Bartle - Introduction to Real Analysis - Chapter 8 Solutions

Section 8.1

Problem 8.1-2. Show that $\lim \left(n x /\left(1+n^{2} x^{2}\right)\right)=0$ for all $x \in \mathbb{R}$.

Solution: For $x=0$, we have $\lim \left(n x /\left(1+n^{2} x^{2}\right)\right)=\lim (0 / 1)=0$, so $f(0)=0$. For $x \in \mathbb{R} \backslash\{0\}$, observe that $0<n x /\left(1+n^{2} x^{2}\right)<n x /\left(n^{2} x^{2}\right)=1 /(n x)$. By the Squeeze Theorem, $\lim \left(n x /\left(1+n^{2} x^{2}\right)\right)=0$. Therefore, $f(x)=0$ for all $x \in \mathbb{R}$.

Problem 8.1-3. Evaluate $\lim (n x /(1+n x))$ for $x \in \mathbb{R}, x \geq 0$.

Solution: For $x=0$, we have $\lim (n x /(1+n x))=\lim (0 / 1)=0$, so $f(0)=0$.
For $x \in(0, \infty)$, we have:

$$
\lim \left(\frac{n x}{1+n x}\right)=\lim \left(\frac{1}{1 / n x+1}\right)=\frac{1}{1 / x \lim (1 / n)+1}=1
$$

from which it follows that $f(x)=1$ for $x \in(0, \infty)$. Therefore,

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x=0 \\
1 & \text { for } & x>0
\end{array}\right.
$$

Problem 8.1-4. Evaluate $\lim \left(x^{n} /\left(1+x^{n}\right)\right)$ for $x \in \mathbb{R}, x \geq 0$.

Solution: For $0 \leq x<1$, we have $\lim \left(x^{n} /\left(1+x^{n}\right)\right)=0 / 1=0$ by Example 3.1.11(b), so $f(x)=0$. For $x=1$, we have $\lim \left(x^{n} /\left(1+x^{n}\right)\right)=1 / 2$, so $f(1)=1 / 2$. For $x>1$, we have $\lim \left(x^{n} /\left(1+x^{n}\right)\right)=\lim \left(1 /\left(1+1 / x^{n}\right)=1\right.$, so $f(x)=1$.* Accordingly,

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leq x<1 \\
\frac{1}{2} & \text { for } & x=1 \\
1 & \text { for } & x>1
\end{array}\right.
$$

* Note that for $1 / x^{n}$ with fixed x, given $\epsilon>0$, if $K(\epsilon)=\log _{x}(2 / \epsilon)$, then for $n \geq K(\epsilon)$, we have $\left|1 / x^{n}\right|=1 / x^{n}<$ $1 /(2 / \epsilon)=\epsilon / 2<\epsilon$. Therefore, $\lim \left(1 / x^{n}\right)=0$.

Problem 8.1-9. Show that $\lim \left(x^{2} e^{-n x}\right)=0$ and that $\lim \left(n^{2} x^{2} e^{-n x}\right)=0$ for $x \in \mathbb{R}, x \geq 0$.

Solution: Part (i): For $x=0$, we have $\lim \left(x^{2} e^{-n x}\right)=\lim \left(0 \cdot 1^{n}\right)=0$, so $f(0)=0$. For $x>0$, observe that $0<e^{-x}<1$. From Example 3.1.11(b), it follows that $\lim \left(x^{2} e^{-n x}\right)=x^{2} \lim \left(e^{-x}\right)^{n}=0$. As a result, $f(x)=0$ for $x \geq 0$.

Part (ii): We can establish limit of $\left(f_{n}\right)=\left(n^{2} x^{2} e^{-n x}\right)$ using L'Hopîtal's Rule and the Sequential Criterion for limits of functions. Let $g(m)=m^{2} x^{2} e^{-m x}=m^{2} x^{2} / e^{m x}$. For $x \in(0, \infty)$, the limit as $m \rightarrow \infty$ is in ∞ / ∞ indeterminate form, so we apply L'Hopîtal's Rule twice:

$$
\lim _{n \rightarrow \infty} \frac{m^{2} x^{2}}{e^{m x}}=\lim _{m \rightarrow \infty} \frac{2 m x^{2}}{x e^{m x}}=\lim _{m \rightarrow \infty} \frac{2 m^{2}}{m^{2} e^{m x}}=\lim _{m \rightarrow \infty} \frac{2}{e^{m x}}=0
$$

By the Sequential Criterion for limits of functions (Theorem 4.1.8), the limit of g above implies that for any sequence $\left(y_{n}\right)$ on $(0, \infty)$ that converges to infinity, the sequence $\left(g\left(y_{n}\right)\right)$ converges to 0 . If $y_{n}=n$ for all $n \in \mathbb{N}$, then $\left(g\left(y_{n}\right)\right)=$ $\left(n^{2} x^{2} e^{-n x}\right)$, which is equal to $\left(f_{n}\right)$. It follows that if $x>0$, then $\lim n^{2} x^{2} e^{-n x}=0$.

For $x=0$, clearly $\lim n^{2} x^{2} e^{-n x}=\lim 0=0$. Accordingly, if $x \in[0, \infty)$, then $\left(n^{2} x^{2} e^{-n x}\right)$ converges to $f(x)=0$.

Problem 8.1-10. Show that $\lim \left(\cos (\pi x)^{2 n}\right)$ exists for all $x \in \mathbb{R}$. What is its limit?

Solution: If $x \in \mathbb{Z}$, then $\cos (\pi x)^{2 n}=(\pm 1)^{2 n}=1$, so $\lim \left(\cos (\pi x)^{2 n}\right)=1$. Therefore, $f(x)=1$.
If $x \in \mathbb{R} \backslash \mathbb{Z}$, then $0 \leq \cos ^{2}(\pi x)<1$, so by Example 3.1.11(b), $\lim \left[\cos ^{2}(\pi x)\right]^{n}=0$. Therefore:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in \mathbb{Z} \\
1 & \text { for } & x \in \mathbb{R} \backslash \mathbb{Z}
\end{array}\right.
$$

Problem 8.1-10. Show that if $a>0$, then the convergence of the sequence in Exercise 1 is uniform on the interval $[0, a]$, but is not uniform on the interval $[0, \infty)$.

