Belt and Chain Drives(Flexible Drive Elements)

al Engineering Design

Why Flexible Drives?

- Long Distances Between Shafts
- Less Expensive

+

- Adjustable Centers
- Tolerates some mis alignment better than gears

- Not as compact as gears
- Some speed limits
- Power and torque limits

Common Belt Types

Type

Pulley

- Flat (conveyor belts)
- 2. Round (O-ring)
- 3. V-belt

Grooved pulley

Crowned pulley

Flanged pulleys

4. Timing (toothed) (no stretch or slip) Cogged pulley

5. Proprietary belt designs

Characteristics of Some Common Belt Types

Belt Type	Figure	Joint	Size Range	Center Distance
Flat		Yes	$t = \begin{cases} 0.03 \text{ to } 0.20 \text{ in} \\ 0.75 \text{ to } 5 \text{ mm} \end{cases}$	No upper limit
Round	$\bigcirc \frac{\checkmark}{\frac{d}{\uparrow}}$	Yes	$d = \frac{1}{8}$ to $\frac{3}{4}$ in	No upper limit
V		None	$b = \begin{cases} 0.31 \text{ to } 0.91 \text{ in} \\ 8 \text{ to } 19 \text{ mm} \end{cases}$	Limited
Timing	$ - p \rightarrow $	None	p = 2 mm and up	Limited

Table 17–1

Flat Belt Drive

Better for high speed applications, rather than power.

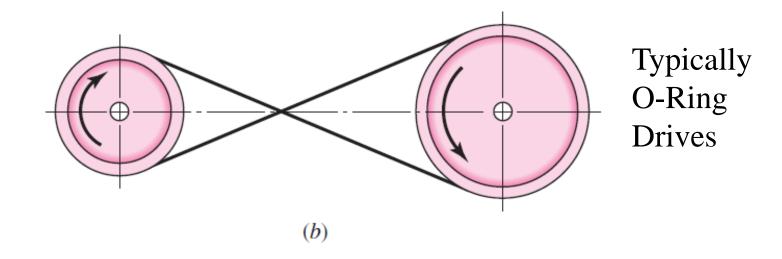
Good for tight clearances

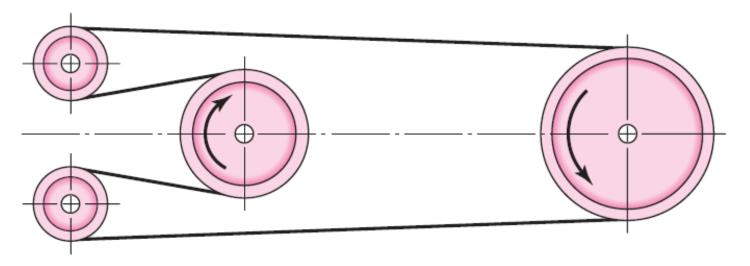
Can allow slip, to prevent breakage

Flat Belts as Conveyer Belts

-

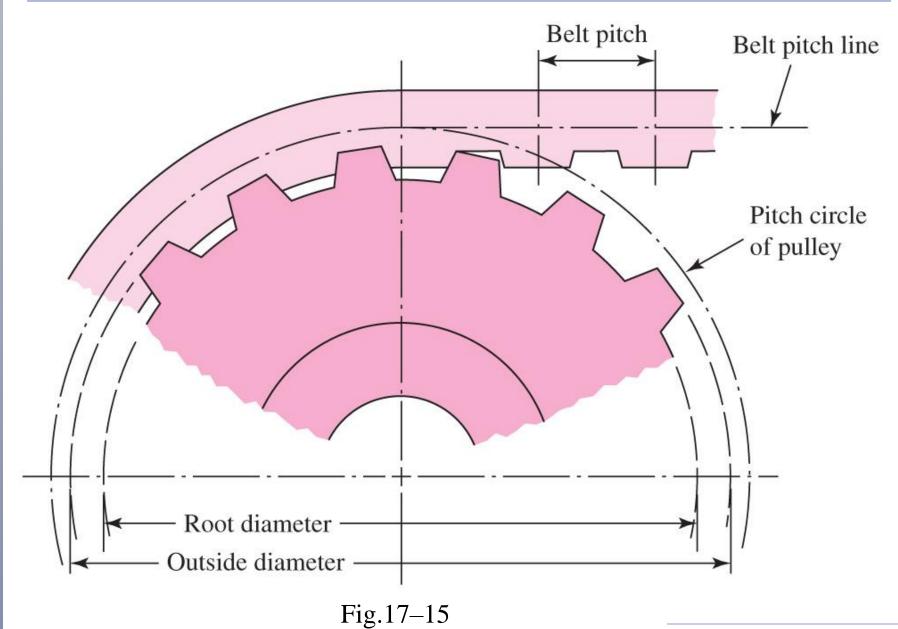
Usually seamed/stitched


O-Ring Drive



Good for low cost. Good for driving multiple shafts

Reversing Belts



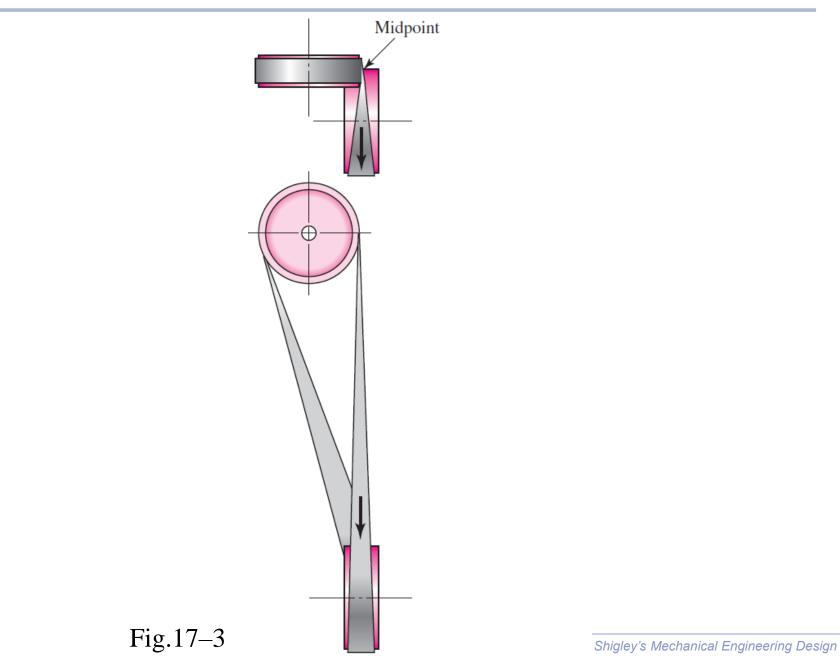
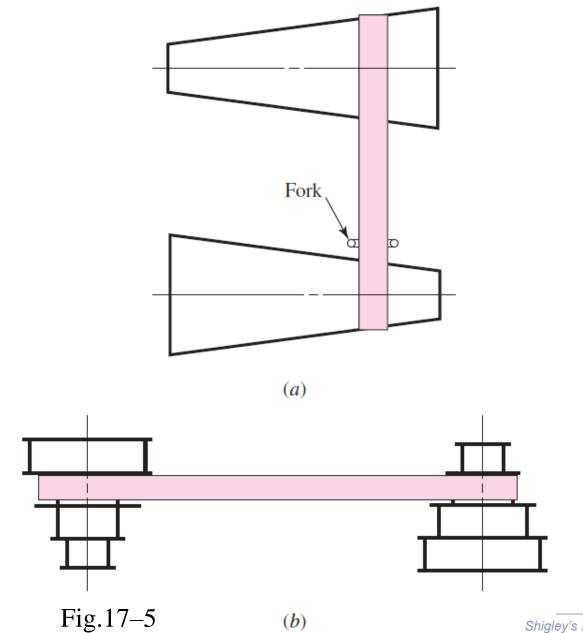
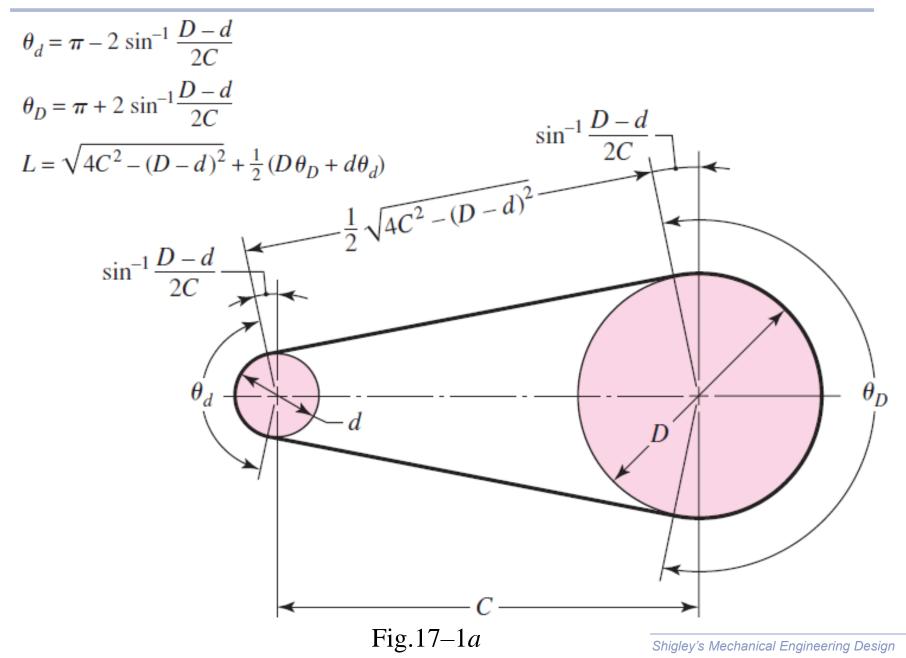

