COLLEGE OF AGRICULTURE AND LIFE SCIENCES DWIGHT LOOK COLLEGE OF ENGINEERING

BIOLOGICAL \& AGRICULTURAL ENGINEERING DEPARTMENT

Memorandum
October 23, 2014

To:	Dr. Robert Knight, Chair
COALS Undergraduate Programs Council	

From: Ashlea Schroeder
Senior Academic Advisor I
Biological and Agricultural Engineering

Through:
Dr. Stephen W. Searcy
Department Head
Biological and Agricultural Engineering

Patricia smith for
Stephen W. Seatcy

Subject: Request for approval of B.S. curriculum changes in Biological and Agricultural Engineering
We respectfully request that the proposed modifications to the B.S. curriculum in Biological and Agricultural Engineering described herein be placed on the agenda of the next COALS Undergraduate Programs Council meeting and COE Undergraduate Advisor's meeting for approval.

Biological and Agricultural Engineering revisions for catalog 138 (Fall 2015)

1. Remove the "CBK" wording from the catalog and degree evaluation
2. Remove BAEN 150 from the degree program
3. Altering contact hours for BAEN 301; reducing the course credits from 4 to 3
4. Altering contact hours for BAEN 302; reducing the course credits from 4 to 3
5. Creating BAEN 201, Analysis of Biological and Agricultural Engineering Problems, to replace BEEN 150 (using one extra hour from each 301, 302, and the hour from 150)

If you have any questions or need additional information, please let me know.

Attachments:

- Biological and Agricultural Engineering Curriculum as proposed
- Current catalog curriculum with handwritten edits
- Current Howdy degree evaluation with handwritten edits
- Departmental Request for Change in Course:
- BEEN 301 (syllabus included)
- BAEN 302 (syllabus included)
- Departmental Request for New Course:
- BAEN 201 (syllabus included)

Texas A\&M University
 Request for a Change in Curriculum Undergraduate * Graduate * Professional

1. Program request type:
∇ Undergraduate $\quad \square$ Graduate
\square First Professional (ex., $D V M, I D, M D$, etc.)
2. Request change for:
∇ Degree Program
\square Minor
\square Certificate
3. Request submitted by (Department or Program Name):

Biological and Agricultural Engineering
Program Designation and Name
4. (e.g., B.A. in History, Minor in History, Certificate in European Union):
B.S. in Biological and Agricultural Engineering
5. Brief description of change:

Removing Common Body of Knowledge (CBK) wording from the undergraduate catalog and the degree evaluation.
6. Rationale for change:

CBK was removed from all engineering programs for 2014-2015. This was missed when updating curriculum changes last year.

Use the checkboxes below to make sure that all information is included.

7. a. Proposed curriculum attached.

∇ Yes	\square No
∇ Yes	\square No
∇ Yes	\square No

c. Current Howdy degree evaluation with handwritten edits attached.
\square Yes
\square No
Please make sure the attached proposed curriculum, catalog and Howdy degree evaluation match.
8. a. Will degree program hours change (increase/decrease) due to the proposed curriculum changes? \square Yes \quad No
b. If yes, degree program hours will change from: \qquad to: \qquad
c. If yes, is the Texas Higher Education Coordinating Board form attached? \square Yeshttp://www.thecb.state.tx.us/index.cfm?objectid=A0F9F7FA-9A92-4F11-2756AD3BBFF01D60
9. If proposed changes affect other unit(s), are letters of support attached?\square No
IMPORTANT NOTE: Curriculum changes submitted through the approval process and fully approved by February (December-UCC/GC, January-Faculty Senate, February-President) will be effective in the next academic year. Changes requiring approval beyond the University should complete the internal approval process early in the fall semester whenever possible in order to ensure timely implementation.

Approval recommended by: Patricio Amith 802

Stephen W. Searcy	AtephereW. Learcy	10/7/2014	Kim Dooley	
Department Head	Program Chair (Type Name \& Sign)	Date	Dean of College	Date
Bob Knight				
Chair, College Re	w Committee	Date	Chair, GC or UCC	Date

Biological and Agricultural Engineering
 Proposed Curriculum for Catalog 2015-2016

Freshman Year: Fall	
CHEM 107 General Chemistry for Engr Students 3 CHEM 117 General Chemistry for Engr Students Lab 1 ENGR 111 Foundations of Engineering I 2 MATH 151 Engineering Mathematics I 4 PHYS 218 Mechanics 4	14

Sophomore Year: Fall

BAEN 201	3
ENGL 210 Scientific \& Technical Writing	3
MATH 251 Engineering Mathematics III	3
MEEN 221 Statics and Particle Dynamics	3
MEEN 222 Materials Science	3
	15

Junior Year: Fall
\(\left.\begin{array}{|l|c|}\hline BAEN 302 Biological and Agri Engr Fundamentals II \& 3

\hline BAEN 340 Fluid Mechanics \& 3

\hline BAEN 354 Engr Properties of Biological Materials\end{array}\right] 3\)|
 Structures | 3 |
| :---: | :---: |
| ECEN 215 Principles of Electrical Engineering | 3 |
| | 15 |

Senior Year: Fall	
BAEN 479 Biological and Agri Engineering Design I 3 ENGR 482^{3} Ethics and Engineering or PHiL 482^{3} Ethics and Engineering 3 BAEN Elective 3 ENGR Elective 3 Social and Behavioral Science Elective ${ }^{\mathbf{1 , 2}}$ 3 15	

Freshman Year: Spring

BIOL 113 Essentials in Biology	4
ENGL 104 Composition \& Rhetoric	3
ENGR 112 Foundations of Engineering II	2
MATH 152 Engineering Mathematics II	4
PHYS 208 Electricity and Optics	4
	17

