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Abstract—This paper reports on a 3D photomosaicing
pipeline using data collected from an autonomous underwa-
ter vehicle performing simultaneous localization and mapping
(SLAM). The pipeline projects and blends 2D imaging sonar
data onto a large-scale 3D mesh that is either given a priori
or derived from SLAM. Compared to other methods that
generate a 2D-only mosaic, our approach produces 3D models
that are more structurally representative of the environment
being surveyed. Additionally, our system leverages recent work
in underwater SLAM using sparse point clouds derived from
Doppler velocity log range returns to relax the need for a
prior model. We show that the method produces reasonably
accurate surface reconstruction and blending consistency, with
and without the use of a prior mesh. We experimentally evaluate
our approach with a Hovering Autonomous Underwater Vehicle
(HAUYV) performing inspection of a large underwater ship hull.

I. INTRODUCTION

Several tasks in ocean exploration require the visualization
of a large set of images to understand underwater phenom-
ena at a broad spatial scale. In recent years, techniques
have been developed that allow for the reconstruction of
visually rich 3D mosaics of the seafloor from thousands
of optical images [1, 2]. Though these methods have been
successfully applied in large-scale marine environments,
underwater optical cameras have several limitations. For
example, turbid waters make identification of visual features
difficult, light attenuates much more in water than in air,
and underwater cameras typically must provide their own
light source. Acoustics are the preferred sensor modality for
underwater robotics because they overcome several of those
limitations. However, there are several challenges with this
approach that need to be solved. These challenges include:
(i) sonar technology is typically more expensive than optical
cameras, (ii) the sensor’s vantage point strongly affects signal
intensity, and (iii) high field of view (FOV) imaging sonars
have non-standard geometrical properties of their projection
from 3D to 2D. This paper will explore the third challenge:
we present a method to create a textured 3D mosaic from an
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Fig. 1. In the context of ship hull inspection, one key benefit of our sonar-
based mosaicing pipeline (left) over our camera-based mosaicing pipeline
(right) is coverage rate. In this example, a 3D surface, shown above in gray,
is either reconstructed from a typical underwater SLAM sensor payload,
or given as a prior CAD model. Two overlapping sonar images back-
project onto the 3D surface in the green region, which has a much larger
footprint than an underwater camera’s, shown in red. Mesh faces within the
overlapping region are blended to avoid the presence of seams in the final
mosaic.

imaging sonar, coupled with a typical sensor payload on a
small autonomous underwater vehicle (AUV). An overview
of our method is illustrated in Fig. 1.

A. Related Work

In terms of attenuation, sonar is by far the preferred
sensor for surveying the ocean seafloor [3], and imaging
sonars in particular are a popular alternative to underwater
cameras. Recent work related to imaging sonars has focused
on the registration problem, where two overlapping images
are geometrically matched. Solutions to this problem use
either spectral methods [4, 5], or feature-based methods [6].
In either case, these techniques have several applications,
such as underwater simultaneous localization and mapping
(SLAM) [7, 8] and photomosaicing [9, 10]. However, pre-
vious work produces strictly 2D mosaics or 3-degree of
freedom (DOF) motion estimates (relative z, y, and heading).
Recently, Negahdaripour lifted feature tracking and motion
estimation to 3D, but did not explore the applications to 3D
mosaicing [11]. The paper additionally improves the results
of full 3D pose estimation by zeroing higher dimensional
parameters (as in the 3-DOF case).

Despite their limitations in marine environments, optical
cameras have become a popular modality for the creation
of underwater mosaics. Historically, most applications have
used 2D mosaics for vision-aided navigation [12]. Johnson-
Roberson et al. [2] argue that the rugged terrain of the
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Fig. 2. A simple midpoint resampling method prevents pixel stretch for the
Delaunay reconstruction of the mesh shown in (a). In (b), there are triangles
that are ill-suited for texture blending. By recursively splitting the edge of
these triangles at their midpoint, shown in (c), these triangles are divided
into smaller faces while preserving the overall shape of the mesh.

seafloor necessitates projecting the imagery onto 3D models
to properly account for the geometry, rather than force-fitting
a plane to a non-planar environment.

Similar reasoning suggests that 3D mosaicing methods
are a better choice for building mosaics of large man-made
structures, which include dams, harbors, pipelines, and ship
hulls [13]. We are particularly interested in autonomous ship
hull inspection, and we believe that 3D mosaicing will be
of great benefit for improved efficiency in maintenance,
assessment, and security. 3D mosaics would help robots’
human supervisors to easily visualize the data, assist in
cooperation between robots, or aid in automated tracking of
structural changes or anomalies over time. Novel techniques
for the generation of acoustic 3D mosaics is therefore the
focus of this paper.

