
Building a J2EE application with Domino and
WebSphere
More than the sum of their parts

Skill Level: Introductory

David Gallardo (David@Gallardo.org)
Software Consultant

24 Jul 2002

Lotus Domino and WebSphere Application Server are both platforms for building
distributed, server-based applications. They have different strengths: Application
Server provides a complete J2EE platform while Domino provides the unique ability
to build collaborative applications. After briefly surveying the various possible ways
the two can work together using Java, the tutorial concentrates on how Domino can
be used in an Application Server environment using standard multi-tier J2EE design.
It pays special attention to the issue of separating presentation logic from business
logic and how Domino can participate in the Model-View-Controller (MVC) design
using JavaServer Pages (JSP), Java servlets and Enterprise JavaBeans (EJB).

Section 1. Introduction

Should I take this tutorial?

This tutorial is for developers who want to use Lotus Domino's collaborative features
in the context of a standard Java 2 Enterprise Edition (J2EE) environment. It covers
essential setup and configuration issues but concentrates on how to design and
code with the Domino classes in JavaServer Pages (JSPs), servlets, and Enterprise
JavaBeans (EJBs).

It is recommended that readers be familiar with the following technologies:

• JSP pages and EJBs

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 28

mailto:David@Gallardo.org
http://www.ibm.com/legal/copytrade.shtml


• Domino, especially programming with the Domino classes

See Tutorial resources for more information on these topics.

What is this tutorial about?

Lotus Domino and WebSphere Application Server are both platforms for building
distributed, server-based applications. They have different strengths: Application
Server provides a complete J2EE platform while Domino provides the unique ability
to build collaborative applications. The tutorial begins by briefly surveying the various
possible ways the two can work together using Java. It then concentrates on how
Domino can be used in an Application Server environment using standard multi-tier
J2EE design. It pays special attention to the issue of separating presentation logic
from business logic and how Domino can participate in the Model-View-Controller
(MVC) design pattern using JSP pages, Java servlets and EJBs.

The tutorial uses a sample application that displays the contents of a Lotus Domino
discussion database to demonstrate how Domino can work with WebSphere
Application Server and J2EE. This will take us from the nuts and bolts of configuring
Domino and Application Server to the more abstract realm of designing and building
a J2EE application using the MVC methodology.

What the sample application does not cover

The sample application is intended to demonstrate simply and clearly how Domino
can fit into the J2EE architecture. It is not intended to be a complete demonstration
of J2EE. Specifically, key features of Application Server that make it a compelling
platform for distributed application development -- especially EJB and relational
database connectivity -- are not demonstrated because these topics would require
coverage well beyond the scope of this tutorial.

The sample application might be, for example, part of an online music store where
features such as the catalog and transaction processing are built using standard
J2EE components such as JSP pages, servlets, EJBs, and a relational database.
Although the Domino part can easily be implemented using Domino's Web
publishing features, calling the Domino Java classes from a J2EE component, such
as a servlet as shown here, provides greater flexibility and control over the
application's appearance and behavior, and makes it easier to achieve a seamless
integration.

For an example of a larger application, see the IBM Redbook, Domino and
WebSphere Together Second Edition , available online (see Tutorial resources).
This book provides thorough coverage of integrating Domino, Application Server and
DB2 Universal Database using servlets, JSP pages and EJB technology.

Tools and configuration recommendations

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 2 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


In order to follow along with this tutorial, you'll need the following applications
installed. Free trial versions are available for all three:

• WebSphere Application Server. You can download a free trial of the latest
version of Application Developer.

• WebSphere Studio Application Developer. This tutorial uses version
4.0.3. You can download a free trial of the latest version of Application
Developer.

• Lotus Notes and Domino 6 (See the Lotus Developer Domain for details
on Notes/Domino 6.)

The tutorial assumes that the Application Developer configuration of WebSphere
Studio, WebSphere Application Server, Advanced Edition and Lotus Domino have
been installed with default options, preferably, but not necessarily, on the same
computer. The instructions for building the sample application have been tested with
Application Developer V4.0.3, Application Server V4.0.1 and V3.5, and Domino 6.0.
The sample application was built, tested, and deployed on Windows, but will work
equally well on Linux.

You'll also need to download DominoWASsrc.zip, the source code for the sample
application.

A Pentium® class PC running Windows NT/2000 with a clock speed of at least 500
MHz and at least 256 MB of memory is recommended. The examples here ran well
on a 650 MHz AMD Athlon™-based system with 384 MB of memory. Hard disk
space requirements for both Application Server and Domino are approximately 1 GB
after installation; downloading from the Web and installing from the same hard disk
will temporarily require approximately 1 GB of additional space.

Section 2. Domino and WebSphere Application Server

Overview

Lotus Domino and WebSphere Application Server are both platforms for building
enterprise-wide distributed applications. They are both rich in features and have
mutual support for a broad range of technologies and protocols. While there is some
overlap in functionality -- particularly in their support for HTTP, HTML and Java -- the
many ways in which they can interoperate ultimately makes for a powerful
combination. This section examines their relative strengths and recommends ways
that they can be most advantageously integrated.

