
Bartle - Introduction to Real Analysis - Chapter 8 Solutions

Section 8.1

Problem 8.1-2. Show that lim(nx/(1 + n2x2)) = 0 for all x ∈ R.

Solution: For x = 0, we have lim(nx/(1 + n2x2)) = lim(0/1) = 0, so f(0) = 0. For x ∈ R\{0}, observe that
0 < nx/(1 + n2x2) < nx/(n2x2) = 1/(nx). By the Squeeze Theorem, lim(nx/(1 + n2x2)) = 0. Therefore, f(x) = 0 for
all x ∈ R.

Problem 8.1-3. Evaluate lim(nx/(1 + nx)) for x ∈ R, x ≥ 0.

Solution: For x = 0, we have lim(nx/(1 + nx)) = lim(0/1) = 0, so f(0) = 0.
For x ∈ (0,∞), we have:

lim

(
nx

1 + nx

)
= lim

(
1

1/nx+ 1

)
=

1

1/x lim(1/n) + 1
= 1,

from which it follows that f(x) = 1 for x ∈ (0,∞). Therefore,

f(x) =

{
0 for x = 0
1 for x > 0.

Problem 8.1-4. Evaluate lim(xn/(1 + xn)) for x ∈ R, x ≥ 0.

Solution: For 0 ≤ x < 1, we have lim(xn/(1 + xn)) = 0/1 = 0 by Example 3.1.11(b), so f(x) = 0. For x = 1, we have
lim(xn/(1 + xn)) = 1/2, so f(1) = 1/2. For x > 1, we have lim(xn/(1 + xn)) = lim(1/(1 + 1/xn) = 1, so f(x) = 1.*
Accordingly,

f(x) =

 0 for 0 ≤ x < 1
1
2 for x = 1
1 for x > 1.

* Note that for 1/xn with fixed x, given ε > 0, if K(ε) = logx(2/ε), then for n ≥ K(ε), we have |1/xn| = 1/xn <
1/(2/ε) = ε/2 < ε. Therefore, lim(1/xn) = 0.

Problem 8.1-9. Show that lim(x2e−nx) = 0 and that lim(n2x2e−nx) = 0 for x ∈ R, x ≥ 0.

Solution: Part (i): For x = 0, we have lim(x2e−nx) = lim(0 ·1n) = 0, so f(0) = 0. For x > 0, observe that 0 < e−x < 1.
From Example 3.1.11(b), it follows that lim(x2e−nx) = x2 lim(e−x)n = 0. As a result, f(x) = 0 for x ≥ 0.

Part (ii): We can establish limit of (fn) = (n2x2e−nx) using L’Hop̂ıtal’s Rule and the Sequential Criterion for limits
of functions. Let g(m) = m2x2e−mx = m2x2/emx. For x ∈ (0,∞), the limit as m→∞ is in ∞/∞ indeterminate form,
so we apply L’Hop̂ıtal’s Rule twice:

lim
n→∞

m2x2

emx
= lim
m→∞

2mx2

xemx
= lim
m→∞

2m2

m2emx
= lim
m→∞

2

emx
= 0.

By the Sequential Criterion for limits of functions (Theorem 4.1.8), the limit of g above implies that for any sequence
(yn) on (0,∞) that converges to infinity, the sequence (g(yn)) converges to 0. If yn = n for all n ∈ N, then (g(yn)) =
(n2x2e−nx), which is equal to (fn). It follows that if x > 0, then limn2x2e−nx = 0.

For x = 0, clearly limn2x2e−nx = lim0 = 0. Accordingly, if x ∈ [0,∞), then (n2x2e−nx) converges to f(x) = 0.

Problem 8.1-10. Show that lim(cos(πx)2n) exists for all x ∈ R. What is its limit?



Solution: If x ∈ Z, then cos(πx)2n = (±1)2n = 1, so lim(cos(πx)2n) = 1. Therefore, f(x) = 1.
If x ∈ R\Z, then 0 ≤ cos2(πx) < 1, so by Example 3.1.11(b), lim[cos2(πx)]n = 0. Therefore:

f(x) =

{
0 for x ∈ Z
1 for x ∈ R\Z.

Problem 8.1-10. Show that if a > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval [0, a], but
is not uniform on the interval [0,∞).

Solution: Let a > 0 and A = [0, a]. Because fn is continuous, it is bounded on A by Theorem 5.3.2. Suppose f(x) = 0
for x ∈ A. Then ‖fn − 0‖A = sup{x/(x + n) : x ∈ A} = a/(a + n) because fn is increasing on A. Therefore,
lim ‖fn − 0‖A = lim a/(a+ n) = 0. By Lemma 8.1.8, (fn) converges uniformly to f(x) = 0 on A.