Solution: Let $a>0$ and $A=[0, a]$. Because f_{n} is continuous, it is bounded on A by Theorem 5.3.2. Suppose $f(x)=0$ for $x \in A$. Then $\left\|f_{n}-0\right\|_{A}=\sup \{x /(x+n): x \in A\}=a /(a+n)$ because f_{n} is increasing on A. Therefore, $\lim \left\|f_{n}-0\right\|_{A}=\lim a /(a+n)=0$. By Lemma 8.1.8, $\left(f_{n}\right)$ converges uniformly to $f(x)=0$ on A.

Now let $A=[0, \infty]$. As shown in Theorem 1 below, if $\left(f_{n}\right)$ is uniformly convergent on A, then it must converge uniformly to $f(x)=0$ because this sequence is pointwise convergent to that function on A. We see that $\left\|f_{n}-0\right\|_{A}=$ $\sup \{|x /(x+n)|: x \geq 0\}=1$. This is because $0<x /(x+n)<1$, and for $0<\delta<2$, if $x=n(2 / \delta-1)$, then $1-\delta<x /(x+n)=1-\delta / 2<1$. Therefore, 1 is the supremum of $\{|x /(x+n)|: x \geq 0\}$. Consequently, $\lim \left\|f_{n}-0\right\|_{A}=1$. By Lemma 8.1.8, $\left(f_{n}\right)$ does not uniformly converge to any f on $[0, \infty)$.

Theorem 1. Suppose $\left(f_{n}\right)$ converges pointwise to f on $A \subseteq \mathbb{R}$. If $\left(f_{n}\right)$ does not uniformly converge to f on A, then $\left(f_{n}\right)$ does not uniformly converge to any function on A.

Proof. Suppose there is a function $f^{\prime}: A \rightarrow \mathbb{R}$ to which $\left(f_{n}\right)$ converges uniformly on A. Now assume that $f^{\prime} \neq f$. It follows that $\left(f_{n}\right)$ must converges pointwise to f^{\prime} on A. However, by Theorem 3.1.4, the limit function f is uniquely determined, so we have a contradiction if $f^{\prime} \neq f$. Therefore, it must be that $f=f^{\prime}$. Accordingly, if $\left(f_{n}\right)$ does not converge uniformly to f on A, it does not converge uniformly to any function on A.

Problem 8.1-12. Show that if $a>0$, then the convergence of the sequence in Exercise 2 is uniform on the interval $[a, \infty]$, but is not uniform on the interval $[0, \infty)$.

Solution: Let $a>0$ and $A=[a, \infty)$. From Exercise 8.1.2, $\left(f_{n}\right)$ converges pointwise to $f(x)=0$ on A. Observe that $f_{n}^{\prime}(x)=n\left(1-n^{2} x^{2}\right) /\left(1+n^{2} x^{2}\right)^{2}$. We see that if $x_{0}=1 / \sqrt{n}$, then $f_{n}^{\prime}\left(x_{0}\right)=0$. On either side of this point, $f_{n}^{\prime}(x)>0$ for $x<x_{0}$ and $f_{n}^{\prime}(x)<0$ for $x>x_{0}$. By Theorem 6.2.8, the maximum of f_{n} on $[0, \infty)$ is at x_{0}. Moreover, it is clear that f_{n}^{\prime} decreases on $\left(x_{0}, \infty\right)$. It follows that the maximum of f_{n} on A is $b=\sup \{1 / \sqrt{n}, a\}$. We then have:

$$
\left\|\frac{n x}{1+n^{2} x^{2}}-0\right\|_{A}=\sup \left\{\left|\frac{n x}{1+n^{2} x^{2}}\right|: x \in A\right\}=\frac{b n}{1+n^{2} b^{2}}
$$

Since $0<b n /\left(1+n^{2} b^{2}\right)<b n /\left(n^{2} b^{2}\right)=1 /(n b)$ and $\lim 1 /(n b)=0$, it follows from the Squeeze Theorem that $\lim \left\|f_{n}-f\right\|_{A}=0$. By Lemma 8.1.8, $\left(f_{n}\right)$ uniformly converges to $f(x)=0$ on $[a, \infty)$. (Note that the limit above holds true even though b may be a function of n. For the sake of brevity, I cavalierly omitted this point in applying the Squeeze Theorem.)

Now suppose $A=[0, \infty)$. Let $\left(x_{k}\right)$ be a sequence on A where $x_{k}=1 / k$ and $n_{k}=k$. For $\epsilon=1 / 4$:

$$
\left|f_{n_{k}}\left(x_{k}\right)-f\left(x_{k}\right)\right|=\frac{k(1 / k)}{1+k^{2}\left(1 / k^{2}\right)}=\frac{1}{2}>\epsilon
$$

From Lemma 8.1.5, it follows that $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$.

Problem 8.1-13. Show that if $a>0$, then the convergence of the sequence in Exercise 3 is uniform on the interval $[a, \infty)$, but is not uniform on the interval $[0, \infty)$.

Solution: Let $a>0$ and $A=[a, \infty)$. We know that $\left(f_{n}\right)$ converges pointwise to $f(x)=1$ on A. Observe that:

$$
\begin{equation*}
\left.\| f_{n}(x)-1\right) \|_{A}=\sup \left\{\left|\frac{n x}{1+n x}-1\right|=\left|\frac{-1}{1+n x}\right|=\frac{1}{1+n x}: x \in A\right\}=\frac{1}{1+a n} . \tag{1}
\end{equation*}
$$

It follows that $\lim \left\|f_{n}-f\right\|_{A}=0$. Therefore, $\left(f_{n}\right)$ uniformly converges to $f(x)=1$ on $[a, \infty)$.

Now let $A=[0, \infty)$. We then have:

$$
\begin{equation*}
\left\|f_{n}(x)-f(x)\right\|_{A}=\sup \left(\left\{\left|\frac{n x}{1+n x}-1\right|: x \in(0, \infty)\right\} \cup\left\{\left|\frac{n \cdot 0}{1+n \cdot 0}-0\right|\right\}\right)=1 \tag{2}
\end{equation*}
$$

Consequently, $\lim \left\|f_{n}-f\right\|_{A}=1$, so by Lemma 8.1.7 $\left(f_{n}\right)$ does not converge uniformly on A.