B. Outline

This paper is organized as follows. In §II we describe
our 3D mosaicing approach, where a surface mesh is re-
constructed from SLAM-corrected poses, and an empirical
reprojection operation is used to assign images to triangles
for texturing. In §III we describe our experimental setup and
we offer several evaluations of the method’s performance.
§IV summarizes and offers concluding remarks.

II. APPROACH
A. Correcting Navigation Drift with SLAM

A prerequisite of our 3D mosaicing pipeline is that the ve-
hicle’s trajectory is already corrected from SLAM. There are
several methods to accomplish this. Our past work primarily
focused on camera-based techniques [14] but our recent work
has shifted some attention on relaxing the reliance of an
underwater camera [15]. In particular, by estimating surface
normals from Doppler velocity log (DVL) range returns,
we can constrain the normals of nearby planar patches and

Vmaz

Tmaz

Fig. 3. This figure shows how a 3D point is projected into the DIDSON
frame from its spherical coordinates. All points not contained in the volume
bounded by ryin, "maz, @maz, and Ymaez are not visible to the sonar.

produce more self-consistent maps. This approach also has
tremendous benefits for performing long-term SLAM since
it can be effectively combined with recent developments in
graph sparsification techniques [16, 17].

This method, which we will call “piecewise-planar
SLAM?”, is of particular relevance to sonar mosaicing be-
cause it can be generalized to other AUVs that do not have
a camera. Furthermore, the geometrical information provided
by planes is beneficial to other applications besides ship hull
inspection, such as underwater trenches or dam inspection.

B. Surface Reconstruction

The first step in creating a 3D mosaic is to estimate a
surface reconstruction. Traditionally, this either relied on a
stereo camera to merge individual keyframe meshes into
a large 3D model [18], or from camera-derived point sets
that contain large amounts of features [19]. Since we are
interested in mosaics derived from imaging sonar, our work
instead reconstructs the surface using the DVL range returns.
By linearly interpolating a DVL-derived 3D point cloud, we
can create suitable models of ship hulls.

By converting range returns from all DVL poses into a
point cloud in the global frame, we can linearly interpolate
the z-coordinates of the points over an evenly-spaced grid in
the global frame’s x,y plane. We apply Delaunay triangula-
tion to these points, producing a height-map. A well-known
limitation with this technique is that it exposes stretched
triangles in the near-vertical portions of the surface that will
not fit in a single camera or sonar image. To mitigate this
effect, we recursively inscribe triangles within triangles until
all edge lengths in the mesh are below a threshold (0.5 m
for the results shown in §III). We provide an illustration of
this so-called “midpoint method” in Fig. 2.

Due to the sparsity of the DVL returns, a simple linear
interpolation may not generalize to some non-ship hull
applications. However, more advanced techniques exist that
can interpolate DVL returns in more varied structure, like
underwater terrain [20].

C. Projecting Mesh Vertices into Image Coordinates

When the surface is reconstructed, we must then project
each vertex into the sonar images where the vertex is visible.
Unlike a calibrated projective camera, which has a simple
closed-form expression for the projection from 3D to 2D
pixel coordinates, we empirically compute this relationship
using several sensor-specific parameters.
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Fig. 4. This diagram illustrates the process of reprojecting 3D points into a
pixel value in an sonar image. We discretize the Cartesian volume contained
in the sonar’s field-of-view frustum as voxels. These voxels are mapped into
a corresponding pixel in the 2D image with a simple look-up table. This
lookup table is computed in the sonar’s frame, so it only must be stored
once. In this example, all 3D points contained in the green arc of voxels
(left) map to the single green pixel in the sonar’s 8-bit image (right). We
over-pixelated this diagram for the sake of clarity.

The imaging sonar has a discrete number of beams,
Ny, each containing a discrete number of ranges, N,, as
illustrated in Fig. 3. Let 7,,;, and 7,4, be the minimum
and maximum ranges that are observable by the sonar. For
a given u,v pixel coordinate in the sonar image (such as
the synthetic one in Fig. 4, right), the corresponding sensor-
frame Cartesian coordinates, z s, Y5, are given by:

_w
u— s

v

Trs =

v

Ys = Tmaz — —»
where w is the sonar image width, h is the height, w is the
column index of the pixel, v is the row index of the pixel,
and
w

- 27 maz SIN(Umaz/2)

v

is a constant.