Now let A = [0,∞]. As shown in Theorem 1 below, if (fn) is uniformly convergent on A, then it must converge
uniformly to f(x) = 0 because this sequence is pointwise convergent to that function on A. We see that ‖fn − 0‖A =
sup{|x/(x + n)| : x ≥ 0} = 1. This is because 0 < x/(x + n) < 1, and for 0 < δ < 2, if x = n(2/δ − 1), then
1−δ < x/(x+n) = 1−δ/2 < 1. Therefore, 1 is the supremum of {|x/(x+n)| : x ≥ 0}. Consequently, lim ‖fn − 0‖A = 1.
By Lemma 8.1.8, (fn) does not uniformly converge to any f on [0,∞).

Theorem 1. Suppose (fn) converges pointwise to f on A ⊆ R. If (fn) does not uniformly converge to f on A, then (fn)
does not uniformly converge to any function on A.

Proof. Suppose there is a function f ′ : A → R to which (fn) converges uniformly on A. Now assume that f ′ 6= f .
It follows that (fn) must converges pointwise to f ′ on A. However, by Theorem 3.1.4, the limit function f is uniquely
determined, so we have a contradiction if f ′ 6= f . Therefore, it must be that f = f ′. Accordingly, if (fn) does not converge
uniformly to f on A, it does not converge uniformly to any function on A.

Problem 8.1-12. Show that if a > 0, then the convergence of the sequence in Exercise 2 is uniform on the interval [a,∞], but
is not uniform on the interval [0,∞).

Solution: Let a > 0 and A = [a,∞). From Exercise 8.1.2, (fn) converges pointwise to f(x) = 0 on A. Observe that
f ′n(x) = n(1− n2x2)/(1 + n2x2)2. We see that if x0 = 1/

√
n, then f ′n(x0) = 0. On either side of this point, f ′n(x) > 0

for x < x0 and f ′n(x) < 0 for x > x0. By Theorem 6.2.8, the maximum of fn on [0,∞) is at x0. Moreover, it is clear that
f ′n decreases on (x0,∞). It follows that the maximum of fn on A is b = sup{1/

√
n, a}. We then have:∥∥∥∥ nx

1 + n2x2
− 0

∥∥∥∥
A

= sup

{∣∣∣∣ nx

1 + n2x2

∣∣∣∣ : x ∈ A} =
bn

1 + n2b2
,

Since 0 < bn/(1 + n2b2) < bn/(n2b2) = 1/(nb) and lim 1/(nb) = 0, it follows from the Squeeze Theorem that
lim ‖fn − f‖A = 0. By Lemma 8.1.8, (fn) uniformly converges to f(x) = 0 on [a,∞). (Note that the limit above holds
true even though b may be a function of n. For the sake of brevity, I cavalierly omitted this point in applying the Squeeze
Theorem.)

Now suppose A = [0,∞). Let (xk) be a sequence on A where xk = 1/k and nk = k. For ε = 1/4:

|fnk
(xk)− f(xk)| =

k(1/k)

1 + k2(1/k2)
=

1

2
> ε.

From Lemma 8.1.5, it follows that (fn) does not converge uniformly on [0,∞).

Problem 8.1-13. Show that if a > 0, then the convergence of the sequence in Exercise 3 is uniform on the interval [a,∞), but
is not uniform on the interval [0,∞).

Solution: Let a > 0 and A = [a,∞). We know that (fn) converges pointwise to f(x) = 1 on A. Observe that:

‖fn(x)− 1)‖A = sup

{∣∣∣∣ nx

1 + nx
− 1

∣∣∣∣ = ∣∣∣∣ −11 + nx

∣∣∣∣ = 1

1 + nx
: x ∈ A

}
=

1

1 + an
. (1)

It follows that lim ‖fn − f‖A = 0. Therefore, (fn) uniformly converges to f(x) = 1 on [a,∞).
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Now let A = [0,∞). We then have:

‖fn(x)− f(x)‖A = sup

({∣∣∣∣ nx

1 + nx
− 1

∣∣∣∣ : x ∈ (0,∞)

}
∪
{∣∣∣∣ n · 0

1 + n · 0
− 0

∣∣∣∣}) = 1. (2)

Consequently, lim ‖fn − f‖A = 1, so by Lemma 8.1.7 (fn) does not converge uniformly on A.

Problem 8.1-14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the interval [0, b],
but is not uniform on the interval [0, 1].