Key strengths: Domino

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 28

http://www-128.ibm.com/developerworks/downloads/ws/was/?S_TACT=106AH13W&S_CMP=TUT
http://www-128.ibm.com/developerworks/downloads/ws/was/?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/developerworks/downloads/ws/wstudio/?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/developerworks/downloads/ws/wstudio/?S_TACT=106AH13W&S_CMP=TUT
http://www14.software.ibm.com/webapp/download/search.jsp?&go=y&rs=ESD-DMNTSRVR&S_TACT=106AH13W&S_CMP=LSJ2EE&sb=r
http://www-10.lotus.com/ldd/nfr6welcome.nsf?OpenDatabase
DominoWASsrc.zip
http://www.ibm.com/legal/copytrade.shtml


Both Lotus Domino and WebSphere Application Server have a long list of features
intended to support similar goals, but despite some overlap in secondary features,
they are remarkably different in their key strengths:

Domino allows building enterprise applications easily and quickly using a
hierarchical, document-based approach. In addition to its native tools and
environment (Notes client support, tools, agents, a Visual Basic-like programming
language, LotusScript, and so on), Domino also provides support for:

• Publishing its databases to the Web as HTML using the integrated
Domino HTTP server

• Java servlets in the HTTP server (Domino 6.0 provides a JSP tag library
where the JSP pages you develop will execute on WebSphere Application
Server)

• Java as a back-end programming language for applications, applets, and
agents

• Directory Services (LDAP)

Key strengths: Application Server

WebSphere Application Server is the premier J2EE implementation from IBM. As
such, it provides a platform for developing Web-based, multi-tier, component-based
applications that are scalable, robust, and secure and based on standard Java
technologies. The key features from a development point of view are its support for:

• Java servlets

• JSP pages

• EJBs

• Legacy applications and databases

Domino and Application Server working together

While there are many different ways that Lotus Domino and WebSphere Application
Server can communicate and interoperate, doing this in a way that makes sense is
critical.

The first question that needs to be answered is: Why use Domino and Application
Server together in one application? There are three possible answers, depending on
your starting point:

1. If you have an existing Domino application, you may wish to extend it or refactor it
using J2EE technologies to:

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 4 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Use standard, well-understood, multi-tier J2EE design patterns such as
the Model-View-Controller (MVC) architecture. This can improve
scalability, maintainability, extensibility, and interoperability with other
distributed applications and resources.

• Use specific J2EE technologies such as EJBs, transactions, and support
for legacy applications for integration into existing systems.

2. If you already have a J2EE application using Application Server you may wish to
integrate with Domino to:

• Use data in an existing Domino application.

• Add new features or resources, such as a document or discussion
database, for which Domino is ideally suited.

3. If you are starting from scratch, you may find that Domino offers unique and
compelling features such as distributed content development, messaging and
workflow, and directory and security services. At the same time, you may have
existing applications using J2EE, or requirements demanding support for J2EE as
the central technology.

In each of these cases, the goal is to use Domino together with Application Server to
develop applications featuring the key benefits of both: a collaborative application
that is scalable, robust, secure, and based on standard Java technology.

Section 3. Configuration for collaboration

Domino integration features

As suggested in the previous section, there are a number of features in Lotus
Domino and WebSphere Application Server that can be used to share information.
The Java programming language and its associated technologies are the key to this
integration.

Domino is not a Java platform, but it provides support for Java throughout. This
support, based on a Java API that wraps the native C++ Domino classes, allows
writing:

• Java agents -- Java programs that can, for example, run automatically at
scheduled times to update a database.

• Java servlets -- Java programs that are run automatically by the Domino
Web server in response to a request from a client browser.

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 28

http://www.ibm.com/legal/copytrade.shtml


• Java applications -- Applications that run outside the server.

• JDBC driver -- A package that allows us to access Domino databases as
though they were relational databases.

Of these, Java applications and a JDBC driver are those most relevant for
integration with Application Server. Because they enable you to write Domino
applications that run outside the context of the Domino server, they provide a way to
extend Domino by calling it from a J2EE context.

Additional Domino features

In addition to Lotus Domino's Java features, there are two other features that are of
special interest for integration purposes:

• Directory services -- Domino provides directory services, specifically an
implementation of the Lightweight Directory Access Protocol (LDAP)
which can be used for user authentication in Application Server.

• The Domino Web Server API -- Domino enables third-party software to
extend its Web server using the Domino Web Server API (DSAPI).
Application Server, notably, provides a DSAPI plug-in that allows it to
work with the Domino Web server, rather that the IBM HTTP server with
which it is bundled.

Configuring Lotus Domino

There are three choices to make before configuring Lotus Domino:

• Will Lotus Domino and WebSphere Application Server be on the same
machine? As already noted, this tutorial assumes that they will be on the
same machine, but will note when something needs to be done differently
if they are not.

• Which Web server should you use? Domino has one and Application
Server comes with the IBM HTTP Server. For development purposes, it is
convenient to set up Application Server and Domino on the same
machine. In order to use LDAP authentication, however, the Domino Web
server must be running on port 80. Given that, it doesn't seem worthwhile
to run the IBM server as well, so the example here will use the Domino
Web server.