Problem 8.1-14. Show that if $0<b<1$, then the convergence of the sequence in Exercise 4 is uniform on the interval $[0, b]$, but is not uniform on the interval $[0,1]$.

Solution: Let $b \in(0,1)$ be given and $A=[0, b]$. We then have:

$$
\left\|\frac{x_{n}}{1+x^{n}}-0\right\|_{A}=\sup \left\{\left|\frac{x^{n}}{1+x^{n}}\right|: x \text { in } A\right\}=\frac{b^{n}}{1+b^{n}}
$$

because f_{n} is increasing on A (since $f_{n}^{\prime}>0$ on that interval). Clearly $\lim \left\|x_{n} /\left(1+x^{n}\right)-0\right\|_{A}=\left(\lim b^{n}\right) /\left(1+\lim b^{n}\right)=0$ since $n \in(0,1)$. Therefore, $\left(f_{n}\right)$ converges uniformly to $f(x)=0$ on $x \in[0, b]$.

Now let $A=[0,1]$. Let $\left(x_{k}\right)$ be a sequence in A where $x_{k}=2^{-1 / k}$ and $n_{k}=k$. It follows that for any $\epsilon>0$ where $\epsilon<1 / 3$:

$$
\left|f_{n_{k}}\left(x_{k}\right)-f\left(x_{k}\right)\right|=\frac{\left(2^{-1 / k}\right)^{k}}{1+\left(2^{-1 / k}\right)^{k}}=\frac{1 / 2}{1+1 / 2}=1 / 3>\epsilon
$$

By Lemma 8.1.5, $\left(f_{n}\right)$ does not uniformly converge on $[0,1]$.

Problem 8.1-15. Show that if $a>0$, then the convergence of the sequence in Exercise 5 is uniform on the interval $[a, \infty)$, but is not uniform on the interval $[0, \infty)$.

Solution: Suppose $a>0$ and $A=[a, \infty)$. From Exercise 8 , we know that $\left(f_{n}\right)$ converges pointwise to $f(x)=0$ on A. It is clear that $|\sin (n x)| \leq 1$. Therefore, $0 \leq \sup \{|\sin (n x) /(1+n x)-0|: x \in A\} \leq 1 /(1+a n)<1 / a n$. Since $\lim 1 / a n=0$, it follows from the Squeeze Theorem that $\lim \left\|f_{n}-f\right\|_{A}=0$. By Lemma 8.1.8, $\left(f_{n}\right)$ converges uniformly to $f(x)=0$.

Now let $A=[0, \infty)$. Let $\left(x_{k}\right)$ be a sequence on A where $x_{k}=\pi /(2 k)$ and $n_{k}=k$. For any positive ϵ where $\epsilon<1 /(1+\pi / 2)$:

$$
\left|\frac{\sin (k(\pi /(2 k)))}{1+k(\pi /(2 k))}-0\right|=\left|\frac{\sin \pi / 2}{1+\pi / 2}\right|=\frac{1}{1+\pi / 2}>\epsilon .
$$

It follows that $\left(f_{n}\right)$ does not uniformly converge on $[0, \infty)$.

Problem 8.1-19. Show that the sequence $\left(x^{2} e^{-n x}\right)$ converges uniformly on $[0, \infty)$.

Solution: Let $A=[0, \infty)$. From Exercise 8.1.9, $\left(f_{n}\right)=\left(x^{2} e^{-n x}\right)$ converges pointwise to $f(x)=0$. Note that $f_{n}^{\prime}(x)=$ $e^{-n x}\left(2 x-n x^{2}\right)$. The roots of f_{n}^{\prime} are at 0 and $2 / n$. A simple calculation shows that $f_{n}(2 / n)=4 /(e n)^{2}>f_{n}(0)=0$. In addition, $f_{n}^{\prime}(x)>0$ for $0<x<4 / n$ and $f_{n}^{\prime}(x)<0$ for $x>4 / n$. By Theorem 6.2.8, f_{n} is at an absolute maximum at $x=4 / n$.

As a result, $0<\left\|f_{n}-f\right\|_{A}=f_{n}(2 / n)=4 /(e n)^{2}<4 / n$. Because $\lim (4 / n)=0$, it follows from the Squeeze Theorem that $\lim \left\|f_{n}-f\right\|_{A}=0$. Therefore, $\left(f_{n}\right)$ converges uniformly to $f(x)=0$ on A.

Problem 8.1-21. Show that if $\left(f_{n}\right),\left(g_{n}\right)$ converge uniformly on the set A to f, g, respectively, then $\left(f_{n}+g_{n}\right)$ converges uniformly on A to $f+g$.

Solution: For $\epsilon>0$, there are $K^{\prime}(\epsilon / 2), K^{\prime \prime}(\epsilon / 2)>0$ such that if $n \geq K^{\prime}(\epsilon / 2)$, then $\left\|f_{n}-f\right\|_{A}<\epsilon / 2$, and if $n \geq$ $K^{\prime \prime}(\epsilon / 2)$, then $\left\|g_{n}-g\right\|_{A}<\epsilon / 2$. Let $K(\epsilon)=\sup \left\{K^{\prime}(\epsilon / 2), K^{\prime \prime}(\epsilon / 2)\right\}$. By the Triangle Inequality and Theorem 2 below, for $n \geq K(\epsilon)$:

$$
\left|\left\|\left(f_{n}+g_{n}\right)-(f+g)\right\|_{A}-0\right| \leq\left\|f_{n}-f\right\|_{A}+\left\|g_{n}-g\right\|_{A}<\epsilon / 2+\epsilon / 2=\epsilon .
$$

It follows that $\lim \left\|\left(f_{n}+g_{n}\right)-(f+g)\right\|_{A}=0$, so $\left(f_{n}+g_{n}\right)$ converges uniformly on A to $f+g$.
Theorem 2. Given any $\phi, \psi: A \rightarrow \mathbb{R}$ on $A \subseteq \mathbb{R},\|\phi+\psi\|_{A} \leq\|\phi\|_{A}+\|\psi\|_{A}$.
Proof. Let $s=\|\phi+\psi\|_{A}$, in which case $s=\sup \{|\phi(x)+\psi(x)|: x \in A\}$. Now let $t_{1}=\sup \{|\psi(x)|: x \in A\}$ and $t_{2}=\sup \{|\psi(x)|: x \in A\}$. If $x \in A$, then $t_{1}+t_{2} \geq|\phi(x)|+|\psi(x)| \geq|\phi(x)+\psi(x)|$. It follows that $t_{1}+t_{2}$ is an upper bound of $\{|\phi(x)+\psi(x)|: x \in A\}$ and therefore is greater than or equal to s. Since $t_{1}+t_{2}=\|\phi\|_{A}+\|\psi\|_{A}$, we have shown the desired inequality.