Solution: Let b ∈ (0, 1) be given and A = [0, b]. We then have:∥∥∥∥ xn
1 + xn

− 0

∥∥∥∥
A

= sup

{∣∣∣∣ xn

1 + xn

∣∣∣∣ : x inA} =
bn

1 + bn
,

because fn is increasing on A (since f ′n > 0 on that interval). Clearly lim ‖xn/(1 + xn)− 0‖A = (lim bn)/(1+ lim bn) = 0
since n ∈ (0, 1). Therefore, (fn) converges uniformly to f(x) = 0 on x ∈ [0, b].

Now let A = [0, 1]. Let (xk) be a sequence in A where xk = 2−1/k and nk = k. It follows that for any ε > 0 where
ε < 1/3:

|fnk
(xk)− f(xk)| =

(2−1/k)k

1 + (2−1/k)k
=

1/2

1 + 1/2
= 1/3 > ε.

By Lemma 8.1.5, (fn) does not uniformly converge on [0, 1].

Problem 8.1-15. Show that if a > 0, then the convergence of the sequence in Exercise 5 is uniform on the interval [a,∞), but
is not uniform on the interval [0,∞).

Solution: Suppose a > 0 and A = [a,∞). From Exercise 8, we know that (fn) converges pointwise to f(x) = 0 on A. It is
clear that |sin(nx)| ≤ 1. Therefore, 0 ≤ sup{|sin(nx)/(1 + nx)− 0| : x ∈ A} ≤ 1/(1 + an) < 1/an. Since lim 1/an = 0,
it follows from the Squeeze Theorem that lim ‖fn − f‖A = 0. By Lemma 8.1.8, (fn) converges uniformly to f(x) = 0.

Now let A = [0,∞). Let (xk) be a sequence on A where xk = π/(2k) and nk = k. For any positive ε where
ε < 1/(1 + π/2): ∣∣∣∣ sin(k(π/(2k)))1 + k(π/(2k))

− 0

∣∣∣∣ = ∣∣∣∣ sinπ/21 + π/2

∣∣∣∣ = 1

1 + π/2
> ε.

It follows that (fn) does not uniformly converge on [0,∞).

Problem 8.1-19. Show that the sequence (x2e−nx) converges uniformly on [0,∞).

Solution: Let A = [0,∞). From Exercise 8.1.9, (fn) = (x2e−nx) converges pointwise to f(x) = 0. Note that f ′n(x) =
e−nx(2x− nx2). The roots of f ′n are at 0 and 2/n. A simple calculation shows that fn(2/n) = 4/(en)2 > fn(0) = 0. In
addition, f ′n(x) > 0 for 0 < x < 4/n and f ′n(x) < 0 for x > 4/n. By Theorem 6.2.8, fn is at an absolute maximum at
x = 4/n.

As a result, 0 < ‖fn − f‖A = fn(2/n) = 4/(en)2 < 4/n. Because lim(4/n) = 0, it follows from the Squeeze Theorem
that lim ‖fn − f‖A = 0. Therefore, (fn) converges uniformly to f(x) = 0 on A.

Problem 8.1-21. Show that if (fn), (gn) converge uniformly on the set A to f , g, respectively, then (fn + gn) converges
uniformly on A to f + g.

Solution: For ε > 0, there are K ′(ε/2), K ′′(ε/2) > 0 such that if n ≥ K ′(ε/2), then ‖fn − f‖A < ε/2, and if n ≥
K ′′(ε/2), then ‖gn − g‖A < ε/2. Let K(ε) = sup{K ′(ε/2),K ′′(ε/2)}. By the Triangle Inequality and Theorem 2 below,
for n ≥ K(ε):
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|‖(fn + gn)− (f + g)‖A − 0| ≤ ‖fn − f‖A + ‖gn − g‖A < ε/2 + ε/2 = ε.

It follows that lim ‖(fn + gn)− (f + g)‖A = 0, so (fn + gn) converges uniformly on A to f + g.

Theorem 2. Given any φ, ψ : A→ R on A ⊆ R, ‖φ+ ψ‖A ≤ ‖φ‖A + ‖ψ‖A.

Proof. Let s = ‖φ+ ψ‖A, in which case s = sup{|φ(x) + ψ(x)| : x ∈ A}. Now let t1 = sup{|ψ(x)| : x ∈ A} and
t2 = sup{|ψ(x)| : x ∈ A}. If x ∈ A, then t1 + t2 ≥ |φ(x)| + |ψ(x)| ≥ |φ(x) + ψ(x)|. It follows that t1 + t2 is an upper
bound of {|φ(x) + ψ(x)| : x ∈ A} and therefore is greater than or equal to s. Since t1 + t2 = ‖φ‖A + ‖ψ‖A, we have
shown the desired inequality.