• Should you use Domino or Application Server for servlets? Given
Domino's lack of support for JSP pages (as of Release 5) and Application
Server's better deployment capabilities, Application Server is preferable
and will be used here. This also makes using EJBs easier.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 6 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The basic Web server configuration

The following illustration provides an overview of the basic Web server configuration
that the next few sections will describe:

Note that it does not indicate machine configuration nor does it indicate what
happens once a servlet receives a request. A later section, Designing a J2EE app
with Domino and WSAS , will consider how servlets can interoperate with JSP
pages, EJBs and the Domino server.

Starting the Domino server

First, make sure that the Lotus Domino Server has been started by making the
appropriate selection from the Start menu, and then make sure that the Domino
Administrator application has been started. Next, see if the LDAP, HTTP and the
DIIOP servers are running. (DIIOP, the Domino Internet Inter-ORB Protocol, is
necessary for a remote Java client to communicate with the Domino server.) To do
this, type the following command in the server console:

> show tasks

If they are running, the following lines should be in the listing that follows:

LDAP Server Listen for connect requests on TCP Port:389
LDAP Server Utility task
DIIOP Server Listen for connect requests on TCP Port:63148
DIIOP Server Utility task
HTTP Server Listen for connect requests on TCP Port:80
DIIOP Server Control task

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 28

http://www.ibm.com/legal/copytrade.shtml


It is likely that some are not running, in which case you'll need to add the following
entries to the ServerTasks line in the NOTES.INI file in your Domino directory.
You can use any text editor for this:

ServerTasks= <other entries...>
,HTTP,LDAP,DIIOP

Adding the Application Server DSAPI filter

Next, using the Domino Administrator, add the Application Server DSAPI filter. The
Application Server DSAPI filter is a plug-in that allows Application Server to work
with the Domino HTTP Server. To do this, you will need to have Application Server
installed on the Domino Server machine -- even if you plan to run Application Server
on another machine. Find the full path to the file domino5_http.dll in the
Application Server installation. In Domino Administrator, select the current server
document, select the Internet Protocols page and enter the full path and file name
for the DSAPI filter:

With this DSAPI plug-in, HTTP requests that cannot be serviced by Domino will be
forwarded to Application Server. This will be tested once additional configuration has
been performed in Application Server.

To have these changes take effect, the easiest thing to do at this point is to restart
the Domino server with the following command in the Domino server console:

restart server

Verifying the Domino Web server

To verify that the Domino Web server is running, open a browser and enter the URL:
http://localhost. This should bring up the Domino Web server start page:

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 8 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Section 4. Configuring Application Server

Adding ncso.jar to the Application Server classpath

In order to use the Domino classes in an application running in Application Server, it
is necessary to add the .JAR file containing them to the Application Server's
classpath. To do this, locate the ncso.jar file in the Domino directory. It should be
in the following directory if Domino is installed in C:\Lotus\Domino :

c:\Lotus\Domino\Data\Domino\Java\ncso.jar

Copy it to the Application Server's lib\ext directory, assuming Application Server

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 28

http://www.ibm.com/legal/copytrade.shtml


is in C:\WebSphere\AppServer, this would be:

c:\WebSphere\AppServer\lib\ext

Application Server will search this directory, and the .JAR files in it, for classes.

Starting the WebSphere Application Server

Start the WebSphere Admin server. Depending on the version of Application Server,
this may be a done from the Start menu by selecting IBM WebSphere=>
Application Server=> Start Admin Server, or by starting it as a service using the
service manager, for example. Again, this may vary according to the version of
Application Server you are using; refer to the readme.html file in the directory
where you installed the product for more information.

Verify that servlet requests are being forwarded and handled by Application Server
by entering the following URL for showCfg, the sample servlet included with
Application Server:

http://localhost/webapp/examples/showCfg:

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 10 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Section 5. Designing a J2EE app with Domino and
WSAS

J2EE design overview

This tutorial uses a sample application to demonstrate the key points of designing
and building a J2EE application. Most issues are common to all Web applications, in
particular, the desire to separate the presentation logic -- HTML, client-side scripting
-- from the business logic. The next few panels, beginning with The
Model-View-Controller design pattern, consider how the MVC approach can be
implemented with Java servlets, JSP pages and EJBs.

Web applications commonly use relational databases, such as DB2 and Oracle, to

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 28

http://www.ibm.com/legal/copytrade.shtml


store all persistent data. However, some data, such as the messages in a
newsgroup, are hierarchical in nature, and a relational database is not particularly
well suited for this use. It is possible to do and is often done, but it isn't pretty. On the
other hand, designing a hierarchical document store in Domino is simple. The
sample application uses Domino to support this feature, and the sections that follow
consider how to best incorporate it into the MVC design pattern.

The Model-View-Controller design pattern

Design patterns can most succinctly be described as condensed wisdom. They
summarize the solution to a specific problem in a specific context based on
experience. Patterns come in all shapes and sizes, but when discussing
object-oriented programming, patterns usually refer to the relationship between a
group of classes. For example, the Factory pattern is commonly used throughout the
Java API to allow using abstract classes to instantiate concrete objects. Depending
on its size and complexity, an application usually consists of at least a few patterns.