Sophomore Year: Spring

BAEN 301 Biological and Agri Engr Fundamentals :	3
BAEN 320 Engineering Thermodynamics	3
CHEM 222 Elements of Organic \& Biological Chem	3
CVEN 305 Mechanics of Materials	3
MATH 308 Differential Equations	3
Political Science elective ${ }^{1}$	3
	18

Junior Year: Spring

BAEN 365 Unit Operations for Biological \& Agri Engr	3
BAEN 366 Transport Processes in Biological Systems	3
BAEN 370 Measurement and Control of Biological Systems and Agri Processes	3
MATH Elective ${ }^{4}$	3
American History Elective 1,2	3
Political Science elective ${ }^{1}$	3
	18

Senior Year: Spring

BAEN 480^{3} Biological and Agri Engineering Design II	3
BAEN Elective	
Technical Elective	
American History Elective ${ }^{\mathbf{1}, 2}$	3
Creative Arts Elective $^{\mathbf{1 , 2}}$	3
	3
Total Degree Hours	3

Notes:
1)To be selected from the University Core Curriculum
2) The 6 hours of international and cultural diversity courses, as required for graduation, may be met in the curriculum. Students may select Language, Philosophy and Culture, Creative Arts, Technical Electives, or American History Electives that also meet the ICD requirement.
3) All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive (W). This course is an approved W course.
4) MATH, BAEN, ENGR, and Technical electives must be selected in consultation with the student's advisor and from the current list of approved electives published by the department.

Curriculum in
 Biological and Agricultural Engineering

Biological and agricultural engineers apply their knowledge of physical and biological sciences, mathematics, engineering principles and engineering design to the production and processing of food and fiber, to the preservation of environmental quality, to biological systems and processes, and to machine systems that interface with all of these. Because of their broad general engineering background, biological and agricultural engineering graduates are sought by a wide variety of employers including environmental consulting firms, equipment manufacturers, crop storage and handling industries, the cotton and forest products industries, food and feed processing industries, animal production industries, biotechnology companies, electric utility companies, chemical companies, and governmental agencies. Biological and agricultural engineers make significant contributions to meeting many basic needs of society such as maintaining food quality, quantity and safety; improving environmental quality; and enhancing the quantity and quality of our water resources.

The Biological and Agricultural Engineering Department provides quality education, research and outreach in engineering and technology for the world's agricultural, biological, environmental and food systems. Our undergraduate programs provide a high quality education for engineering and systems management students to fulfill the needs of industries we serve and advance our reputation as a world leader in engineering and systems management education.

The biological and agricultural engineering program develops graduates who can pursue engineering careers in industry, academia, consulting or government. The curriculum is designed:

- to produce graduates who are prepared to become practicing biological and agricultural engineers, many of whom will become registered professional engineers;
- to produce graduates to serve the engineering needs of clientele in environmental and natural resources, machine systems, food processing, bioprocessing, and agricultural production and processing; and
- to produce graduates who continue to be engaged in professional development.

Students learn to apply fundamental knowledge of biological and physical sciences, mathematics, and engineering principles to formulate and solve engineering problems. Engineering design is integrated throughout the curriculum, along with opportunities to develop communication, learning, and teamwork skills, culminating in a capstone design experience. Electives in the curriculum allow the student to develop an emphasis in one of the following areas:

- Environmental and Natural Resources Engineering-design and management of systems affecting soil, water, and air resources.
- Renewable Energy Engineering-design and development of biomass, wind and solar energy systems.
- Food and Bioprocess Engineering-design and development of systems for processing and handling of food and agricultural products and processes involving cells, enzymes, or other biological components.
- Machine Systems Engineering-design and development of machines and machine systems for food, feed and fiber production and processing.

Students select courses with the assistance of faculty advisors in an individualized advising system. Faculty members also assist with professional development and job placemont for students.

The biological and agricultural engineering program is jointly administered by the College of Agriculture and Life Sciences and the Dwight Look College of Engineering, and the curriculum is fully accredited by the Engineering Accreditation Commission of ABET, Inc., www.abet.org. The department is one of the largest in North America and is consistently ranked as one of the top programs in the nation.

All biological and agricultural engineering majors are required to earn a grade of C or better in achefthe-GommenBedyeffKnowledge-(CBK) eourses(CHEM107/GHEM117, ETGG104, ENGR-111-amdENGR-112,MATH-151-and-MATH 152, andPHYS-218-and PHFYS 208 lineanditionalengineering, math, and technical elective course taken to satisfy degree requirements.

all science

AN YEAR

SOPHOMORE YEAR

ENCL $210(3-0)-3$ MATH 251 Engineering Math III (3-0) 3
MIEN 221 Statics and Particles Dynamics. (3-0) 3 MEAN 222 Materials Science....................-0) 3 PHYS 208 Electricity and Optics............. $3-3) \frac{(5)}{1510}$

BEEN 301 Biol. and Ag. Engr. Fund I........ (oz) $\psi 3$ BEEN 320 Eng. Thermodynamics............. (2-2) 3 CVEN 305 Mechanics of Materials........... (3-0) 3 ENGE210 Tectmicatand-Business-Witing. $(3-0)-3$ MATH 308 Differential Equations.............. (3-0) $\quad 3$
(203) JUNIOR YEAR
BEEN 340 Fluid Mechanics....................... (3-0) 3
BEEN 354 Engr. Properties of
Biological Materials \qquad

BEEN 365 Unit Ops. for Biol. and
Ag. Engr...........................
(2-3) 3

Biological Systems
BEEN 370 Meas. and Control of Bio. Sys. and Ag. Processes
(3-0) 3
(2-2) 3
American History elective ${ }^{1,2}$.
3
Government/Political science elective ${ }^{1}$........ 3
Mathematics elective ${ }^{4}$ \qquad

SENIOR YEAR					
First Semester	(Th-Pr)	Cr	Second Semester	(Th-Pr)	Cr
BAEN 479 Biol. and Ag. Engr. Design I.....	(3-0)	3	BAEN 480 Biol. and Ag. Engr. Design II ${ }^{3}$..	(1-5)	3
ENGR 482/PHIL 482 Ethics and Engr. ${ }^{\text {.... }}$	(2-2)	3	BAEN elective ${ }^{4}$.		3
		3	American history elective ${ }^{1,2}$......		3
		3	Creative arts elective ${ }^{1,2} \ldots$.		3
Social and behavioral science elective ${ }^{1,2}$.......		3			3
		15			15

total hours 127
NOTES:Grade_Bequirament. A_gade-of_ © PHYS 218, CHEM 107, CHEMM117, WAGL_104, FAGR_111, ENGR112) orequivalents.

