Bartle - Introduction to Real Analysis - Chapter 8 Solutions

Section 8.1

Problem 8.1-2. Show that $\lim(nx/(1+n^2x^2)) = 0$ for all $x \in \mathbb{R}$.

Solution: For x = 0, we have $\lim(nx/(1 + n^2x^2)) = \lim(0/1) = 0$, so f(0) = 0. For $x \in \mathbb{R} \setminus \{0\}$, observe that $0 < nx/(1 + n^2x^2) < nx/(n^2x^2) = 1/(nx)$. By the Squeeze Theorem, $\lim(nx/(1 + n^2x^2)) = 0$. Therefore, f(x) = 0 for all $x \in \mathbb{R}$.

Problem 8.1-3. Evaluate $\lim(nx/(1+nx))$ for $x \in \mathbb{R}$, $x \ge 0$.

Solution: For x = 0, we have $\lim(nx/(1+nx)) = \lim(0/1) = 0$, so f(0) = 0. For $x \in (0, \infty)$, we have:

$$\lim\left(\frac{nx}{1+nx}\right) = \lim\left(\frac{1}{1/nx+1}\right) = \frac{1}{1/x\lim(1/n)+1} = 1,$$

from which it follows that f(x) = 1 for $x \in (0, \infty)$. Therefore,

$$f(x) = \begin{cases} 0 & \text{for} \quad x = 0\\ 1 & \text{for} \quad x > 0. \end{cases}$$

Problem 8.1-4. Evaluate $\lim(x^n/(1+x^n))$ for $x \in \mathbb{R}$, $x \ge 0$.

Solution: For $0 \le x < 1$, we have $\lim(x^n/(1+x^n)) = 0/1 = 0$ by Example 3.1.11(b), so f(x) = 0. For x = 1, we have $\lim(x^n/(1+x^n)) = 1/2$, so f(1) = 1/2. For x > 1, we have $\lim(x^n/(1+x^n)) = \lim(1/(1+1/x^n)) = 1$, so f(x) = 1.* Accordingly,

$$f(x) = \begin{cases} 0 & \text{for} \quad 0 \le x < 1\\ \frac{1}{2} & \text{for} \quad x = 1\\ 1 & \text{for} \quad x > 1. \end{cases}$$

* Note that for $1/x^n$ with fixed x, given $\epsilon > 0$, if $K(\epsilon) = \log_x(2/\epsilon)$, then for $n \ge K(\epsilon)$, we have $|1/x^n| = 1/x^n < 1/(2/\epsilon) = \epsilon/2 < \epsilon$. Therefore, $\lim(1/x^n) = 0$.

Problem 8.1-9. Show that $\lim(x^2e^{-nx}) = 0$ and that $\lim(n^2x^2e^{-nx}) = 0$ for $x \in \mathbb{R}$, $x \ge 0$.

Solution: Part (i): For x = 0, we have $\lim(x^2e^{-nx}) = \lim(0 \cdot 1^n) = 0$, so f(0) = 0. For x > 0, observe that $0 < e^{-x} < 1$. From Example 3.1.11(b), it follows that $\lim(x^2e^{-nx}) = x^2\lim(e^{-x})^n = 0$. As a result, f(x) = 0 for $x \ge 0$.

Part (ii): We can establish limit of $(f_n) = (n^2 x^2 e^{-nx})$ using L'Hopîtal's Rule and the Sequential Criterion for limits of functions. Let $g(m) = m^2 x^2 e^{-mx} = m^2 x^2 / e^{mx}$. For $x \in (0, \infty)$, the limit as $m \to \infty$ is in ∞ / ∞ indeterminate form, so we apply L'Hopîtal's Rule twice:

$$\lim_{n \to \infty} \frac{m^2 x^2}{e^{mx}} = \lim_{m \to \infty} \frac{2mx^2}{xe^{mx}} = \lim_{m \to \infty} \frac{2m^2}{m^2 e^{mx}} = \lim_{m \to \infty} \frac{2}{e^{mx}} = 0.$$

By the Sequential Criterion for limits of functions (Theorem 4.1.8), the limit of g above implies that for any sequence (y_n) on $(0,\infty)$ that converges to infinity, the sequence $(g(y_n))$ converges to 0. If $y_n = n$ for all $n \in \mathbb{N}$, then $(g(y_n)) = (n^2 x^2 e^{-nx})$, which is equal to (f_n) . It follows that if x > 0, then $\lim n^2 x^2 e^{-nx} = 0$. For x = 0, clearly $\lim n^2 x^2 e^{-nx} = \lim 0 = 0$. Accordingly, if $x \in [0,\infty)$, then $(n^2 x^2 e^{-nx})$ converges to f(x) = 0.

Problem 8.1-10. Show that $\lim(\cos(\pi x)^{2n})$ exists for all $x \in \mathbb{R}$. What is its limit?

Solution: If $x \in \mathbb{Z}$, then $\cos(\pi x)^{2n} = (\pm 1)^{2n} = 1$, so $\lim(\cos(\pi x)^{2n}) = 1$. Therefore, f(x) = 1. If $x \in \mathbb{R} \setminus \mathbb{Z}$, then $0 \le \cos^2(\pi x) < 1$, so by Example 3.1.11(b), $\lim[\cos^2(\pi x)]^n = 0$. Therefore:

$$f(x) = \begin{cases} 0 & \text{for} \quad x \in \mathbb{Z} \\ 1 & \text{for} \quad x \in \mathbb{R} \backslash \mathbb{Z}. \end{cases}$$

Problem 8.1-10. Show that if a > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval [0, a], but is not uniform on the interval $[0, \infty)$.