Problem 8.1-22. Show that if $f_{n}(x):=x+1 / n$ and $f(x):=x$, then $\left(f_{n}\right)$ converges uniformly on \mathbb{R} to f, but the sequence $\left(f_{n}^{2}\right)$ does not converge uniformly on \mathbb{R}. (Thus the product of uniformly convergent sequences of functions may not coverge uniformly.)

Solution: Note that in contrast to the functions in Exercise 8.1-23, f_{n} is not bounded on \mathbb{R}.
For $\left(f_{n}\right)$, we have $\lim \|x+1 / n-x\|_{A}=\lim \|1 / n\|_{A}=\lim 1 / n=0$. Therefore, $\left(f_{n}\right)$ converges uniformly to f on \mathbb{R}.
Note that $\lim f_{n}^{2}=\lim \left(x^{2}+2 x / n+1 / n^{2}\right)=x^{2}+\lim \left(2 x / n+1 / n^{2}\right)=x^{2}$. Accordingly, $\left(f_{n}^{2}\right)$ converges pointwise to f^{2} on \mathbb{R}.

We will now show that $\left(f_{n}^{2}\right)$ does not uniformly converge on \mathbb{R}. Let $\left(x_{k}\right)$ be a sequence on \mathbb{R} such that $x_{k}=k$ and $n_{k}=k$. We then have for all $k \in \mathbb{N}$:

$$
\left|f_{n}^{2}-f^{2}\right|=\left|\frac{2 x_{k}}{k}+\frac{1}{k^{2}}\right|=\left|2-\frac{1}{k^{2}}\right| \geq 1 .
$$

For positive ϵ where $\epsilon \leq 1$, we have $\left|f_{n}^{2}-f^{2}\right| \geq \epsilon$. By Lemma 8.1.5, $\left(f_{n}^{2}\right)$ does not uniformly converge on \mathbb{R}.
Problem 8.1-23. Let $\left(f_{n}\right),\left(g_{n}\right)$ be sequences of bounded functions on A that converge uniformly on A to f, g, respectively. Show that $\left(f_{n} g_{n}\right)$ converges uniformly on A to $f g$.

Solution: In order to show the uniform convergence of $\left(f_{n} g_{n}\right)$ on A, we can rewrite the limit we seek under Lemma 8.1.8 as:

$$
\lim \left\|f_{n} g_{n}-f g\right\|_{A}=\lim \left\|\left(f_{n} g_{n}-f g_{n}\right)-\left(f g-f g_{n}\right)\right\|_{A}=\lim \left\|g_{n}\left(f_{n}-f\right)+f\left(g_{n}-g\right)\right\|_{A} .
$$

Since f_{n} is bounded on A, it must be that f is bounded on A by some $M_{1} \geq 0$. We can prove this by contradiction. If we assume this were not true, then for some $x \in A$, it would follow that $\left|f_{n}(x)-f(x)\right|$ is unbounded, resulting in the contradiction that the supremum of $\left\{\left|f_{n}(x)-f(x)\right|: x \in A\right\}$ does not exist.

It must also be that $\left(g_{n}\right)$ is bounded by some $M_{2} \geq 0$ for all $x \in A$. This follows from the fact that $\lim g_{n}$ must exist because $\left(g_{n}\right)$ must pointwise converge to g on A. Theorem 3.2.2 then requires that, $\left(g_{n}\right)$ be bounded.

We may now establish boundaries on $\left\|f_{n} g_{n}-f g\right\|_{A}=\sup \left\{\left|f_{n} g_{n}-f g\right|: x \in A\right\}$. We have from the Triangle Inequality:

$$
\left|f_{n} g_{n}-f g\right|=\left|g_{n}\left(f_{n}-f\right)+f\left(g_{n}-g\right)\right| \leq M_{2}\left|f_{n}-f\right|+M_{1}\left|g_{n}-g\right| .
$$

It follows that:

$$
0 \leq \sup \left\{\left|f_{n} g_{n}-f g\right|: x \in A\right\}<M_{2}\left\|f_{n}-f\right\|_{A}+M_{1}\left\|g_{n}-g\right\|_{A} .
$$

By hypothesis:

$$
\lim \left(M_{2}\left\|f_{n}-f\right\|_{A}+M_{1}\left\|g_{n}-g\right\|_{A}\right)=M_{2} \lim \left\|f_{n}-f\right\|_{A}+M_{1} \lim \left\|g_{n}-g\right\|_{A}=M_{2} \cdot 0+M_{1} \cdot 0=0
$$

By the Squeeze Theorem, $\lim \left\|f_{n} g_{n}-f g\right\|_{A}=0$. Therefore, $\left(f_{n} g_{n}\right)$ converges uniformly to $f g$ on A.
Problem 8.1-24. Let $\left(f_{n}\right)$ be a sequence of functions that converges uniformly to f on A and that satisfies $\left|f_{n}(x)\right| \leq M$ for all $n \in \mathbb{N}$ and for all $x \in A$. If g is continuous on the interval $[-M, M]$, show that the sequence ($g \circ f_{n}$) converges uniformly to $(g \circ f)$ on A.