1. To be selected from the University Core Curriculum. (See page 17).
2. The 6 hours of international and cultural diversity courses, as required for graduation, may be met in the curriculum. Students may select Language, Philosophy and Culture, Creative Arts, Technical Electives, or American Hitstory Electives that also meet the ICD requirement.
3. All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive.
4. BAEN, ENGR, MATH, and Technical clectives must be selected in consultation with the student's advisor and from the current list of approved electives published by the department.

The following certificates from the Dwight Jook College of Engineering are available for students pursuing this degree: Busincss Management, Energy Engineering, Engineering Project Management, Engineering Honors, International Engineering, Safety Engineering and Engineering Therapeutics Manufacturing (sec descriptions beginning on page 337).

Curriculum in Community Development

The Department of Recreation, Park and Tourism Sciences offers courses leading to a Bachetrar of Science degree in Community Development. This major is an interdisciplinary progam. The curriculum provides students with theoretical, statistical, decisionmaking and communication skills that they can effectively apply in federal and state governmental agengies, community planning firms, municipal depztments, marketing firms, economic development organizations, non-profits and other professional settings. The program will enhance tudents' abilities to: understand, colect and analyze different kinds of data; work with community leaders, groups and the public; identify and mobilize necessary resources for develorment processes; and assess outcomes and impacts of community change and development on local populations. Graduates with a Community Development major will be able to appy their kyrwledge and skills to issues including institutional development; human capacity byyding; economic development; youth development; poverty; welfare-to-work; water quality; land use planning; and other issues involving the mobilization of, and collabbration with diverse community groups.

Students who select this major will participate in a common set of core courses in the Department of Recreation, Park and Tourism Sciences. Nhese courses emphasize the importance of parks, recreatigh, tourism, and youth-oriented programs to community development processes and frategies. In addition, they will enrolinin courses specifically required for the commuphty development major. Finally, the program ffers a variety of electives that cover a ange of thematic areas which will allow students of this major to specialize in their freferred area of community development.

University Core Curriculum

Detail Requirements

Information for Degree Evaluation
Change Student \square This is NOT an official evaluation.

Program Evaluation

Limitation Correspondence: No more than 12 hours of correspondence earned through an accredited institution may be used for an undergraduate degree.
Limitation Combination: Maximum combination of 18 hours of 481, 482, 485 and/or 491 courses may be used for an undergraduate degree.

Program :	BS BAEN	Catalog Term :	Fall 2014-College Station
Campus :	College Station	Evaluation Term :	Spring 2015-Qatar
College:	Agriculture \& Life Sciences	Expected Graduation Date :	
Degree :	Bachelor of Science	Request Number :	6
Level:	Undergraduate	Results as of :	Oct 03, 2014
Majors:	Biological \& Agricultural Engr	Minors :	
Departments :	Biological \& Agricultural Eng	Concentrations :	

	Met	Credits		Courses		
		Required	Used	Required	Used	
Total Required:	No	127.000	0.000		0	0
Program GPA :	Yes	. 00	. 00			
Overall GPA :	No	2.00	. 00			
Other Course Information						
Transfer :			0.000		0	0

This is NOT an official evaluation.

Area : Major Coursework (42.000 credits) - Not Met

Description A grade of "C" or better must be maintained in all major coursework.
:
Met
Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source
A. BAENTE 201

Must make a grade of ' C ' or better.

No

No
AND

AND

AND

AND

AND

AND
No

No

BAEN 301
Must make a grade of ' C ' or better.
C. BAEN 302

Must make a grade of 'C' or better.
D. BAEN 320

Must make a grade of 'C' or better.
E. BAEN 340

Must make a grade of ' C ' or better.
F. BAEN 354

Must make a grade of ' C ' or better.
G. BAEN 365

Must make a grade of ' C ' or better.
H. BAEN 366

Must make a grade of 'C' or better.
No
BAEN 370
Must make a grade of ' C ' or better.

No	AND	J.	BAEN 375
			Must make a grade of ' C ' or better.
No	AND	K.	BAEN 479
			Must make a grade of ' C ' or better.
No	AND	L.	BAEN 480
			Must make a grade of 'C' or better.
No	AND	M.	400-Level BAEN Elect 6hrs
			Select from BAEN 400-478, 485, 489. Must make a grade of ' C ' or better.

unofficial evaluation

Area Supporting Coursework (22.000 credits) - Not Met

:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses

No		A.	ENGR 111
			Must make a grade of ' C ' or better.
No	AND	B.	ENGR 112
			Must make a grade of ' C ' or better.
No	AND	c.	MEEN 221
			Must make a grade of ' C ' or better.
No	AND	D.	MEEN 222
			Must make a grade of ' C ' or better.
No	AND	E.	ECEN 215
			Must make a grade of ' C ' or better.
No	AND	F.	CVEN 305
			Must make a grade of ' C ' or better.
No	AND	G.	ENGR Upper-Level Elect 6hrs
			Select from AERO 300-499; BAEN 300-478, 486, 489; BMEN 300499; CHEN 300-499; CVEN 300-499; ECEN 300-499; ISEN 300499; MEEN 300-499; NUEN 300-499; OCEN 300-499; PETE 300499; SENG 300-499 or up to 3 hours of departmental approved technical electives may be used to satisfy this requirement. Must make a grade of ' C ' or better.