Solution: Let a > 0 and A = [0, a]. Because f_n is continuous, it is bounded on A by Theorem 5.3.2. Suppose f(x) = 0 for $x \in A$. Then $||f_n - 0||_A = \sup\{x/(x+n) : x \in A\} = a/(a+n)$ because f_n is increasing on A. Therefore, $\lim ||f_n - 0||_A = \lim a/(a+n) = 0$. By Lemma 8.1.8, (f_n) converges uniformly to f(x) = 0 on A.

Now let $A = [0, \infty]$. As shown in Theorem 1 below, if (f_n) is uniformly convergent on A, then it must converge uniformly to f(x) = 0 because this sequence is pointwise convergent to that function on A. We see that $||f_n - 0||_A = \sup\{|x/(x+n)| : x \ge 0\} = 1$. This is because 0 < x/(x+n) < 1, and for $0 < \delta < 2$, if $x = n(2/\delta - 1)$, then $1 - \delta < x/(x+n) = 1 - \delta/2 < 1$. Therefore, 1 is the supremum of $\{|x/(x+n)| : x \ge 0\}$. Consequently, $\lim ||f_n - 0||_A = 1$. By Lemma 8.1.8, (f_n) does not uniformly converge to any f on $[0, \infty)$.

Theorem 1. Suppose (f_n) converges pointwise to f on $A \subseteq \mathbb{R}$. If (f_n) does not uniformly converge to f on A, then (f_n) does not uniformly converge to any function on A.

Proof. Suppose there is a function $f' : A \to \mathbb{R}$ to which (f_n) converges uniformly on A. Now assume that $f' \neq f$. It follows that (f_n) must converges pointwise to f' on A. However, by Theorem 3.1.4, the limit function f is uniquely determined, so we have a contradiction if $f' \neq f$. Therefore, it must be that f = f'. Accordingly, if (f_n) does not converge uniformly to f on A, it does not converge uniformly to any function on A.

Problem 8.1-12. Show that if a > 0, then the convergence of the sequence in Exercise 2 is uniform on the interval $[a, \infty]$, but is not uniform on the interval $[0, \infty)$.

Solution: Let a > 0 and $A = [a, \infty)$. From Exercise 8.1.2, (f_n) converges pointwise to f(x) = 0 on A. Observe that $f'_n(x) = n(1 - n^2x^2)/(1 + n^2x^2)^2$. We see that if $x_0 = 1/\sqrt{n}$, then $f'_n(x_0) = 0$. On either side of this point, $f'_n(x) > 0$ for $x < x_0$ and $f'_n(x) < 0$ for $x > x_0$. By Theorem 6.2.8, the maximum of f_n on $[0, \infty)$ is at x_0 . Moreover, it is clear that f'_n decreases on (x_0, ∞) . It follows that the maximum of f_n on A is $b = \sup\{1/\sqrt{n}, a\}$. We then have:

$$\left\|\frac{nx}{1+n^2x^2} - 0\right\|_A = \sup\left\{\left|\frac{nx}{1+n^2x^2}\right| : x \in A\right\} = \frac{bn}{1+n^2b^2}$$

Since $0 < bn/(1 + n^2b^2) < bn/(n^2b^2) = 1/(nb)$ and $\lim 1/(nb) = 0$, it follows from the Squeeze Theorem that $\lim ||f_n - f||_A = 0$. By Lemma 8.1.8, (f_n) uniformly converges to f(x) = 0 on $[a, \infty)$. (Note that the limit above holds true even though b may be a function of n. For the sake of brevity, I cavalierly omitted this point in applying the Squeeze Theorem.)

Now suppose $A = [0, \infty)$. Let (x_k) be a sequence on A where $x_k = 1/k$ and $n_k = k$. For $\epsilon = 1/4$:

$$|f_{n_k}(x_k) - f(x_k)| = \frac{k(1/k)}{1 + k^2(1/k^2)} = \frac{1}{2} > \epsilon.$$

From Lemma 8.1.5, it follows that (f_n) does not converge uniformly on $[0,\infty)$.

Problem 8.1-13. Show that if a > 0, then the convergence of the sequence in Exercise 3 is uniform on the interval $[a, \infty)$, but is not uniform on the interval $[0, \infty)$.

Solution: Let a > 0 and $A = [a, \infty)$. We know that (f_n) converges pointwise to f(x) = 1 on A. Observe that: $\|f_n(x) - 1\|_A = \sup\left\{\left|\frac{nx}{1+nx} - 1\right| = \left|\frac{-1}{1+nx}\right| = \frac{1}{1+nx} : x \in A\right\} = \frac{1}{1+an}.$ (1) It follows that $\lim \|f_n - f\|_A = 0$. Therefore, (f_n) uniformly converges to f(x) = 1 on $[a, \infty)$. Now let $A = [0, \infty)$. We then have:

$$\|f_n(x) - f(x)\|_A = \sup\left(\left\{\left|\frac{nx}{1+nx} - 1\right| : x \in (0,\infty)\right\} \cup \left\{\left|\frac{n \cdot 0}{1+n \cdot 0} - 0\right|\right\}\right) = 1.$$
(2)

Consequently, $\lim \|f_n - f\|_A = 1$, so by Lemma 8.1.7 (f_n) does not converge uniformly on A.