Problem 8.1-22. Show that if fn(x) := x+ 1/n and f(x) := x, then (fn) converges uniformly on R to f , but the sequence
(f2n) does not converge uniformly on R. (Thus the product of uniformly convergent sequences of functions may not coverge
uniformly.)

Solution: Note that in contrast to the functions in Exercise 8.1-23, fn is not bounded on R.
For (fn), we have lim ‖x+ 1/n− x‖A = lim ‖1/n‖A = lim1/n = 0. Therefore, (fn) converges uniformly to f on R.
Note that lim f2n = lim(x2 + 2x/n+ 1/n2) = x2 + lim(2x/n+ 1/n2) = x2. Accordingly, (f2n) converges pointwise to

f2 on R.
We will now show that (f2n) does not uniformly converge on R. Let (xk) be a sequence on R such that xk = k and

nk = k. We then have for all k ∈ N:

∣∣f2n − f2∣∣ = ∣∣∣∣2xkk +
1

k2

∣∣∣∣ = ∣∣∣∣2− 1

k2

∣∣∣∣ ≥ 1.

For positive ε where ε ≤ 1, we have
∣∣f2n − f2∣∣ ≥ ε. By Lemma 8.1.5, (f2n) does not uniformly converge on R.

Problem 8.1-23. Let (fn), (gn) be sequences of bounded functions on A that converge uniformly on A to f , g, respectively.
Show that (fngn) converges uniformly on A to fg.

Solution: In order to show the uniform convergence of (fngn) on A, we can rewrite the limit we seek under Lemma 8.1.8
as:

lim ‖fngn − fg‖A = lim ‖(fngn − fgn)− (fg − fgn)‖A = lim ‖gn(fn − f) + f(gn − g)‖A .

Since fn is bounded on A, it must be that f is bounded on A by some M1 ≥ 0. We can prove this by contradiction.
If we assume this were not true, then for some x ∈ A, it would follow that |fn(x)− f(x)| is unbounded, resulting in the
contradiction that the supremum of {|fn(x)− f(x)| : x ∈ A} does not exist.

It must also be that (gn) is bounded by some M2 ≥ 0 for all x ∈ A. This follows from the fact that lim gn must exist
because (gn) must pointwise converge to g on A. Theorem 3.2.2 then requires that, (gn) be bounded.

We may now establish boundaries on ‖fngn − fg‖A = sup{|fngn − fg| : x ∈ A}. We have from the Triangle Inequality:

|fngn − fg| = |gn(fn − f) + f(gn − g)| ≤M2 |fn − f |+M1 |gn − g| .

It follows that:
0 ≤ sup{|fngn − fg| : x ∈ A} < M2 ‖fn − f‖A +M1 ‖gn − g‖A .

By hypothesis:

lim (M2 ‖fn − f‖A +M1 ‖gn − g‖A) =M2 lim ‖fn − f‖A +M1 lim ‖gn − g‖A =M2 · 0 +M1 · 0 = 0.

By the Squeeze Theorem, lim ‖fngn − fg‖A = 0. Therefore, (fngn) converges uniformly to fg on A.

Problem 8.1-24. Let (fn) be a sequence of functions that converges uniformly to f on A and that satisfies |fn(x)| ≤ M for
all n ∈ N and for all x ∈ A. If g is continuous on the interval [−M,M ], show that the sequence (g ◦ fn) converges uniformly
to (g ◦ f) on A.
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Solution: Let ε > 0 be given. Since g is continuous on [−M,M ], there is a δ > 0 such that if y ∈ [−M,M ] and
|y − c| < δ, then |g(y)− g(c)| < ε/2. We will let fn and f take the place of y and c to establish our result. Because (fn)
uniformly converges to f on A, there is a K(δ) > 0 such that if n ≥ K(δ), then:

0 ≤ ‖fn − f‖A = sup{|fn(x)− f(x)| : x ∈ A} < δ.

Accordingly, if n ≥ K(δ) and x ∈ A, then |fn(x)− f(x)| < δ. It follows from the continuity of g that:

|(g ◦ fn)(x)− (g ◦ f)(x)| = |g(fn(x))− g(f(x)| < ε/2.

Because this is true for all x ∈ A, we have established ε/2 as an upper bound of ‖g ◦ fn − g ◦ f‖A for n ≥ K(δ).
Consequently, |‖g ◦ fn − g ◦ f‖A − 0| ≤ ε/2 < ε for n ≥ K(δ), from which it follows that lim ‖g ◦ fn − g ◦ f‖A = 0. We
conclude that (g ◦ fn) uniformly converges to g ◦ f on A.

Section 8.2

Problem 8.2-2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions that converges
nonuniformly to a continuous limit.