unofficial evaluation

Area Communication (6.000 credits) - Not Met

:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No
A. ENGL 104

Must make a grade of ' C ' or better.
No AND
B. ENGL 210

Total Credits and GPA 0.000 . 00
unofficial evaluation

Area Mathematics (17.000 credits) - Not Met

:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Titie Attribute Credits Grade Source Credits Courses
No
A. MATH 151

Must make a grade of ' C ' or better.
No AND
B. MATH 152

Must make a grade of ' C ' or better.

unofficial evaluation

Area Language, Philosophy\& Culture (3.000 credits) - Not Met
:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No
A. Lang, Phil, \& Culture 3 hrs

Select from ENGR 482 or PHIL 482.
Must make a grade of ' C ' or better.
Total Credits and GPA $0.000 \quad .00$
unofficial evaluation

Area Creative Arts ($\mathbf{3 . 0 0 0}$ credits) - Not Met
:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No
A. Creative Arts Requirement

Select three hours from any course with the Creative Arts attribute [KCRA].

Total Credits and GPA 0.000 .00
unofficial evaluation

Area Social and Behavioral Sciences (3.000 credits) - Not Met
 Met Condition Rule Subject Attribute Low High Required
 Required Term Subject Course Title Attribute Credits Grade Source Credits Courses

A. Social Science Rqmit 3hrs

Select from courses with the Social and Behavioral Science attribute [KSOC].
unofficial evaluation

Area : Citizenship (12.000 credits) - Not Met

Description Completion of 4 semesters of Upper-Level ROTC may be substituted for 3 hours of American History and 3 hours of Political Science.
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No
A. American History Rqmt 6 hrs

Select from any course with the [KHIS] attribute.
No
AND
B. Political Science Rqmt 6hrs

Take POLS 206 and POLS 207.

$$
\text { Total Credits and GPA } 0.000 .00
$$

unofficial evaluation

Area : Work Not Applied - Met
Description See advisor for acceptable substitutions.
:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No
A. Courses not applied

Total Credits and GPA 0.000 .00
unofficial evaluation

unofficial evaluation

Area University Writing Requirement - Not Met

:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses

No
A. Writing Requirement

Two courses required
Only sections of BAEN 480; ENGR 482; and PHIL 482; may be used to satisfy this requirement.

```
Area Int'l & Cult Diversity - Not Met
:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source
Credits Courses
No A. Int'l & Cultura! Diversity 6hr
    Select from courses with the International and Cultural Diversity
    attribute [UICD] (except sections of BUSN 289 with the UWRT
    attribute).
Total Credits and GPA 0.000 .00
unofficial evaluation
```


Area Foreign Language - Not Met
 :

```
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source
A. Foreign Language Ramt
Complete one of the following:
1. Two years of the same foreign language in High School.
2. A two semester sequence of the same foreign language for
University credit.
unofficial evaluation
Area: Residence Requirement - Not Met
Description A minimum of 36 hours of 300-400 level coursework must be completed at Texas A\&M University. 12 hours must be in the major field.
:
Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No A. Residence - Major 12 hrs
Select from AGSM 300-499; BAEN 300-499.
No
AND
B. Residence 300-499 24 hrs
Select from any 300-400 level course at Texas A\&M.
Total Credits and GPA 0.000 .00
```

unofficial evaluation

Area: GPR-Major - Not Met
Description A minimum GPR of 2.000 is required in all major field of studies courses.
:

Met Condition Rule Subject Attribute Low High Required Required Term Subject Course Title Attribute Credits Grade Source Credits Courses
No
A. Major GPR $28+h r s$

Includes BAEN 100-499.
Total Credits and GPA $\quad 0.000$
.00
unofficial evaluation

Back to Display Options

Texas A\&M University Departmental Request for a Change in Course

 Undergraduate • Graduate • Professional

 Undergraduate • Graduate • Professional}

- Submit original form and attachments .

Form Instructions

1. Course request type

Undergraduate

\squareGraduate F First Professional (DDS, MD, JD, PharmD, DVM)
2. Request submitted by (Department or Program Name): Department of Biological and Agricultural Engineering
3. Course prefix, number and complete title of course: BAEN 301 Biological and Agricultural Engineering Fundamentals 1
4. Change requested
a. Prerequisite(s): From: \qquad To:
b. Withdrawal (reason): \qquad
c. Cross-list with: \qquad

Cross-listed courses require the signature of both department heads.

d. Change in course title and description. Enter complete current course title and current course description in item 9; enter proposed course title and proposed course description in item 10. Complete item 11a and b for a change in title.
e. Change in course number, contact hours (lab \& lecture), and semester credit hours. Complete item 11a and b. Attach a course syllabus.
5. Is this an existing core curriculum course?
6. If grade type is changing for existing course, indicate the new grade type: \square Grade \square
\square
7. If this course will be stacked, please indicate the course number of the stacked course:
\square I verify that l have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export8. controls/export-controls-basics-for-distance-education).
9. Complete current course title and current catalog course description:
10. Complete proposed course title and proposed catalog course description (not to exceed 50 words):
11. a. As currently in course inventory:

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra-williams@tamu.edu.

Course Syllabus
 BAEN 301, Biological and Agricultural Engineering Fundamentals I

 Spring 2014

 Spring 2014}

Instructor: Dr. Sandun Fernando, P.E.
303 C Scoates Hall
845-9793
sfernando@tamu.edu

TA: Mr. Nalin Samarasinghe
 Email: nalin1984@neo.tamu.edu

Meeting Times:

Lecture: Tuesdays and Thursdays from 9.35AM-10.25AM in SCTS 317
Laboratory: Sec. 501 Tuesdays 2.40PM - 5.30PM SCTS 237, AEPM 104 or TBA

$$
\text { Sec. } 502 \text { Thursdays 2.40PM - 5.30PM SCTS 237, AEPM } 104 \text { or TBA }
$$

Soil and water laboratories will be conducted in the field and the locations will be announced in due course.
Office Hours: By Appointment Only

Catalog Description

Fundamental engineering concepts related to agricultural systems including the environment (soil, water, and air), plant and animal production systems, and processing and associated machines and facilities; applications of techniques for data collection and analysis to problems in biological and agricultural engineering; design of experiments and communication of experimental results.

