helps by finding shortcuts for working 
out some problems and economizing in the use of operations.

Since the result of the cultivation of our imagery and its dynamic 
is that we are more sensitive to the nature of mental activities, it 
will be worth our while to work precisely on what matters for 
such ends. Good learning and good teaching will be the result, 
and teaching and learning, having come closer together, will 
support one another.

In these examples there has been no suggestion that teachers 
who want to educate themselves in order to make 
mathematicians of their students should study mathematics 
books and assimilate chapter upon chapter. On the contrary, the
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job of becoming more of a mathematician, as it has been 
described here, requires these awarenesses:

1 The cardinal notions of numeration, 
complementarity, and reading equations in 
various ways, yield addition and subtraction in all 
systems of numeration. Repeated subtraction 
yields long division.

2 The transformation of repeated additions into the 
autonomous operation of multiplication will yield 
products and fractions, powers and roots, logarithms, 
and an entry into the properties of numbers.

3 Quick calculations result from a vision of the set of 
equivalent expressions available for the patterns 
perceived, and the transformation of the given into 
those elements that again generate transformations 
which simplify and compress.

4 The more routes that can be found for going from 
one place to another, the better is the challenge 
understood.

5 To prove that I am independent is to follow any one 
of my inspirations, reject those which do not work, 
retain those which work and learn horn both.

6 To see an answer as right (or wrong) is only a 
moment of feedback in the process of 
disentangling and no answer can be considered 
more important than the awareness of the problem 
and its demands upon my mind.

7 I can function as a knowing system on a multitude
of levels: perceiving data, using language,
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recognizing equivalences, and shift from one 
viewpoint to another, since all the elements can 
co-exist in my mind and I can order them at will as 
I do when I mobilize the equipment behind my 
speech, or play tennis, checkers or bridge, or cross 
a road with heavy traffic and no pedestrian 
crossings.
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9 Teaching M athematics to 
Children

In this chapter and the next we shall come as close as our 
understanding permits to offering a curriculum for teaching 
children in schools.

Of course it is clear that the teachers in their classrooms are the 
ones who face students and that they alone can decide what to 
do at each moment. The following is offered as a possible course 
open to every teacher who knows that no one can actually offer a 
course which works in all circumstances. Only within these 
terms of reference does it make sense for us to engage in the 
exercise that follows.

To work within our understanding of what it is to teach 
mathematics, let us keep in mind the following:

1 The hierarchy in the presentation of mathematical 
notions in this book has been that we move from
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what can be perceived to what this can become 
when submitted to the mental transformations of 
which almost all children are capable.

2 Let us insist upon the fact that understanding has 
many meanings and that we can move ahead in a 
dialogue with youngsters when they understand 
what we are doing on one level even if they do not 
understand all that older or more experienced 
people could associate with the same situation.

For instance, it is possible to understand that in 
the sequence of names of numerals thousand 
comes after hundred without understanding that 
one thousand is equivalent to ten hundreds. It is 
possible to understand that two pears and three 
pears when put together end up as five pears and 
see that the same mental correspondence applies 
to two millions and three millions becoming five 
millions when put together, because the word 
millions replaces pears, and have no idea what one 
million describes as a coimt of, say, people or ants 
or grains of sugar.

3 A functioning child has noticed that pronouns can 
be used by everybody and that “I” can mean 
different people depending on who is speaking. He 
may know that “my mother" does or does not refer 
to the same person when used by his brothers and 
sisters and by other people, and therefore be 
prepared to recognize that there are stable 
elements in some situations as well as variable 
ones. This preparation will sen e him well when he 
enters the field of mathematics.

At one level, tivo plus three (or 2 + 3 in signs) will 
generate the sound five (or sign 5) while leaving
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open the nature of the object to which these 
adjectives refer. What is stable is the dynamic 
correspondence 2 + 3 —* 5 and what is variable is 
the so-called “concrete” material they apply to. So 
we shall not assume that children only understand 
when they are dealing with objects or with social 
elements such as money or shopping.

4 Because children can make sounds — as they prove 
by learning to speak — we shall not consider that 
making noises, like complement or billion, is a task 
beyond them.

Keeping in mind the fact that children who can see and hear do 
not confuse messages through the eyes with messages through 
the ears and are capable of coordinating these, it is easy to begin 
our work by bringing them to a state where they utter a sound 
for a sign, or point at a sign (until they learn how to write it) 
when hearing the corresponding sound.

By moving systematically from the correspondence

1 (one)
to 1 (one) 2 (two)
to 1 (one) 2 (two) 3 (three). . .
up to 1 (one) 2 (two) 3 (three).......................................9 (nine)

(the element in the brackets is the soimd which is given only 
once by the teacher but practiced by the students as many times 
as he points to the sign) we can ensure assimilation of a game in 
which understanding means: utter a sound for this sign and

show me a sign for this sound.

143



Part TV
Teaching Mathematics

Teachers will do well to ensure that their presentation of these 
signs or sounds utilizes some of the numerous permutations of 
these signs. (There are 362,880 different ways of pointing once 
at each of the 9 signs, 1, 2, 3, . . .  9.) The “increasing'’ sequence 
1, 2, 3 . . .  9 or the “decreasing” sequence 9, 8, 7 . . .  1 are only 
two of these and, although more common in counting up or 
down, they have the disadvantage of stifling the mind of young 
children who then associate numerals only with sequences and 
not with the answer to “how many?”

Let us note that in the array (T„) we placed the units 1 through 9 
on the top line because ten in mathematics means a unit of a 
higher order (only in one system is it also the name of the set of 
fingers.) The above exercise is one of sounds and signs, easily 
comprehended and fully mastered at that level.

There will be nothing to remember specially in this game and 
the test will remain within the terms of the game. If children of 5 
or less can do it, they have proved that this sort of exercise is at 
their level. That they cannot do something else that has not yet 
been presented is entirely reasonable.

When we put together the game of the fingers and the game of 
naming or writing numerals, we obtain a new development 
permitting shifts of power from one field into another. This is 
the foimdation of the curriculum-making presented here.

We associate the noise one, the sign 1, and any one of the 
fingers. We can show a finger and sav, “Do you see one finger?” 
“And now?”, changing the finger and repeating this change from
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any one finger to any other. Then we ask, “Show me any one of 
your fingers,” “Now another by itself, and another and another,” 
“Look at what your neighbor is doing. Is he showing one finger” 
“Is he showing the same finger as you ar e?” “Is it still true that 
he is showing one finger like you?”

“Show in turn one finger at a time starting with one thumb and 
ending with the other thumb.”

If some children can do it at once, use them to show others that 
the instructions can be understood, and that other children of 
their age can command their muscles to show any one finger in 
isolation. Give time to those who find it difficult.

In this or a subsequent lesson, ask for pairs of fingers to be 
formed on one hand or from fingers of both hands. Do not 
attempt to study how many pairs can be formed but use the 
variety (allowed by the 45 different possible pairs) to let children 
know that “a pair” is another name for one and one, that “two 
fingers” is the name for any pair, and that two is the 
representation used for any such pair, or any pair of anything 
besides fingers.