Solution: If x = 0, then lim fn(x) = lim 0 = 0. If x ∈ [0, 2], then let ε > 0 and K(ε, x) = 2/x. For n = K(ε, x), we have
|fn(x)− 0| =

∣∣n2(x− 2/n)
∣∣ = 0 < ε. If n > K(ε, x), then fn(x) = 0, from which follows that |fn(x)− 0| < ε. We then

infer that lim fn(x) = 0.
We will now prove that (fn) is does not converge uniformly on [0, 2]. Let (xk) be a sequence on [0, 2] where xk = 1/k

and let nk = k, in each case for all k ∈ N. For a given 0 < ε < 1, we have |fnk
(xk)− 0| = k2(1/k) = k ≥ 1 > ε. By

Lemma 8.1.5, (fn) does not converge uniformly on [0, 2].

Problem 8.2-4. Suppose (fn) is a sequence of continuous functions on an interval I that converges uniformly on I to a function
f . If (xn) ⊆ I converges to xo ∈ I, show that lim(fn(xn)) = lim f(x0).

Solution: By Theorem 8.2.2, f is continuous on I, so limx→x0
f(x) = f(x0). Applying the Sequential Criterion (Theorem

5.1.3), since (xn) converges to x0, it follows that lim f(xn) = f(x0). For a given ε > 0, there is a K ′(ε/2) ∈ N such that
if n ≥ K ′(ε/2), then:

|f(xn)− f(x0)| <
ε

2
.

Because (fn) converges uniformly on I, there is also a K ′′(ε/2) ∈ N such that if n ≥ K ′′(ε/2), then for x = xn for
any n ∈ N:

|fn(xn)− f(xn)| <
ε

2
.

Let K(ε) = sup{K ′(ε/2),K ′′(ε/2)}, We then have for n ≥ K(ε):

|fn(xn)− f(x0)| = |(fn(xn)− f(xn)) + (f(xn)− f(x0)|

≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)| <
ε

2
+
ε

2
= ε

Therefore, lim fn(xn) = f(x0).

Problem 8.2-5. Let f : R → R be uniformly continuous on R and let fn(x) := f(x + 1/n) for x ∈ R. Show that (fn)
converges uniformly on R to f .

Solution: Because f is uniformly continuous on R, for any given ε > 0, there is a δ(ε) > 0 such that for any x, y ∈ R, if
|x− u| < δ(ε), then |f(x)− f(u)| < ε. Let K(ε) = 2/δ(ε). If n ≥ K(ε), then |(x+ 1/n)− x| ≤ δ(ε)/2 < δ(ε), in which
case |fn(x)− f(x)| = |f(x+ 1/n)− f(x)| < ε. Therefore:
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‖fn − f‖R = sup{|fn(x)− f(x)| : x ∈ R} ≤ ε.

Since ε is arbitrary, lim ‖fn − f‖R = 0, and (fn) uniformly converges to f on R.

Problem 8.2-7. Suppose the sequence (fn) converges uniformly to f on the set A, and suppose that each fn is bounded on
A. (That is, for each n there is a constant Mn such that |fn(x)| ≤ Mn for all x ∈ A.) Show that the function f is bounded
on A.

Solution: For any ε > 0, there is a K ∈ N such that if n ≥ K, then sup{|fn(x)− f(x)| : x ∈ A} < ε. Consequently, ε is
an upper bound on this set, so |fn(x)− f(x)| < ε for all x ∈ A. Since ε is arbitrary, fn(x) = f(x) for n ≥ K. Because
fK is bounded on A, it follows that |f(x)| ≤MK for all x inA. The function f is therefore bounded on A.

Problem 8.2-10. Let gn(x) := e−nx/n for x ≥ 0, n ∈ N. Examine the relationship between lim(gn) and lim(g′n).

Solution: Observe that 0 < e−nx ≤ 1 for all x ∈ [0,∞), so 0 < e−nx/n ≤ 1/n. Therefore, lim e−nx/n = 0 for x ∈ [0,∞).
Because gn is bounded above by 1/n, it follows from the Squeeze Theorem that lim ‖e−nx/n− 0‖R≥0

= 0. Therefore,

(gn) converges uniformly to g(x) = 0 on [0,∞).
We then have g′n(x) = −e−nx. If x = 0, then lim[−e−nx] = −1. If x ∈ (0,∞), then because 0 < e−x < 1, it follows

from the Squeeze Theorem that lim[−e−nx] = − lim(e−x)n) = 0. Therefore, (g′n) converges to g′(0) = −1 and g′(x) = 0
for x ∈ (0,∞). Note that g′ is discontinuous at x = 0.