Prerequisites

MEEN 221 or registration therein.

Text

Required:
Introduction to Agricultural Engineering Technology - A Problem Solving Approach. Harry L. Field and John B. Solie. Third Edition. Springer

Course Objectives

The objective of this course is to educate students in fundamental scientific and engineering aspects of agricultural production and environmental systems. The course will include issues related to (1) soil, water, air, and environment and (2) plant and animal production and processing and associated machines and facilities. The course will introduce biological and agricultural engineering students to field and laboratory techniques in engineering through hands-on investigation of natural processes. A strong emphasis will be placed on data analysis and interpretation and preparation of technical reports. The course is divided into sections addressing topics and skills relevant to various areas of specialization in biological and agricultural engineering. At the completion of this course, students should have gained skills necessary to help them succeed in upper-level biological and agricultural engineering courses and should be familiar with various areas of specialization within the biological and agricultural engineering profession.

Learning Outcomes

At the end of this course, students should be able to

1. have a working knowledge of agricultural production techniques;
2. understand how engineering is utilized in agricultural production and environmental systems;
3. have a working knowledge of soil properties;
4. have a working knowledge of agricultural power and machinery;
5. have a working knowledge of the interrelationships among soil, water, air, and agricultural systems;
6. develop hypotheses for scientific experiments;
7. apply engineering principles to design systems for testing hypotheses;
8. develop procedures for testing hypotheses;
9. apply project management techniques to construction of experimental systems;
10. collect experimental data;
11. conduct basic analysis and interpretation of experimental data; and
12. write technical reports detailing results and conclusions of experiments.

Course Requirements and Grading

An Aggie does not lie, cheat or steal, or tolerate those who do.
http://aggiehonor.tamu.edu
Written reports on laboratory activities will be required. Reports should be single-spaced and printed on one side of paper only. Formats will be described in class. A take-home final exam will be given.

Grades for this course are based on ability to master specific skills, participation in individual and team projects, and learning fundamental principles required in engineering design and analysis. The different activities will be weighted as follows in determining semester grades:

Item	Percentage of Grade
Laboratory Reports	35
Homework Assignments	20
Mid-term exam	20
Attendance/participation	05
Final Exam	20
Total	100

Any grade disputes should be resolved within one week of grade issuance. It is the students' responsibility to review grades in E-learning on a weekly basis.

Attendance and Late Work Policy

Because most activities will be team activities, class participation is essential. For each unexcused lecture absence, 1 point will be deducted up to a total of 5 points. For each unexcused laboratory absence 5 points will be deducted from your overall total. If you need an excused absence (for non-emergency matters), please email the details to me prior to the absence.

For more information, refer to Student Rule 7 at http://student-rules.tamu.edu/rule07
Final course grades will be assigned as follows:

A	$90-100 \%$ outstanding competence in the skills taught in the course and exceptional understanding of the applicability and limits of those skills
B	$80-89 \%$ competence in the skills taught in the course, and good understanding of the applicability and limits of those skills
C	$70-79 \%$ competence in most skills taught in the course and understanding of the applicability and limits of those skills
D	$60-69 \%$ minimal competence in some skills taught in the course and limited understanding of the applicability and limits of those skills
F	$<60 \%$

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.

Safety during Laboratory Sessions:

It is of utmost importance that all students adhere to all established safety protocols to avoid any physical and/or chemical hazards during laboratory sessions. You are required to read, understand and implement the safety precautions indicated in your laboratory manual, laboratory handouts and/or safety handouts.

Course Topics

\begin{tabular}{|c|c|c|c|c|c|}
\hline Sessions \& \& L \& Lectures \& Laboratories \& Homework

\hline \multirow[t]{2}{*}{1

2} \& Jan-

\[
14

\] \& 1 \& | Introduction: |
| :--- |
| Working with Spreadsheets / Basic statistical operations | \& | Laboratory 1: |
| :--- |
| - Chemical lab safety training |
| - Sign the Laboratory Safety Acknowledgement (LSA) Forms |
| - Sign the Electronic LSA Forms | \&

\hline \& $$
\begin{aligned}
& \text { Jan- } \\
& 16
\end{aligned}
$$ \& 2 \& Report Writing / Creating and Testing Hypotheses \& \& Homework 1

\hline 3 \& $$
\begin{aligned}
& \text { Jan- } \\
& 21
\end{aligned}
$$ \& 3 \& Unit cancellation / Common units of measure \& Laboratory 2: Data Analysis - Part 1 \&

\hline 4 \& $$
\begin{aligned}
& \text { Jan- } \\
& 23
\end{aligned}
$$ \& 4 \& Power Transmission - Simple Machines \& \&

\hline 5 \& $$
\left\lvert\, \begin{aligned}
& \operatorname{Jan}- \\
& 28
\end{aligned}\right.
$$ \& 5 \& Power trains \& Laboratory 3: Data Analysis - Part 2 \& Homework 2

\hline 6 \& $$
\begin{aligned}
& \text { Jan- } \\
& 30
\end{aligned}
$$ \& 6 \& Engines \& \&

\hline \multirow[b]{2}{*}{7

8} \& | Feb- |
| :--- |
| 04 | \& 7 \& Tractors and Power Units \& Laboratory 4: Power Transmission \&

\hline \& Feb06 \& 8 \& Plant Production \& Harvesting Equipment efficiency and capacity \& \&

\hline 9 \& | Feb- |
| :--- |
| 11 | \& 9 \& Economics of Agricultural Machinery \& Laboratory 5: Engine Teardown \&