Subsequent lessons will be concerned with naming complements. 
A little practice will let the children know that if they show three 
fingers they do not show the complement in ten, and that they 
can find what it is by folding those three fingers and unfolding 
the others and counting them. Further, folding one more finger 
will produce an arrangement of six unfolded fingers. Folding 
those six and unfolding the others they find there are four, so
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6 + 4, and also 1 + 9 or 2 + 8 or 3 + 7 or 5 + 5, describe unique 
arrangements of fingers.

Because we work on the set of fingers and do not use our fingers 
to represent “abstract” number, we cannot escape the formation 
of “clusters of relationships.” So, as they study a pair of 
complements in 10, beginners can investigate the complements 
within the complements, and in this way they will have many 
more chances to be intimately acquainted with each pair, and 
not to confuse them with each other.

These games will take as many lessons as children require to 
master the instructions, and as the interest they find in playing 
them permits. Do not attempt to get all children in your class 
involved at the same time. Rather work with those who find this 
kind of involvement easy and exciting. When some are on the 
way to independence you can either use them to involve other 
children or give them some written work to practice the 
notation.

1 Simple transcription o f perceptions:

9 + 1 -  7 + 3 -  4 + 6 -

2 + 8 -  6 + 4 -  5 + 5 -

3 + 7 -  1 + 9 -  8 + 2 -

2 Which name is missing?

+ 1 - 1 0  + 7 - 1 0  8 +  -1 0  etc.

3 Which pairs make ten?
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in words: teacher or advanced student listens

in figures: use the notation ( , ) for a pair; the
order of writing the figures can produce different 
ways of writing the same pair

4 Fill in the gap (only pairs of complements in 10 
are required)

(1, ); ( ,3); (4, ); ( ,6); ( ,9); (9, ); etc.

The notation for subtraction is another possible exercise at this 
level. Teachers can present a succession of notations which yield 
the same answer but through different procedures.

+ 3 ~ 10 ( ,3) (3, )

The teacher can say, “If from ten (showing both hands open) I 
take away 3, what am i left with?” The answer, if forthcoming, 
can then be written as 10 — 3 and read as “ten take away three” 
or “ten minus 3.” Neither form is preferable nor requires special 
care at this level. What has been done is to provide a language 
and a notation for subtraction as another way of reading 
addition and complements.

To test assimilation it will be sufficient to propose problems of 
the following kind.

With two hands: (10 — 3) + 2 + 1 ~
With one hand: (5 — 2) + 1 ~

giving the questions first in words and then in writing.
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What we must watch at this level is that children recognize that 
the notation triggers speech which involves instructions that can 
be carried out on one’s fingers. The answer is the last thing one 
says — the label for the set at rest after the operations have been 
completed.

There may be some children for whom the fascination of their 
fingers or the games on the array is limited. For these people 
and the others the Algebricks may serve as an entry into 
mathematics compatible with their interest in building with a 
flexible and colorful material.

Since the rods are prisms, when they are used in play to make 
buildings they become involved in a vast number of 
relationships which have spatial meaning. There is potential for 
algebraic and numerical meanings in these relationships as well. 
It is the teacher's responsibility to observe the spontaneous 
building of each child and note which properties of the rods he is 
exploring through his staircases, towers, cubes, trains, etc., to 
extend these activities, and introduce some games which will 
give the learner an entry into seeing some relationships he may 
not yet have found on his own.

The following are some of the most primitive observations that 
can be made about the rods:

1 The set of rods subdivides into subsets whose 
elements are rods of one color; the rods of each 
such class are now defined by their distinctive 
colors.
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2 Rods of one color are also equivalent because of 
their dimensions; anv one rod of any one color can 
replace any other of the same color in any pattern 
made of rods.

3 Rods of different colors are unequal; there is one 
class of the largest and one of the smallest rods, 
and when these are removed there may still be two 
classes left, one of the smallest and one of the 
largest, and so on, imtil there are two classes left 
containing the yellow rods and the dark green 
rods.

4 If one rod of each color is selected, they can be 
placed side by side to produce a staircase.

5 Two such staircases can be interlocked to form 
rectangles. In two of the ways this can be done the 
rods of one staircase are end-to-end with the rods 
in the other; in one case the white is end-to-end 
with orange but in the other it is end-to-end with 
blue.

6 This interlocking is equivalent to saying that the 
difference between two successive rods is equal to 
a white rod.

7 This last statement makes the white rod the only 
rod which can measure exactly all the others.

8 By making these measurements rods can be called 
equivalent to trains of white rods and labeled by 
counting the number of rods in the trains.

9 Hence it is possible to shift from the perception 
that, say, a brown rod is larger than a black one, to 
the statement that 8 is bigger than 7, provided one
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keeps in mind that these numerals refer to trains 
of white rods.

10 Starting with such trains and scattering the 
coaches, while keeping them perceptibly close 
together, one can extend the meaning of larger or 
smaller to sets and from there to the comparison 
of the numerals, in this way giving meaning to 
“eight is bigger than seven." (Until now we could 
only say that in the sequence of noises from one to 
nine, eight came after seven and seven before 
eight. Before and after has an immediate meaning 
in the experience of the sequence of sounds, and 
bigger and larger in the case of rods. Now a bridge 
has been established between these veiy different 
kinds of experiences.)

11 Rods can be placed to produce trains and the 
length of such trains is perceptible and can serve 
to produce a feeling of a magnitude capable of 
being made larger by addition of other rods, or 
smaller by the suppression of some at its ends.

12 Challenges emerge through the naming of 
relationships:

• Giving a name to the smaller rod in a 
pair after finding that a rod can be measured 
exactly with another one. This creates the 
fractional terminology which, except for one 
half, uses the ordinal adjectives for its 
expression. •

• Finding that many names describe any 
given rod according to whether addition, 
subtraction, multiplication or fraction is the 
relevant perceptual pointer:
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p ~ 2 x r ~ q  + w~i i  — iv ~ J_ x t ~A. x o.
2 5

• Finding that it is normal for every object 
to have an infinite number of names and for 
every name to apply to an infinite number of 
objects.

13 Inequality is transitive; i.e. from two statements 
arising from perception, such as y < b and b < t, 
we can ensure that y < t, not from perception, but 
by implication confirmed bv perception.

14 Three rods can be related by, say, p < y < b, 
providing a chain of relationships with a middle 
term, while unless we do something to recast our 
reading, y > p and y < b tell us two distinct things 
about rods in pairs.

15 It is possible to articulate perception through 
mental dynamics, to read in a staircase a multitude 
of relationships and to attempt to bring them 
together, as, for example:

w < r < g < p < y < d < b < t < B < o
or
w < r, iv <g, w <p,iv <y, w <d,u> < b, iv < t,iv < B,w < o 
or
w < r, r < g, g < p, p  < y, y < d, d < b, b < t, t < B, B < o.

16 It is possible to use sight to find a length equal to 
any one of the trains made of a small number of 
rods, particularly the smaller ones.
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17 Estimation of the difference between two lengths 
can become second nature and can lead to classes 
of equivalence such as

w ~ r — w ~ g — r ~ p — g ~ y — p . . .  ~ o — B 
r ~ g — w ~ p — r — y — g ~ ..........~o — t and so on.