Now let ε be given where 0 < ε < 1/2. Suppose (xk) is a sequence on [0,∞) where xk = − ln(2ε)/k (note that the
allowed range of ε ensures xk > 0 for all k ∈ N) and nk = k. Then

∣∣−e−kxk
∣∣ = eln 2ε = 2ε > ε for all k ∈ N. By Lemma

8.1.5, (g′n) does not uniformly converge on [0,∞).

Problem 8.2-11. Let I := [a, b] and let (fn) be a sequence of functions on I → R that converges on I to f . Suppose that each

derivative f ′n is continuous on I and that the sequence (f ′n) is uniformly convergent to g on I. Prove that f(x)−f(a) =
∫ b
a
g(t)dt

and that f ′(x) = g(x) for all x ∈ I.

Solution: Because (fn) converges to f on the bounded interval I and (f ′n) exists for n ∈ N and converges uniformly to g,
it follows from Theorem 8.2.3 that (fn) converges uniformly to some function. This function must be f because the limit
of (fn) is unique. It further follows from Theorem 8.2.3 that f ′(x) = g(x) for all x ∈ I.

Now let x ∈ [a, b]. Given that (f ′n) converges uniformly on I, it must converge uniformly on [a, x] (since this result has
not yet been proven, see Theorem 3 below). Because each f ′n is continuous on I, by the Lebesque Cirterion fn ∈ R[a, x].
Applying Theorem 8.2.4 and the fact that (f ′n) converges to g by hypothesis, we have:∫ x

a

g = lim

∫ x

a

f ′n =

∫ x

a

f ′,

and g ∈ R[a, x].
Since f ′ exists on all of I, f ′ is continuous on I. Applying the Fundamental Theorem of Calculus, we get:∫ x

a

g =

∫ x

a

f ′ = f(x)− f(a).

Theorem 3. Suppose (fn) converges uniformly to f on [a, b]. If γ ∈ [a, b], then (fn) also converges uniformly to f on
[a, γ].

Proof. By hypothesis, lim ‖fn − f‖[a,b] = 0. Observe that 0 ≤ ‖fn − f‖[a,γ] ≤ ‖fn − f‖[a,b] for all n ∈ N. By the Squeeze

Theorem, lim ‖fn − f‖[a,γ] = 0. The sequence (fn) therefore uniformly converges to f on [a, γ].

Problem 8.2-15. Let gn(x) := nx(1− x)n for x ∈ [0, 1], n ∈ N. Discuss the convergence of (gn) and (int
1
0gndx.

Solution: Observe that gn(0) = gn(1) = 0 for all n ∈ N. Now let x ∈ (0, 1). There is a y > 0 such that 1−x = 1/(1+y).
By the Binomial Theorem:
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(1 + y)n =

(
n

0

)
1 +

(
n

1

)
y +

(
n

2

)
y2 + · · ·+

(
n

n

)
yn >

1

2
n(n− 1)y2.

It follows that for n ≥ 2:

0 < nx(1− x)n =
nx

(1 + y)n
<

nx

(1/2)n(n− 1)y2
=

2x

y2(n− 1)
.

By the Squeeze Theorem, the 2-tail of (gn) converges to zero. By Theorem 3.1.9, lim(gn − 0) = 0, so (gn) converges
to g(x) = 0 on x ∈ [0, 1].

We see that g′n(x) = n(1 − x)n−1[1 − (n + 1)x]. Setting gn(x0) = 0, we see that gn is at an absolute maximum at
x0 = 1/(n + 1). We then have gn(x0) = (n/(n + 1))n+1 < 1. Therefore, 0 ≤ gn(x) < 1 for all x ∈ [0, 1], from which it
follows that ‖gn‖[0,1] < 1 for all n ∈ N. Since gn is continuous on [0, 1], each gn ∈ R[0, 1]; further, g ∈ R[0, 1]. Applying

Theorem 8.2.5, we infer that
∫ 1

0
g = 0 = lim

∫ 1

0
gn.

Note, however, that (gn) does not uniformly converge on [0, 1] (hence the power of Theorem 8.2.5). Suppose 0 < ε <
1/e. Let (xk) be a sequence on [0, 1] where xk = 1/k and nk = k for all k ∈ N. We then have:

|gnk
(xk)| = nkxk(1− xk)nk =

(
1− 1

k

)k
=

1

e
> ε,

where we have used the result from Exercise 3.3.12(d). By Lemma 8.1.5, (gn) does not uniformly converge on [0, 1].