We convert these sensor-frame coordinates into range and
bearing values in the sensor frame (assuming that z = 0) as
follows:

ro=
z/}S ata‘n2 (‘r57 yS)

Finally, we assign these continuous range and bearings to
one of the sensor’s discrete range bins and beam number:

(7“5 - rmin) (NT - 1)
Tmazxz — T'min

ny = My (%)T a,

ny =

where n; is the beam number, n, is the range bin number,
My(¥) = [1,1,1?%,4?] is a fourth-degree vector of mono-
mial bases and a is a vector of sensor-specific coefficients
provided by the manufacturer. To compute the inverse map-
ping from n, and n; to 3D Cartesian coordinates, we simply
discretize the volume inside the sonar’s frustum into voxels,
apply the above set of equations, and store the inverse map.
For a given x4, ys coordinate, the voxels where z # 0 project
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Fig. 5. Example subset of mesh vertices within an imaging sonar’s FOV.
The frustum, computed from the method in §II-C, is shown in blue. Vertices
from the surface reconstruction that lie within the frustum are visible to the
sonar, and will be included in the blending step. These vertices are shown
as black dots.

to the same pixel as the corresponding voxel where z = 0.
This is illustrated in Fig. 4.

D. Blending Step

Our image blending pipeline is based on the previous work
by Johnson-Roberson et al. [2] for creating large-scale 3D
mosaics of seafloor environments using a stereo camera. The
approach works by assigning a fixed number of sonar images
to every face in the mesh (for the experimental results, shown
in §III, we use a maximum of four images per face). For
each mesh face, we compute the set of sonar poses such
that the face is visible. Fig. 5 shows an example of which
face vertices are visible. From this set, we pick the four
best views of the face using a user-defined proxy for image
quality. For underwater cameras, popular heuristics include
choosing the smallest distance of the projected face to the
center, or choosing the most orthogonal camera poses to the
face’s surface normal.

Choosing the correct heuristic for an imaging sonar is a
subjective matter, and we have found from our experimental
results that picking images where the face projection is
closest to the pixel coordinates tupesy = w/2 and vpeyy = 3h/4
works well. For the ship hull mosaics presented in §III,
we have found this typically corresponds to a face normal
of approximately 7 degrees from orthogonal to the sonar
frame’s z-axis.

Once we determine the four best image patches, we weight
each pixel contained in the i mesh face by the distance 7 to
the pixel coordinate (wupest, Upest). This weight is determined
from the expression

r= \/(ubest —u)* + (Vpest — v)°
kT
Bi(r) = 1——

where R is a reference distance (typically the maximum
distance to be considered). This process is determined for
three different resolution bands, where k£ = 5,10,50 is an
appropriately chosen coefficient for each resolution band.
Larger k indicates a sharper drop-off as r increases, and
is useful for bands with higher resolution. During the actual
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Fig. 6. The HAUV vehicle platform and sensor suite used in the
experimental evaluation of our method. The HAUV is equipped with a
DVL for hull-relative navigation, a periscope camera to globally localize to
previous SLAM graphs, and a Sound Metrics DIDSON imaging sonar for
collecting imaging data. Though the HAUYV is equipped with an underwater
camera, this was only used for evaluation purposes and our method does
not require its use.

pixel blending computation, the four blending weights are
normalized so that they sum to one [2].

III. FIELD EXPERIMENTAL EVALUATION
A. Robot Platform

We use data collected from the Hovering Autonomous
Underwater Vehicle (HAUV) [21, 22] to experimentally
evaluate our method for creating 3D mosaics. The imaging
sonar used on the HAUYV is a Sound Metrics Dual frequency
IDentification SONar (DIDSON) [23]. Other relevant sensors
on the HAUYV are shown in Fig. 6. Though the HAUV has a
underwater stereo camera, it was only used for evaluation
purposes and our method does not require it [15]. The
periscope camera, however, was used to globally localize
successive surveys into a single common hull-relative refer-
ence frame.

The datasets used in this section were collected on the
180 m SS Curtiss vessel in March 2014. The mosaics
presented in §III-C consist of eight individual surveys, all
aligned to a common hull-relative frame of reference. Sample
mosaics, with and without the use of a prior computer aided
design (CAD) model, are shown in Fig. 8.