The MVC pattern is at a higher level of abstraction than class relationships. It
describes the overall application design and is sometimes called the MVC
framework or architecture. The MVC pattern neatly accomplishes the goal of
separating presentation from business logic by dividing an application into three
components:

• Model -- The data and its associated business logic

• View -- The presentation of the data

• Controller -- Means of manipulating the model via the view (to allow user
interaction)

When these components are faithfully implemented, responsibilities are strictly
divided among them. For example, the Model will likely contain dates, numbers and
strings, but it should not have any role in formatting them. That is the sole job of the
View.

Benefits of MVC

By encapsulating functionality in well-defined components with limited dependencies
on other components, the MVC design provides many benefits, such as:

• Different teams, with different strengths, can work on different parts,
largely independently. One team, comprising Java developers, may work
on the Controller and Model, while another team, comprising Web
designers, may work on the View.

• Components can be replaced. For example, a Web-based View could be
replaced by a dedicated client application or by a Web services interface,
with little or no change to the Model or Controller components.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 12 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Components can be deployed more flexibly. If performance becomes a
problem because of increased traffic, for example, components can be
moved onto separate servers.

Implementing MVC using J2EE

The MVC design is often implemented by using J2EE technologies as follows:

• View: JSP

• Controller: Servlets

• Model: EJB

In addition, JavaBeans are often used to mediate between each of these
components. The following diagram illustrates a typical implementation of MVC that
uses a standard database to provide persistence for EJBs:

Domino's place in MVC

Since each component in the J2EE implementation of the MVC design is written in
the Java programming language (or, in the case of JSP pages, can contain Java
code in the form of scriptlets), each can potentially access a Domino database.

There are two ways that Java programs, and potentially EJBs, can access Domino
data. The first is to use the standard Java database technology, JDBC. Domino

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 28

http://www.ibm.com/legal/copytrade.shtml


provides a JDBC driver and can appear to be a standard relational database. But
despite some SQL extensions that allow access to its hierarchical data, this limits
the benefits that using Domino can provide. A much better way to access Domino
data is to use the Domino classes for Java because these provide full access to the
Domino object model.

With regard to EJB, no containers currently support using the Domino JDBC driver
for container-managed persistence so it is only possible to use Domino with either
session beans or with entity beans using bean-managed persistence. Provided they
meet the application's requirements, session beans are perhaps the better choice
since they are easier to use. In any case, EJB introduces complexity and overhead,
and these factors need to be carefully weighed against the benefits they provide,
particularly when considering the application's design and features.

In the sample application in this tutorial, Domino is accessed from a regular Java
class, a controller class that populates a JavaBean with data.

Section 6. A sample J2EE application with Domino

The sample application: A discussion board

The sample application will be familiar to users of Lotus Notes and participants in
Usenet groups. It is a discussion board that allows participants to post messages
and reply to messages. In this section we'll demonstrate:

• Creating a discussion database using Notes.

• Writing a servlet that accepts browser requests and delegates them to
controller classes. (Only one will be implemented here.)

• Implementing a controller class for handling requests for data from
Domino. It uses data obtained from Domino to populate a JavaBean. It
then forwards control to a JSP page for display.

• A JSP page that formats the data as HTML for presentation by the
browser.

Key pieces of code will be presented in this section, but some, particularly exception
handling, will be omitted. See Tools and configuration recommendations for a link to
download the complete application.

A Domino discussion board database

Using the Notes client, we'll open a new discussion database based on the existing

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 14 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

index.html#tools
http://www.ibm.com/legal/copytrade.shtml


discussion template. (If you prefer to customize the discussion or design something
a little fancier, you can use Domino Designer to modify the template or create your
own template.) Below is a step-by-step outline of the process:

1. Start Notes.

2. Select File=> Database=> New.

3. Select server.

4. Enter a name for the database; this example uses
WholeLottaTalking.

5. Verify that the file name is acceptable.

6. Select template; this example uses the Discussion -- Notes and Web from
Release 6.

Now, open the database:

1. Select File=> Database=> Open.

2. Select server.

3. Select database.

Enter a few sample documents and responses.

Creating the Web application

To begin creating the Web application using Application Developer, start Application
Developer from the Start menu by selecting Programs=> IBM Websphere Studio
Application Developer. (This may vary depending on where Application Developer
was installed.) Perform the following steps in Application Developer:

• From the Perspective menu select Open=> J2EE.

• From the File menu select New=> Enterprise Application Project.

• Enter the application name; this example uses DominoExampleEnt.

• Uncheck Application client project name and EJB project name. These
are not needed for this example.

• Change the Web project name to DominoExample. Leave the default
location as suggested.

• Click Finish.

The project, DominoExampleEnt, will now appear under Enterprise Applications in

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 28

http://www.ibm.com/legal/copytrade.shtml


the J2EE view on the left side of the Application Developer window. The next step is
to import the Notes classes. Press the Navigator tab at the bottom of the J2EE view.
Right click on DominoExample and select Properties from the pop-up menu.

• On the left side of the panel click Java Build Path.

• On the right side of the panel, click the Libraries tab.

• Click Add External JARs.

• Use the file dialog box that appears to find and add the full path to the
Domino notes.jar file. Assuming Domino is installed in
C:\Lotus\Domino, this will be C:\Lotus\Domino\notes.jar.