Problem 8.1-14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the interval [0,b], but is not uniform on the interval [0, 1].

Solution: Let $b \in (0, 1)$ be given and A = [0, b]. We then have:

$$\left\|\frac{x_n}{1+x^n} - 0\right\|_A = \sup\left\{\left|\frac{x^n}{1+x^n}\right| : x \text{ in } A\right\} = \frac{b^n}{1+b^n},$$

because f_n is increasing on A (since $f'_n > 0$ on that interval). Clearly $\lim ||x_n/(1+x^n) - 0||_A = (\lim b^n)/(1+\lim b^n) = 0$

since $n \in (0,1)$. Therefore, (f_n) converges uniformly to f(x) = 0 on $x \in [0,b]$. Now let A = [0,1]. Let (x_k) be a sequence in A where $x_k = 2^{-1/k}$ and $n_k = k$. It follows that for any $\epsilon > 0$ where $\epsilon < 1/3$:

$$|f_{n_k}(x_k) - f(x_k)| = \frac{(2^{-1/k})^k}{1 + (2^{-1/k})^k} = \frac{1/2}{1 + 1/2} = 1/3 > \epsilon.$$

By Lemma 8.1.5, (f_n) does not uniformly converge on [0, 1].

Problem 8.1-15. Show that if a > 0, then the convergence of the sequence in Exercise 5 is uniform on the interval $[a, \infty)$, but is not uniform on the interval $[0,\infty)$.

Solution: Suppose a > 0 and $A = [a, \infty)$. From Exercise 8, we know that (f_n) converges pointwise to f(x) = 0 on A. It is clear that $|\sin(nx)| \le 1$. Therefore, $0 \le \sup\{|\sin(nx)/(1+nx) - 0| : x \in A\} \le 1/(1+an) < 1/an$. Since $\lim 1/an = 0$, it follows from the Squeeze Theorem that $\lim \|f_n - f\|_A = 0$. By Lemma 8.1.8, (f_n) converges uniformly to f(x) = 0.

Now let $A = [0,\infty)$. Let (x_k) be a sequence on A where $x_k = \pi/(2k)$ and $n_k = k$. For any positive ϵ where $\epsilon < 1/(1 + \pi/2)$:

$$\frac{\sin(k(\pi/(2k)))}{1+k(\pi/(2k))} - 0 \bigg| = \bigg| \frac{\sin \pi/2}{1+\pi/2} \bigg| = \frac{1}{1+\pi/2} > \epsilon$$

It follows that (f_n) does not uniformly converge on $[0,\infty)$.

Problem 8.1-19. Show that the sequence (x^2e^{-nx}) converges uniformly on $[0,\infty)$.

Solution: Let $A = [0, \infty)$. From Exercise 8.1.9, $(f_n) = (x^2 e^{-nx})$ converges pointwise to f(x) = 0. Note that $f'_n(x) = 0$ $e^{-nx}(2x - nx^2)$. The roots of f'_n are at 0 and 2/n. A simple calculation shows that $f_n(2/n) = 4/(en)^2 > f_n(0) = 0$. In addition, $f'_n(x) > 0$ for 0 < x < 4/n and $f'_n(x) < 0$ for x > 4/n. By Theorem 6.2.8, f_n is at an absolute maximum at x = 4/n.

As a result, $0 < \|f_n - f\|_A = f_n(2/n) = 4/(en)^2 < 4/n$. Because $\lim(4/n) = 0$, it follows from the Squeeze Theorem that $\lim ||f_n - f||_A = 0$. Therefore, (f_n) converges uniformly to f(x) = 0 on A.

Problem 8.1-21. Show that if (f_n) , (g_n) converge uniformly on the set A to f, g, respectively, then $(f_n + g_n)$ converges uniformly on A to f + q.

Solution: For $\epsilon > 0$, there are $K'(\epsilon/2)$, $K''(\epsilon/2) > 0$ such that if $n \ge K'(\epsilon/2)$, then $||f_n - f||_A < \epsilon/2$, and if $n \ge k'(\epsilon/2)$, then $\|f_n - f\|_A < \epsilon/2$, and if $n \ge k'(\epsilon/2)$. $K''(\epsilon/2)$, then $\|g_n - g\|_A < \epsilon/2$. Let $K(\epsilon) = \sup\{K'(\epsilon/2), K''(\epsilon/2)\}$. By the Triangle Inequality and Theorem 2 below, for $n \ge K(\epsilon)$:

$$|||(f_n + g_n) - (f + g)||_A - 0| \le ||f_n - f||_A + ||g_n - g||_A < \epsilon/2 + \epsilon/2 = \epsilon$$

It follows that $\lim \|(f_n + g_n) - (f + g)\|_A = 0$, so $(f_n + g_n)$ converges uniformly on A to f + g.

Theorem 2. Given any ϕ , ψ : $A \to \mathbb{R}$ on $A \subseteq \mathbb{R}$, $\|\phi + \psi\|_A \le \|\phi\|_A + \|\psi\|_A$.