18 A family of rectangles may be constructed by 
placing rods of one color side by side, and each 
member of this family may be exactly covered by 
placing rods of one color side by side across the 
length of it.

19 Occasionally one of the covering rectangles will be 
the same color as the rectangle beneath it. We call 
this special case in the family of rectangles a 
square and make other squares, depending on 
which color rod we use to generate the family.

20 Building upward in equal layers from the 
foundation of a square a point is reached where 
the height of the building is measurable by the rod 
which measures the length and width of its base. 
We can call this special building a cube and 
construct other cubes of the same dimensions 
using different colored rods. Some rods can be 
used for this purpose and some cannot.

21 If we stand a rod on end and think of it as a post or 
pillar, it has certain dimensions; pillars of the 
same dimensions can be built using other rods so 
as to support a beam. If we build pillars with white 
rods or rods of one color they look alike, but if we 
use rods of different colors there are many 
arrangements and the same collection of rods can 
be used to make different pillars. The pillar can be
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seen to have a volume in terms of the number of 
white cubes it takes to build it, or the number of 
red prisms, etc.

Obviously there are many more lessons to be learned at the 
primitive level of perception and action. These are therefore 
appropriate for teaching beginners of any age and will serve all 
students well, particularly very young ones.

We have restricted ourselves in this chapter so far to the top line 
of the array (T„) and the rods in the box of Algebricks. Nothing 
in what we have done forces us to hold to the language these 
have put into circulation. Clearly what we did in Parts I and II 
can be taken up again here. We can re-name a finger or the 
white rod with the label ty or hundred and generate 
corresponding names for anv subset of fingers or any rod, and in 
this way carry over all the perceptions already gathered into 
new-sounding statements and new writings.

Let us not forget that in our presentation of numeration we can 
easily introduce different bases by placing a vertical line in the 
array and prohibiting the use of the signs on the right of that 
line. Beginners can understand this game and quickly learn to 
count in any base.

We have treated this matter in other chapters and recommend it 
to teachers of beginners mainly because it means presenting the 
truth on this subject to anyone. From such an introduction 
students will gain a proper understanding of numerals as a 
system of labeling and will avoid being confused at a later date.
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In the field of computation the decimal system is not preferable 
to others in spite of its established dominance.
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io  Generating a M athematics 
Curriculum

Since the previous chapters have made readers acquainted with 
the principles, the ideas, the techniques and materials that can 
make anyone into a mathematician, at least in the fields of 
algebra and arithmetic, there may be need to examine how a 
curriculum can be produced.

The approach we have studied takes many liberties with both 
traditional and “new math” sequences and it may leave readers 
wondering what curriculum, or sequence of mathematical 
topics, to follow.

The chart in Appendix B shows one map of the territory of 
elementary mathematics that I made several years ago but 
which can still sene to show that there is not one curriculum 
but a multiplicity of possible curricula. The diagram will make it 
clear how many paths can be constructed, each of which could
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reach all the topics listed there. The diagram may not give lip all 
its secrets at once, blit I urge readers to take time to study it.

My mathematics textbooks show only one of the possibilities, 
but the one chosen is worked out in great detail — enough, in 
fact, for them to be suitable for independent use by students. My 
workshops over the years and the texts written by some of the 
people who have worked with me since 1954 offer other 
alternatives.

In order to give teachers some insight into my texts and the 
spirit in which they were written, and bring about in them 
awarenesses which propel them towards independence, I have 
chosen here to list some of the principal characteristics of Books 
1 through 7, and to discuss in some detail one of the texts (Book 
4, Fractions) which concerns an area of mathematics ordinarily 
considered “difficult” bv teachers.

The Characteristics of Gattegno Mathematics, 
Books 1—7

1 Books 1—7 are “open books,” which means that 
they seek to present questions in such a way that 
they are accompanied by the tools for answering 
them, and therefore are not dependent on a linear 
development and can be entered at any point.

2 The tools which are given are based on an 
awareness of the dynamics of the mind, especially 
as it has been demonstrated in the mastery of
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speech by almost all students before they go to 
school.

3 Therefore the sequence followed is one that moves 
from the level of perception and action to that of 
verbalization and notation. (This is the movement 
we followed in the first seven chapters of this 
book.)

4 There is no need to think of any student as lacking 
anything which these books will provide. In as 
much as the questions they present are at the level 
of perception, anyone with sense organs and a 
functioning mind is already equipped to find his 
way towards mastery of the skills involved. Each 
person will involve himself at the level he finds 
himself, needing or not needing to practice what is 
presented, and deciding for himself which is the 
case. The books aim to offer enough experience to 
satisfy people who need many exercises and 
enough variety to challenge the most adventurous.

5 In all cases the books leave to the learner the 
judgment of Tightness and correctness, and they 
give him access to criteria which allow that he will 
have the awareness necessary7 to know if he is 
proceeding accurately. 6

6 Rather than give the learner the feeling that he has 
exhausted the subject matter, the books seek to 
whet his appetite for further study.
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Fractions

Book 4 includes one chapter presenting fractions as operators; 
one as families of ordered pairs and the operations on them; one 
on decimals as a new language, and a small section on 
percentages as a question of notation.

Fractions as Operators

Because fractions are defined as the inverses of multiples we 
have met them as soon as we have met multiplication and its 
language. To each multiple corresponds a fraction. The 
fractional language itself allows us to perceive that we can ask 
for one object linked to another if we at the same time name the 
relationship. For example to ask for one half of a given rod is to 
ask for an object, a rod in this case. Hence “one half' seems to 
tell someone to do something and this awareness is associated 
with the word operator.

As soon as fractional operators gain a reality of their own they 
can be studied per se and we soon find that a special dynamics 
called the "fractional calculus" will provide awareness of the 
universe of operators. For example, it is possible to operate on 
operators and find an operator which is equivalent to an

1
operator upon another operator. One half of, or -  x, can be
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1 1 1iterated and produces operators such as — x -  x . . . .  -  x any 

number of times.*

Each operator forms a class of equivalence based on its relation 

to its inverse operator. Twice one half of, 2 x ^ x, is equivalent 

to 1 x (or once) — that is, the "identity operator." There are any 

number of such expressions: -  x 2 x ~ -  x -  x 2 x 2 x ~ 2 x  -  x

-  x 2 x ~ . . .  The identity operator has an infinity of expressions

each belonging to an infinite class, for where we wrote -  we can

write — x, or — x etc. and where we wrote 2 x, we could have
3 4

written 3 x, or 4 x . . .  etc.

Likewise for any operator.

The shortest name of an operator can be singled out or not. To 
know what is the function of its shortest name is more 
important than knowing how to obtain it as an “answer.”

The algebra of operators can be introduced in a number of ways. 
What is vital in approaching the subject is that the teacher 
recognizes that the awareness governing operators rests on the

In elem entary schools it is customary to restrict this study to finding the operator equivalent

f o  si»v  7-7 X-7 X , and even then one of these is not treated as an operator bu t as an object:

or one half of (one third.)
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perception that one object may be linked to another by a 
relationship, the essential difference between perceiving one 
object and perceiving two.