• Click OK.

Creating the Java package

To create a package for the project, click on the plus sign next to DominoExample
to expand the entries below it. To create a package for the source code:

• Right click on the Sources folder.

• From the pop-up menu, Select New=> Other.

• On the left side of the panel, select Java; on the right side select Java
package.

• Click Next.

• Enter a name for Package, such as org.gallardo.domino.example
and click Finish.

This last step will create a hierarchy of folders corresponding to the package name,
the innermost being example.

Creating a Java class source file

These are the general steps required for creating a Java class source file. You can
follow along and create the Java class file DiscussionTree.java, which will be
used later:

• Right click on the innermost folder: example.

• Select New=> Other from the pop-up menu.

• To create a regular Java class: on the left side of the panel select Java;
on the right side select Java Class.

• To create a servlet: on the left side of the panel select Web; on the right
side select Class.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 16 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Click Next.

• Enter the class name, for example, DiscussionTree.

• Change access modifiers, if appropriate.

• Click Finish.

This will automatically produce code like the following (in this case, for the regular
class with the default superclass java.lang.Object which, of course, does not
need to be specified):

package org.gallardo.domino.example;
public class DiscussionTree {
}

Creating the servlet class

Create the servlet class, DominoExampleServlet, by following the directions in
the previous panel. It's important not to create this as a standard Java class but as a
servlet, because in addition to creating the class, the servlet wizard creates essential
deployment information.

Add the following imports -- after the package statement -- to the source that is
generated automatically:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*

To process a request in a servlet, one or both of the following methods should be
implemented:

• doPost(HttpServletRequest, HttpServletResponse)

• doGet(HttpServletRequest, HttpServletResponse)

The skeletons of these functions will be generated automatically when you create
the servlet class. For consistency in implementing doGet() and doPost(), add to
each a call to the generic processRequest() method.

Next, provide the code for the processRequest() method (perhaps by cutting and
pasting from the source files provided in the sample application ZIP file).

Controller helper classes

The method processRequest() is called by doGet() and doPost() so that all
requests can be handled by a single method. A servlet would typically process these

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 28

http://www.ibm.com/legal/copytrade.shtml


requests based on the request parameters and the session's attributes. There are a
number of different approaches to doing this. One way is to have different servlets
that handle different requests.

A better way is to have a single servlet handle requests initially and then delegate to
other classes. In this example, the servlet calls an abstract HttpController class;
the HttpController class has a static factory method that returns an appropriate
concrete controller class based on a REQUESTPAGE request parameter:

HttpController ctrl = HttpController.createController(
req.getParameter("REQUESTPAGE"));

ctrl.process(req, resp, getServletContext);
}

The process() method needs the request and response parameters because it will
need them in to order to forward them to the JSP page once it has obtained the data
and put it in a JavaBean. It also needs a ServletContext to forward the request,
but it can't obtain the servlet context because the controller helper class is not a
servlet, so this also needs to be passed in as a parameter.

Processing the request

Create the HttpController class as a regular Java class. Change the default
access modifiers to include abstract. Add the following imports -- after the package
statement -- to the code that is generated:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

The abstract HttpController class has one concrete method, a static method
that instantiates a concrete controller class based on a String parameter. It should
use a properties file (or some other configurable means) to map the String literal
representing the type to the proper concrete class. In this example only one
controller class is implemented, so the value is hard-coded:

public static HttpController createHTTPController(String type) {
return new StartPageController();

}

The concrete implementation, StartPageController, extends the
HttpController class and implements the process() method. This is the class
that does the actual work of obtaining the data from the Notes database,
instantiating a JavaBean class to hold the data and then forwarding the request to a
JSP page that will format and return the data to the browser as HTML.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 18 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Connecting to a Notes database

The code for obtaining data from Notes will be in a concrete subclass of
HttpController. Create a class StartPageController. Enter
HttpController as the superclass but leave the abstract modifier unchecked
(since of course, this is a concrete implementation of the abstract HttpController
class). Add the following imports to the class code that is generated:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import lotus.domino.*;

The StartPageController needs to:

• Obtain a Notes session.

• Open the database.

• Open a view.

• Obtain a ViewNavigator.

Here is the code for these first steps:

public void process(
HttpServletRequest req,
HttpServletResponse resp,
ServletContext servctx)
throws ServletException, IOException {

Session nses = null;
try {

String server = "noizmaker";
String user = "dgallard";
String pwd = "minfishy";
String dbname = "wholelot.nsf";
nses = NotesFactory.createSession(server, user, pwd);
Database db = nses.getDatabase("", dbname);

if (!db.isOpen()) {
db.open();

}

String viewname = "All Documents";
View view = db.getView(viewname);
ViewNavigator viewnav = view.createViewNav();
ViewEntry ventry = viewnav.getFirst();

Reading data from a Notes database

Once a ViewNavigator has been obtained, it can be used to iterate through the
database view. By calling the getFirst() and getNext() methods, each
document, category, and possibly total will be returned in the order they appear in

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 28

http://www.ibm.com/legal/copytrade.shtml


the view. This example is only concerned with obtaining a top-level view of the
documents, so categories and totals will be ignored.