Proof. Let $s = \|\phi + \psi\|_A$, in which case $s = \sup\{|\phi(x) + \psi(x)| : x \in A\}$. Now let $t_1 = \sup\{|\psi(x)| : x \in A\}$ and $t_2 = \sup\{|\psi(x)| : x \in A\}$. If $x \in A$, then $t_1 + t_2 \ge |\phi(x)| + |\psi(x)| \ge |\phi(x) + \psi(x)|$. It follows that $t_1 + t_2$ is an upper bound of $\{|\phi(x) + \psi(x)| : x \in A\}$ and therefore is greater than or equal to s. Since $t_1 + t_2 = \|\phi\|_A + \|\psi\|_A$, we have shown the desired inequality.

Problem 8.1-22. Show that if $f_n(x) := x + 1/n$ and f(x) := x, then (f_n) converges uniformly on \mathbb{R} to f, but the sequence (f_n^2) does not converge uniformly on \mathbb{R} . (Thus the product of uniformly convergent sequences of functions may not coverge uniformly.)

Solution: Note that in contrast to the functions in Exercise 8.1-23, f_n is not bounded on \mathbb{R} .

For (f_n) , we have $\lim ||x + 1/n - x||_A = \lim ||1/n||_A = \lim 1/n = 0$. Therefore, (f_n) converges uniformly to f on \mathbb{R} . Note that $\lim f_n^2 = \lim (x^2 + 2x/n + 1/n^2) = x^2 + \lim (2x/n + 1/n^2) = x^2$. Accordingly, (f_n^2) converges pointwise to f^2 on \mathbb{R} .

We will now show that (f_n^2) does not uniformly converge on \mathbb{R} . Let (x_k) be a sequence on \mathbb{R} such that $x_k = k$ and $n_k = k$. We then have for all $k \in \mathbb{N}$:

$$f_n^2 - f^2 \Big| = \left| \frac{2x_k}{k} + \frac{1}{k^2} \right| = \left| 2 - \frac{1}{k^2} \right| \ge 1.$$

For positive ϵ where $\epsilon \leq 1$, we have $|f_n^2 - f^2| \geq \epsilon$. By Lemma 8.1.5, (f_n^2) does not uniformly converge on \mathbb{R} .

Problem 8.1-23. Let (f_n) , (g_n) be sequences of bounded functions on A that converge uniformly on A to f, g, respectively. Show that (f_ng_n) converges uniformly on A to fg.

Solution: In order to show the uniform convergence of $(f_n g_n)$ on A, we can rewrite the limit we seek under Lemma 8.1.8 as:

$$\lim \|f_n g_n - fg\|_A = \lim \|(f_n g_n - fg_n) - (fg - fg_n)\|_A = \lim \|g_n (f_n - f) + f(g_n - g)\|_A$$

Since f_n is bounded on A, it must be that f is bounded on A by some $M_1 \ge 0$. We can prove this by contradiction. If we assume this were not true, then for some $x \in A$, it would follow that $|f_n(x) - f(x)|$ is unbounded, resulting in the contradiction that the supremum of $\{|f_n(x) - f(x)| : x \in A\}$ does not exist.

It must also be that (g_n) is bounded by some $M_2 \ge 0$ for all $x \in A$. This follows from the fact that $\lim g_n$ must exist because (g_n) must pointwise converge to g on A. Theorem 3.2.2 then requires that, (g_n) be bounded.

We may now establish boundaries on $||f_ng_n - fg||_A = \sup\{|f_ng_n - fg| : x \in A\}$. We have from the Triangle Inequality:

$$f_n g_n - fg| = |g_n (f_n - f) + f(g_n - g)| \le M_2 |f_n - f| + M_1 |g_n - g|.$$

It follows that:

$$0 \le \sup\{\|f_n g_n - fg\| : x \in A\} < M_2 \|f_n - f\|_A + M_1 \|g_n - g\|_A.$$

By hypothesis:

$$\lim (M_2 \|f_n - f\|_A + M_1 \|g_n - g\|_A) = M_2 \lim \|f_n - f\|_A + M_1 \lim \|g_n - g\|_A = M_2 \cdot 0 + M_1 \cdot 0 = 0.$$

By the Squeeze Theorem, $\lim \|f_n g_n - fg\|_A = 0$. Therefore, $(f_n g_n)$ converges uniformly to fg on A.

Problem 8.1-24. Let (f_n) be a sequence of functions that converges uniformly to f on A and that satisfies $|f_n(x)| \le M$ for all $n \in \mathbb{N}$ and for all $x \in A$. If g is continuous on the interval [-M, M], show that the sequence $(g \circ f_n)$ converges uniformly to $(g \circ f)$ on A.

Solution: Let $\epsilon > 0$ be given. Since g is continuous on [-M, M], there is a $\delta > 0$ such that if $y \in [-M, M]$ and $|y - c| < \delta$, then $|g(y) - g(c)| < \epsilon/2$. We will let f_n and f take the place of y and c to establish our result. Because (f_n) uniformly converges to f on A, there is a $K(\delta) > 0$ such that if $n \ge K(\delta)$, then:

$$0 \le ||f_n - f||_A = \sup\{|f_n(x) - f(x)| : x \in A\} < \delta.$$

Accordingly, if $n \ge K(\delta)$ and $x \in A$, then $|f_n(x) - f(x)| < \delta$. It follows from the continuity of g that:

$$(g \circ f_n)(x) - (g \circ f)(x)| = |g(f_n(x)) - g(f(x))| < \epsilon/2.$$

Because this is true for all $x \in A$, we have established $\epsilon/2$ as an upper bound of $||g \circ f_n - g \circ f||_A$ for $n \ge K(\delta)$. Consequently, $|||g \circ f_n - g \circ f||_A - 0| \le \epsilon/2 < \epsilon$ for $n \ge K(\delta)$, from which it follows that $\lim ||g \circ f_n - g \circ f||_A = 0$. We conclude that $(g \circ f_n)$ uniformly converges to $g \circ f$ on A.