(*c*)

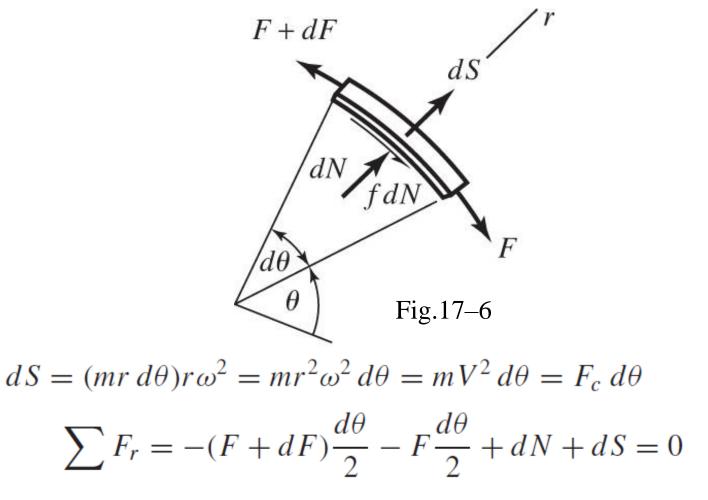
Fig.17–2


Timing Belts

Flat-belt with Out-of-plane Pulleys

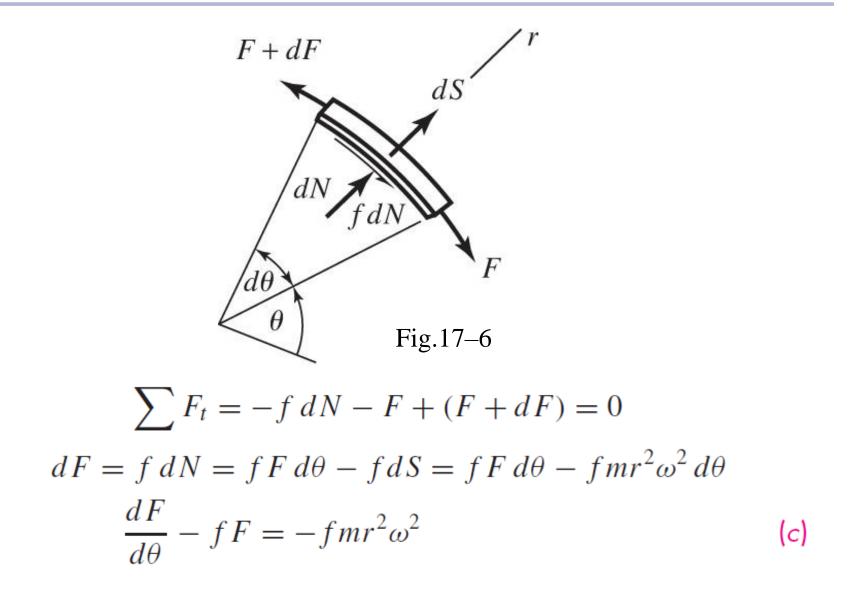


Variable-Speed Belt Drives



Shigley's Mechanical Engineering Design

Flat-Belt Geometry – Open Belt


Free Body of Infinitesimal Element of Flat Belt

 $dN = F \, d\theta - dS$

(a)

Free Body of Infinitesimal Element of Flat Belt

Analysis of Flat Belt, The Belting Equation

$$\frac{dF}{d\theta} - fF = -fmr^2\omega^2 \qquad (c)$$

$$F = A\exp(f\theta) + mr^2\omega^2 \qquad (d)$$

$$F = A\exp(f\theta) + mr^2\omega^2 \qquad (d)$$

$$F = (F_2 - mr^2\omega^2)\exp(f\theta) + mr^2\omega^2 \qquad (17-5)$$

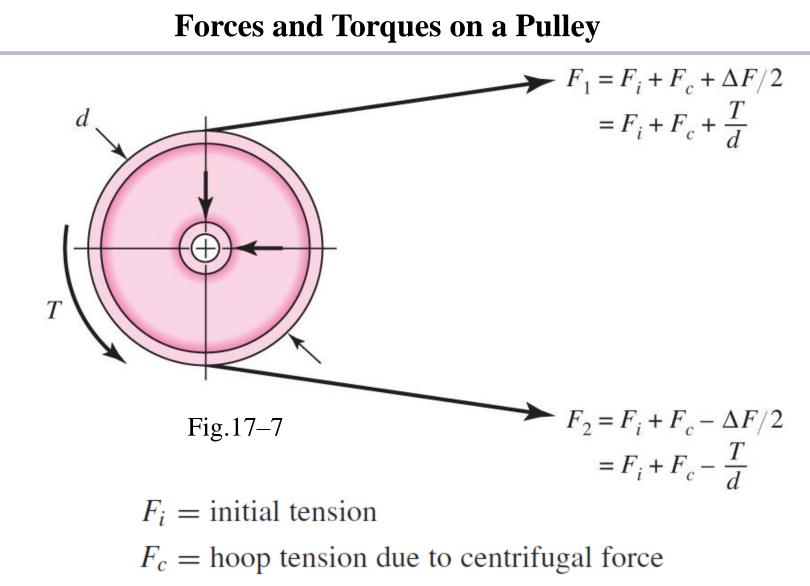
$$F|_{\theta=\phi} = F_1 = (F_2 - mr^2\omega^2)\exp(f\phi) + mr^2\omega^2 \qquad (17-6)$$

$$\frac{F_1 - mr^2\omega^2}{F_2 - mr^2\omega^2} = \frac{F_1 - F_c}{F_2 - F_c} = \exp(f\phi) \qquad \text{The Belting Equation} \qquad (17-7)$$

$$F_c = mr^2\omega^2$$

$$F_1 - F_2 = (F_1 - F_c) \frac{\exp(f\phi) - 1}{\exp(f\phi)}$$

(17 - 8)


Fc = Hoop Tension Due to Centrifugal Force

$$F_c = mr^2\omega^2$$
$$F_c = \frac{w}{g} \left(\frac{V}{60}\right)^2 = \frac{w}{32.17} \left(\frac{V}{60}\right)^2$$

(e)

$w = 12\gamma bt$ lbf/ft where b and t are in inches

 $V = \pi dn/12$ ft/min

 $\Delta F/2$ = tension due to the transmitted torque *T*

d = diameter of the pulley

Initial Tension

$$F_{1} - F_{2} = \frac{2T}{d}$$
(h)

$$F_{1} + F_{2} = 2F_{i} + 2F_{c}$$

$$F_{i} = \frac{F_{1} + F_{2}}{2} - F_{c}$$
(i)