Ordered Pairs

Given a pair of rods, they are linked by a relationship we call a 
fraction. Because there are two rods, in general we do not get 
only one relationship between them, but two, according to which 
we use as a measure and which as the one being measured. 
Hence all rods which are measurable with another rod provide a 
pair (x,y) in which x  is the measured and y the measure. Whole 
numbers or integers are therefore ordered pairs in which the 
second term is called the unit. Where we are used to writing 2,3, 
4, etc., we can now write (2,1), (3,1), (4,1), etc.

This brief exposition contains all that is required to establish an 
important shift of viewpoint. Let the reader be sure he is alert to 
the significance of the following aspects.

1 We start by focusing on a relationship between two 
rods and then detach it from them until it becomes 
an entity which we can study per se.

2 Although any pair of rods will suggest two such 
relationships, when we write, say, (t,y) we 
arbitrarily decide to mean the relationship of the 
tan rod measured by the yellow rod. Given this 
decision, (y,t) refers to a different relationship. 
The order of the elements in a written pair is 
therefore significant.
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3 Since (t,w) has been given the meaning of the 
relationship obtained when the tan rod is 
measured by the white rod, which is the process 
we earlier used to associate a numeral (8) to the 
tan rod, we see that we can regard all the integers 
as special cases included in the class of 
relationships we are now considering.

4 Since the pair (t,y) can also be written (8,5) by 
changing the names given to the rods into 
numerals, we see that a fraction can be 
represented as an ordered pair of numerals.

Indeed, if we replace the notation (8,5) by the notation-^-, we 
produce the familiar written form of a fraction.

Classes of Equivalence and Operations

There are two distinct ways of generating classes of equivalence 
for any given fraction. I have called these Equivalence-A and 
Equivalence-M to remind us that the first allows us to add 
fractions and the other allows us to multiply them.

Equivalence-A

This equivalence is based on the perception that if we start with 
any pair (a,b) we can obtain equivalent pairs (of trains) by 
taking the same number of a as of b.

That is, (a,b) ~ (a + a, b+ b) ~ (a + a + a, b + b + b) ~

(2 x o, 2 xb ) ~ (3 x a, 3 xb ) ~ ___

(n x a, n x b) where n is any integer.
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In effect, this says that the relationship between a and b is 
preserved if we take the same multiples of the object to be 
measured and the object that measures it.

Clearly we can look at this process the other way round and say 
that we can find equivalent pairs by dividing the elements 
instead of multiplying them. If a and b have any common 
divisors then we can get more pairs equivalent to (a,b) by 
dividing both a and b by them. When we divide a and b by their 
biggest common divisor (i.e. their HCF) we must obtain a pair, 
(p,q) say, in which the elements have no common divisor 
(excluding 1.) (p,q) is said to be an

irreducible pair (and the fraction — is in lowest terms.]
Q

We can now see that to generate a complete class of equivalent 
pairs we must begin with an irreducible pair and systematically 
take all the multiples of its elements by the sequence of 
numerals.

Addition

Before we can decide how to develop a procedure for adding 
fractions we need to know what meanings we can give to such an 
operation, and we will look for clues in what we already know, 
both about fractions and about addition. We know from our

work with fractional operators on lengths that if we have, say, _
7
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of a length and add it to — of the same length we will have 

5
altogether — of it — and that this statement is independent of

the particular length we worked on. It seems natural to shift 
attention, and therefore language and notation, from the idea of 
adding the lengths to the idea of adding the operators and

o  n  r
writing, simply, _ + _ _ _

Speech allows us to absorb this kind of statement into the 
pattern of many others that we often use:

3 cows and 2 cows are 5 cows altogether 

3 hundred plus 2 hundred is equivalent to 5 hundred 
3 sevenths plus 2 sevenths is equivalent to 5 sevenths.

This suggests that we can give a mathematical definition in the

following way. Given two fractions — and —, we will sav that —
y u b

X t  3  3is their sum, and will write — +------ if — of M (where M is any
y u b b

magnitude whatever) gives the same result as — of M  added to
y

-  of M. 
u
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We can put this definition into operation immediately on any 
example where y and u are the same number — that is, where 
the two given fractions have the same denominator — because, 
as we saw with the example of the sevenths, it reduces to the 
already familiar addition of integers. So, for example.

For all other cases, when y and u are not the same number, we 
can use equivalence-A to transform the problem into one which 
can be solved by the same simple procedure.

x_ is one member of an infinite equivalence class of fractions.
y

Another member of this class must be one which has the

U X  Xdenominator u x y; in fact, it is the fraction-----  .

J . 5 6_.
V ' V 7 '

11. 91 , 18 , 109
i r  123 123 123

uxy

Similarlv one of the fractions equivalent to — is - —
u y xy xu

the problem of finding
ux x y x
-----------------+  - —

y x t
uxy  yxu
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But since u x  y is equivalent to y x u, the denominators of the 
two fractions are now the same number and the question is in 
the simple form that we can immediately solve.

Following this procedure in a particular case, let us solve the
3 8 3question — —. We start by finding an equivalent to -  with

Q
denominator 9x7,  and to -  with denominator 7x9.

9

Thus -  + -  transforms to
7 9

9x3------ h
9x7

7x8
7x9

J lL —
~ 63 63

83
63

The details of whether this answer can now be transformed into 
a mixed number, or whether it can be reduced, do not bring any 
new matters of importance. The main point is that we have 
shown how equivalence-A can give us access to the familiar 
rules about “common denominators" and dispel the mysteries of 
the addition procedure.

Multiplication and Equivalence-M

Our first acquaintance with another way of combining two 
fractions to get a third may be when we notice that we can make 
sense of questions like:
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“What is one half of one half of the tan rod?"
“What is two-thirds of three-fifths of the orange rod?" 
“What is seven-fifths of five-fourths of the pink rod?"

In these cases we are again operating on lengths, blit instead of 
operating twice on the same length (as when we spoke of 
adding,) we are operating first on one length and then on the 
result of the first operation. Taking the third question, for

5
instance, we know that we can find — of the pink rod, which is

the yellow rod, and then find -  of the yellow rod — that is, the
5

black rod.

But we can also notice that the same end result could be 
obtained by a single fractional operation — “What is seven-

7 5fourths of the pink rod?" So -  o f -  o f the pink rod is equivalent

to — o f the pink rod. Since it is evident that the equivalence is

not dependent on the length operated on we can shift attention 
to the relation between the operators and write, simply, Z ~ _

This suggests that we can define the multiplication of fractions 
as producing the single fraction that is equivalent to “a fraction
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X t cof a fraction." Given two fractions — and — we will sav that — is
y u d

X t c ctheir product, and write — x ------ , if — of M  (where M  is any
t u d d

magnitude whatever) gives the same result as — of
y

7 1 7 2 7 3
ofM].

1 4 2 4 3 4

We can now deal with the task of computing products by 
introducing the idea of equivalence-M.