Section 8.2

Problem 8.2-2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions that converges nonuniformly to a continuous limit.

Solution: If x = 0, then $\lim f_n(x) = \lim 0 = 0$. If $x \in [0, 2]$, then let $\epsilon > 0$ and $K(\epsilon, x) = 2/x$. For $n = K(\epsilon, x)$, we have $|f_n(x) - 0| = |n^2(x - 2/n)| = 0 < \epsilon$. If $n > K(\epsilon, x)$, then $f_n(x) = 0$, from which follows that $|f_n(x) - 0| < \epsilon$. We then infer that $\lim f_n(x) = 0$.

We will now prove that (f_n) is does not converge uniformly on [0,2]. Let (x_k) be a sequence on [0,2] where $x_k = 1/k$ and let $n_k = k$, in each case for all $k \in \mathbb{N}$. For a given $0 < \epsilon < 1$, we have $|f_{n_k}(x_k) - 0| = k^2(1/k) = k \ge 1 > \epsilon$. By Lemma 8.1.5, (f_n) does not converge uniformly on [0,2].

Problem 8.2-4. Suppose (f_n) is a sequence of continuous functions on an interval I that converges uniformly on I to a function f. If $(x_n) \subseteq I$ converges to $x_o \in I$, show that $\lim(f_n(x_n)) = \lim f(x_0)$.

Solution: By Theorem 8.2.2, f is continuous on I, so $\lim_{x\to x_0} f(x) = f(x_0)$. Applying the Sequential Criterion (Theorem 5.1.3), since (x_n) converges to x_0 , it follows that $\lim f(x_n) = f(x_0)$. For a given $\epsilon > 0$, there is a $K'(\epsilon/2) \in \mathbb{N}$ such that if $n \ge K'(\epsilon/2)$, then:

$$|f(x_n) - f(x_0)| < \frac{\epsilon}{2}$$

Because (f_n) converges uniformly on I, there is also a $K''(\epsilon/2) \in \mathbb{N}$ such that if $n \ge K''(\epsilon/2)$, then for $x = x_n$ for any $n \in \mathbb{N}$:

$$|f_n(x_n) - f(x_n)| < \frac{\epsilon}{2}$$

Let $K(\epsilon) = \sup\{K'(\epsilon/2), K''(\epsilon/2)\}$, We then have for $n \ge K(\epsilon)$:

$$|f_n(x_n) - f(x_0)| = |(f_n(x_n) - f(x_n)) + (f(x_n) - f(x_0))|$$

$$\leq |f_n(x_n) - f(x_n)| + |f(x_n) - f(x_0)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, $\lim f_n(x_n) = f(x_0)$.

Problem 8.2-5. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} and let $f_n(x) := f(x + 1/n)$ for $x \in \mathbb{R}$. Show that (f_n) converges uniformly on \mathbb{R} to f.

Solution: Because f is uniformly continuous on \mathbb{R} , for any given $\epsilon > 0$, there is a $\delta(\epsilon) > 0$ such that for any $x, y \in \mathbb{R}$, if $|x - u| < \delta(\epsilon)$, then $|f(x) - f(u)| < \epsilon$. Let $K(\epsilon) = 2/\delta(\epsilon)$. If $n \ge K(\epsilon)$, then $|(x + 1/n) - x| \le \delta(\epsilon)/2 < \delta(\epsilon)$, in which case $|f_n(x) - f(x)| = |f(x + 1/n) - f(x)| < \epsilon$. Therefore:

 $||f_n - f||_{\mathbb{R}} = \sup\{|f_n(x) - f(x)| : x \in \mathbb{R}\} \le \epsilon.$

Since ϵ is arbitrary, $\lim ||f_n - f||_{\mathbb{R}} = 0$, and (f_n) uniformly converges to f on \mathbb{R} .

Problem 8.2-7. Suppose the sequence (f_n) converges uniformly to f on the set A, and suppose that each f_n is bounded on A. (That is, for each n there is a constant M_n such that $|f_n(x)| \le M_n$ for all $x \in A$.) Show that the function f is bounded on A.

Solution: For any $\epsilon > 0$, there is a $K \in \mathbb{N}$ such that if $n \ge K$, then $\sup\{|f_n(x) - f(x)| : x \in A\} < \epsilon$. Consequently, ϵ is an upper bound on this set, so $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$. Since ϵ is arbitrary, $f_n(x) = f(x)$ for $n \ge K$. Because f_K is bounded on A, it follows that $|f(x)| \le M_K$ for all x in A. The function f is therefore bounded on A.

Problem 8.2-10. Let $g_n(x) := e^{-nx}/n$ for $x \ge 0$, $n \in \mathbb{N}$. Examine the relationship between $\lim(g_n)$ and $\lim(g'_n)$.

Solution: Observe that $0 < e^{-nx} \le 1$ for all $x \in [0, \infty)$, so $0 < e^{-nx}/n \le 1/n$. Therefore, $\lim e^{-nx}/n = 0$ for $x \in [0, \infty)$. Because g_n is bounded above by 1/n, it follows from the Squeeze Theorem that $\lim ||e^{-nx}/n - 0||_{\mathbb{R}_{\ge 0}} = 0$. Therefore, (g_n) converges uniformly to g(x) = 0 on $[0, \infty)$.