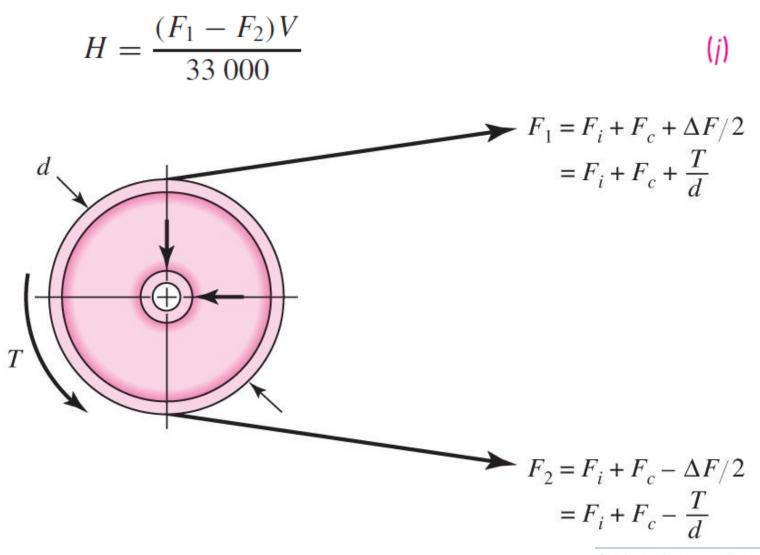
$$\frac{F_{i}}{T/d} = \frac{(F_{1} + F_{2})/2 - F_{c}}{(F_{1} - F_{2})/2} = \frac{F_{1} + F_{2} - 2F_{c}}{F_{1} - F_{2}} = \frac{(F_{1} - F_{c}) + (F_{2} - F_{c})}{(F_{1} - F_{c}) - (F_{2} - F_{c})}$$

$$= \frac{(F_{1} - F_{c})/(F_{2} - F_{c}) + 1}{(F_{1} - F_{c})/(F_{2} - F_{c}) - 1} = \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$

$$F_{i} = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$
(17-9)

(17 - 9)

Flat Belt Tensions


$$F_{1} = F_{i} + F_{c} + \frac{T}{d} = F_{c} + F_{i} + F_{i} \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$

$$= F_{c} + \frac{F_{i}[\exp(f\phi) + 1] + F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$
(17-10)
$$F_{1} = F_{c} + F_{i} \frac{2\exp(f\phi)}{\exp(f\phi) + 1}$$
(17-10)
$$F_{2} = F_{i} + F_{c} - \frac{T}{d} = F_{c} + F_{i} - F_{i} \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$

$$= F_{c} + \frac{F_{i}[\exp(f\phi) + 1] - F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$

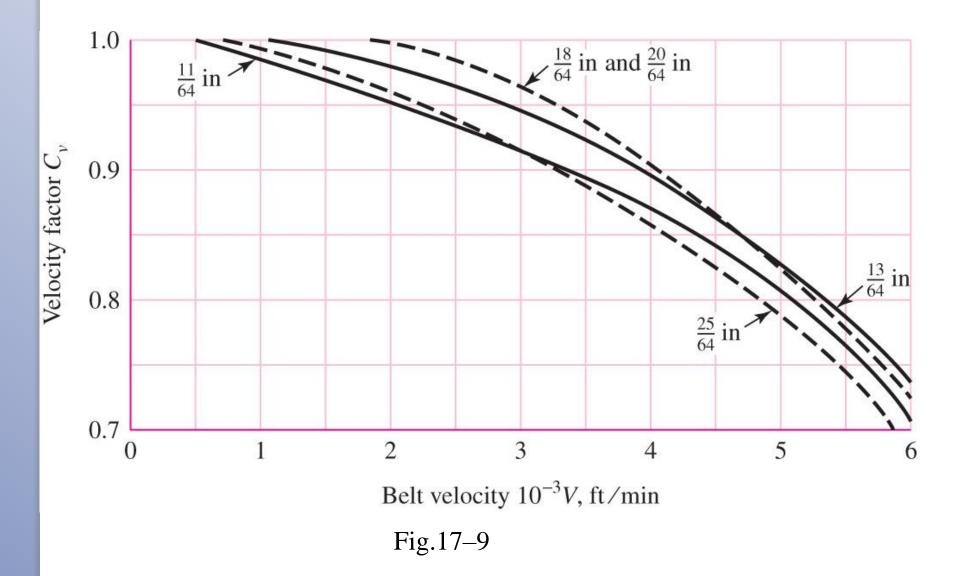
$$F_{2} = F_{c} + F_{i} \frac{2}{\exp(f\phi) + 1}$$
(17-11)

Transmitted Horsepower

Shigley's Mechanical Engineering Design

Correction Factors for Belts,
Based on Manufacturer Data $(F_1)_a = bF_aC_pC_v$ (17–12)

where $(F_1)_a$ = allowable largest tension, lbf


b =belt width, in

 F_a = manufacturer's allowed tension, lbf/in

 C_p = pulley correction factor (Table 17–4)

 C_v = velocity correction factor

Velocity Correction Factor C_v for Leather Belts

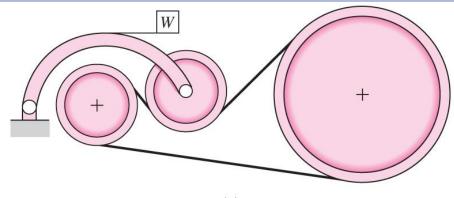
Pulley Correction Factor C_P for Flat Belts

Table 17-4

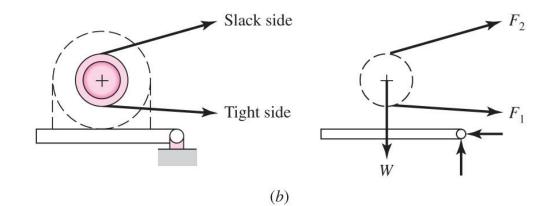
Pulley Correction Factor C_P for Flat Belts*

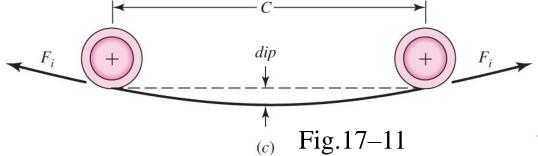
	Small-Pulley Diameter, in						
Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5	
Leather	0.5	0.6	0.7	0.8	0.9	1.0	
Polyamide, F–0	0.95	1.0	1.0	1.0	1.0	1.0	
F-1	0.70	0.92	0.95	1.0	1.0	1.0	
F-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-3		0.70	0.87	0.94	0.96	1.0	
A-4			0.71	0.80	0.85	0.92	
A–5				0.72	0.77	0.91	

*Average values of C_P for the given ranges were approximated from curves in the *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

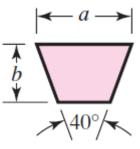

Steps for Flat-Belt Analysis

- 1 Find $\exp(f\phi)$ from belt-drive geometry and friction
- 2 From belt geometry and speed find F_c
- 3 From $T = 63\ 025 H_{\text{nom}} K_s n_d / n$ find necessary torque
- 4 From torque *T* find the necessary $(F_1)_a F_2 = 2T/d$
- 5 From Tables 17–2 and 17–4, and Eq. (17–12) determine $(F_1)_a$.
- 6 Find F_2 from $(F_1)_a [(F_1)_a F_2]$
- 7 From Eq. (*i*) find the necessary initial tension F_i
- 8 Check the friction development, f' < f. Use Eq. (17–7) solved for f':


$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c}$$


9 Find the factor of safety from $n_{fs} = H_a/(H_{\text{nom}}K_s)$

Belt-Tensioning Schemes


(a)

Shigley's Mechanical Engineering Design

Standard V-Belt Sections

Belt Section	Width <i>a,</i> in	Thickness b, in	Minimum Sheave Diameter, in	hp Range, One or More Belts
А	$\frac{1}{2}$	$\frac{11}{32}$	3.0	$\frac{1}{4} - 10$
В	$\frac{21}{32}$	$\frac{7}{16}$	5.4	1–25
С	$\frac{7}{8}$	$\frac{17}{32}$	9.0	15-100
D	$1\frac{1}{4}$	$\frac{3}{4}$	13.0	50-250
Е	$1\frac{1}{2}$	1	21.6	100 and up

Table 17–9

Shigley's Mechanical Engineering Design

Inside Circumferences of Standard V-Belts

Section	Circumference, in
А	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128
В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300
С	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420
D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360,390, 420, 480, 540, 600, 660
Е	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

Table 17–10

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in inches).

