AWS Command Line Interface

User Guide for Version 2

dWS

_./‘7

AWS Command Line Interface User Guide for Version 2

AWS Command Line Interface: User Guide for Version 2
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS Command Line Interface User Guide for Version 2

Table of Contents

.. vii
ADOUL The AWS CLI ettt ettt et et et et et et et et et et e e et et et e e s e e e et eeneaneeneanaanns 1
ADOUL AWS CLI VEISION 2 ..eniiiiiiiiiiiiei ettt et et ettt et et e et et et e e et e e et e e et e e et e e e e eaneeneaneaneanns 1
Maintenance and support for SDK Major VEISIONSviuuiiiniiiniiieiineieeir et eei et eeieeaieereenneeneannes 2
ADOUt AMAZON WED SEIVICES «..nevniiiiiiiiiei ettt ettt ettt ettt et eae et eaenennesennenenernens 2
USING the @XaMIPLESeniiii ettt et st e et et e e et s e e e e e e e e ens 2
Additional documentation aNd FESOUICESciuiuiuiiieitiei ettt et e et e ene e s e enseneeaenes 3
AWS CLI documentation @nd FESOUICEScuviuiiuiiuineineeneeie et ettt eeneeneeneeneeneenaeneeneenaennes 3
OthEr AWS SDKS ..uieniiiitiie ittt ettt et e et e e et et et et et e e et et et et et e e et ean et eaneaneaneaneens 3
(CT= a d T (o IS o T S PRSP PO P PP PP PPPPPPPI 4
[= =To [T =T PPN 4
Step T: SigN UP t0 AWS Lottt ettt et et e et e e e e 4

Step 2: Create an [AM USEI QCCOUNT ...uinininii ittt et e e e e e e eaeaeaeaeasesanananens 4

Step 3: Create an access key ID and secret acCess KEY ...c.ciuveuiiniiniiniiiiiiiei et enes 5

[N Y =] o L PP PPN 6

[T & [WAoo I - PP 6
AWS CLI installation iNStrUCTIONSc.iiuiiniiii et ee e e ees 7
Troubleshooting AWS CLI install and uninstall errorsc.ccoeeviiiiiiiiiiiiii e 15

N[y Y 1= o L P PP PPPPN 15

[S A =] [L O PP PP PR PPNN 15
Troubleshooting AWS CLI install and uninstall errorsc.ccoveviiiiiiiiiiii e 25

L Y =] o L PP PP 25

[o Tel] S PSPPSR PP PP PPPPPPIN 25
=] = To [T =T PP PPN 25

Run the official DOCKEr IMAGE .. euuiiiiiiiie ettt et e et e e e e et e et e aaeaaeenns 25
Notes on interfaces and backwards compatibility of Docker imageccceevevviiiineineinnennnenn, 26

Use SPecific VErsioNs @nd tagsveuuieuniiiniiieie ettt ettt et e et e e e e e e e aeeae et e et eaineaans 26
Update to the latest DOCKer iMagecuiiniiniiiii et e e eeaes 27
Share host files, credentials, environment variables, and configurationcc.ccovviiiiiiininnns. 27
Shorten the Docker COMMANGc..ouniiniiiii ettt e e et e e e e e ees 29

(O ¥ (el Q11 1] o PSPPI 31
New configuration QUICK SELUPiuniiiiiiii et ee e e e e e eanas 31
Using existing configuration and credentials filesccoooviiiiiiiiiiiii i 31
CoNFIGUIING The AWS CLI ...iiniiiniiiiie ettt et et e te et e et s et e et e et e e e s eansesnsatnsatneanneanneensennns 32
CONFIGUIATION DASICS 1.uiiniiiiiiiiieii ettt e ettt ete et e et e et e et e et e anseanseansasnsanneannsannannnns 32
Quick configuration With aws CONFIGUIE .ciiuiiiiiiiiiiiiiiiii e eaas 33
Access key ID and secret aCCESS KEYvuiniiniiiiii e aaas 33
0= [T] o E PP 34

(@ TUL 4 oTU L o) 1 = A 35

[o) i 1 LT PO PPT PR 35
Configuration settings and PreCeAENCEvvueiiiriiniiiiii et et eie e et et e e eeiseaaseanseaneanneens 35
Configuration and credential file SETEINGScouuiiiiiiniiii e e ae e e 36
Where are configuration Settings StOred?couvviiiiiiiiiiiiii e e e eanas 36