We then have $g'_n(x) = -e^{-nx}$. If x = 0, then $\lim[-e^{-nx}] = -1$. If $x \in (0, \infty)$, then because $0 < e^{-x} < 1$, it follows from the Squeeze Theorem that $\lim[-e^{-nx}] = -\lim(e^{-x})^n) = 0$. Therefore, (g'_n) converges to g'(0) = -1 and g'(x) = 0 for $x \in (0, \infty)$. Note that g' is discontinuous at x = 0.

Now let ϵ be given where $0 < \epsilon < 1/2$. Suppose (x_k) is a sequence on $[0, \infty)$ where $x_k = -\ln(2\epsilon)/k$ (note that the allowed range of ϵ ensures $x_k > 0$ for all $k \in \mathbb{N}$) and $n_k = k$. Then $|-e^{-kx_k}| = e^{\ln 2\epsilon} = 2\epsilon > \epsilon$ for all $k \in \mathbb{N}$. By Lemma 8.1.5, (g'_n) does not uniformly converge on $[0, \infty)$.

Problem 8.2-11. Let I := [a, b] and let (f_n) be a sequence of functions on $I \to \mathbb{R}$ that converges on I to f. Suppose that each derivative f'_n is continuous on I and that the sequence (f'_n) is uniformly convergent to g on I. Prove that $f(x) - f(a) = \int_a^b g(t)dt$ and that f'(x) = g(x) for all $x \in I$.

Solution: Because (f_n) converges to f on the bounded interval I and (f'_n) exists for $n \in \mathbb{N}$ and converges uniformly to g, it follows from Theorem 8.2.3 that (f_n) converges uniformly to some function. This function must be f because the limit of (f_n) is unique. It further follows from Theorem 8.2.3 that f'(x) = g(x) for all $x \in I$.

Now let $x \in [a, b]$. Given that (f'_n) converges uniformly on I, it must converge uniformly on [a, x] (since this result has not yet been proven, see Theorem 3 below). Because each f'_n is continuous on I, by the Lebesque Cirterion $f_n \in \mathcal{R}[a, x]$. Applying Theorem 8.2.4 and the fact that (f'_n) converges to g by hypothesis, we have:

$$\int_{a}^{x} g = \lim \int_{a}^{x} f'_{n} = \int_{a}^{x} f'_{n}$$

and $g \in \mathcal{R}[a, x]$.

Since f' exists on all of I, f' is continuous on I. Applying the Fundamental Theorem of Calculus, we get:

$$\int_a^x g = \int_a^x f' = f(x) - f(a).$$

Theorem 3. Suppose (f_n) converges uniformly to f on [a, b]. If $\gamma \in [a, b]$, then (f_n) also converges uniformly to f on $[a, \gamma]$.

Proof. By hypothesis, $\lim \|f_n - f\|_{[a,b]} = 0$. Observe that $0 \le \|f_n - f\|_{[a,\gamma]} \le \|f_n - f\|_{[a,b]}$ for all $n \in \mathbb{N}$. By the Squeeze Theorem, $\lim \|f_n - f\|_{[a,\gamma]} = 0$. The sequence (f_n) therefore uniformly converges to f on $[a,\gamma]$.

Problem 8.2-15. Let $g_n(x) := nx(1-x)^n$ for $x \in [0,1]$, $n \in \mathbb{N}$. Discuss the convergence of (g_n) and $({}_int_0^1g_ndx)$.

Solution: Observe that $g_n(0) = g_n(1) = 0$ for all $n \in \mathbb{N}$. Now let $x \in (0, 1)$. There is a y > 0 such that 1 - x = 1/(1+y). By the Binomial Theorem:

$$(1+y)^n = \binom{n}{0} 1 + \binom{n}{1} y + \binom{n}{2} y^2 + \dots + \binom{n}{n} y^n > \frac{1}{2} n(n-1)y^2.$$

It follows that for $n \ge 2$:

$$0 < nx(1-x)^n = \frac{nx}{(1+y)^n} < \frac{nx}{(1/2)n(n-1)y^2} = \frac{2x}{y^2(n-1)}.$$

By the Squeeze Theorem, the 2-tail of (g_n) converges to zero. By Theorem 3.1.9, $\lim(g_n - 0) = 0$, so (g_n) converges to g(x) = 0 on $x \in [0, 1]$.

We see that $g'_n(x) = n(1-x)^{n-1}[1-(n+1)x]$. Setting $g_n(x_0) = 0$, we see that g_n is at an absolute maximum at $x_0 = 1/(n+1)$. We then have $g_n(x_0) = (n/(n+1))^{n+1} < 1$. Therefore, $0 \le g_n(x) < 1$ for all $x \in [0,1]$, from which it follows that $\|g_n\|_{[0,1]} < 1$ for all $n \in \mathbb{N}$. Since g_n is continuous on [0,1], each $g_n \in \mathcal{R}[0,1]$; further, $g \in \mathcal{R}[0,1]$. Applying Theorem 8.2.5, we infer that $\int_0^1 g = 0 = \lim \int_0^1 g_n$.