B. Evaluated SLAM Techniques

As discussed in 81, the input to our 3D mosaicing pipeline
is a set of SLAM-corrected sonar poses. We applied our
3D mosaicing pipeline using four different techniques of
varying computational efficiency and practicality to assess
our approach in each setting. In particular, we investigate
using (i) piecewise-planar surface SLAM, (ii) piecewise-
planar surface constraints with underwater camera con-
straints, (iii) bundle-adjusted underwater camera poses, and
(iv) bundle-adjusted underwater camera poses rigidly aligned
to a CAD model. We provide more details for each method
in the following sections.

1) Piecewise-planar SLAM: This approach models the
ship hull as a collection of many planar features. Co-
registered planar patches are constrained so that their normals

Fig. 7. Rigid alignment between CAD model vertices (shown in blue) and
DVL point cloud computed from the bundle-adjusted underwater camera
poses (shown in red). To perform the alignment, we use the outlier rejection
approach described in §II-B and find the optimal rigid transformation using
the GICP algorithm [28].

are similar, but not to the extreme that the curvature of the
hull is lost in the representation. Essentially, this deviation
measures the orthogonal distance from a point on one mesh
to the closest face on the mesh to which it is being compared.
This method has the most practical significance since it does
not require an underwater camera for navigation correction.

Despite not relying on an underwater camera, this tech-
nique is applied across multiple SLAM sessions, where
the initial global localization must be determined with a
periscope camera. For the HAUV application, a global
positioning system (GPS) will not suffice since we desire
the SLAM maps to be expressed in a hull-relative ref-
erence frame. This requirement can be relaxed for other
applications, where GPS or beacons provide world-frame
localization.

2) Piecewise-planar SLAM with underwater camera: A
major benefit of the piecewise-planar SLAM technique dis-
cussed in the previous section is its usability in an underwater
visual SLAM framework. In particular, we explore the use
of piecewise planar SLAM techniques with the saliency-
informed visual SLAM approach developed by Kim and
Eustice [14]. This method does not require full camera
coverage, but can still constrain navigational drift even if
the space between survey tracks results in low or zero image
overlap.

3) Bundle adjustment using underwater camera: This
approach minimizes the reprojection error of visual features
in a calibrated camera [24]. In our application, we use a
stereo underwater camera with 100% coverage of the hull
surface. This approach is computed offline, and uses scale-
invariant feature transform (SIFT) features to make visual
correspondences [25]. Outliers are rejected by using random
sample consensus (RANSAC) [26] with a least-squares point
cloud alignment algorithm made popular by Arun et al. [27].
Along with optimizing a sparse set of SIFT features, we also
include odometry measurements from the DVL and absolute
constraints on depth, pitch, and roll from the HAUV’s depth
sensor and inertial measurement unit (IMU).

This approach is impractical for sonar mosaicing because
it relies on 100% camera coverage, which is time-consuming
and not possible in turbid water. However, we include
this method so that we can compare its image blending
consistency against the more practical approaches, discussed
above.

4) Rigidly aligning bundle-adjusted poses to CAD model:
For certain applications, like underwater ship hull inspection,
a CAD model of the surveyed vessel may be available.



(a) Mosaic derived from bundle adjustment and CAD

(c) Mosaic derived from piecewise-planar SLAM

Fig. 8.

g

(b) Close-up of (a) (left) and raw sonar image (right)

(d) Close-up of (c) (left) and raw sonar image (right)

Qualitative results of imaging sonar mosaics. The CAD model was used to generate (a) and (b). Even without a prior CAD model, as shown

in (c) and (d), we can still produce a 3D mosaic that appears nearly identical in texture to the model from (a). The most apparent difference is that the
model in (c) is smaller. The HAUV was not always able to measure valid DVL returns near the water surface. This explains why those portions of the

model are missing.

TABLE I
“MESH ATTRIBUTE DEVIATION” SCORES OF 3D SURFACE RECONSTRUCTIONS COMPARED TO GROUND-TRUTH SS Curtiss CAD MODEL

[ METHOD | MIN. ABS. ERROR () [ MAX. ABS. ERROR (m) | MEAN (m) [ RMS ERROR (m) |
CAD Model — —_ — —
Bundle Adjusted 1.56 x 10 ° 1.37 0.22 0.29
Piecewise-Planar+Visual SLAM 3.76 x 10 7 1.03 0.18 0.23
Piecewise-Planar SLAM 9.53 x 10 7 1.04 0.19 0.24

(a) CAD Model (b) Bundle Adjusted

Fig. 9.