Problem 8.2-17. Let fn(x) := 1 for x ∈ (0, 1/n) and fn(x) := 0 elsewhere on [0, 1]. Show that (fn) is a decreasing sequence
of discontinuous functions that converge to a continuous limit function, but the convergence is not uniform on [0, 1]

Solution: Clearly fn is discontinuous at x = 0 and x = 1/n for all n ∈ N.
Let x ∈ [0, 1] and n ∈ N. Note that 1/(n + 1) < 1/n. If x ∈ (0, 1/(n + 1)), then fn(x) = fn+1(x) = 1. If

x ∈ [0, 1]\(0, 1/n), then fn(x) = fn+1(x) = 0. If x ∈ [1/(n + 1), 1/n), then fn(x) = 1 > fn+1(x) = 0. Therefore, (fn)
is a decreasing sequence of discontinuous functions.

Let x ∈ [0, 1] and ε > 0 be given. Suppose K(ε) = 2/x. If n ≥ K(ε), then 1/n = x/2 < x, so fn(x) = 0. Therefore,
|fn(x)− 0| = 0 < ε for all x ∈ [0, 1]. It follows that (fn) converges pointwise to f(x) = 0 on [0, 1].

The sequence does not, however, converge uniformly on this interval. Suppose (xk) is a sequence on [0, 1] where
xk = 1/(2k) and nk = k for k ∈ N. Let ε = 1/2. Then |fnk

(xk)− 0| = fk(1/(2k) = 1 > ε because 0 < 1/(2k) < 1/k for
all k ∈ N. By Lemma 8.1.5, (fn) does not converge uniformly on [0, 1].

Problem 8.2-18. Let fn(x) := xn for x ∈ [0, 1], n ∈ N. Show that (fn) is a decreasing sequence of continuous functions that
converges to a function that is not continuous, but the convergence is not uniform on [0, 1].

Solution: Clearly all fn are continuous on [0, 1]. If x ∈ [0, 1], then fn+1(x) = xn+1 = x · xn = xfn(x) ≤ fn(x).
Accordingly, (fn) is a decreasing sequence of continuous functions.

If x ∈ [0, 1), then lim fn(x) = limxn = 0 by Example 3.1.11(b). If x = 1, then lim fn(x) = lim 1n = 1. Therefore,
(fn) converges on [0, 1] to:

f(x) =

{
0 for x ∈ [0, 1)
1 for x = 1.

Obviously f is discontinuous at x = 1.
We will show that ‖fn − f‖[0,1] = 1 in all cases. Let n ∈ N be arbitrary. Now observe that fn is bounded above by 1 on

[0, 1]. Clearly |fn(1)− f(1)| = 0, so for the uniform norm to be greater than zero, we must look on [0, 1). Let ε ∈ (0, 1).
If we solve 1 − ε < xn, then x > (1 − ε)1/n. Since (1 − ε)1/n < 1, we can choose x0 ∈ ((1 − ε)1/n, 1). We then have
1− ε < fn(x0). It follows that 1 = sup{|fn(x)− f(x)| : x ∈ [0, 1]}. Therefore, lim ‖fn − f‖[0,1] = 1. We conclude that

(fn) does not uniformly converge on [0, 1].

Problem 8.2-19. Let fn(x) := x/n for x ∈ [0,∞), n ∈ N. Show that (fn) is a decreasing sequence of continuous functions
that converges to a continuous limit function, but the convergence is not uniform on [0,∞).
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Solution: Each fn is obviously continuous on the interval of interest. Let n ∈ N and x ∈ [0,∞). Because fn(x) = x/n ≥
x/(n+ 1) = fn+1(x), the sequence (fn) is a decreasing sequence of continuous functions.

Now let ε > 0 be given. Let K(ε) = 2x/ε. If n ≥ K(ε), then |fn(x)− 0| = x/n ≤ ε/2 < ε. Therefore, lim fn(x) = 0
for all x ∈ [0,∞). The sequence (fn) thus converges pointwise to f(x) = 0 on [0,∞).

Each fn is obviously unbounded on [0,∞); hence, for all n ∈ N, the uniform norm ‖fn − f‖[0,∞) =∞ and is therefore

divergent. Consequently, (fn) does not uniformly converge on [0,∞).

Problem 8.2-20. Give an example of a decreasing sequence (fn) of continuous functions on [0, 1) that converges to a continuous
limit function, but the convergence is not uniform on [0, 1)

Solution: The sequence where:

fn(x) =
1

n(1− x)
,

for all n ∈ N fits the bill. Notice that fn extends to infinity as x→ 1.
Clearly, each fn is continuous on [0, 1). In addition, for any n ∈ N and x ∈ [0, 1), we have fn(x) = 1/[n(1 −

x)] > 1/[(n + 1)(1 − x)] = fn+1(x). Therefore, (fn) is a decreasing sequence of continuous functions. Moreover,
lim 1/[n(1−x)] = 1/(1−x) lim 1/n = 0. Accordingly, (fn) converges pointwise to f(x) = 0 on [0, 1), which is continuous
on that interval.