Note, however, that (g_n) does not uniformly converge on [0,1] (hence the power of Theorem 8.2.5). Suppose $0 < \epsilon < 1/e$. Let (x_k) be a sequence on [0,1] where $x_k = 1/k$ and $n_k = k$ for all $k \in \mathbb{N}$. We then have:

$$|g_{n_k}(x_k)| = n_k x_k (1 - x_k)_k^n = \left(1 - \frac{1}{k}\right)^k = \frac{1}{e} > \epsilon,$$

where we have used the result from Exercise 3.3.12(d). By Lemma 8.1.5, (g_n) does not uniformly converge on [0, 1].

Problem 8.2-17. Let $f_n(x) := 1$ for $x \in (0, 1/n)$ and $f_n(x) := 0$ elsewhere on [0, 1]. Show that (f_n) is a decreasing sequence of discontinuous functions that converge to a continuous limit function, but the convergence is not uniform on [0, 1]

Solution: Clearly f_n is discontinuous at x = 0 and x = 1/n for all $n \in \mathbb{N}$.

Let $x \in [0,1]$ and $n \in \mathbb{N}$. Note that 1/(n+1) < 1/n. If $x \in (0,1/(n+1))$, then $f_n(x) = f_{n+1}(x) = 1$. If $x \in [0,1] \setminus (0,1/n)$, then $f_n(x) = f_{n+1}(x) = 0$. If $x \in [1/(n+1), 1/n)$, then $f_n(x) = 1 > f_{n+1}(x) = 0$. Therefore, (f_n) is a decreasing sequence of discontinuous functions.

Let $x \in [0,1]$ and $\epsilon > 0$ be given. Suppose $K(\epsilon) = 2/x$. If $n \ge K(\epsilon)$, then 1/n = x/2 < x, so $f_n(x) = 0$. Therefore, $|f_n(x) - 0| = 0 < \epsilon$ for all $x \in [0,1]$. It follows that (f_n) converges pointwise to f(x) = 0 on [0,1].

The sequence does not, however, converge uniformly on this interval. Suppose (x_k) is a sequence on [0,1] where $x_k = 1/(2k)$ and $n_k = k$ for $k \in \mathbb{N}$. Let $\epsilon = 1/2$. Then $|f_{n_k}(x_k) - 0| = f_k(1/(2k)) = 1 > \epsilon$ because 0 < 1/(2k) < 1/k for all $k \in \mathbb{N}$. By Lemma 8.1.5, (f_n) does not converge uniformly on [0,1].

Problem 8.2-18. Let $f_n(x) := x^n$ for $x \in [0,1]$, $n \in \mathbb{N}$. Show that (f_n) is a decreasing sequence of continuous functions that converges to a function that is not continuous, but the convergence is not uniform on [0,1].

Solution: Clearly all f_n are continuous on [0,1]. If $x \in [0,1]$, then $f_{n+1}(x) = x^{n+1} = x \cdot x^n = xf_n(x) \leq f_n(x)$. Accordingly, (f_n) is a decreasing sequence of continuous functions.

If $x \in [0,1)$, then $\lim f_n(x) = \lim x^n = 0$ by Example 3.1.11(b). If x = 1, then $\lim f_n(x) = \lim 1^n = 1$. Therefore, (f_n) converges on [0,1] to:

$$f(x) = \begin{cases} 0 & \text{for } x \in [0,1) \\ 1 & \text{for } x = 1. \end{cases}$$

Obviously f is discontinuous at x = 1.

We will show that $||f_n - f||_{[0,1]} = 1$ in all cases. Let $n \in \mathbb{N}$ be arbitrary. Now observe that f_n is bounded above by 1 on [0,1]. Clearly $|f_n(1) - f(1)| = 0$, so for the uniform norm to be greater than zero, we must look on [0,1). Let $\epsilon \in (0,1)$. If we solve $1 - \epsilon < x^n$, then $x > (1 - \epsilon)^{1/n}$. Since $(1 - \epsilon)^{1/n} < 1$, we can choose $x_0 \in ((1 - \epsilon)^{1/n}, 1)$. We then have $1 - \epsilon < f_n(x_0)$. It follows that $1 = \sup\{|f_n(x) - f(x)| : x \in [0,1]\}$. Therefore, $\lim ||f_n - f||_{[0,1]} = 1$. We conclude that (f_n) does not uniformly converge on [0, 1].

Problem 8.2-19. Let $f_n(x) := x/n$ for $x \in [0, \infty)$, $n \in \mathbb{N}$. Show that (f_n) is a decreasing sequence of continuous functions that converges to a continuous limit function, but the convergence is not uniform on $[0, \infty)$.

Solution: Each f_n is obviously continuous on the interval of interest. Let $n \in \mathbb{N}$ and $x \in [0, \infty)$. Because $f_n(x) = x/n \ge x/(n+1) = f_{n+1}(x)$, the sequence (f_n) is a decreasing sequence of continuous functions.

Now let $\epsilon > 0$ be given. Let $K(\epsilon) = 2x/\epsilon$. If $n \ge K(\epsilon)$, then $|f_n(x) - 0| = x/n \le \epsilon/2 < \epsilon$. Therefore, $\lim f_n(x) = 0$ for all $x \in [0, \infty)$. The sequence (f_n) thus converges pointwise to f(x) = 0 on $[0, \infty)$.

Each f_n is obviously unbounded on $[0,\infty)$; hence, for all $n \in \mathbb{N}$, the uniform norm $||f_n - f||_{[0,\infty)} = \infty$ and is therefore divergent. Consequently, (f_n) does not uniformly converge on $[0,\infty)$.