Belt section	Α	В	С	D	E
Quantity to be added	1.3	1.8	2.9	3.3	4.5

V-Belt Pitch Length and Center-to-Center Distance

$$L_p = 2C + \pi (D+d)/2 + (D-d)^2/(4C)$$
(17-16a)
$$C = 0.25 \left\{ \left[L_p - \frac{\pi}{2} (D+d) \right] + \sqrt{\left[L_p - \frac{\pi}{2} (D+d) \right]^2 - 2(D-d)^2} \right\}$$
(17-16b)

Horsepower Ratings of Standard V-Belts

	Belt	Sheave Pitch		Belt	Speed, ft,	/min	
Table 17–12	Section	Diameter, in	1000	2000	3000	4000	5000
	А	2.6	0.47	0.62	0.53	0.15	
		3.0	0.66	1.01	1.12	0.93	0.38
		3.4	0.81	1.31	1.57	1.53	1.12
		3.8	0.93	1.55	1.92	2.00	1.71
		4.2	1.03	1.74	2.20	2.38	2.19
		4.6	1.11	1.89	2.44	2.69	2.58
		5.0 and up	1.17	2.03	2.64	2.96	2.89
	В	4.2	1.07	1.58	1.68	1.26	0.22
		4.6	1.27	1.99	2.29	2.08	1.24
		5.0	1.44	2.33	2.80	2.76	2.10
		5.4	1.59	2.62	3.24	3.34	2.82
		5.8	1.72	2.87	3.61	3.85	3.45
		6.2	1.82	3.09	3.94	4.28	4.00
		6.6	1.92	3.29	4.23	4.67	4.48
		7.0 and up	2.01	3.46	4.49	5.01	4.90
	С	6.0	1.84	2.66	2.72	1.87	
		7.0	2.48	3.94	4.64	4.44	3.12
		8.0	2.96	4.90	6.09	6.36	5.52
		9.0	3.34	5.65	7.21	7.86	7.39
		10.0	3.64	6.25	8.11	9.06	8.89
		11.0	3.88	6.74	8.84	10.0	10.1
		12.0 and up	4.09	7.15	9.46	10.9	11.1
	D	10.0	4.14	6.13	6.55	5.09	1.35
		11.0	5.00	7.83	9.11	8.50	5.62
		12.0	5.71	9.26	11.2	11.4	9.18
		13.0	6.31	10.5	13.0	13.8	12.2
		14.0	6.82	11.5	14.6	15.8	14.8
		15.0	7.27	12.4	15.9	17.6	17.0
		16.0	7.66	13.2	17.1	19.2	19.0
		17.0 and up	8.01	13.9	18.1	20.6	20.7
	E	16.0	8.68	14.0	17.5	18.1	15.3
		18.0	9.92	16.7	21.2	23.0	21.5
		20.0	10.9	18.7	24.2	26.9	26.4
		22.0	11.7	20.3	26.6	30.2	30.5
		24.0	12.4	21.6	28.6	32.9	33.8
		26.0	13.0	22.8	30.3	35.1	36.7
		28.0 and up	13.4	23.7	31.8	37.1	^{39.1} Sh

Shigley's Mechanical Engineering Design

Adjusted Power

 $H_a = K_1 K_2 H_{\text{tab}} \tag{17-17}$

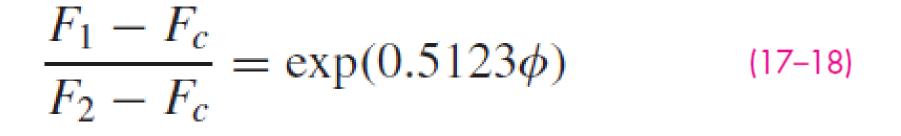
where H_a = allowable power, per belt K_1 = angle-of-wrap (ϕ) correction factor, Table 17–13 K_2 = belt length correction factor, Table 17–14

Angle of Wrap Correction Factor

D			<i>K</i> ₁
$\frac{D-a}{C}$	θ, deg	vv	V Flat
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

Table 17–13

Shigley's Mechanical Engineering Design


Belt-Length Correction Factor

	Nominal Belt Length, in						
Length Factor	A Belts	B Belts	C Belts	D Belts	E Belts		
0.85	Up to 35	Up to 46	Up to 75	Up to 128			
0.90	38–46	48-60	81–96	144–162	Up to 195		
0.95	48–55	62-75	105-120	173–210	210-240		
1.00	60–75	78–97	128–158	240	270-300		
1.05	78–90	105-120	162–195	270-330	330-390		
1.10	96–112	128–144	210-240	360-420	420480		
1.15	120 and up	158–180	270-300	480	540-600		
1.20		195 and up	330 and up	540 and up	660		

*Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

Table 17–14

Belting Equation for V-Belt (Gates Belting)

Design Power for V-Belt

 $H_d = H_{\rm nom} K_s n_d$

(17 - 19)

where H_{nom} is the nominal power K_s is the service factor given in Table 17–15 n_d is the design factor

Number of belts:

 $N_b \ge \frac{H_d}{H_a}$ $N_b = 1, 2, 3, \dots$ (17-20)

where H_a = allowable power, per belt

Shigley's Mechanical Engineering Design

V-Belt Tensions

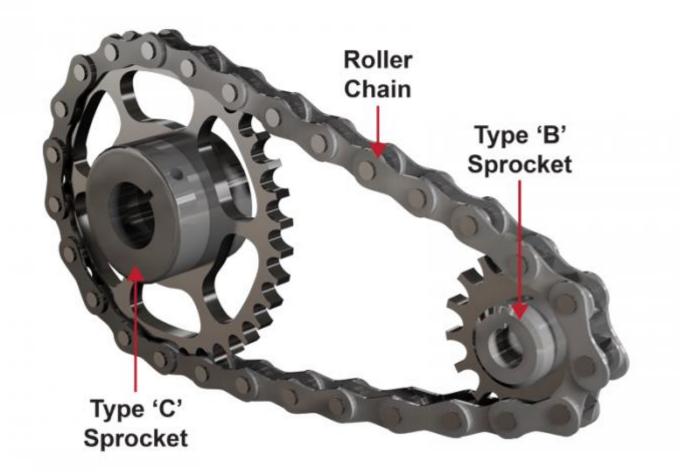
$$F_c = K_c \left(\frac{V}{1000}\right)^2 \tag{17-21}$$

where K_c is from Table 17–16

$$\Delta F = \frac{63\ 025H_d/N_b}{n(d/2)} \tag{17-22}$$

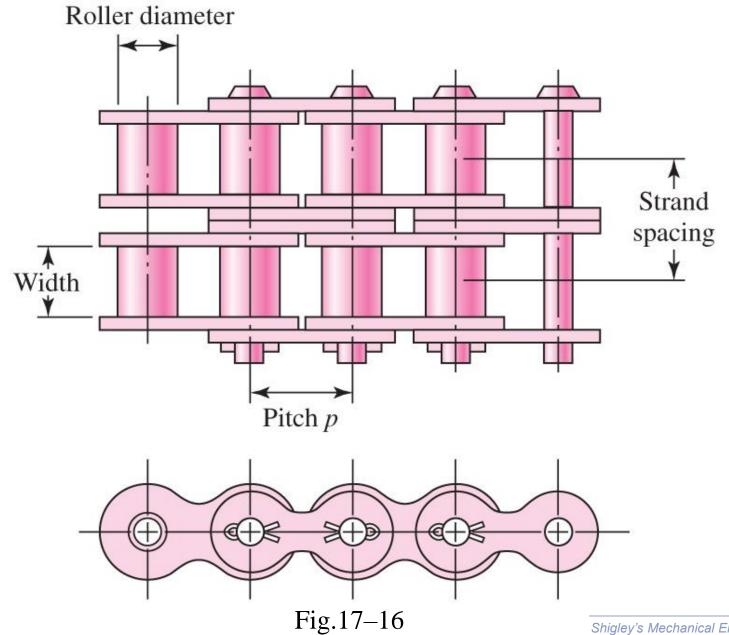
$$F_1 = F_c + \frac{\Delta F \exp(f\phi)}{\exp(f\phi) - 1}$$
(17-23)