But the sequence does not uniformly converge on [0, 1). As with the sequence in exercise 8.2-19, each fn is unbounded.
Assume for any n ∈ N there is an Mn > 0 such that fn(x) ≤ Mn. Let x0 = 1 − 1/(2Mnn) ∈ [0, 1). It follows that
fn(x0) = 2Mn > Mn. Therefore, fn is unbounded on [0, 1). As a result, ‖fn − f‖[0,1) =∞, from which it follows that the

limit of the uniform norm is divergent. The sequence therefore does not uniformly converge on [0, 1). This result does not
conflict with Dini’s Theorem, however, because the interval of interest here is half-open, whereas Dini’s Theorem requires
a closed, bounded interval.

Section 8.3

Problem 8.3-5. If x ≥ 0 and n ∈ N, show that:

1

x+ 1
= 1− x+ x2 − x3 + · · ·+ (−x)n−1 + (−x)n

1 + x
.

Use this to show that:

ln(x+ 1) = x− x2

2
+
x3

3
− · · ·+ (−1)nx

n

n
+

∫ x

0

(−t)n

1 + t
dt

and that: ∣∣∣∣ln(x+ 1)−
(
x− x2

2
+
x3

3
− · · ·+ (−1)nx

n

n

)∣∣∣∣ ≤ xn+1

n+ 1
.

Solution: The first part can be easily shown by multiplying the right-hand side of the expression by (1 + x)/(1 + x).
Now let f(x) = ln(1 + x), so f ′(x) = 1/(1 + x) on (−1,∞). Clearly, f is continuous on [0,∞). If x ≥ 0, then f ′ is

continuous on [0, x], from which it follows that f ′ ∈ R[0, x]. By the Fundamental Theorem of Calculus:

f(x)− f(0) = ln(1 + x) =

∫ x

0

f ′(x)dx

=

∫ x

0

[
1− x+ x2 − x3 + · · ·+ (−x)n−1

]
dx+

∫ x

0

(−t)n

1 + t
dt.

=

n−1∑
k=0

(−1)k x
k+1

k + 1
+

∫ x

0

(−t)n

1 + t
dt,

which is what we set out to prove for the second part.
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For the third part, rearrange the previous expression and take the absolute value to get:∣∣∣∣∣ln(1 + x)−
n−1∑
k=0

(−1)k x
k+1

k + 1

∣∣∣∣∣ =
∣∣∣∣∫ x

0

(−t)n

1 + t
dt

∣∣∣∣ = ∫ x

0

|t|n

1 + t
dt.

Observe that |t|n /(1 + t) ≤ |t|n for t ≥ 0. Applying Theorem 7.1.5(c), we have:∣∣∣∣∣ln(1 + x)−
n−1∑
k=0

(−1)k x
k+1

k + 1

∣∣∣∣∣ ≤
∫ x

0

|t|n dt = xn+1

n+ 1
.

Problem 8.3-8. Let f : R → R such that f ′(x) = f(x) for all x ∈ R. Show that there exists K ∈ R such that f(x) = Kex

for all x ∈ R.

Solution: If f(0) 6= 0, let g : R→ R such that g(x) = f(x)/f(0). It follows that g′(x) = f ′(x)/f(0) = g(x) and g(0) = 1.
By Theorem 8.3.4, g(x) = ex because the function with both these properties is unique. Therefore f(x) = f(0)g(x) = Kex

where K = f(0).
Now suppose f(0) = 0. It can be easily shown by induction that f (n) = f for all n ∈ N. Therefore, f (n)(0) = 0 for all

n ∈ N. Let x ∈ R be given. Applying Taylor’s Theorem at x0 = 0, we have for any n:

f(x) = f(0) +

n∑
j=1

f (j)(0)

j!
xj +

f (n+1)(c)

(n+ 1)!
xn+1 =

f (n+1)(c)

(n+ 1)!
xn+1,

for some c between 0 and x0 (non-inclusive).

Now let L > 0 be such that |f(x)| ≤ L for all x ∈ [0, x]. It follows that |f(x)| ≤ K |x|n+1
/(n + 1)!. Since

lim |x|n+1
/(n+1)! = 0 by Exercise 3.2-19(c), we infer that lim |f(x)| = 0. Since x is arbitrary, we conclude that f(x) = 0

for all x ∈ R. Therefore, f(x) = 0 · ex = 0.
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