Set and view configuration SEtEINGSoevuviiiiiiiiiiiie et e e e e e eans 37
Supported config file SETLINGSviuiiiiiiiii et 38

N T g T=Te B o7} 3 1 =TSN 48
Creating NAamMeEd Profileso..iiu ittt e a e e e e e 48
USING NAMEd PrOfilESieniiiiiiii ettt et et e e e e e e et e e eaaeeans 49

AWS SIiNGLE SIGN-ON oottt ettt ettt et et ettt et et et eaen et anaeneneeaenenennees 49
Configuring a named profile to USe AWS SSOcuuiiiiiiiiiiiiiii et et et e e e eans 50
Using an AWS SSO enabled named Profilecc.viiviiiiiiiiii e 53
ENVIronmMeNt Variables ...ttt et e e e e e eanas 55
How to set environmMeNt Variablesc..einiiiiiiiii et eaaes 55

AWS CLI supported environment variablesoooiuiiiiiiiiiii e 56

AWS Command Line Interface User Guide for Version 2

(@e]3q]0F=TaTe I LT T=RoT o) £ o] o LSNPS 59
How to use command LN OPLIONS ...cuuiuniiniiii i e e et et e e e e e e e ans 60

AWS CLI supported global command line optionsccuuiiuiiiiiiiiiiiiieiiniieeeee e 60
Common uses of command LiNE OPLIONSuuiiiiiiiiiiiii e e e e e e aanas 62
(@e]3q 10 F=1aTe W alo)s 0] o] (=1 i o] o ISP 63
HOW Tt WOTKS .ot et e e et et et e et e et e ea e et een e eeneeaneenaens 63
Configuring command completion on Linux or MacOSccoiiiiiiiiiiiiiiiii e eeeeenee, 64
Configuring command completion 0N WINAOWSc.ciuiiiiiiiiiiiiiieieiie e e ee e e e eneas 66
REEIIES ..ttt ettt a e 67
AVAILabLE FEEIY MOES . ettt et e et e et e e e e e e e e e e e e aaas 67
Configuring @ FetrY MO .uunii i et e et e e et et et e e e e e e eeaeaneanaanas 69
Viewing logs of retry attemPts ... 70
EXEErnal €red@ntialsoeuneenii ittt ettt ettt e e e e e aa e 70
Using credentials for Amazon EC2 instance metadatac..eeuuiiiiiiiiiiniiiiiiee e 72
PrEIEQUISITES «.eneniiiii ittt et et ettt et et et st e e e e et e et et et et et et e e aneas 72
Configuring a profile for Amazon EC2 metadatacoovviiiiiiiiiiiiii e 72
USING @N HTTP PrOXY euenetniiiiiiiei ettt ettt ettt et e ettt et e e et e e e et e et e e e e e e e e een et eeneeneanens 73
USING the @XaMIPLES ...eniiiii et et et ettt et et e et e et e eaeeneeeneeens 73
AUtheNtiCAtiNg t0 @ PrOXY .uivniiiiiiiiii et et et e e e e e e e e e e s e e e e ane e eanaannas 74
Using a proxy on Amazon EC2 iNSTANCESccuviuiiniiniiiiiiiei et eae 74
USING TAM FOLES ...ttt ettt et et e et et e et et et e et e et e et e eneen e eaneeeneeraaenans 75
PrEIEQUISITES «.neniiinii ittt et ettt et et st e e e e et e et et et et et e e b e e anees 75
Overview Of USING TAM FOLES ...uuiuiiiiii ittt et e e e e e e s e e e s e e e eanas 75
Configuring and USING @ FOLEuuiinii et e e e et e e e e e e e e e 76
USING MR A L e ettt et ettt ettt e a et e e e e 77
Cross-account roles and external IDc..oeuuiiiiiuii e ettt e e e e e 78
Specifying a role session name for easier auditingcccvviiviiiiiiiiiiiii e 79
Assume role With Web identityooiuiiiii e e e e 79
Clearing cached Credentialsocuieiiuiiiii et e e e e e e e e e e eas 80
USING the AWS CLI ..eeiiiiie ettt et ettt e e et e et e eh et e e e et e et e et e ea e eeneanaeeaeeaaaenanes 81
(CT=] T o = =1 o TP PPN 81
The built-in AWS CLI help commM@andcouiiiiiiiiiiii et et ee e eenne 81

AWS CLI refer@nce gUIAEc..eeniiiii ettt ettt et et et et et et e eaaeeaaaes 85

API dOCUMENTATION ...eteiiiiie ettt et et e e et e et e et et et e e eaa e eaeeaaae 85
TroOUDLESNOOTING EITOIS .uivniiniiiiie ettt et e et et et eteeaeete et et et et aaetaaesneneesneneesnees 85