Solution: Let $\epsilon>0$ be given. Since g is continuous on $[-M, M]$, there is a $\delta>0$ such that if $y \in[-M, M]$ and $|y-c|<\delta$, then $|g(y)-g(c)|<\epsilon / 2$. We will let f_{n} and f take the place of y and c to establish our result. Because $\left(f_{n}\right)$ uniformly converges to f on A, there is a $K(\delta)>0$ such that if $n \geq K(\delta)$, then:

$$
0 \leq\left\|f_{n}-f\right\|_{A}=\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in A\right\}<\delta
$$

Accordingly, if $n \geq K(\delta)$ and $x \in A$, then $\left|f_{n}(x)-f(x)\right|<\delta$. It follows from the continuity of g that:

$$
\left|\left(g \circ f_{n}\right)(x)-(g \circ f)(x)\right|=\mid g\left(f_{n}(x)\right)-g(f(x) \mid<\epsilon / 2
$$

Because this is true for all $x \in A$, we have established $\epsilon / 2$ as an upper bound of $\left\|g \circ f_{n}-g \circ f\right\|_{A}$ for $n \geq K(\delta)$. Consequently, $\left|\left\|g \circ f_{n}-g \circ f\right\|_{A}-0\right| \leq \epsilon / 2<\epsilon$ for $n \geq K(\delta)$, from which it follows that $\lim \left\|g \circ f_{n}-g \circ f\right\|_{A}=0$. We conclude that $\left(g \circ f_{n}\right)$ uniformly converges to $g \circ f$ on A.

Section 8.2

Problem 8.2-2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions that converges nonuniformly to a continuous limit.

Solution: If $x=0$, then $\lim f_{n}(x)=\lim 0=0$. If $x \in[0,2]$, then let $\epsilon>0$ and $K(\epsilon, x)=2 / x$. For $n=K(\epsilon, x)$, we have $\left|f_{n}(x)-0\right|=\left|n^{2}(x-2 / n)\right|=0<\epsilon$. If $n>K(\epsilon, x)$, then $f_{n}(x)=0$, from which follows that $\left|f_{n}(x)-0\right|<\epsilon$. We then infer that $\lim f_{n}(x)=0$.

We will now prove that $\left(f_{n}\right)$ is does not converge uniformly on $[0,2]$. Let $\left(x_{k}\right)$ be a sequence on $[0,2]$ where $x_{k}=1 / k$ and let $n_{k}=k$, in each case for all $k \in \mathbb{N}$. For a given $0<\epsilon<1$, we have $\left|f_{n_{k}}\left(x_{k}\right)-0\right|=k^{2}(1 / k)=k \geq 1>\epsilon$. By Lemma 8.1.5, $\left(f_{n}\right)$ does not converge uniformly on $[0,2]$.

Problem 8.2-4. Suppose $\left(f_{n}\right)$ is a sequence of continuous functions on an interval I that converges uniformly on I to a function f. If $\left(x_{n}\right) \subseteq I$ converges to $x_{o} \in I$, show that $\lim \left(f_{n}\left(x_{n}\right)\right)=\lim f\left(x_{0}\right)$.

Solution: By Theorem 8.2.2, f is continuous on I, so $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. Applying the Sequential Criterion (Theorem 5.1.3), since $\left(x_{n}\right)$ converges to x_{0}, it follows that $\lim f\left(x_{n}\right)=f\left(x_{0}\right)$. For a given $\epsilon>0$, there is a $K^{\prime}(\epsilon / 2) \in \mathbb{N}$ such that if $n \geq K^{\prime}(\epsilon / 2)$, then:

$$
\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2}
$$

Because $\left(f_{n}\right)$ converges uniformly on I, there is also a $K^{\prime \prime}(\epsilon / 2) \in \mathbb{N}$ such that if $n \geq K^{\prime \prime}(\epsilon / 2)$, then for $x=x_{n}$ for any $n \in \mathbb{N}$:

$$
\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|<\frac{\epsilon}{2}
$$

Let $K(\epsilon)=\sup \left\{K^{\prime}(\epsilon / 2), K^{\prime \prime}(\epsilon / 2)\right\}$, We then have for $n \geq K(\epsilon)$:

$$
\begin{gathered}
\left|f_{n}\left(x_{n}\right)-f\left(x_{0}\right)\right|=\mid\left(f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right)+\left(f\left(x_{n}\right)-f\left(x_{0}\right) \mid\right. \\
\quad \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{gathered}
$$

Therefore, $\lim f_{n}\left(x_{n}\right)=f\left(x_{0}\right)$.

Problem 8.2-5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous on \mathbb{R} and let $f_{n}(x):=f(x+1 / n)$ for $x \in \mathbb{R}$. Show that $\left(f_{n}\right)$ converges uniformly on \mathbb{R} to f.

Solution: Because f is uniformly continuous on \mathbb{R}, for any given $\epsilon>0$, there is a $\delta(\epsilon)>0$ such that for any $x, y \in \mathbb{R}$, if $|x-u|<\delta(\epsilon)$, then $|f(x)-f(u)|<\epsilon$. Let $K(\epsilon)=2 / \delta(\epsilon)$. If $n \geq K(\epsilon)$, then $|(x+1 / n)-x| \leq \delta(\epsilon) / 2<\delta(\epsilon)$, in which case $\left|f_{n}(x)-f(x)\right|=|f(x+1 / n)-f(x)|<\epsilon$. Therefore:

$$
\left\|f_{n}-f\right\|_{\mathbb{R}}=\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in \mathbb{R}\right\} \leq \epsilon
$$

Since ϵ is arbitrary, $\lim \left\|f_{n}-f\right\|_{\mathbb{R}}=0$, and $\left(f_{n}\right)$ uniformly converges to f on \mathbb{R}.

Problem 8.2-7. Suppose the sequence $\left(f_{n}\right)$ converges uniformly to f on the set A, and suppose that each f_{n} is bounded on A. (That is, for each n there is a constant M_{n} such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in A$.) Show that the function f is bounded on A.

Solution: For any $\epsilon>0$, there is a $K \in \mathbb{N}$ such that if $n \geq K$, then $\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in A\right\}<\epsilon$. Consequently, ϵ is an upper bound on this set, so $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in A$. Since ϵ is arbitrary, $f_{n}(x)=f(x)$ for $n \geq K$. Because f_{K} is bounded on A, it follows that $|f(x)| \leq M_{K}$ for all x in A. The function f is therefore bounded on A.

Problem 8.2-10. Let $g_{n}(x):=e^{-n x} / n$ for $x \geq 0, n \in \mathbb{N}$. Examine the relationship between $\lim \left(g_{n}\right)$ and $\lim \left(g_{n}^{\prime}\right)$.