(c) Piecewise-Planar+Visual SLAM

(d) Piecewise-Planar SLAM

False-color visualization of the results tabulated in Table I. Blue regions indicate little deviation, while red regions indicate substantial error.

Blue-to-red represents a change of 70 cm. The RMS error for bundle adjustment is actually the highest because the ship hull surface itself is left out of
the optimization. However, (c) and (d) account for this and therefore have less error compared to the CAD model.

Having ground truth is a unique capability in marine robotics,
especially for field experiments. We therefore draw attention
to using bundle adjustment to take full advantage of this prior
CAD model as a way to assess the quality of the proposed
technique. In particular, the CAD model makes it possible to
analyze the structural similarity of our 3D sonar mosaics to
ground truth. It should be noted that this method’s reliance
on camera-based bundle adjustment makes it impracticable
for mosaicing with an imaging sonar.

For this approach, we substitute the CAD model surface in
place of the one derived from the SLAM methods described
previously. We align the reference frame of the CAD model
to the SLAM reference frame using the well-known Gen-
eralized iterative closest point (GICP) algorithm [28]. The
alignment between the bundle-adjusted DVL point cloud and

SS Curtiss CAD model is shown in Fig. 7.
C. 3D Mosaic Quality

We measure the quality of the 3D mosaic in two different
ways. First, we consider the structural deviation from the
mosaic’s surface to the ground truth CAD model. Second, we
measure the consistency of the images used in the blending
step described in §II-D.

For each of the SLAM techniques described in §III-B, we
evaluate the structural similarity of the 3D surface to the
ground truth CAD model. This method uses the “attribute
deviation metric” developed by Roy et al. [29]. The false
color visualization of this metric is shown in Fig. 9, and the
results are tabulated in Table I.

The mesh deviation results demonstrate that our method
can produce accurate models without the use of an underwa-
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These figures encode the variance of weighted pixel intensities used during the blending step. Blue values denote consistent pixel intensities,

while red shows relatively large variation. For certain small-scale regions, the blending consistency is noticeably compromised if the poses are not bundle
adjusted. As a whole, however, the large-scale features are captured in all cases, as shown in Fig. 8.

ter camera. Indeed, the methods leveraging our prior work
with piecewise-planar SLAM out-performs bundle adjust-
ment. This should not be surprising because our SLAM
technique includes the ship hull surface itself as part of
the optimization. Bundle adjustment, as implemented for
this comparison, only uses visual feature correspondence to
constrain the SLAM estimate.

In addition to the results shown in Fig. 9 and Table I, the
texture quality of our sonar mosaics will clearly be sensitive
to the quality of poses from SLAM. To quantify this, we
computed the variance of weighted pixel intensities during
the image blending step described in §II-D for every pixel in
the output mesh. These pixel intensities range from [0, 255],
corresponding to the value of an eight-bit unsigned integer.
We provide a visualization of these variances in Fig. 10,
where we highlight an area that was only correctly blended
using a bundle adjustment step.

A histogram of these variances is shown in Fig. 11.
Though the results are quite similar between each method,
the results taken from poses that were not bundle-adjusted
with a camera have noticeably heavier tails in the variance
distribution (for variances greater than 20). That being said,
these results show that, by and large, our mosaic blends

together images with relatively similar pixel intensities.
Considering that the globally bundle-adjusted techniques
do perform better, this suggests that our method will see
improvement if we add a step to globally match features
across sonar images and include these constraints in a SLAM
framework.

IV. CONCLUSION

In summary, we have demonstrated a novel system to
create 3D models using an imaging sonar, a DVL, and a
small AUV. We provided a convenient empirical method
to project 3D points onto a 2D pixel coordinate in a sonar
image. We have shown that our mosaic pipeline can properly
handle 3D geometry rather than requiring the environment
to be entirely planar. We offered two ways to measure the
quality of mosaic: structural deviation from ground truth and
variance over pixel intensities that are chosen for blending.
We provided quantitative evaluations for our approach using
both classic and recently-introduced SLAM techniques, such
as bundle adjustment and modeling smoothly curved surfaces
as piecewise planar. These evaluations were experimentally
analyzed using field data from an AUV performing ship hull
inspection.
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11. Histogram of intensity variances for the results shown in Fig. 10.
tails in (b) are purposely clamped to emphasize that SLAM approaches
are not globally bundle adjusted do not perform as well as those that
Importantly, however, the full histogram from (a) shows that as a whole
mosaic blends together images with relatively similar pixel intensities,

even when using the piecewise-planar SLAM technique, which does not
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