7 d 7We have already observed that - —  —  and we can readily see
5 4 4

that we could just as well have obtained, say,

7 3 7— x ------
3 4 4

7 8 7or - x ------
8 4 4

or, indeed, — x — — , where n is any integer. In short, we have 
n 4 4

7 1 7 2 7 3an equivalence class of products: —x ------x — ~ — x —
1 4 2 4 3 4 . . ·

This generation of an equivalence class can be generalized

through the perception that if — is an irreducible pair we can
K
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use any number C as an intermediary and measure H by C and C 
by K. '

Then —x— will be equivalent to — for all values of C.C K K
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So we can immediately write down the fraction which is 
x tequivalent to — x — in all cases where y and t are the same
y u

number. When they are not, equivalence-A tells us that one of
X t X X tthe pairs in the family — will b e -----  and one in the family —
y t x y  ' u

will be

tx x-----x
tx y

y x t 
y x u 
tx x  
uxy

. These are the pairs that will allow us to contract

tx xin to -----  bv means of equivalence-M.
uxy

c X tTherefore if — is the product of — x —, c ~ x x t and d ~ y xu . 
d y u

This can be recognized as the conventional method of 
multiplying fractions by taking the product of their numerators 
and putting it above the product of their denominators.

Equivalence-M will also allow us to perform division of
Q C X

fractions. We will read —+ -------as the inverse of a
b d y
C X Si

multiplication in which — x — *—  .By equivalence-M we know
d y b

that if c and a are the same number, then we can contract
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immediately. Therefore, by using equivalence-A, if we find pairs 
C 3equivalent to — and — such that the numerators are the same, 
d b

C X 3 X C X  3(cx a) we have----- x ---------- and thusx ~  d x  a and ii ~ cxb .
dxa y cxb

The quotient — is found to be obtainable by taking the cross
y

3 C 3 X  dproduct of the numerators and denominators: — -----------
b d bxc

This is the rule everyone learned in school, but here it appears 
only as an attribute of operations with fractions based on 
equivalence-M and equivalence-A.

Decimals

The section on decimals in Book 4 is treated as a job of 
translation. First the notation of the decimal point is given as an 
alternative to placing a number of zeros in the denominator of a 
fraction chosen to be decimal (in that its denominator is a power 
of ten or can be expressed as such.)

We write ——  0.1, —----0.01, —------0.001, and so on. The
10 100 1000

appearance of the answer in operations with these fractions is 
easily transferred and can serve as the basis for calculation with 
decimal fractions in either form.
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Thus, — becomes 0.1 + 0.3 ~ 0.4, and conversely.
10

23 15 38---- +------------ becomes 0.23 + 0.15 ~ 0.38, and conversely,
100 100 100
etc.

Indeed when we treat decimals as a new language we make 
sense at once of the new notation, which in the beginning only 
describes what is already known and only later becomes a tool 
that permits us to ask new kinds of questions which make sense 
in the new context. For instance as soon as one becomes aware 
that sometimes there are a finite number of digits on the right

side of the decimal point ( - — 0.2) and sometimes an infinite
5

number ( -~  0.3333 . . .) the question of making them uniform

arises. It can be solved by making all decimal fractions have an 
infinite number of digits, noting that if, for example, is written

as 0.1999 . . . the difference between 0.2 and 0.1999 ..  . must be 
written 0.0000 . . .

But as soon as this becomes part of one's knowledge and the 
perception of a decimal calls up its class of equivalence, as 
happens with fractions, new questions emerge. One interesting 
question with far-reaching consequences concerns the structure 
of the infinite sequence of digits. There are only a few possible 
alternatives to consider:
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1 All the digits could be the same. Are there many 
such examples?

2 The infinite number of digits could be made of an 
infinite repetition of the same group of digits. Are 
there many such examples?

3 The phenomenon (b) could appear after an initial 
portion of the sequence which is not repeated.

4 Are there other kinds of regularities one can think 
of? Do these two cases (c) and (d) concern a small 
or large portion of the class of decimals?

5 What about irregularities? Do they occur? How 
frequently? Do they lead to a new awareness of the 
relationship between numbers and decimal forms?
For instance if we start by calling a number any 
infinite sequence of digits as met here, what kinds 
of numbers can we generate from this? Do we 
recuperate those already met?

Because this thinking only requires common sense it is available 
to everyone and the mere asking of these questions may lead us 
to become curious about the answers. This is the inner climate 
of the mathematician. We can now let everyone have a chance to 
understand the questions and decide for himself whether he 
wishes to give himself or not to a study of them.

Naturally even when simply expressed, these questions can be 
profound and demanding.

Here we have discussed the requirements of the teaching of 
decimals from the point of view of making it accessible to
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perception. Every time we can take a question from any field 
and make it a question of perception — in the sense we use it 
when we handle language — we allow years of intimate 
experience to become available, however young the student is. 
This we have been able to do in the example above.

Percentages

Percentages are presented in Book 4 as the name of the 
numerator when the denominator of a fraction is 100. Nothing 
more needs to be known or said.

Summing Up

When I wanted to bring awareness of the relationships involved 
in fractions to readers of Book 4, I allowed the relationships 
themselves to suggest to me a vocabulary for dealing with them. 
Thus to see fractions as the inverses of multiples and call them 
operators made a good deal more sense than to give them the 
definition their etymology suggests (“breaking into bits”).

In considering ordered pairs, the powers of transformation 
which allow a person to use the correct pronoun in his native 
language allow the generation of families of equivalent 
expressions. He, him, me and /  may all refer to the same person, 
depending on the point of view, the speaker and the fimction in 
the sentence. In the same way “one half' applies to an infinity of
, 1 1 1 
different pairs, thus unifying them (1 is -  x 2; 2 is -  x 4; 3 is -

x 6 . . .) At the same time one half can be distinguished as a 
sound from two fourths, three sixths, etc., which are equivalent
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expressions. It is easy here to see why equivalent expressions aie 
such powerful pedagogical tools, unifying and separating at the 
same time.

In the case of operations with fractions, the families of 
equivalence generated through the two modes, equivalence-M 
and equivalence-A, provided all that was needed to allow the 
operations of addition, subtraction, multiplication and division 
to be extended from integers to fractions. Thus it was not 
necessary to present rules — “find common denominators,” 
“invert and multiply,” etc. — which apply exclusively to 
operations with fractions.

Similarly, by viewing decimal fractions as a new language, we 
were allowed to enter into the questions specifically generated 
by decimals and explore some areas which would have been 
inaccessible to us otherwise.

This section can perhaps sen e readers as a paradigm of a way of 
constructing a curriculum that takes both the subject matter and 
the powers of the learner into account.
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Postscript

What is it, then, that will allow ns to teach mathematics to 
anyone with a functioning mind and an inclination to learn? 
Simply, finding a way to make the learner aware of the powers of 
his mind — the powers he uses everyday, those which allowed 
him to learn his native language and to use imagery and 
symbolism. This means that the job of teaching is one of 
bringing about self-awareness in learners through whatever 
means are available in the environment: words, actions, 
perceptions of transformations, one’s fingers, one's language, 
one's memory, one's games, one's symbolisms, one's inner and 
outer wealth of perceived relationships, and so on.

Because technology·, at the electronic level of today, has made it 
possible to reach millions instead of scores, in the future all 
valid educational ideas will end up available on television, 
reaching people through computers and satellites rather than 
through textbooks and teachers at schools.