Solution: Observe that $0<e^{-n x} \leq 1$ for all $x \in[0, \infty)$, so $0<e^{-n x} / n \leq 1 / n$. Therefore, $\lim e^{-n x} / n=0$ for $x \in[0, \infty)$. Because g_{n} is bounded above by $1 / n$, it follows from the Squeeze Theorem that $\lim \left\|e^{-n x} / n-0\right\|_{\mathbb{R}_{\geq 0}}=0$. Therefore, $\left(g_{n}\right)$ converges uniformly to $g(x)=0$ on $[0, \infty)$.

We then have $g_{n}^{\prime}(x)=-e^{-n x}$. If $x=0$, then $\lim \left[-e^{-n x}\right]=-1$. If $x \in(0, \infty)$, then because $0<e^{-x}<1$, it follows from the Squeeze Theorem that $\left.\lim \left[-e^{-n x}\right]=-\lim \left(e^{-x}\right)^{n}\right)=0$. Therefore, $\left(g_{n}^{\prime}\right)$ converges to $g^{\prime}(0)=-1$ and $g^{\prime}(x)=0$ for $x \in(0, \infty)$. Note that g^{\prime} is discontinuous at $x=0$.

Now let ϵ be given where $0<\epsilon<1 / 2$. Suppose $\left(x_{k}\right)$ is a sequence on $[0, \infty)$ where $x_{k}=-\ln (2 \epsilon) / k$ (note that the allowed range of ϵ ensures $x_{k}>0$ for all $k \in \mathbb{N}$) and $n_{k}=k$. Then $\left|-e^{-k x_{k}}\right|=e^{\ln 2 \epsilon}=2 \epsilon>\epsilon$ for all $k \in \mathbb{N}$. By Lemma 8.1.5, $\left(g_{n}^{\prime}\right)$ does not uniformly converge on $[0, \infty)$.

Problem 8.2-11. Let $I:=[a, b]$ and let $\left(f_{n}\right)$ be a sequence of functions on $I \rightarrow \mathbb{R}$ that converges on I to f. Suppose that each derivative f_{n}^{\prime} is continuous on I and that the sequence $\left(f_{n}^{\prime}\right)$ is uniformly convergent to g on I. Prove that $f(x)-f(a)=\int_{a}^{b} g(t) d t$ and that $f^{\prime}(x)=g(x)$ for all $x \in I$.

Solution: Because $\left(f_{n}\right)$ converges to f on the bounded interval I and $\left(f_{n}^{\prime}\right)$ exists for $n \in \mathbb{N}$ and converges uniformly to g, it follows from Theorem 8.2.3 that $\left(f_{n}\right)$ converges uniformly to some function. This function must be f because the limit of $\left(f_{n}\right)$ is unique. It further follows from Theorem 8.2.3 that $f^{\prime}(x)=g(x)$ for all $x \in I$.

Now let $x \in[a, b]$. Given that $\left(f_{n}^{\prime}\right)$ converges uniformly on I, it must converge uniformly on $[a, x]$ (since this result has not yet been proven, see Theorem 3 below). Because each f_{n}^{\prime} is continuous on I, by the Lebesque Cirterion $f_{n} \in \mathcal{R}[a, x]$. Applying Theorem 8.2.4 and the fact that $\left(f_{n}^{\prime}\right)$ converges to g by hypothesis, we have:

$$
\int_{a}^{x} g=\lim \int_{a}^{x} f_{n}^{\prime}=\int_{a}^{x} f^{\prime}
$$

and $g \in \mathcal{R}[a, x]$.
Since f^{\prime} exists on all of I, f^{\prime} is continuous on I. Applying the Fundamental Theorem of Calculus, we get:

$$
\int_{a}^{x} g=\int_{a}^{x} f^{\prime}=f(x)-f(a)
$$

Theorem 3. Suppose $\left(f_{n}\right)$ converges uniformly to f on $[a, b]$. If $\gamma \in[a, b]$, then $\left(f_{n}\right)$ also converges uniformly to f on $[a, \gamma]$.
Proof. By hypothesis, $\lim \left\|f_{n}-f\right\|_{[a, b]}=0$. Observe that $0 \leq\left\|f_{n}-f\right\|_{[a, \gamma]} \leq\left\|f_{n}-f\right\|_{[a, b]}$ for all $n \in \mathbb{N}$. By the Squeeze Theorem, $\lim \left\|f_{n}-f\right\|_{[a, \gamma]}=0$. The sequence $\left(f_{n}\right)$ therefore uniformly converges to f on $[a, \gamma]$.

Problem 8.2-15. Let $g_{n}(x):=n x(1-x)^{n}$ for $x \in[0,1], n \in \mathbb{N}$. Discuss the convergence of $\left(g_{n}\right)$ and $\left({ }_{i} n t_{0}^{1} g_{n} d x\right.$.

Solution: Observe that $g_{n}(0)=g_{n}(1)=0$ for all $n \in \mathbb{N}$. Now let $x \in(0,1)$. There is a $y>0$ such that $1-x=1 /(1+y)$. By the Binomial Theorem:

$$
(1+y)^{n}=\binom{n}{0} 1+\binom{n}{1} y+\binom{n}{2} y^{2}+\cdots+\binom{n}{n} y^{n}>\frac{1}{2} n(n-1) y^{2}
$$

It follows that for $n \geq 2$:

$$
0<n x(1-x)^{n}=\frac{n x}{(1+y)^{n}}<\frac{n x}{(1 / 2) n(n-1) y^{2}}=\frac{2 x}{y^{2}(n-1)}
$$

By the Squeeze Theorem, the 2-tail of $\left(g_{n}\right)$ converges to zero. By Theorem 3.1.9, $\lim \left(g_{n}-0\right)=0$, so $\left(g_{n}\right)$ converges to $g(x)=0$ on $x \in[0,1]$.

We see that $g_{n}^{\prime}(x)=n(1-x)^{n-1}[1-(n+1) x]$. Setting $g_{n}\left(x_{0}\right)=0$, we see that g_{n} is at an absolute maximum at $x_{0}=1 /(n+1)$. We then have $g_{n}\left(x_{0}\right)=(n /(n+1))^{n+1}<1$. Therefore, $0 \leq g_{n}(x)<1$ for all $x \in[0,1]$, from which it follows that $\left\|g_{n}\right\|_{[0,1]}<1$ for all $n \in \mathbb{N}$. Since g_{n} is continuous on $[0,1]$, each $g_{n} \in \mathcal{R}[0,1]$; further, $g \in \mathcal{R}[0,1]$. Applying Theorem 8.2.5, we infer that $\int_{0}^{1} g=0=\lim \int_{0}^{1} g_{n}$.