 $F_2 = F_1 - \Delta F \tag{17-24}$

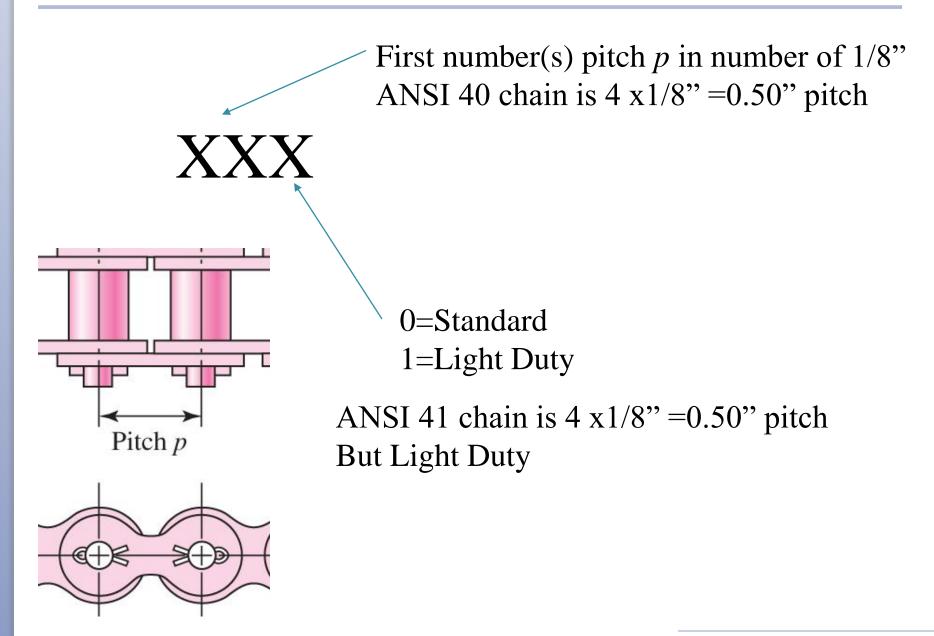

$$F_i = \frac{F_1 + F_2}{2} - F_c \tag{17-25}$$

Use Belting Manufacture Specific Data For examples Gates Belts (know mostly for V-belts) <u>https://www.gates.com/us/en.html</u>

Available Resources from the Manufacturer


- Products and Applications (by Industry)
- Engineering Applications & Design Software
- Calculators
- Resources Library

Roller Chain

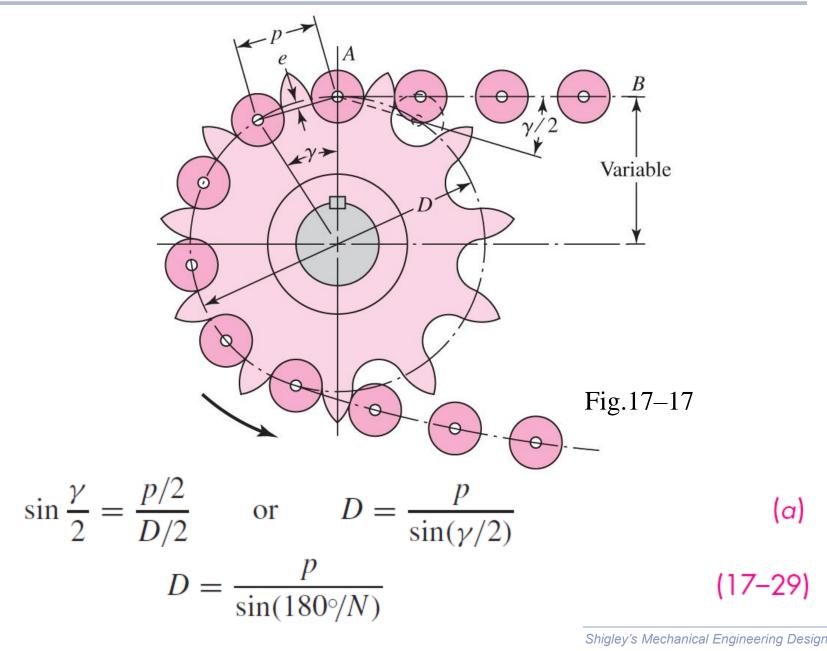

- Similar to Timing Belts, no slip
- Long life
- Fairly large power can be transmitted
- Costs less than gears
- Easy to adjust centers, tolerant of large variation
- Input and Output sprocket usually rotate in same direction
- Only need light to no chain preload tension when installing, but may require a tensioner/idler
- Usually requires lubrication
- Can use multiple strands for increased power
- Usually made of steel
- Stainless steel versions available for food industry

Roller Chain

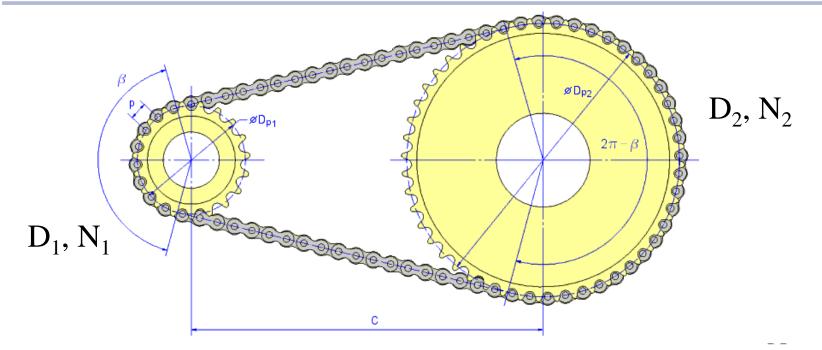
Shigley's Mechanical Engineering Design

ANSI Chain Size Number

Shigley's Mechanical Engineering Design


Dimensions of American Standard Roller Chains

ANSI Chain Number	Pitch, in (mm)	Width, in (mm)	Minimum Tensile Strength, Ibf (N)	Average Weight, Ibf/ft (N/m)	Roller Diameter, in (mm)	Multiple- Strand Spacing, in (mm)	
25	0.250 (6.35)	0.125 (3.18)	780 (3 470)	0.09 (1.31)	0.130 (3.30)	0.252 (6.40)	
35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)	
41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	_	
40	0.500 (12.70)	0.312 (7.94)	3 130 (13 920)	0.42 (6.13)	0.312 (7.92)	0.566 (14.38)	
50	0.625 (15.88)	0.375 (9.52)	4 880 (21 700)	0.69 (10.1)	0.400 (10.16)	0.713 (18.11)	
60	0.750 (19.05)	0.500 (12.7)	7 030 (31 300)	1.00 (14.6)	0.469 (11.91)	0.897 (22.78)	
80	1.000 (25.40)	0.625 (15.88)	12 500 (55 600)	1.71 (25.0)	0.625 (15.87)	1.153 (29.29)	
100	1.250 (31.75)	0.750 (19.05)	19 500 (86 700)	2.58 (37.7)	0.750 (19.05)	1.409 (35.76)	
120	1.500 (38.10)	1.000 (25.40)	28 000 (124 500)	3.87 (56.5)	0.875 (22.22)	1.789 (45.44)	
140	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)	
160	2.000 (50.80)	1.250 (31.75)	50 000 (222 000)	6.61 (96.5)	1.125 (28.57)	2.305 (58.55)	
180	2.250 (57.15)	1.406 (35.71)	63 000 (280 000)	9.06 (132.2)	1.406 (35.71)	2.592 (65.84)	
200	2.500 (63.50)	1.500 (38.10)	78 000 (347 000)	10.96 (159.9)	1.562 (39.67)	2.817 (71.55)	Т
240	3.00 (76.70)	1.875 (47.63)	112 000 (498 000)	16.4 (239)	1.875 (47.62)	3.458 (87.83)	S


Table 17–19

Shigley's Mechanical Engineering Design

Engagement of Chain and Sprocket

Roller Chain Drive

length of the chain L in pitches is

$$\frac{L}{p} \approx \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p}$$

The center-to-center distance C is given by

$$C = \frac{p}{4} \left[-A + \sqrt{A^2 - 8\left(\frac{N_2 - N_1}{2\pi}\right)^2} \right]$$

(17–35)

(17 - 34)

Shigley's Mechanical Engineering Design

- Min Teeth per Sprocket ~ 12 to 25
- Max Teeth per Sprocket ~120
- Max Speed Reduction ~7:1
- Min Wrap Angle $\sim 120^{\circ}$

Chain Velocity

$$V = \frac{Npn}{12}$$
 feet per minute

$$(17 - 30)$$

N = number of sprocket teeth where p =chain pitch, in

n =sprocket speed, rev/min

$$v_{\max} = \frac{\pi Dn}{12} = \frac{\pi np}{12 \sin(\gamma/2)}$$
 (b)
 $d = D \cos \frac{\gamma}{2}$ (c)
 $v_{\min} = \frac{\pi dn}{12} = \frac{\pi np}{12} \frac{\cos(\gamma/2)}{\sin(\gamma/2)}$ (d)

(d)

Chordal Speed Variation (as chain not perfectly round)