This era is with us already and calling us to do the new job the 
best we can.
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Appendix A:
A Prelude to the Science of 
Education *

Since Aristotle men have wanted to make statements about the 
world which were both neutral and universal: neutral so that the 
speaker and the listener only felt involved in the content and not 
in their own idiosyncrasies, and universal so that no example 
could be imagined that contradicted the content of the 
statement, unless by doing so it led to a new discovery. Thus 'all 
objects fall' can be tested to be true by everyone, and if any 
objects don't it must be because their weight is balanced by an 
equal force.

In this paper we shall discuss whether we can make statements 
about education, and in particular about the teaching of

* Reprinted from "Mathematics Teaching," the Bulletin of the Association of Teachers of 
Mathematics No. 59, Summer, 1972
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mathematics, which are neutral and universal and do represent 
progress in our awareness of what we are considering.

Before doing this it may be useful to the reader to examine 
whether the usual statements made by educators, or about 
education by anyone else, are received as neutral, universal 
statements which can be treated as true or false, or simply as 
statements of opinion which are true or false depending only on 
the examples quoted in support. For example, if we say 
‘Children learn at their own pace’ or “Mathematics is difficult for 
many children’ or The study of dead languages is boring,' are we 
actually saying any more than that rumor has it that it is not 
possible to make people learn at a single pace, or make 
mathematics attractive and easy, or the study of dead languages 
an exciting adventure?

Until now, I claim, educators have not been attracted to making 
a science of their activities; that is, they have preferred guidance 
from the views of their leaders to developing the criteria which 
would produce knowledge in their field comparable in certainty 
with that reached in the sciences.

This does not mean that it is not possible to find such criteria 
and to develop a science of education. Not to have tried is not 
equivalent to having shown its impossibility, and we shall prove 
here that it is possible simply by trying.

The usual demand made bv the sciences of scientists is that they 
be with their problems and let these guide their steps. A 
scientist gives himself to the subject he studies and only wishes



to make statements which are valid about it. The will to remain 
with the problem leads by itself to the avoidance of distractions 
and the emergence of those features which can be reported to 
present themselves when one contemplates the given subject.

In the field of education it is in no way different. But the 
complexity may be a challenge and the statements be 
complicated sometimes because men are unique in that their 
wills generate true differences which weigh more than their true 
similarities. By selecting ways of working and problems of a 
certain kind it remains possible to reach the same objectivity 
and usefulness found in other sciences. It may also be possible 
to attract more workers for this science than seem today to wish 
to concentrate on these problems.

This paper also aims to be an inducement to its readers to 
consider the fulfillment that is possible in becoming scientists 
for education. Since it appears in a periodical for teachers of 
mathematics the examples worked out will mainly be taken from 
the study of that field. Other teachers will add their own 
examples.

Let us first assume that some agreement exists on the following 
points. We all are ‘learning systems,' that is, we know how to 
change the time that life gives us into experiences which are 
capable of being evoked, whilst time itself is consumed 
irretrievably. To learn is a property of the living or of the process 
by which we transform the given into what is, into what is ours 
from then on. But since other people learn and what is theirs 
could save us time if it were available for our ow n use as and
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when we want it, we are all prepared to learn from others. All of 
ns value a reduction of our time of learning so long as this does 
not take away from us joy, enjoyment, the fulfillment of our 
duty, etc. We shall call that part of our education the 
transformation o f our self which uses parts of this self to 
objectify what others have objectified for themselves.

It is unnecessary for us all to agree upon values — which differ 
from person to person — before we can find a treatment of some 
educational matters that is acceptable to everybody.

It is clear, for instance, that there is a difference between the 
change of our time into experience resulting from our mere 
functionings, such as looking or listening, and that resulting 
from our acceptance of what someone else has codified for his 
convenience. When looking, listening, thinking, etc., are 
involved on their own we need no one other than ourselves and 
nothing other than time to find ourselves having experiences 
which can be singled out, perhaps to be expressed in words or 
forms of our own. But we also use these same functionings on 
materials which are conventional, not “necessary', as far as we 
are concerned, and which cannot be worked on until some part 
of our self has been given to becoming something within our self 
that can be acted upon.

There are, here, clearly, two very different processes involved: 
one concerning itself with objectivation, the reserving of mental 
energy in order to make the material into objects within the self 
on which the mental powers of the self can operate; the other
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concerning itself with these operations, the dynamics of the 
mind.

The mind of someone who has objectified part of his self may 
after a while no longer distinguish between these two processes, 
and not notice that the objectified energy — which has gained a 
structure — is less labile than the links between the objectified 
energies. This is the case with images, visual or auditory 
memory, the vocabulary of our languages, etc. Most of us have 
lost the power to discriminate between them and those of our 
functionings that act upon them.

When we are in the process of studying a second (or new) 
language we find that the retention of vocabulary differs from 
the use of words in spontaneous sentences. But once we have 
mastered a language, thought and verbalization seem to be one 
and the same thing.

To make these distinctions more prominent we shall use a 
special word for the mobilization of the energy within the 
objectified element. We shall call ogden a unit of learning which 
refers precisely to this mobilization. That is, every time we find 
ourselves in possession of a structured part of our mental energy 
caused by our response to a situation in which our self is 
involved, we shall say that we have paid one ogden in order to 
own the structuration of the energy rather than the unstructured 
energy' that went into it. Ogdens are thus required to ‘clip’ or 
‘retain’ any mental quantum which cannot be the result of one's 
own ordinary fimctionings alone. When we manage, for 
instance, to retain a word from our own or any other language
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we have paid an ogden for this. If we can use the word again and 
again we know that we paid the required ogden; if we cannot 
bring it back at once, either we did not truly pay the ogden or 
some mechanism prevents its recall.

Languages are made of vocabularies and other components. For 
each word in the vocabulary we have to pay an ogden whether 
we get it through translation or mere recall. Thus vocabularies 
are expensive in terms of ogdens. So are grammatical rules and 
conjugation paradigms. But there are less expensive means of 
obtaining the uses of languages once we know how to avoid 
asking for unnecessary ogdens — that is, when learners can 
reach through an awareness of their inner dynamics those 
elements that students of foreign languages are usually asked 
only to retain. This saving of ogdens only results when this study 
of how the dynamics of the mind (which is everyone’s birthright) 
produces new knowledge out of pre-existing knowledge has 
been made. This we shall not do here but only say that it is the 
object of study of epistemology, the science of how we know.

Ogdens, being required for what cannot be invented by 
everybody, will find their place in the linguistic aspects of any 
form of learning, mathematics included, because they are the 
most economical way of owning what may otherwise take years 
to be foimd again. But, ogdens belonging to the life of the mind 
are only well spent when they make the self more competent in 
its attack on future tasks. Learning becomes part of growth only 
when the spent ogdens become part of the invested capital of 
energy7, not when they are in the memory as isolated items.
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For many a primary school child arithmetical facts have had to 
be bought with hundreds of ogdens, requiring innumerable 
further ogdens for the facts to be kept available, instead of his 
having the dynamic knowledge that results from the investment 
of the strictly minimal number of ogdens.