Note, however, that $\left(g_{n}\right)$ does not uniformly converge on $[0,1]$ (hence the power of Theorem 8.2.5). Suppose $0<\epsilon<$ $1 / e$. Let $\left(x_{k}\right)$ be a sequence on $[0,1]$ where $x_{k}=1 / k$ and $n_{k}=k$ for all $k \in \mathbb{N}$. We then have:

$$
\left|g_{n_{k}}\left(x_{k}\right)\right|=n_{k} x_{k}\left(1-x_{k}\right)_{k}^{n}=\left(1-\frac{1}{k}\right)^{k}=\frac{1}{e}>\epsilon,
$$

where we have used the result from Exercise 3.3.12(d). By Lemma 8.1.5, $\left(g_{n}\right)$ does not uniformly converge on $[0,1]$.

Problem 8.2-17. Let $f_{n}(x):=1$ for $x \in(0,1 / n)$ and $f_{n}(x):=0$ elsewhere on $[0,1]$. Show that $\left(f_{n}\right)$ is a decreasing sequence of discontinuous functions that converge to a continuous limit function, but the convergence is not uniform on $[0,1]$

Solution: Clearly f_{n} is discontinuous at $x=0$ and $x=1 / n$ for all $n \in \mathbb{N}$.
Let $x \in[0,1]$ and $n \in \mathbb{N}$. Note that $1 /(n+1)<1 / n$. If $x \in(0,1 /(n+1))$, then $f_{n}(x)=f_{n+1}(x)=1$. If $x \in[0,1] \backslash(0,1 / n)$, then $f_{n}(x)=f_{n+1}(x)=0$. If $x \in[1 /(n+1), 1 / n)$, then $f_{n}(x)=1>f_{n+1}(x)=0$. Therefore, $\left(f_{n}\right)$ is a decreasing sequence of discontinuous functions.

Let $x \in[0,1]$ and $\epsilon>0$ be given. Suppose $K(\epsilon)=2 / x$. If $n \geq K(\epsilon)$, then $1 / n=x / 2<x$, so $f_{n}(x)=0$. Therefore, $\left|f_{n}(x)-0\right|=0<\epsilon$ for all $x \in[0,1]$. It follows that $\left(f_{n}\right)$ converges pointwise to $f(x)=0$ on $[0,1]$.

The sequence does not, however, converge uniformly on this interval. Suppose $\left(x_{k}\right)$ is a sequence on $[0,1]$ where $x_{k}=1 /(2 k)$ and $n_{k}=k$ for $k \in \mathbb{N}$. Let $\epsilon=1 / 2$. Then $\left|f_{n_{k}}\left(x_{k}\right)-0\right|=f_{k}(1 /(2 k)=1>\epsilon$ because $0<1 /(2 k)<1 / k$ for all $k \in \mathbb{N}$. By Lemma 8.1.5, $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$.

Problem 8.2-18. Let $f_{n}(x):=x^{n}$ for $x \in[0,1], n \in \mathbb{N}$. Show that $\left(f_{n}\right)$ is a decreasing sequence of continuous functions that converges to a function that is not continuous, but the convergence is not uniform on $[0,1]$.

Solution: Clearly all f_{n} are continuous on $[0,1]$. If $x \in[0,1]$, then $f_{n+1}(x)=x^{n+1}=x \cdot x^{n}=x f_{n}(x) \leq f_{n}(x)$. Accordingly, $\left(f_{n}\right)$ is a decreasing sequence of continuous functions.

If $x \in[0,1)$, then $\lim f_{n}(x)=\lim x^{n}=0$ by Example 3.1.11(b). If $x=1$, then $\lim f_{n}(x)=\lim 1^{n}=1$. Therefore, $\left(f_{n}\right)$ converges on $[0,1]$ to:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in[0,1) \\
1 & \text { for } & x=1
\end{array}\right.
$$

Obviously f is discontinuous at $x=1$.
We will show that $\left\|f_{n}-f\right\|_{[0,1]}=1$ in all cases. Let $n \in \mathbb{N}$ be arbitrary. Now observe that f_{n} is bounded above by 1 on $[0,1]$. Clearly $\left|f_{n}(1)-f(1)\right|=0$, so for the uniform norm to be greater than zero, we must look on $[0,1)$. Let $\epsilon \in(0,1)$. If we solve $1-\epsilon<x^{n}$, then $x>(1-\epsilon)^{1 / n}$. Since $(1-\epsilon)^{1 / n}<1$, we can choose $x_{0} \in\left((1-\epsilon)^{1 / n}, 1\right)$. We then have $1-\epsilon<f_{n}\left(x_{0}\right)$. It follows that $1=\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in[0,1]\right\}$. Therefore, $\lim \left\|f_{n}-f\right\|_{[0,1]}=1$. We conclude that $\left(f_{n}\right)$ does not uniformly converge on $[0,1]$.

Problem 8.2-19. Let $f_{n}(x):=x / n$ for $x \in[0, \infty), n \in \mathbb{N}$. Show that $\left(f_{n}\right)$ is a decreasing sequence of continuous functions that converges to a continuous limit function, but the convergence is not uniform on $[0, \infty)$.

Solution: Each f_{n} is obviously continuous on the interval of interest. Let $n \in \mathbb{N}$ and $x \in[0, \infty)$. Because $f_{n}(x)=x / n \geq$ $x /(n+1)=f_{n+1}(x)$, the sequence $\left(f_{n}\right)$ is a decreasing sequence of continuous functions.

Now let $\epsilon>0$ be given. Let $K(\epsilon)=2 x / \epsilon$. If $n \geq K(\epsilon)$, then $\left|f_{n}(x)-0\right|=x / n \leq \epsilon / 2<\epsilon$. Therefore, $\lim f_{n}(x)=0$ for all $x \in[0, \infty)$. The sequence $\left(f_{n}\right)$ thus converges pointwise to $f(x)=0$ on $[0, \infty)$.