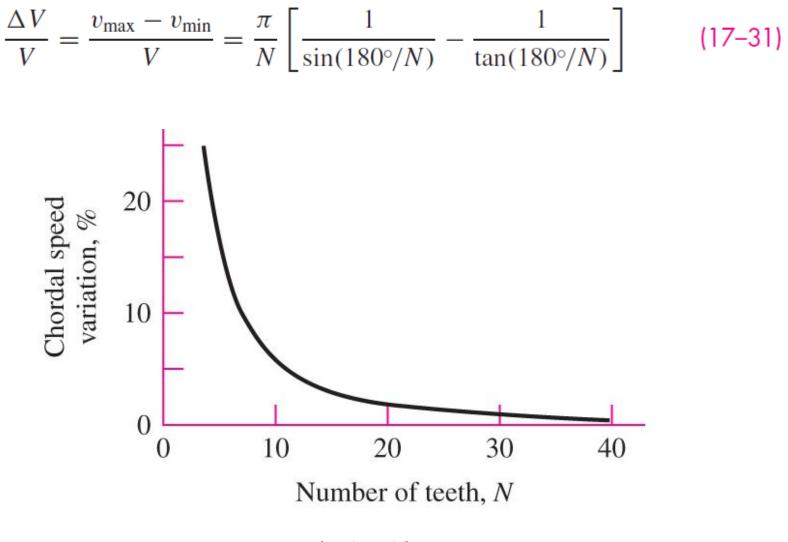


Fig.17–18

Roller Chain Rated Horsepower Capacity

Table 17-20	Sprocket			ANSI Cha	in Numbe	-	
Rated Horsepower	Speed, rev/min	25	35	40	41	50	60
Capacity of Single- Strand Single-Pitch	50	0.05	0.16	0.37	0.20	0.72	1.24
Roller Chain for a	100	0.09	0.29	0.69	0.38	1.34	2.31
17-Tooth Sprocket	150	0.13*	0.41*	0.99*	0.55*	1.92*	3.32
<i>Source:</i> Compiled from ANSI	200	0.16*	0.54*	1.29	0.71	2.50	4.30
B29.1-1975 information	300	0.23	0.78	1.85	1.02	3.61	6.20
only section, and from	400	0.30*	1.01*	2.40	1.32	4.67	8.03
B29.9-1958.	500	0.37	1.24	2.93	1.61	5.71	9.81
	600	0.44*	1.46*	3.45*	1.90*	6.72*	11.6
	700	0.50	1.68	3.97	2.18	7.73	13.3
	800	0.56*	1.89*	4.48*	2.46*	8.71*	15.0
	900	0.62	2.10	4.98	2.74	9.69	16.7
	1000	0.68*	2.31*	5.48	3.01	10.7	18.3
	1200	0.81	2.73	6.45	3.29	12.6	21.6
	1400	0.93*	3.13*	7.41	2.61	14.4	18.1
	1600	1.05*	3.53*	8.36	2.14	12.8	14.8
	1800	1.16	3.93	8.96	1.79	10.7	12.4
	2000	1.27*	4.32*	7.72*	1.52*	9.23*	10.6
	2500	1.56	5.28	5.51*	1.10*	6.58*	7.57
	3000	1.84	5.64	4.17	0.83	4.98	5.76
	Туре А	1	Тур	be B		Туре	e C

Shigley's Mechanical Engineering Design

Roller Chain Rated Horsepower Capacity

Table 17-20

Rated Horsepower Capacity of Single-Strand Single-Pitch Roller Chain for a 17-Tooth Sprocket (Continued)

Sprocket Speed,				ANS	51 Chai	n Num	ber		
rev/min		80	100	120	140	160	180	200	240
50	Type A	2.88	5.52	9.33	14.4	20.9	28.9	38.4	61.8
100		5.38	10.3	17.4	26.9	39.1	54.0	71.6	115
150		7.75	14.8	25.1	38.8	56.3	77.7	103	166
200		10.0	19.2	32.5	50.3	72.9	101	134	215
300		14.5	27.7	46.8	72.4	105	145	193	310
400		18.7	35.9	60.6	93.8	136	188	249	359
500	Type B	22.9	43.9	74.1	115	166	204	222	0
600	Tyr	27.0	51.7	87.3	127	141	155	169	
700		31.0	59.4	89.0	101	112	123	0	
800		35.0	63.0	72.8	82.4	91.7	101		
900		39.9	52.8	61.0	69.1	76.8	84.4		
1000		37.7	45.0	52.1	59.0	65.6	72.1		
1200		28.7	34.3	39.6	44.9	49.9	0		
1400		22.7	27.2	31.5	35.6	0			
1600		18.6	22.3	25.8	0				
1800		15.6	18.7	21.6					
2000		13.3	15.9	0					
2500		9.56	0.40						
3000		7.25	0						
Туре С					Тур	e C′			

Available Sprocket Tooth Counts

Table 17-21

Single-Strand Sprocket Tooth Counts Available from One Supplier*

No.	Available Sprocket Tooth Counts
25	8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
35	4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
41	6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
40	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
50	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
60	8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
80	8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120
100	8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120
120	9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120
140	9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96
160	8-30, 32–36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96
180	13-25, 28, 35, 39, 40, 45, 54, 60
200	9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72
240	9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

Select drive components for a 2:1 reduction, 90-hp input at 300 rev/min, moderate shock, an abnormally long 18-hour day, poor lubrication, cold temperatures, dirty surroundings, short drive C/p = 25.

Solution

Function: $H_{nom} = 90$ hp, $n_1 = 300$ rev/min, C/p = 25, Design factor: Choose $n_d = 1.5$ Service factor: Choose $K_s = 1.3$ for moderate shock Sprocket teeth: $N_1 = 17$ teeth, $N_2 = 34$ teeth,

Form a table:

Number of Strands	176/K2 (Table 17–23)	Chain Number (Table 17–20)	Lubrication Type
1	176/1 = 176	200	C'
2	176/1.7 = 104	160	С
3	176/2.5 = 70.4	140	В
4	176/3.3 = 53.3	140	В

3 strands of number 140 chain (H_{tab} is 72.4 hp). Number of pitches in the chain:

$$\frac{L}{p} = \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p}$$
$$= 2(25) + \frac{17 + 34}{2} + \frac{(34 - 17)^2}{4\pi^2 (25)} = 75.79 \text{ pitches}$$

Use 76 pitches. Then L/p = 76.

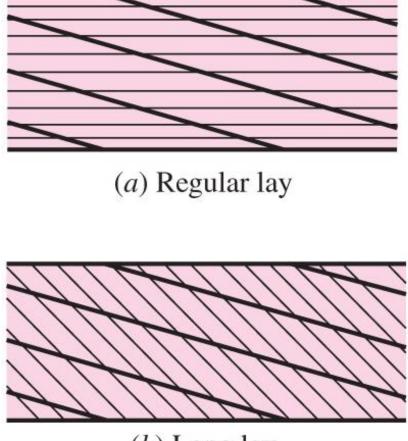
Shigley's Mechanical Engineering Design

Identify the center-to-center distance: From Eqs. (17–35) and (17–36),

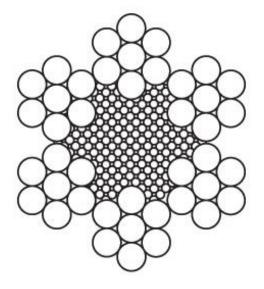
$$A = \frac{N_1 + N_2}{2} - \frac{L}{p} = \frac{17 + 34}{2} - 76 = -50.5$$

$$C = \frac{p}{4} \left[-A + \sqrt{A^2 - 8\left(\frac{N_2 - N_1}{2\pi}\right)^2} \right]$$

$$= \frac{p}{4} \left[50.5 + \sqrt{50.5^2 - 8\left(\frac{34 - 17}{2\pi}\right)^2} \right] = 25.104p$$


For a 140 chain, p = 1.75 in. Thus,

$$C = 25.104 p = 25.104(1.75) = 43.93$$
 in


Lubrication: Type B

Comment: This is operating on the pre-extreme portion of the power, so durability estimates other than 15 000 h are not available. Given the poor operating conditions, life will be much shorter.