\hline 10 \& $$
\begin{aligned}
& \text { Feb- } \\
& 13
\end{aligned}
$$ \& 10 \& Alternative Energy Systems, Biodiesel \& \& Homework 3

\hline 11 \& $$
\begin{aligned}
& \text { Feb- } \\
& 18
\end{aligned}
$$ \& 11 \& Exam 1 \& No Laboratory \&

\hline 12 \& $$
\begin{aligned}
& \text { Feb- } \\
& 20
\end{aligned}
$$ \& 12 \& Ethanol Production \& \&

\hline 13 \& $$
\begin{aligned}
& \text { Feb- } \\
& 25
\end{aligned}
$$ \& 13 \& Hydrogen/Fuel Cells \& Laboratory 6: Agricultural Machinery Selection \&

\hline 14 \& Feb-

$$
27
$$ \& 14 \& Hydrogen/Fuel Cells/Exam Dis. \& \&

\hline 15 \& Mar 04 \& 15 \& Handling Storage and Transport of Biological Products \& Laboratory 7: Economics of Agricultural Machinery \&

\hline 16 \& Mar06 \& 16 \& Heat flow, Insulation and Psychometrics \& \&

\hline
\end{tabular}

Sessions			Lecture	Lab	Homework
17	Mar- 18	17	Ventilation and Air-conditioning	Laboratory 8: Biodiesel Production	
18	$\begin{aligned} & \text { Mar- } \\ & 20 \end{aligned}$	18	Principles of Nanotechnology		
	$\begin{aligned} & \text { Mar- } \\ & 25 \end{aligned}$	19	Principles of Nanotechnology	Laboratory 9: Psychrometrics	Homework 4
20	Mar- 27	20	Soils and Soil Properties		
21	$\begin{array}{\|l} \text { Apr- } \\ 01 \end{array}$	21	Precipitation	Laboratory 10: Direct Methanol Fuel Cells	
22	Apr- 03	22	Erosion and Erosion Control Practices		
23	Apr- 08	23	Ground water movement	Laboratory 11: Saturated Hydraulic Conductivity	
24	$\begin{array}{\|l\|l} \text { Apr- } \\ 10 \end{array}$	24	Water Quantity \& Quality - Infiltration and Runoff		
	$\begin{array}{\|l\|} \text { Apr - } \\ 15 \end{array}$	25	Water Quantity \& Quality - Open Channels	Laboratory 12: Ground Water Monitoring	
26	$\begin{aligned} & \text { Apr- } \\ & 17 \end{aligned}$	26	Irrigation		
27	Apr- 22	27	Case Study		
28	$\begin{aligned} & \text { Apr- } \\ & 24 \end{aligned}$		Exam 2		

Texas A\&M University Departmental Request for a Change in Course
 Undergraduate - Graduate • Professional

- Submit original form and attachments .

Form Instructions

1. Course request type:

V
Undergraduate

\squareGraduate First Professional (DDS, MD, JD, PharmD, DVM)
2. Request submitted by (Department or Program Name): Department of Biological and Agricultural Engineering
3. Course prefix, number and complete title of course: BAEN 302 Biological and Agricultural Engineering Fundamentals II

Attach a brief sumboring statement for changes made to items 49 thru 4 d , and 10 below.
4. Change requested
a. Prerequisite(s): From: \qquad To:
b. Withdrawal (reason): \qquad
c. Cross-list with: \qquad

Cross-listed courses require the signature of both department heads.

d. Change in course title and description. Enter complete current course title and current course description in item 9; enter proposed course title and proposed course description in item 10. Complete item 11a and b for a change in title.
e. Change in course number, contact hours (lab \& lecture), and semester credit hours. Complete item 11 a and b . Attach a course syllabus.
5. Is this an existing core curriculum course?
6. If grade type is changing for existing course, indicate the new grade type:
$\square \mathrm{Ye}$ \square
7. If this course will be stacked, please indicate the course number of the stacked course:
\square I verify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export-
8. controls/export-controls-basics-for-distance-education).
9. Complete current course title and current catalog course description:
10. Complete proposed course title and proposed catalog course description (not to exceed 50 words):
11.

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra-williams@tamuedu. Curricular Services - 08/14

Course number and title	BAEN 302 Biological and Agricultural Engineering
	Fundamentals II

Term
Meeting times and location

BAEN 302 Biological and Agricultural Engineering Fundamentals II
Fall 2014
Lecture: 11:10 AM - 12:00 PM (TR); SCTS 317
Lab (section 501): 2:20-5:10 PM (T); SCTS 237
Lab (section 502): 2:20-5:10 PM (R); SCTS 237

Course Description

Fundamentals of microbiology and biochemistry as they apply to biological and agricultural engineering processes to produce useful products and or benign endpoints; topics include microbiology, chemistry of biomolecules, microbial metabolism, bioenergetics, kinetics, bioreactor design, bioprocesses, and downstream processing.

Prerequisites: BIOL 113 ; CHEM 222 or registration therein.

Learning Outcomes

At the end of the course, the students should be able to:

1. describe cells
2. explain cellular functions
3. develop material and energy balances
4. interpret biochemical reaction kinetics
5. compare and contrast biochemical processes

Instructor Information

Name
Telephone number
Email address
Office hours
Office location

TA name
Office location
Office hours
Email address

Dr. R. Karthikeyan ("Dr. K")
979.845.7951
karthi@tamu.edu
Email for an appointment
311 Scoates Hall
Ms. Cherish Vance
233A Scoates Hall
MW 12:30-2:30 PM
cvance@neo.tamu.edu

Textbook

Doran, P.M. Bioprocess Engineering Principles (1st or $2^{\text {nd }}$ edition). Academic Press, (Chapters covered: $1^{\text {st }}$ Edition - 1, 2, 3, 4,5,11, and appendix; $2^{\text {nd }}$ Edition - 1, 2, 3, 4, 5, 12, and appendix). This textbook is highly recommended for this class. You will find a copy in Evans library course reserves.