Each f_{n} is obviously unbounded on $[0, \infty)$; hence, for all $n \in \mathbb{N}$, the uniform norm $\left\|f_{n}-f\right\|_{[0, \infty)}=\infty$ and is therefore divergent. Consequently, $\left(f_{n}\right)$ does not uniformly converge on $[0, \infty)$.

Problem 8.2-20. Give an example of a decreasing sequence $\left(f_{n}\right)$ of continuous functions on $[0,1)$ that converges to a continuous limit function, but the convergence is not uniform on $[0,1)$

Solution: The sequence where:

$$
f_{n}(x)=\frac{1}{n(1-x)}
$$

for all $n \in \mathbb{N}$ fits the bill. Notice that f_{n} extends to infinity as $x \rightarrow 1$.
Clearly, each f_{n} is continuous on $[0,1)$. In addition, for any $n \in \mathbb{N}$ and $x \in[0,1)$, we have $f_{n}(x)=1 /[n(1-$ $x)]>1 /[(n+1)(1-x)]=f_{n+1}(x)$. Therefore, $\left(f_{n}\right)$ is a decreasing sequence of continuous functions. Moreover, $\lim 1 /[n(1-x)]=1 /(1-x) \lim 1 / n=0$. Accordingly, $\left(f_{n}\right)$ converges pointwise to $f(x)=0$ on $[0,1)$, which is continuous on that interval.

But the sequence does not uniformly converge on $[0,1)$. As with the sequence in exercise $8.2-19$, each f_{n} is unbounded. Assume for any $n \in \mathbb{N}$ there is an $M_{n}>0$ such that $f_{n}(x) \leq M_{n}$. Let $x_{0}=1-1 /\left(2 M_{n} n\right) \in[0,1)$. It follows that $f_{n}\left(x_{0}\right)=2 M_{n}>M_{n}$. Therefore, f_{n} is unbounded on $[0,1)$. As a result, $\left\|f_{n}-f\right\|_{[0,1)}=\infty$, from which it follows that the limit of the uniform norm is divergent. The sequence therefore does not uniformly converge on $[0,1)$. This result does not conflict with Dini's Theorem, however, because the interval of interest here is half-open, whereas Dini's Theorem requires a closed, bounded interval.

Section 8.3

Problem 8.3-5. If $x \geq 0$ and $n \in \mathbb{N}$, show that:

$$
\frac{1}{x+1}=1-x+x^{2}-x^{3}+\cdots+(-x)^{n-1}+\frac{(-x)^{n}}{1+x}
$$

Use this to show that:

$$
\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n} \frac{x^{n}}{n}+\int_{0}^{x} \frac{(-t)^{n}}{1+t} d t
$$

and that:

$$
\left|\ln (x+1)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n} \frac{x^{n}}{n}\right)\right| \leq \frac{x^{n+1}}{n+1}
$$

Solution: The first part can be easily shown by multiplying the right-hand side of the expression by $(1+x) /(1+x)$.
Now let $f(x)=\ln (1+x)$, so $f^{\prime}(x)=1 /(1+x)$ on $(-1, \infty)$. Clearly, f is continuous on $[0, \infty)$. If $x \geq 0$, then f^{\prime} is continuous on $[0, x]$, from which it follows that $f^{\prime} \in \mathcal{R}[0, x]$. By the Fundamental Theorem of Calculus:

$$
\begin{gathered}
f(x)-f(0)=\ln (1+x)=\int_{0}^{x} f^{\prime}(x) d x \\
=\int_{0}^{x}\left[1-x+x^{2}-x^{3}+\cdots+(-x)^{n-1}\right] d x+\int_{0}^{x} \frac{(-t)^{n}}{1+t} d t \\
=\sum_{k=0}^{n-1}(-1)^{k} \frac{x^{k+1}}{k+1}+\int_{0}^{x} \frac{(-t)^{n}}{1+t} d t
\end{gathered}
$$

which is what we set out to prove for the second part.

For the third part, rearrange the previous expression and take the absolute value to get:

$$
\left|\ln (1+x)-\sum_{k=0}^{n-1}(-1)^{k} \frac{x^{k+1}}{k+1}\right|=\left|\int_{0}^{x} \frac{(-t)^{n}}{1+t} d t\right|=\int_{0}^{x} \frac{|t|^{n}}{1+t} d t
$$

Observe that $|t|^{n} /(1+t) \leq|t|^{n}$ for $t \geq 0$. Applying Theorem 7.1.5(c), we have:

$$
\left|\ln (1+x)-\sum_{k=0}^{n-1}(-1)^{k} \frac{x^{k+1}}{k+1}\right| \leq \int_{0}^{x}|t|^{n} d t=\frac{x^{n+1}}{n+1}
$$

Problem 8.3-8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$. Show that there exists $K \in \mathbb{R}$ such that $f(x)=K e^{x}$ for all $x \in \mathbb{R}$.

Solution: If $f(0) \neq 0$, let $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(x)=f(x) / f(0)$. It follows that $g^{\prime}(x)=f^{\prime}(x) / f(0)=g(x)$ and $g(0)=1$. By Theorem 8.3.4, $g(x)=e^{x}$ because the function with both these properties is unique. Therefore $f(x)=f(0) g(x)=K e^{x}$ where $K=f(0)$.

Now suppose $f(0)=0$. It can be easily shown by induction that $f^{(n)}=f$ for all $n \in \mathbb{N}$. Therefore, $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Let $x \in \mathbb{R}$ be given. Applying Taylor's Theorem at $x_{0}=0$, we have for any n :

$$
f(x)=f(0)+\sum_{j=1}^{n} \frac{f^{(j)}(0)}{j!} x^{j}+\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

for some c between 0 and x_{0} (non-inclusive).
Now let $L>0$ be such that $|f(x)| \leq L$ for all $x \in[0, x]$. It follows that $|f(x)| \leq K|x|^{n+1} /(n+1)$!. Since $\lim |x|^{n+1} /(n+1)!=0$ by Exercise 3.2-19(c), we infer that $\lim |f(x)|=0$. Since x is arbitrary, we conclude that $f(x)=0$ for all $x \in \mathbb{R}$. Therefore, $f(x)=0 \cdot e^{x}=0$.