Two pieces of information will be saved for each document: its topic and its
indentation level. They'll each be stored in vectors:

Vector text = new Vector();
Vector indent = new Vector();
while (ventry != null) {

if (ventry.isDocument()) {
int in = ventry.getIndentLevel();
indent.add(new Integer(in));
Vector colvals = ventry.getColumnValues();
text.add(colvals.elementAt(3));
String val = colvals.elementAt(3).toString();
ventry = viewnav.getNext();

}
}

The Model: JavaBean

The MVC design suggests that the data be stored in a way that is independent of
any presentation issues. JavaBeans are a good way to do this because they provide
a convention for setting and getting data, and JSP technology is able to work well
with them.

Representing a hierarchical tree is a bit of a challenge, however, because in order
for the JSP page to use JavaBeans automatically, the get methods should not take
any parameters. This requires a bit of a compromise. In this implementation,
because multiple rows will be stored in a single JavaBean, vectors will be used
internally and the get methods will take a parameter representing the index of the
requested value. This means that the JSP page will need to process it by looping
and explicitly calling methods in the JavaBean to retrieve each row's values.

Create the JavaBean class, DiscussionTree, the same way as the previous
classes, with java.lang.Object as the superclass. Below is the completed class:

package org.gallardo.domino.example;

import java.util.*;

public class DiscussionTree {
private Vector indent = null;
private Vector text = null;

public DiscussionTree()
{
}

public DiscussionTree(Vector i, Vector t)
{

indent = i;
text = t;

}

public int getSize() {
if (text.size() == indent.size()) {

return text.size();
} else {

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 20 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


return 0;
}

}

public String textAt(int i) {
return (String) text.elementAt(i);

}

public int indentAt(int i) {
return ((Integer)indent.elementAt(i)).intValue();

}
}

Populating the JavaBean

The controller class instantiates the DiscussionTree JavaBean by calling the
constructor with the two vectors containing the data from the view, and sets the
JavaBean as an attribute associated with the request:

DiscussionTree dt = new DiscussionTree(indent, text);
req.setAttribute("DiscussionTree", dt);

A JavaBean can be associated with one of four scopes: application, session, page,
or request. Briefly, application scope means that the JavaBean will be available to
any other servlet in the Web application. Session scope means that the JavaBean
will be available to the current session as long as it's active. Page and request scope
are similar and mean that the JavaBean will be available for the duration of the
current request. Calling the setAttribute() method of the request parameter that
was obtained from the servlet associates it with the current request. Forwarding the
request to a JSP page will make the JavaBean, in this case, an instance of the
DiscussionTree class, available to it.

The following code forwards the request to a JSP page called
discussiontree.jsp :

RequestDispatcher rd =
servctx.getRequestDispatcher("/discussiontree.jsp");

rd.forward(req, resp);

The View: JSP

The JSP page is responsible for displaying the data. It should consist of HTML and
as little code as possible. Locate the webApplication directory under the
DominoExample project -- this is the directory for HTML, JSP and other resource
files. To create the JSP file:

• Right click on the webApplication folder.

• Select New=> Other from the pop-up menu.

• On the left side of the panel select Web; on the right side select JSP File.

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 28

http://www.ibm.com/legal/copytrade.shtml


• Click Next.

• Enter discussiontree.jsp as the name.

For this example, because it's necessary to iterate through the set of rows that were
returned from Domino, there will be some Java code in the form of scriptlets. First, a
jsp:useBean tag is used to obtain the JavaBean created in the servlet. It takes
three parameters: an identifier (which must correspond to the name used in the
setAttribute method in the servlet), the class name, and the scope:

<jsp:useBean id="DiscussionTree"
class="org.gallardo.domino.example.DiscussionTree"

scope="request" />
To access the data, Java code can be embedded directly in a JSP page by prefacing

it with <% and closing with >.
Note how it can be broken up and intermingled with HTML:
<%
for(int i= 0; i<DiscussionTree.getSize() ;i++)
{

switch(DiscussionTree.indentAt(i))
{

case 0: %> <IMG SRC="root.gif"> <% ;
break;

case 1: %> <IMG SRC="indent_1.gif"> <%
break;

case 2: %> <IMG SRC="indent_2.gif"> <%
break;

default: %> <IMG SRC="indent_3.gif"> <%
}

%>
<%= DiscussionTree.textAt(i) %><P>

<% } %>

Custom tag libraries

An alternative to using scriptlets, (or even servlets), is to use JSP custom tags.
Custom tags, introduced in JSP 1.1, allow a developer to create a class in Java that
can be called from a JSP page using custom tags. These tags are grouped into
libraries using an XML file called a tag library descriptor file, with an extension .tld,
that associates the classes with tag names that can be used in JSP pages. Using a
custom tag is similar to using JavaBean except that much more complicated
behavior can be implemented in custom tag class.

Domino 6.0 includes a custom tag library that greatly extends what can be done with
JSP pages and Domino. This provides an easy way to access Domino forms and
data entirely within JSP pages. Depending on application requirements, this can be
a convenient alternative to using servlets and the Domino Java classes directly.