That today we can look at arithmetic teaching and learning with 
such detail and precision is a sign that the science of education 
is in the making. The following illustrations will sen e to make 
the precision obvious to all readers.

1 Estimation of the ogdens required to learn the common 
system of numeration.

• The spoken language o f the English numerals.

Every child finds in his environment the sounds of some 
numerals used as adjectives. He must pay nine ogdens for the 
numerals under ten; one for -teen and then four more for 
eleven, twelve, thirteen, fifteen, which are irregular, and none 
for nineteen, eighteen, seventeen, sixteen, and fourteen; one for 
-ty and then four more for ten, twenty, thirty’, fifty, which are 
irregular, and none for ninety, eighty’, seventy, sixty, and forty; 
one for one hundred; one for a thousand; one for a million, etc. 
Hence the accountancy for speaking numerals which he has 
heard is the free combinatoric upon material costing twenty-two 
ogdens.

The fact that the numerals are ordered is an additional structure 
upon the set of these sounds and perhaps one or more ogdens

Appendix A:
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will be required for the establishment of the sequence between 
one and nine. These same ogdens can be used for the sequence 
after twenty; another amount will be required from ten to 
sixteen, usable when we go from sixteen to nineteen.

An ogden is required for the maintenance of hundred as the first 
sound to utter when three numerals are involved (a special case 
of attention to silence when the middle numeral is missing may 
also be worth an ogden.) Another ogden will suffice to leap over 
the stretch from one thousand to nine hundred ninety-nine 
thousand, nine hundred ninety-nine; and a single one more for 
one million to jump from this to the one preceding one billion 
(American.)

The balance sheet shows:

Capital investment: twenty-four ogdens.
Returns: one billion numerals.

Of course this is a very conservative estimate and this 
investment could have produced a lot more. For instance 
instead of a billion we could use thousand million’, which will 
cost one ogden, but will be re-usable when million million is 
followed by thousand million million and so on.

In fact no one needs to make investments beyond the twenty- 
four mentioned because no one will ever wish to name such 
numerals per se. •

• The written language is a different 
matter and some of man's activities may

184



require the writing of particular numerals with 
a certain number of digits (thirty or so say.)
Here the availability of the spoken numerals 
will reduce the investment, but possibly only 
very little. Indeed we must again pay ogdens to 
link firmly 1 with one, 2 with two, . . .  9 with 
nine, and pay again twenty ogdens for the 
reading and writing of numerals up to 999, one 
for the comma for one thousand and one for 
the comma of one million. One ogden has to be 
paid for the 0 which fills the empty place 
between the units of different orders, and one 
not to write the 0 on the left of a two figure 
number. One ogden has to be paid for the 
convention of writing horizontally and reading 
from the left. Hence the study of the common 
system of numeration in English requires 
exactly forty-eight ogdens to be mastered from 
scratch.

2 Estimation of the ogdens required to learn all systems of 
numeration which employ Arabic numerals.

Appendix A:
A Prelude to the Science o f Education

• Systems with a base smaller than that o f the 
common system.

The cost is NIL. Indeed in the array used in 1(b) it is sufficient to 
place one bar after the three elements of any one column and to 
restrict oneself to the elements on the left of that bar to obtain
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all numerals in that base exactly as it was obtained in the 
common system.*

• Systems with a base larger than that o f the 
common system.

Here we must pay as many ogdens as there are new imits of 
order zero required. The rest is found at no additional cost.

3 Estimation of the ogdens required to learn the Roman system 
of numeration.

Ogdens have to be paid for I, II, III, V, X, L, C, D, M; one for 
placing I before V and X to form IV7 and IX. One for placing I or 
II or III after each of the remaining signs, and two for indicating 
that the ogdens paid for I on the left can be used to indicate 
subtraction of the smaller one if it is placed on the left and 
addition when it is placed on the right. One ogden has to be paid 
for the convention of reading Roman numerals from the left, 
effecting as many steps backwards as there are signs followed by 
one or more which refer to a larger number, and another for 
adding if the one that follows refers to a smaller number.

Thus MCDXCIV or MDCCLXXIX require that these extra 
ogdens be paid.

The array referred to is the table (T„) on page 16.
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The capital investment for the Roman numerals in any language 
besides Latin is therefore eighteen (X\TII) ogdens. The returns 
are only MDCCCLXXXIX or one thousand eight hundred and 
eighty nine numerals.

4 Estimation of the cost of learning addition in any system of 
numeration.

• In the common system.

Ogdens need be paid only for the special attention to the 
correspondence between the set called 10 and a pair of 
complementary subsets. This represents indeed only two 
ogdens, one to recognize that, for example, 3 and 7 are 
complementary and one to recognize that from such a pair the 
pairs 2 and 8, and 4 and 6, can be derived (by say folding or 
unfolding fingers if the set of fingers is utilized as a model for 
10, and folding as the process of generating complementary 
subsets.)

Another ogden is required to note that the relationship 4 + 6 ~ 
10 leads to 40 + 60 ~ 100, 400 + 600 ~ 1000, etc., merely by 
placing 0's on the right of each of the written numerals. One 
more ogden is used to shift units from 40 or 60 to the other one 
producing, say, 41 + 59 ~ 42 + 58 ~ . . . 45 + 55 ~ 100, or 
between 400 and 600, 390 + 610 ~ 380 +620 ~ . . .  ~ 1000.

One more ogden is required to note that when units of any order 
are shifted from one number to another in a pair of



The Common Sense o f Teaching Mathematics

complements, the units of the same order add up to 9, except 
those on the extreme right, which add up to 10.

The cost of all additions is now quickly established through a 
number of transformations leading to the reading of the sum. 
Let us consider any example; the number of digits is not 
significant, only the implications of the transformations.

4865 Since 135 is the complement of 865 in
+ 37g 1000 we shift these units from 378 to

the first number and obtain a new
5000 equivalent addition whose answer is
„ immediately read as 5243+ 243 J

We need therefore to know:

• how to estimate complements of any 
numeral in the numeral containing as many 0's 
as the given numeral, •

• how to shift that amount from one 
addend to the other,

• how to read the last addition.

Clearly in such a shifting of units we meet a subtraction — which 
is as it should be, since subtraction and addition are inverse 
operations which can be considered together from the start 
when we read complements. Hence one ogden has to be paid for 
learning to read additions as subtractions and subtractions as
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additions — at least in the case of complements within numerals 
containing as many zeros as they have digits minus one.

• In another base.

There is only one difference, not requiring any ogden, and that is 
to note that 9 must be replaced by the numerals preceding 10 in 
that base.

Hence after mastering numeration we can master additions for 
four ogdens provided we simultaneously master subtraction.

5 Estimation of the cost of learning subtraction in any base. 
Here instead of shifting an amount from one addend to the 
other we need to note:

• that complements like the ones we had before (in 
the common system) and which can be written for one 
ogden in the vertical form:

• that any subtraction can be transformed at no cost 
in ogdens as follows:

472
+ 528 can be read for another ogden as 
1000

1000 1000
-528 or -472 
472 528 •

2016 1000
1016 + 1016 + 522 ~ 1538

478 - 4 7 8
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by shifting 502 from the second to the first and 
adding 20.