Fie Lo [TeT o - | B £ 1=1 1 o R PR RTNN 85
COMMANG SEIUCTUIE L.eeeiiiie ettt ettt e et e et e et e et et et et e et e et e et eeneeneaneeanenns 85
COMMANG SEFUCEUIE «..eeteti ettt ettt ettt et et et et e et e et e et e ta et et eaaeean e et eenneenaanaennnees 86

Wit COMMANAS ...ttt ettt e et et et et e et e et e et e ebeenaeeneeeneeaneenns 86
SPeCifYiNg Parameter VAlUEScuniiiiiiiiiiiiee ettt e e e e e e e e et e e e et e et et e eteeneateeneaneaneanns 87
COmMMON Parameter TYPES ...ttt ettt ettt ettt e et e e e e e e enannns 88
QUOLES WIth SEEINGS .oeeeneiiei ettt ettt e e et e et e et e ea e e e e eannes 91
Parameters from Files oottt et 93
Generating a CLI Skeleton Templateceeuiiiiiii e e e 95
SHOFTNANA SYNTAX ..ttt ettt et et et e e et et e e et e e e e eneenns 103

PANT | (o X o] o] 1 1] o) A P PPN 104
HOW Tt WOTKS ettt et et et et e et e et et et et e e e ean e eeaeeaneenns 105
AULO-PrOMPL FEALUIES .uivniiiiiiiie ettt e e e et s ee et e ee et e aieansateeasanesnsanaannas 105
AULO-PrOMPE MOGES .uitiiiiiiiie ittt ete e eteete et et ete et eteeteaaaetettsaneeneaneeneenesssenesneenns 107
CoNfIGUIE AUEO-PIrOMIPL couiieii it ettt et et et e e et et et et eanaansanaenesnaes 107
Controlling Command OUEPULiuniiniii ettt et et e et e et e e e et eeneeaneeeneenns 108
OUTPUL FOrmMat .ot ettt e e e e e e e eenene 108

[T [=1 (o] o E PP P PP PTTRS 114
1T T« PSPPI PPNt 118
RELUIN COABS ...ttt ettt ettt et et et e et et e et e et e et e ea e e ean e et e et eeneeneaneenneen 134
L | e TSP OP TP PR UPPRUPRN 135
HOW Tt WOTKS ..ottt et et e e et e e e et et et et et e ean e eeaeeaneenns 135

AWS Command Line Interface User Guide for Version 2

ALIASES ..ttt ettt et et ettt et et e eh et et et e eb e eh e th et eaneeaneeanns 136
PrEIEQUISITES ..neniiieei ittt e ettt e et e et e et e e et et et e et e et a et e e anaans 136

Step 1: Creating the alias filec.iuieiiiii e 137

Step 2: Creating an Alias «ouiueeueieiie et e e e e e e e e e e e aas 137

Step 3: CAlliNg AN AliAS .ovuiiniiiiiiii e e e et et e e et e et a et et et aan 139

Alias repoSitory EXAMPLESiuiuiiiiiiir ettt e e e e e anas 140
RESOUICES «oniniiiiiii it ettt et et et e e e e e e eaes 141
Using the AWS CLI With AWS SEIVICEScuuiiiiieiieei ettt et et e e et et e et e ebeeb e e eeneannas 142
DYNAMODB ... e et ettt et e et et et e et ettt eaeaaaans 142
PrEIEQUISITES «.eneniiie ittt ettt et e et e et e et e et et et e e e et a et et anaans 142
Creating and using DynamoDB tablesooiiiiiiiiiii e 143
USING DYNAMODB LOCAL «..euiiiiiieiieii ettt e et e e et e e e e et e eneeeneeens 144
RESOUICES «oeiniiiii ittt et e e a e et e e e e e e e e e eaas 144
AMAZON EC2 ..oeiiiiiiiiii ettt e e e e e e 145
AMAzZoN EC2 KEY Pairsuinieiiiiie ittt ettt et et et e et e et e e e eneanens 145
AmMAazon EC2 SECUNTY GrOUPS ...c.iuiiiiiniiiti ittt ettt ettt ettt et e e e e e e eenee 147

EC2 INSTANCES ..ueniitiiiiiiii ittt e e et a e e 152
Change EC2 type using bash SCriptingc.ciuuiuiiiiiiiiiie e e e e e 158