Custom tags are often a good way to minimize the amount of Java code in JSP
pages. In the case of the current example, however, the individual elements need to
be formatted. This formatting is a job for the JSP page -- little would be gained from
writing custom tags since the looping behavior needs to be implemented in the JSP
page regardless.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 22 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


See the Tutorial resources section for references to two sample JSP applications
available from the Lotus Developer Domain -- a Discussion application and
Document Review and Feedbac application -- that demonstrate the use of the
Domino custom tag library to build complete applications with JSP technology.

Importing additional resources

The discussiontree.jsp requires some graphic elements. These can be
created in Application Developer, but for this example they'll be imported. They are
included with the source code for this application. After unzipping the sources,
import the .gif files as follows:

• Select webApplication by clicking on it once.

• From the File menu, select Import.

• In the panel that appears, select File system and click Next.

• Click the Browse button next to the Directory field (not the Folder field) to
locate the directory where the .gif files are located and click OK.

• On left side of the panel that appears, click on the directory name.

• On the right side of the panel that appears, check each of the .gif files.

• Leave the destination as is.

• Click Finish.

Section 7. Deploying the Web application

Creating a WAR: the Web application file

Web applications are a set of resources -- Java classes, JSP files, HTML and
images -- that work together to present a set of related Web pages with which a user
can interact through a browser. The standard format for an Web application is a
.WAR file, which is essentially an archive file like a .JAR file, but with a well-defined,
standard directory structure and a number of XML files describing the details of how
it is to be deployed. To create the .WAR file for the DominoExample application:

• Right click on the Web project name, DominoExample.

• From the pop-up menu, select Export WAR.

• In the pane that appears, ensure that is says DominoExample under
"What resources do you want to export?".

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 28

http://www.ibm.com/legal/copytrade.shtml


• Click on Browse to select a directory for the .WAR file, such as the
InstallableApps in the Application Server directory. This may be, for
example, C:\WebSphere\AppServer\InstallableApps.

• Enter a name for the .WAR file such as DominoExample.war.

• Click Finish.

Deploying the enterprise application in Application Server

To deploy the Web application, the Application Server should be running. Start the
Administrator's Console from the Start menu by selecting IBM WebSphere=>
Application Server=> Start Admin Console. After logging in, click on the plus sign
for nodes to expand the tree, then click on the plus sign for your node. To install the
application:

• Click on Enterprise Application. The panel on the right will show the
applications that are currently installed.

• Click the Install button.

• In the Application Installation Wizard that appears, click Browse to find
the .WAR file created in Application Developer, DominoExample.war.

• Enter a name for the application, such as DominoExample and a context
root -- that is, the part of the URL that follows the server name -- for
example, DominoWebExample.

• Click Next.

• Accept the defaults in the next screen and click Next.

• Accept the defaults in the next screen and click Finish. You will be
returned to the Enterprise Applications screen. The DominoExampleWeb
application will now appear in list of applications on this screen.

• Near the top of the screen will be a message that the Plug configuration
needs to be regenerated. Click on this message.

• On the next page, click the Generate button.

• Check the box next to it and click Start to start it.

Running the Web application

To run the Web application, start a browser and type
http://localhost/DominoWebExample/DominoExampleServlet. This
should bring up a screen like the following:

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 24 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Next steps

If an error occurs when you try to run the application, you may wish to verify the
properties of the Web Application. In particular, you will want to make sure that it
started. It may be necessary to shut down the Application Server and restart it. To
do this, go to a command prompt and change to the Application Server's /bin
directory. This may be, for example, C:\WebSphere4.0\AppServer\bin. Enter:

stopserver

Wait for the Application Server to shutdown and then enter:

startserver

If you have trouble using the Internet shortname and password, you may wish to
change the Internet security settings. In the Domino Administrator, go to the server's
Security page and, under the section "Internet Access," change Internet
Authentication to "More name variations with lower security."

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 28

http://www.ibm.com/legal/copytrade.shtml


If all else fails, refer to the Application Server online documentation by clicking Help
on the Administrator's Console screen.

Once the application is working, you may wish to consider how it could be extended
to be more useful. One idea is for the JSP page to dynamically include buttons to
open the document. To support that, the DiscussionTree bean would need to
include a way of identifying documents so that the JSP page could pass the ID back
to the servlet in an attribute, and set REQUESTPAGE to point to a new controller
that retrieves an individual document from Domino.

This sample application only sketches out some of the things that can be
accomplished using Domino in a J2EE environment. The key point is that it
demonstrates how Domino can be used to add collaborative features to an
application quickly. Consider the amount of work that would be required to
implement a discussion feature from scratch using a relational database.

Section 8. Summary

Tutorial summary

This tutorial covered:

• Key strengths of Lotus Domino and WebSphere Application Server and
how they can best be used together.

• How Domino can be used with Application Server to build a J2EE
application.

• Details of configuring Domino and Application Server to work together.

• An introduction to designing applications using J2EE and the
Model-View-Controller design.

• A sample application that uses a servlet, a JavaBean and a JSP page to
implement a J2EE application that displays information from a Domino
discussion database.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 26 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• For a Redbook that covers Domino and WebSphere in detail and includes a
large sample application that integrates Domino, servlets, JSP pages and EJBs,
see Domino and WebSphere Together Second Edition.