Wire Rope


(b) Lang lay

(c) Section of 6×7 rope

Fig.17–19

Berg cable timing belts

Stress in Wire Rope

$$M = \frac{EI}{\rho} \quad \text{and} \quad M = \frac{\sigma I}{c} \tag{a}$$
$$\sigma = \frac{Ec}{\rho} \qquad (b)$$
$$c = d_w/2$$

where d_w is the wire diameter

$$\sigma = E_r \frac{d_w}{D} \tag{c}$$

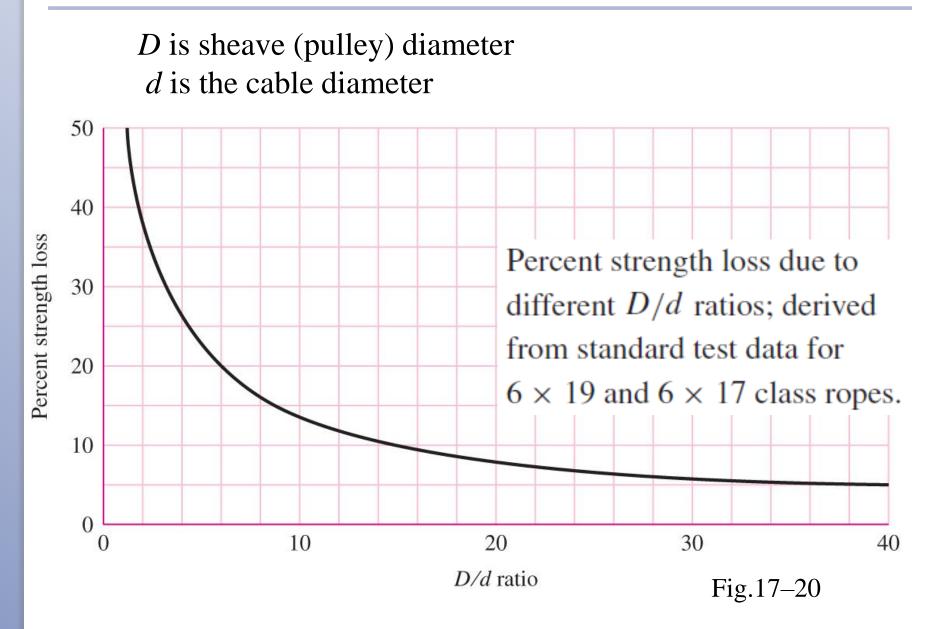
where E_r is the modulus of elasticity of the rope, not the wire

Shigley's Mechanical Engineering Design

Wire-Rope Data

Rope	Weight per Foot, Ibf	Minimum Sheave Diameter, in	Standard Sizes <i>d,</i> in	Material	Size of Outer Wires	Modulus of Elasticity,* Mpsi	Strength,† kpsi
6×7 haulage	1.50 <i>d</i> ²	42 <i>d</i>	$\frac{1}{4} - 1\frac{1}{2}$	Monitor steel Plow steel Mild plow steel	d/9 d/9 d/9	14 14 14	100 88 76
6×19 standard hoisting	1.60 <i>d</i> ²	26 <i>d</i> -34 <i>d</i>	$\frac{1}{4} - 2\frac{3}{4}$	Monitor steel Plow steel Mild plow steel	<i>d</i> /13– <i>d</i> /16 <i>d</i> /13– <i>d</i> /16 <i>d</i> /13– <i>d</i> /16	12 12 12	106 93 80
6×37 special flexible	$1.55d^2$	18 <i>d</i>	$\frac{1}{4} - 3\frac{1}{2}$	Monitor steel Plow steel	d/22 d/22	11 11	100 88
8×19 extra flexible	$1.45d^2$	21 <i>d</i> -26 <i>d</i>	$\frac{1}{4} - 1\frac{1}{2}$	Monitor steel Plow steel	d/15–d/19 d/15–d/19	10 10	92 80
7×7 aircraft	$1.70d^{2}$	_	$\frac{1}{16} - \frac{3}{8}$	Corrosion-resistant steel	_	_	124
7×9 aircraft	$1.75d^{2}$	_	$\frac{1}{8} - 1\frac{3}{8}$	Carbon steel Corrosion-resistant steel Carbon steel	_		124 135 143
19-wire aircraft	2.15 <i>d</i> ²	_	$\frac{1}{32} - \frac{5}{16}$	Corrosion-resistant steel Carbon steel	_		165 165

Table 17–24


Equivalent Bending Load in a Pulley, diameter D

• Wire rope tension giving same tensile stress as sheave bending is called *equivalent bending load* F_b

$$F_b = \sigma A_m = \frac{E_r d_w A_m}{D} \tag{17-41}$$

• Clearly the smaller the sheave diameter the higher the added bending tension of the sheave on the cable

Percent Strength Loss for D/d

Minimum Factors of Safety for Wire Rope

Track cables	3.2	Passenger elevators, ft/min:	
Guys	3.5	50	7.60
	5.5	300	9.20
Mine shafts, ft:		800	11.25
Up to 500	8.0	1200	11.80
1000-2000	7.0	1500	11.90
2000-3000	6.0		
Over 3000	5.0	Freight elevators, ft/min:	=
Hoisting	5.0	50	6.65
Hoisting	5.0	300	8.20
Haulage	6.0	800	10.00
Cranes and derricks	6.0	1200	10.50
Electric hoists	7.0	1500	10.55
Hand alayatana	5.0	Powered dumbwaiters, ft/min:	
Hand elevators	5.0	50	4.8
Private elevators	7.5	300	6.6
Hand dumbwaiter	4.5	500	8.0
Grain elevators	7.5		

Bearing Pressure of Wire Rope in Sheave Groove

$$p = \frac{2F}{dD} \tag{17-42}$$

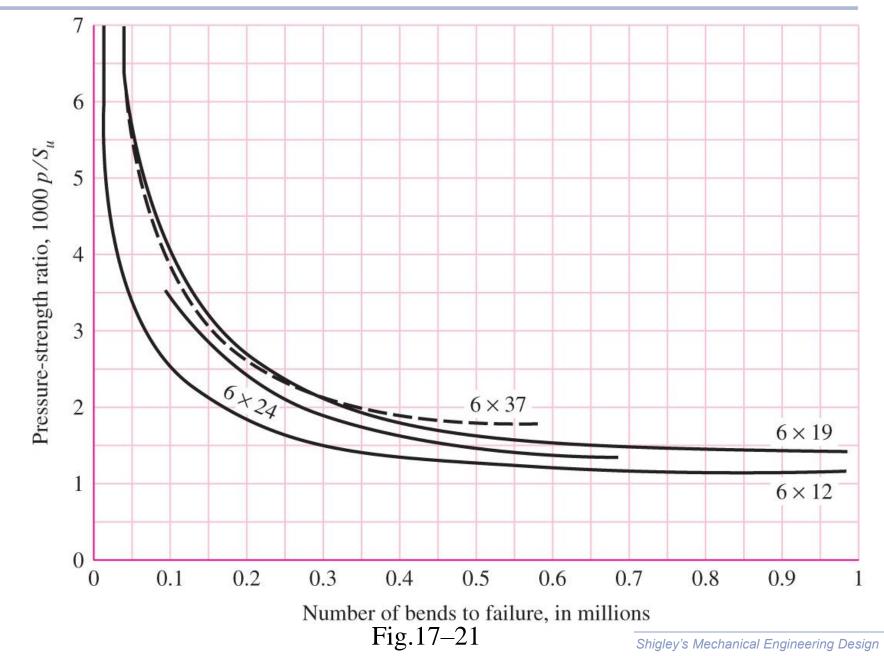
where F = tensile force on rope d = rope diameter D = sheave diameter

Maximum Allowable Bearing Pressures (in psi)

		Sheave Material						
Rope	Woodª	Cast Iron ^b	Cast Steel ^c	Chilled Cast Irons ^d	Manganese Steel ^e			
Regular lay:								
6×7	150	300	550	650	1470			
6 × 19	250	480	900	1100	2400			
6×37	300	585	1075	1325	3000			
8 × 19	350	680	1260	1550	3500			
Lang lay:								
6×7	165	350	600	715	1650			
6 × 19	275	550	1000	1210	2750			
6×37	330	660	1180	1450	3300			

^{*a*}On end grain of beech, hickory, or gum.

 b For $H_{B}(\min.) = 125$.


 c 30–40 carbon; $H_B(\min.) = 160$.

^dUse only with uniform surface hardness.

^eFor high speeds with balanced sheaves having ground surfaces.