All other course relevant materials (slides, lab data, and grades) will be posted at http://ecampus.tamu.edu/. Final grades will be posted on or before 12/18/2014.

Grading

1. Quizzes: There will be three unannounced quizzes ($3 \times 5=15$ points).
2. Problem Sets: There will be three problem sets $(3 \times 5=15$ points)
3. Exams: There will be four in-class exams ($4 \times 10=40$ points)
4. Lab Reports: There will be three individual lab reports ($3 \times 10=30$ points).

Final Grade (100 points maximum); A: 90-100; B: 80-89; C: 70-79; D: 60-69; and F: <60.

Attendance

Class participation is highly recommended. For every unexcused lab absence, 2 points will be subtracted up to 10 points total from the final grade. (Example: if your final grade is 90 and you were absent for 2 lab unexcused, your final grade will be: $90-(2 \times 2)=86$. You will get a B instead of A!). Please refer to http://student-rules.tamu.edu to learn about university excused absences.

No lab reports will be graded or make-up quizzes or exams given unless the student has met the excuses absence requirements outlined in Student Rules (http://student-rules.tamu.edu). Your attention and interaction in class is important to my concentration and that of your classmates. As a courtesy, please turn off your mobile phone audible ringers.

Academic Honesty \& University Regulations

Aggies do not lie, cheat or steal nor do they tolerate those who do.
The Aggie Code of Honor states that the students at Texas A\&M University should value honesty and personal integrity. Therefore, it is the responsibility of students and faculty members to help maintain scholastic integrity at the University by refusing to participate in or tolerate scholastic dishonesty.

In this course, it is permissible to discuss lab reports. It is NOT permissible to copy lab reports from another student. It is NOT permissible to discuss any aspect of any exam/quiz until ALL students have completed the exam/quiz. The penalties for violating this policy will range from a ZERO on the quiz or exam or lab report to an F in the course. In addition, a report will be made to the TAMU Honor Council Office. If you have any questions about the Aggie Honor Code, please consult the website: http://www.tamu.edu/aggiehonor/. Please get familiar with university regulations and student rules (http://student-rules.tamu.edu/); all relevant rules will be enforced in this class.

Additional Accommodations

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.

University Regulations

Please get familiar with university regulations and student rules (http://studentrules.tamu.edu/); all relevant rules will be enforced in this class.

Tentative Lecture Schedule:

Week $\#$	Class $\#$	Date	Topic Reading (Text book chapters)	
1	1	$09 / 02 / 2014$	Introduction to bioprocessing	1
	2	$09 / 04 / 2014$	Biology basics	slides
2	3	$09 / 09 / 2014$		
	4	$09 / 11 / 2014$		
3	5	$09 / 16 / 2014$		
	6	$09 / 18 / 2014$	Exam 1 review	
4	7	$09 / 23 / 2014$	Exam 1	2
	8	$09 / 25 / 2014$	Engineering calculations	3
5	9	$09 / 30 / 2014$	Analysis of data	4
	10	$10 / 02 / 2014$	Material balance	
6	11	$10 / 07 / 2014$		
	12	$10 / 09 / 2014$		
7	13	$10 / 14 / 2014$		5
	14	$10 / 16 / 2014$	Exam 2 review	
8	15	$10 / 21 / 2014$	Exam 2	
	16	$10 / 23 / 2014$	Energy balance	
9	17	$10 / 28 / 2014$		
	18	$10 / 30 / 2014$		
10	19	$11 / 04 / 2014$		
	20	$11 / 06 / 2014$	Exam 3 review	
11	21	$11 / 11 / 2014$	Exam 3	
	22	$11 / 13 / 2014$	Homogeneous reactions (Kinetics)	11 (1st) or 12 (2nd
12	23	$11 / 18 / 2014$		
	24	$11 / 20 / 2014$		
13	25	$11 / 25 / 2014$	Thanksgiving Break	
	26	$11 / 27 / 2014$	Thanksgiving Break	
14	27	$12 / 02 / 2014$	Exam 4 review (course evaluation)	
	28	$12 / 04 / 2014$	Exam 4	

Tentative Lab Schedule:

Week $\#$	Date	Tuesday Lab (section 501)	Thursday Lab (section 502)
1	$09 / 02 / 2014$	Lab safety	
2	$09 / 04 / 2014$		Lab safety
	$09 / 09 / 2014$	Microbiology protocols	
3	$09 / 11 / 2014$		Microbiology protocols
	$09 / 16 / 2014$	Aseptic techniques	
4	$09 / 18 / 2014$		Aseptic techniques
	$09 / 23 / 2014$	Serial dilution	
5	$09 / 25 / 2014$		Serial dilution
	$09 / 30 / 2014$	Spectrophotometer	
6	$10 / 02 / 2014$		Spectrophotometer
	$10 / 07 / 2014$	Growth curves	
7	$10 / 09 / 2014$		Growth curves
	$10 / 14 / 2014$	Bioseparations	Bioseparations
8	$10 / 16 / 2014$		
	$10 / 21 / 2014$	Bioprocessing	Bioprocessing
9	$10 / 23 / 2014$		
	$10 / 28 / 2014$	Project	Project
10	$10 / 30 / 2014$		
	$11 / 04 / 2014$	Project	Project
11	$11 / 11 / 2014$	Project	
	$11 / 13 / 2014$		Project
12	$11 / 18 / 2014$	Project	
	$11 / 20 / 2014$		Project
13	$11 / 25 / 2014$	Project	
14	$11 / 27 / 2014$		Project
	$12 / 02 / 2014$	Presentations	
	$12 / 04 / 2014$		Presentations

Texas A\&M University Departmental Request for a New Course Undergraduate * Graduate * Professional
 - Submit original form and attach a course syllabus.-