• For a Redbook covering Runtime patterns for Domino and WebSphere
integration, see Applying the Patterns for e-business to Domino and WebSpere
Scenarios.

• For a Redbook covering integrating Domino, Java, WebSphere and other
technologies from a variety of different angles, see Connecting Domino to the
Enterprise using Java.

• See the tutorial, Building dynamic Web sites with WebSphere Studio, for
information on using WebSphere Application Developer 4.0 (developerWorks,
March 2002)

• For novices seeking information about JSP pages, see Introduction to Java
Server Pages. (developerWorks, August 2001)

• For a short tutorial covering the basics of servlets, see Building Java HTTP
servlets. (developerWorks, September 2000)

• For a kit that contains useful documentation about using Domino with Java,
including complete documentation for the Domino Java classes, download the :
Lotus Domino Toolkit for Java/CORBA (5 MB).

• For comprehensive coverage of using Visual Age for Java to develop J2EE for
WebSphere Application Server and some solid design advice, see Enterprise
Java Programming with IBM WebSphere, by Kyle Brown (Editor), Gary Craig,
Greg Hester, Jaime Niswonger, David Pitt, and Russell Stinehour
(Addison-Wesley, 2001).

• Core J2EE Patterns: Best Practices and Design Strategies, by Deepak Alur,
John Crupi, and Dan Malks (Sun Microsystems Press, 2001) is the bible on
design patterns for J2EE.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• The following sample applications demonstrating the use of the Domino tag
libraries for JSP are available for free from the Lotus Developer Domain:

• Access the Document Review and Feedback Application.

• Access the Discussion Application.

• Build your next development project with IBM trial software, available for
download directly from developerWorks.

Discuss

ibm.com/developerWorks developerWorks®

Building a J2EE application with Domino and WebSphere
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 27 of 28

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245955.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/d8b234037ad8cd5085256a030072ba2c?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/d8b234037ad8cd5085256a030072ba2c?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245425.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245425.html?Open
http://www.ibm.com/developerworks/edu/i-dw-wes-dynweb511-i.html?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/developerworks/edu/j-dw-jsp-i.html?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/developerworks/edu/j-dw-jsp-i.html?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/developerworks/edu/j-dw-javaservlets-i.html?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/developerworks/edu/j-dw-javaservlets-i.html?S_TACT=106AH13W&S_CMP=TUT
http://www-10.lotus.com/ldd/sandbox.nsf/ecc552f1ab6e46e4852568a90055c4cd/898382b7d610f43d88256ad4005899c8?OpenDocument
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=106AH13W&S_CMP=TUT
http://www-10.lotus.com/ldd/sandbox.nsf/ecc552f1ab6e46e4852568a90055c4cd/8f0cea791e7879b700256bbf0052226f?OpenDocument
http://www-10.lotus.com/ldd/sandbox.nsf/ecc552f1ab6e46e4852568a90055c4cd/3cc1cbbc13d78da600256bbf00519c13?OpenDocument
http://www.ibm.com/developerworks/downloads/?S_TACT=106AH13W&S_CMP=TUT
http://www.ibm.com/legal/copytrade.shtml


• Participate in the discussion forum for this content.

About the author

David Gallardo
David Gallardo is an independent software consultant and author specializing in
software internationalization, Java Web applications and database development. He
has been a professional software engineer for over 15 years and has experience with
many operating systems, programming languages and network protocols. His recent
experience includes leading database and internationalization development at a
business-to-business e-commerce company, TradeAccess, Inc. Prior to that, he was
a senior engineer in the International Product Development group at Lotus
Development Corporation where he contributed to the development of a
cross-platform library providing Unicode and international language support for Lotus
products including Domino.

developerWorks® ibm.com/developerWorks

Building a J2EE application with Domino and WebSphere
Page 28 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www-128.ibm.com/developerworks/community/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	Should I take this tutorial?
	What is this tutorial about?
	What the sample application does not cover
	Tools and configuration recommendations

	Domino and WebSphere Application Server
	Overview
	Key strengths: Domino
	Key strengths: Application Server
	Domino and Application Server working together

	Configuration for collaboration
	Domino integration features
	Additional Domino features
	Configuring Lotus Domino
	The basic Web server configuration
	Starting the Domino server
	Adding the Application Server DSAPI filter
	Verifying the Domino Web server

	Configuring Application Server
	Adding ncso.jar to the Application Server classpath
	Starting the WebSphere Application Server

	Designing a J2EE app with Domino and WSAS
	J2EE design overview
	The Model-View-Controller design pattern
	Benefits of MVC
	Implementing MVC using J2EE
	Domino's place in MVC

	A sample J2EE application with Domino
	The sample application: A discussion board
	A Domino discussion board database
	Creating the Web application
	Creating the Java package
	Creating a Java class source file
	Creating the servlet class
	Controller helper classes
	Processing the request
	Connecting to a Notes database
	Reading data from a Notes database
	The Model: JavaBean
	Populating the JavaBean
	The View: JSP
	Custom tag libraries
	Importing additional resources

	Deploying the Web application
	Creating a WAR: the Web application file
	Deploying the enterprise application in Application Server
	Running the Web application
	Next steps

	Summary
	Tutorial summary

	Resources
	About the author