Table 17–26

Relation Between Fatigue Life of Wire Rope and Sheave Pressure

- Fig. 17–21does not preclude failure by fatigue or wear
- It does show long life if p/S_u is less than 0.001.
- Substituting this ratio in Eq. (17–42),

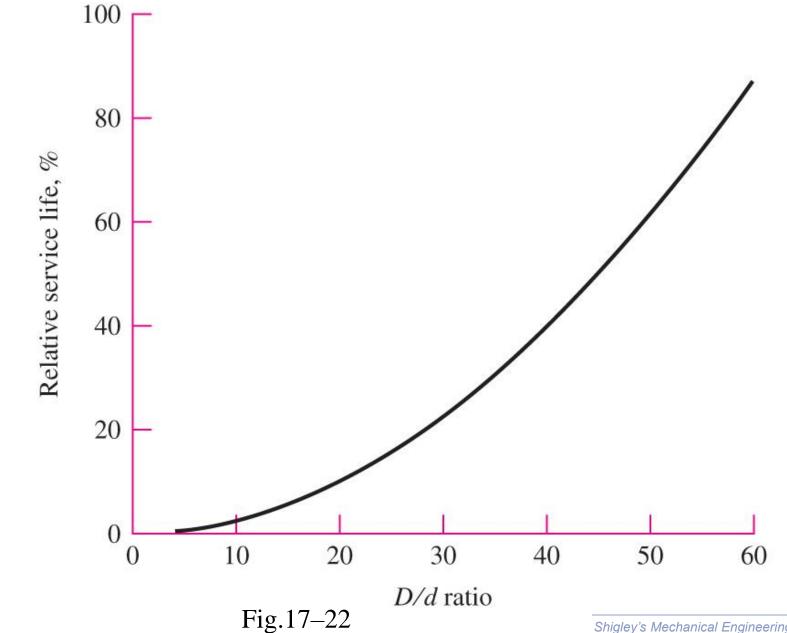
$$S_u = \frac{2000F}{dD}$$
(17–43)

• Dividing both sides of Eq. (17–42) by S_u and solving for *F*, gives allowable fatigue tension,

$$F_f = \frac{(p/S_u)S_u dD}{2}$$
(17–44)

• Factor of safety for fatigue is

$$n_f = \frac{F_f - F_b}{F_t} \tag{17-45}$$


• The factor of safety for static loading is

$$n_s = \frac{F_u - F_b}{F_t}$$

Improved plow steel (monitor) Plow steel Mild plow steel $240 < S_u < 280 \text{ kpsi}$ $210 < S_u < 240 \text{ kpsi}$ $180 < S_u < 210 \text{ kpsi}$

Service-Life Curve Based on Bending and Tensile Stresses

Shigley's Mechanical Engineering Design

Table 17-27

Some Useful Properties of 6×7 , 6×19 , and 6×37 Wire Ropes

Wire Rope	Weight per Foot w, lbf/ft	Weight per Foot Including Core w, lbf/ft	Minimum Sheave Diameter D, in	Better Sheave Diameter D, in	Diameter of Wires d _w , in	Area of Metal A _m , in ²	Rope Young's Modulus E _r , psi
6 imes 7	$1.50d^{2}$		42 <i>d</i>	72 <i>d</i>	0.111 <i>d</i>	$0.38d^2$	$13 imes 10^{6}$
6 imes 19	$1.60d^2$	$1.76d^2$	30 <i>d</i>	45 <i>d</i>	0.067 <i>d</i>	$0.40d^2$	$12 imes 10^{6}$
6 imes 37	$1.55d^2$	$1.71d^2$	18 <i>d</i>	27 <i>d</i>	0.048 <i>d</i>	$0.40d^2$	12×10^{6}

Working Equations for Mine-Hoist Problem

$$F_t = \left(\frac{W}{m} + wl\right) \left(1 + \frac{a}{g}\right) \tag{17-47}$$

where W = weight at the end of the rope (cage and load), lbf

- m = number of wire ropes supporting the load
- w =weight/foot of the wire rope, lbf/ft
 - l = maximum suspended length of rope, ft
- a = maximum acceleration/deceleration experienced, ft/s²
- g = acceleration of gravity, ft/s²

Working Equations for Mine-Hoist Problem

$$F_f = \frac{(p/S_u)S_u Dd}{2}$$
(17–44)

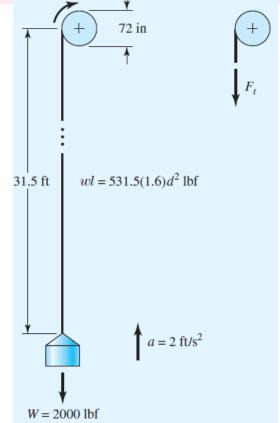
where (p/S_u) = specified life, from Fig. 17–21 S_u = ultimate tensile strength of the wires, psi D = sheave or winch drum diameter, in d = nominal wire rope size, in

Working Equations for Mine-Hoist Problem

$$F_b = \frac{E_r d_w A_m}{D} \tag{17-41}$$

where E_r = Young's modulus for the wire rope, Table 17–24 or 17–27, psi d_w = diameter of the wires, in A_m = metal cross-sectional area, Table 17–27, in² D = sheave or winch drum diameter, in

$$n_{s} = \frac{F_{u} - F_{b}}{F_{t}}$$
(17-46)
$$n_{f} = \frac{F_{f} - F_{b}}{F_{t}}$$
(17-45)


Given a 6 × 19 monitor steel ($S_u = 240$ kpsi) wire rope.

(a) Develop the expressions for rope tension F_t , fatigue tension F_f , equivalent bending tensions F_b , and fatigue factor of safety n_f for a 531.5-ft, 1-ton cage-and-load mine hoist with a starting acceleration of 2 ft/s² as depicted in Fig. 17–23. The sheave diameter is 72 in.

(b) Using the expressions developed in part (a), examine the variation in factor of safety n_f for various wire rope diameters d and number of supporting ropes m.

Fig.17–23

Shigley's Mechanical Engineering Design

(a) Rope tension F_t from Eq. (17–47), using Table 17–24 for w, is given by

$$F_{t} = \left(\frac{W}{m} + wl\right) \left(1 + \frac{a}{g}\right) = \left[\frac{2000}{m} + 1.60d^{2}(531.5)\right] \left(1 + \frac{2}{32.2}\right)$$
$$= \frac{2124}{m} + 903d^{2} \qquad \text{Answer}$$

From Fig. 17–21, use $p/S_u = 0.0014$. Fatigue tension F_f from Eq. (17–44) is given by

$$F_f = \frac{(p/S_u)S_uDd}{2} = \frac{0.0014(240\ 000)72d}{2} = 12\ 096d$$
 Answer

Equivalent bending tension F_b from Eq. (17–41) and Table 17–27 is given by

$$F_b = \frac{E_r d_w A_m}{D} = \frac{12(10^6) \, 0.067 d(0.40 d^2)}{72} = 4467 d^3 \qquad \text{Answer}$$

Factor of safety n_f in fatigue from Eq. (17–45) is given by

$$n_f = \frac{F_f - F_b}{F_t} = \frac{12\ 096d - 4467d^3}{2124/m + 903d^2}$$

Answer

(b) Using a spreadsheet program, form a table as follows:

d	<i>m</i> = 1	m _f m = 2	m = 3	m = 4
0.25	1.355	2.641	3.865	5.029
0.375	1.910	3.617	5.150	6.536
0.500	2.336	4.263	5.879	7.254
0.625	2.612	4.573	6.099	7.331
0.750	2.731	4.578	5.911	6.918
0.875	2.696	4.330	5.425	6.210
1.000	2.520	3.882	4.736	5.320

Wire rope sizes are discrete, as is the number of supporting ropes. Note that for each *m* the factor of safety exhibits a maximum. Predictably the largest factor of safety increases with *m*. If the required factor of safety were to be 6, only three or four ropes could meet the requirement. The sizes are different: $\frac{5}{8}$ -in ropes with three ropes or $\frac{3}{8}$ -in ropes with four ropes. The costs include not only the wires, but the grooved winch drums.

Flexible Shaft Configurations

Fig.17–24b

Flexible Shaft Construction Details

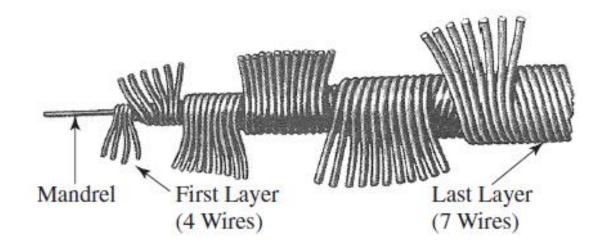


Fig.17–24*a*