Problem 8.2-20. Give an example of a decreasing sequence (f_n) of continuous functions on [0,1) that converges to a continuous limit function, but the convergence is not uniform on [0,1)

Solution: The sequence where:

$$f_n(x) = \frac{1}{n(1-x)},$$

for all $n \in \mathbb{N}$ fits the bill. Notice that f_n extends to infinity as $x \to 1$.

Clearly, each f_n is continuous on [0,1). In addition, for any $n \in \mathbb{N}$ and $x \in [0,1)$, we have $f_n(x) = 1/[n(1-x)] > 1/[(n+1)(1-x)] = f_{n+1}(x)$. Therefore, (f_n) is a decreasing sequence of continuous functions. Moreover, $\lim 1/[n(1-x)] = 1/(1-x) \lim 1/n = 0$. Accordingly, (f_n) converges pointwise to f(x) = 0 on [0,1), which is continuous on that interval.

But the sequence does not uniformly converge on [0, 1). As with the sequence in exercise 8.2-19, each f_n is unbounded. Assume for any $n \in \mathbb{N}$ there is an $M_n > 0$ such that $f_n(x) \leq M_n$. Let $x_0 = 1 - 1/(2M_n n) \in [0, 1)$. It follows that $f_n(x_0) = 2M_n > M_n$. Therefore, f_n is unbounded on [0, 1). As a result, $||f_n - f||_{[0,1)} = \infty$, from which it follows that the limit of the uniform norm is divergent. The sequence therefore does not uniformly converge on [0, 1). This result does not conflict with Dini's Theorem, however, because the interval of interest here is half-open, whereas Dini's Theorem requires a closed, bounded interval.

Section 8.3

Problem 8.3-5. If $x \ge 0$ and $n \in \mathbb{N}$, show that:

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \dots + (-x)^{n-1} + \frac{(-x)^n}{1+x}.$$

Use this to show that:

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^n}{n} + \int_0^x \frac{(-t)^n}{1+t} dt$$

and that:

$$\left|\ln(x+1) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^n}{n}\right)\right| \le \frac{x^{n+1}}{n+1}.$$

Solution: The first part can be easily shown by multiplying the right-hand side of the expression by (1+x)/(1+x). Now let $f(x) = \ln(1+x)$, so f'(x) = 1/(1+x) on $(-1,\infty)$. Clearly, f is continuous on $[0,\infty)$. If $x \ge 0$, then f' is continuous on [0,x], from which it follows that $f' \in \mathcal{R}[0,x]$. By the Fundamental Theorem of Calculus:

$$f(x) - f(0) = \ln(1+x) = \int_0^x f'(x)dx$$
$$= \int_0^x \left[1 - x + x^2 - x^3 + \dots + (-x)^{n-1}\right] dx + \int_0^x \frac{(-t)^n}{1+t} dt.$$
$$= \sum_{k=0}^{n-1} (-1)^k \frac{x^{k+1}}{k+1} + \int_0^x \frac{(-t)^n}{1+t} dt,$$

which is what we set out to prove for the second part.

For the third part, rearrange the previous expression and take the absolute value to get:

$$\left|\ln(1+x) - \sum_{k=0}^{n-1} (-1)^k \frac{x^{k+1}}{k+1}\right| = \left|\int_0^x \frac{(-t)^n}{1+t} dt\right| = \int_0^x \frac{|t|^n}{1+t} dt.$$

Observe that $|t|^n / (1+t) \le |t|^n$ for $t \ge 0$. Applying Theorem 7.1.5(c), we have:

$$\left|\ln(1+x) - \sum_{k=0}^{n-1} (-1)^k \frac{x^{k+1}}{k+1}\right| \le \int_0^x |t|^n \, dt = \frac{x^{n+1}}{n+1}.$$

Problem 8.3-8. Let $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = f(x) for all $x \in \mathbb{R}$. Show that there exists $K \in \mathbb{R}$ such that $f(x) = Ke^x$ for all $x \in \mathbb{R}$.

Solution: If $f(0) \neq 0$, let $g : \mathbb{R} \to \mathbb{R}$ such that g(x) = f(x)/f(0). It follows that g'(x) = f'(x)/f(0) = g(x) and g(0) = 1. By Theorem 8.3.4, $g(x) = e^x$ because the function with both these properties is unique. Therefore $f(x) = f(0)g(x) = Ke^x$ where K = f(0).

Now suppose f(0) = 0. It can be easily shown by induction that $f^{(n)} = f$ for all $n \in \mathbb{N}$. Therefore, $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Let $x \in \mathbb{R}$ be given. Applying Taylor's Theorem at $x_0 = 0$, we have for any n:

$$f(x) = f(0) + \sum_{j=1}^{n} \frac{f^{(j)}(0)}{j!} x^{j} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1},$$

for some c between 0 and x_0 (non-inclusive).

Now let L > 0 be such that $|f(x)| \le L$ for all $x \in [0, x]$. It follows that $|f(x)| \le K |x|^{n+1} / (n+1)!$. Since $\lim |x|^{n+1} / (n+1)! = 0$ by Exercise 3.2-19(c), we infer that $\lim |f(x)| = 0$. Since x is arbitrary, we conclude that f(x) = 0 for all $x \in \mathbb{R}$. Therefore, $f(x) = 0 \cdot e^x = 0$.