Form Instructions

1. Course request type:
($\sqrt{ }$ Undergraduate
Graduate
First Professional (DDS, MD, JD, PharmD, DVM)
2. Request submitted by (Department or Program Name):

Department of Biological and Agricultural Engineering
3. Course prefix, number and complete title of course:

BAEN 201: Analysis of Biological and Agricultural Engineering Problems
4. Catalog course description (not to exceed 50 words):

Overview of Biological and Agricultural Engineering discipline through case studies and contemporary problems; introduction to computer programming; engineering analysis and problem solving using computer programming
5. Prerequisite(s):

ENGR: 111; MATH 151; CHEM 107 and 117 or PHYS 218 or BIOL 113
Cross-listed with:
 Cross-listed courses require the signature of both department heads.
6. Is this a variable credit course?Yes (7) No o

If yes, from \qquad to \qquad
7. Is this a repeatable course?Yes
\square No

If yes, this course may be taken \qquad times.

Will this course be repeated within the same semester?Yes
8. Will this course be submitted to the Core Curriculum Council?
9. How will this course be graded:
($]$ GradeS/U
\square N
10. This course will be:■ № $\square \mathrm{P} / \mathrm{F}$ (CLMD)
a. required for students enrolled in the following degree programs(s) (e.g., B.A. in history)
B.S. in Biological and Agricultural Engineering
b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)
11. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.
12. I verify that I have reviewed the FAQ for Export Control Basics for Disiance Education (http://vpr.tamu.edu/resources/export-controls/export-controls-basics-for-distance-education).

TEXAS A\&M UNIVERSITY

Department of Biological and Agricultural Engineering BAEN 201 Analysis of Biological and Agricultural Engineering Problems

DESCRIPTION

Overview of Biological and Agricultural Engineering discipline through case studies and contemporary problems; introduction to computer programming; engineering analysis and problem solving using computer programming.

PREREQUISITES

ENGR 111; MATH 151; CHEM 107 and 117 or PHYS 218 or BIOL 113

INSTRUCTOR

Dr. Patricia Smith
Office: 133 Scoates Hall
Phone: (979) 845-3630
Email: patti-smith@tamu.edu
Office Hours: MW 1:30 to 3:00 or email for appointment

MEETING TIMES AND LOCATIONS

Lecture: \quad M 12:40-1:30 PM
SCTS 317
Lab: Wednesday, 12:40-2:30 PM
Friday, 12:40-2:30 PM
SCTS 214

TEXTS

No text is required for this class. Reading materials, lecture notes and open source texts will be available through eCampus.

GRADING

Grades will be determined as follows:

$$
\begin{array}{ll}
\text { Programming assignments } & 20 \% \\
\text { BAEN case studies } & 30 \% \\
\text { Midterm exam } & 20 \% \\
\text { Team project } & 30 \%
\end{array}
$$

A 10 point grading scale will be used: $90-100=\mathrm{A}, 80-89=\mathrm{B}, 70-79=\mathrm{C}, 60-69=\mathrm{D},<60=\mathrm{F}$

LEARNING OUTCOMES

At the end of this course students should be able to:

- Develop a broad understanding of the Biological and Agricultural Engineering discipline
- Learn programming fundamentals.
- Write simple programs to solve contemporary Biological and Agricultural Engineering problems.
- Ability to analyze problem solutions.
- Ability to function on teams.

ABET OUTCOMES

- Ability to apply the knowledge of mathematics, science and engineering
- Ability to identify, formulate and solve Biological and Agricultural Engineering problems.
- Ability to function in multidisciplinary teams
- Ability to use modern tools, techniques and computational skills necessary for Biological and Agricultural Engineering Practice.

ATTENDANCE AND MAKE-UP POLICIES

The University Student Rule regarding attendance can be found at http://studentrules.tamu.edu/rule07. This rule outlines what the University and I consider to be excused and unexcused absences. While no part of your grade is directly associated with attendance, student participation in class and team activities is an essential part of this class, especially since much of the assigned work is done in teams.

Late will be reviewed but will receive a grade of zero. If, at any time, extenuating circumstances interfere with your ability to meet class requirements, you are encouraged to contact Dr. Smith prior to the passage of a due date. The ability to make up missed work and the terms of any allowed make-up will be determined on a case-by-case basis.

ADA STATEMENT

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.

ACADEMIC INTEGRITY

For many years, Aggies have followed a Code of Honor in an effort to unify the aims of all Aggies toward a high code of ethics and dignity. It functions as a symbol to all Aggies, promoting understanding and loyalty to truth and confidence in each other. Students should refer to the University policy on academic integrity found in the Honor Council website:
http://aggiehonor.tamu.edu. All violations will be handled as specified by University Guidelines.
Aggies do not lie, cheat or steal, or tolerate those who do.

Schedule

Week \#	Lecture topic	Lab
1	Course introduction	Computer lab set up
2	Introduction to programming	Programming environment set up
3	Flow charts	Programming structure
4	Algorithms and engineering analysis	Simple coding/programming
5	Writing simple programs	Executing simple programs
6	Spatial programming applications	Introduction to spatial programming
7	Soil and Water Resources Engineering: Case studies	Programming to solve case studies/problems in soil and water resources engineering
8	Air Quality Engineering: Case Studies	Programming to solve case studies/problems in air quality engineering
9	Machine Systems Engineering: Case Studies	Programming to solve case studies/problems in machine systems engineering
10	Agricultural Process Engineering: Case Studies	Programming to solve case studies/problems in agricultural process engineering
11	Food Engineering: Case Studies	Programming to solve case studies/problems in food engineering
12	Bioenergy Engineering: Case Studies	Programming to solve case studies/ problems in bioenergy engineering
13	Bioprocess Engineering: Case Studies	Programming to solve case studies/problems in bioprocess engineering
14	Introduction of Team Projects	Project Team programming
15	Finals	Final presentations