In this paper we have not attempted to develop a teaching 
sequence, though as a consequence of our estimation of the cost 
of learning in ogdens we have foimd a procedure which actually 
suggests a route for teaching for mastery, understanding and 
swiftness. Details of the pedagogy will be given somewhere else. 
Here let us close by saying that by deliberately remaining within 
the fundamentals of mathematics we have been able to reach 
statements of extreme precision even if someone else's estimates 
do not agree exactly with the ones given here. That this is 
possible is the essence of the message written here.
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Appendix B:
A Map o f Elementary 
M athematics Derived From  
Tables o f Partitions*

The contents of the table considered here can easily be seen to 
fall into four headings:

1 columns Ri R2 R3 R4’,

2 the words in each column;

3 the arrows linking words;

4 the fusion of two columns at the bottom of the 
table.

Reprinted from C. Gattegno, For the teaching o f  mathematics, vol. 3 (Reading, England: 
Educational Explorers, 1963.)
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• The initial R stands for restriction. 
Though there are more than 4 principles of 
restriction, only these were considered 
necessary to provide the essence of the various 
constructions that would produce chapters of 
mathematics and hence sections of any 
elementan· mathematics curriculum.
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• Complete table of partitions of a length L; P. }

Appendix B:
A Map of Elementary Mathematics Derived From Tables of Partitions
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Ri appears first from an arbitrary personal choice 
and not because of its logical or structural 
precedence over others. Its definition is in the 
equivalence of L and the maximal set of rods 
forming a train equivalent to L — i.e. a train 
composed of white rods. It is also the first and last 
Une of the table of par titions Pl starting with L and 
ending with the same length made of the greatest 
number of rods.

• R.2 is another restriction on the set of 
partitions. It is formed by ignoring all possible 
permutations of a set of rods in each line of Pl.

• R3 is the restriction on Pl which allows 
only lines formed of two rods; these lines are 
thus complementary to each other in L.

• R4 is the last restriction on Pl we must 
consider before we can study the main ideas of 
elementary mathematics. It is formed of all 
iterated lengths; that is, each line contains as 
many rods of a particular length < L as are 
needed to form L exactly, or most nearly form it.

Having selected these four ways of producing basic ideas, I chose 
the words in each column to represent the various permissible 
interpretations, or the various chapter’s that can be begim, when 
only the concept embedded in the restriction is being used.

Ri clearly provides the classical foimdation for arithmetic since 
the repetition of the imit has served as a basis for the 
elaboration of integers, w hich then form sets that are recognized 
to serve for cardinal and ordinal purposes. But in Ri we 
recognize that, if instead of considering numbers we consider
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the sets formed by the white rods equivalent to the successive 
L’s, other possibilities also exist.

Ri indicates how the rods could sen e to generate the traditional 
approach to mathematics in schools. Thus, bv ignoring all the 
other rods and what they can bring, we can provide a curriculum 
equivalent to the classical treatment of number. This shows us 
that we cannot lose much of what traditionalists want, since this 
is equivalent to a very special use of Pl; moreover, we may 
expect a great deal more if we can introduce other ideas and 
other materials with new uses.

R.2 indicates how the simple fact of noticing that the same rods 
may appear in various lines of Pl can generate new insights into 
how sets can be related. If we agree to use any one line to 
represent the set of all the permutations of the rods in that line, 
we shall have generated many examples of correspondences 1 to 
1,1 to 2 or 2 to 1, and so on. The modern notion of function in 
analysis can thus be brought to the notice of beginners as a 
special awareness of a very immediate kind: the multiple 
correspondences between elements of sets. But because they are 
at hand, the permutations thus singled out can be studied, and 
likewise their transformations, which lead to a study of the group 
of substitutions. Combinatorial algebra in its other aspects is also 
open and requires no new techniques of computation.

R3 is third simply for reasons of order and display; it is more 
primitive than Ri or R2. Here, the study of complementarity is 
taken as far as it seems possible at the elementary level. It can be 
seen that the set of RTs, if combined with itself, generates the set
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of PL’s, thus telling us both how fundamental complementarity is, 
and also that indeed nothing is lost in analysis at this level if we 
substitute the study of {R3}  for that of {Pi}.

But because R3 is based on addition, the content described is a 
development of aspects of this operation.

R4 is, in short, a study of multiplication and what it generates 
that is not directly visible in addition. In this table there are 
three features that need to be brought into relief:

1 the place of measure;

2 a restriction within a restriction, or RT;

3 the m utual im pact o f  R3 and  R4.

Measure, in the work with the rods, is borrowed from physics 
and introduces counting by the back door, since it is necessary 
to know how many times the unit has been used to associate a 
number with a given length. But measure is also the source of 
fractions and mixed numbers, and senes later to introduce real 
numbers. Thus measure is a more powerful tool than counting, 
which it uses as a generator of mathematics. Counting is met in 
Ri and can be interpreted again as being a measure with white 
rods. Measure is naturally also an interpretation of iteration and 
is the basis of R4 and all its consequences.

If {R4} is produced out of {PL} by a consideration of iterations, 
R'4 still further restricts the set bv retaining in it the measures 
that are “successful” or do not require a remainder. This way of
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creating chapters by restriction on restriction is obviously 
present at many points of the table, though not singled out 
expressly by a name.

Finally, the bottom part of the table indicates another 
procedure, that of relating the two processes of R3 and R4 
through a special link, here shown as the distributive law or a 
new axiom. It opens up a number of more structured chapters 
which go to form the complex body of elementary mathematics 
and which is therefore the aim of study in elementary schools.

To conclude this explanatory sketch of what has been put into 
the table, a word can be added about the arrows. They sen e two 
purposes: they not only indicate routes from one place to 
another, but also link these places together, making them 
logically dependent. It would be an interesting exercise (and one 
which I shall leave to the reader) to find out how many different 
routes can be produced using the arrows provided in the table. 
Some of them could sene as alternative curricula to use with 
different classes for the conquest of mathematics. What matters 
here is that the reader can see how to structure a curriculum. 
What must be watched is the order needed for the presentation 
of the notions and techniques; this is provided by the arrows 
and the stations (or chapters) in the course of study.

Let us note that other uses of the rods exist which are not 
mentioned in the table, but which can be the object of additional 
restrictions. Thus, the study of simultaneous equations can, for 
instance, form an R5.
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Books and M aterials

Other books by the same author of particular interest to teachers 
of mathematics include:

What We Owe Children (New York: Outerbridge and Dienstfrey, 
1970.) An outline of a scientific approach to teaching.

For the Teaching o f Mathematics, vols. 1-3 (Reading, England: 
Educational Explorers, 1963-64.) Collected articles on a variety 
of topics in mathematics education.

Gattegno Mathematics, Books 1-7 (New York: Educational 
Solutions, 1969-73.) A complete program of elementary 
mathematics based on the use of Algebricks and geoboards.

These books, as well as sets of Algebricks, geoboards, and 
mathematical films (Animated Geometry and Folklore o f 
Mathematics,) are obtainable from Educational Solutions Inc., 
www.EducationalSolutions.com.
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