X I € T 1= OO P PR PT U RPPP PP TRTPRPRt 160
PrEIEQUISITES «.eneniiieiie ittt ettt e e e et e et e et e et e e et a et et anaans 161
Create an AmMazon S3 Glacier VaUltccouiiiiiiii e e 161
Prepare a file for Uploadingc.oouviiiniiii e 161
Initiate a multipart upload and upload filescouviniiiiiiiii 162
Complete the UPLOAdooniiii e ettt a e 163
RESOUICES «oniniiiiiii it ettt et et et e e e e e e eaes 164

1A O T P PP TE PP PR OPRUPPRTORt 165
Creating 1AM USEIS anNd gIOUPS ..uuvuiuiiuiiueetetietteetetueeteeneetetneenetnetteenettaenestesnesnesnesnesnesernesnns 165
Attaching an IAM managed policy t0 an TAM USEIiuiiiiiiiiiiieee e e e e e e e e e 166
Setting an initial password for an TAM USEEcuiiiiiiiiiiiie et ee e ees 167
Create an access KeY fOr an TAM USEI ..iuuiuiiiiiieiie e e e e e et et et et et aaasnannas 167
0 1= 4o 3 T TN 168
High-level (3) COMMANASouiiiiiiiie ettt e e e e e e e e e e e e eaaeanas 168
API-level (S3 api) COMMANGSiuiiniiiiiie et e e e e e e e e e e e e e e e e e et saeanaanas 177
Bucket lifecycle scripting eXample (S3aPI) «.vuveuieniiniiiiiiiiiie et a e 179
AMAZON SNS L. ettt et a et e e ns 181
(@=F | L [{o] o | [PP PP OR PRSP 181
SUDSCIIDE 10 @ T0PIC 1 ininiiiiii e aaaas 182
PUDLISH 10 @ T0PIC 1 tniiiiiii e ettt a e aas 182
UNsubscribe from @ tOPIC «..uenniii e 182
DL I T o] o [P P PP RPPPTPTPRRE 183
AMAZON SWF .ttt et et e e e aas 183
List of AmMazon SWF COMMANGSuiiuiiiiieii ettt e et e e e e e een e eeneenns 183
Working with Amazon SWF DOMAINSceueuuiiiiiiiiiiie ettt et e e e et e e e e e eennes 186
SY=Tel1] 11 4 PP P PP PR PPRRRt 189
Data ProteCHIONeniiiii i ettt e ettt ettt et e et et et e b eaeaa e 189
(D] = =T alal Vo) £ (o] U PP PP PRSP PPN 190
Identity and AcCCeSS MaNAgEMIENTuiuniinii ittt e e e e it et et et et et ean et eaneaneaneenaenenns 190
ComPpliance Validationiue it e e e e e et a et e e e e e aas 191
Enforcing @ minimum TLS VEISIONiuniuniiiiiiii ettt et et ettt et et et et et et et ean et ssneaneenerneeneens 191
B Lo]0] o] (=1 p Yoo T T T =] o {o £ T PPN 192
General troubleshooting to try firSto.iniiiii e 192
Check your AWS CLI command formattingc.oeeuiiiiiiiiiiiei e 192
Confirm that you're running a recent version of the AWS CLIc.oeiuiiiiiiiiiiiiiiiiiiiiineieeenes 193

Use the ——debug OPLIONcuniii e e ettt e e e e e eenne 193
Enable and review the AWS CLI command history logsc.cceuiiiiiiiiiiiiiiiiiiei e 197
Confirm that your AWS CLI is configuredcc.oiiuiiiiiiiiiiee e 197
Command NOt FOUNT EITOKSeuiiiiit et ettt e e e e e et e ea e et e eneeneeneeen 197

AWS Command Line Interface User Guide for Version 2

The "aws --version" command returns a different version than you installedcc.cceevennennen. 199

The "aws --version" command returns a version after uninstalling the AWS CLIcceeeennnne 200
ACCESS AENIBA BITOIS ...ttt ettt et et e e et e et e et et et et et e et e ea e et eeneaneanaeanaenaens 201
INvalid credentials @nNd KEY EITOIScu.iuiuiieiieiie ettt eeeieete et eteete et et eteeteetaeteaaeeteeneereseaeraesnns 201
Signature does NOt MALCN EITOIS ..iuuiiiiiii ittt e et et et et et e et et et aaaeraeaeereeneennennenns 202

SSL CertifiCate @ITONS ... ettt et ettt et et et e et et et e e e e e e ebeeneanaes 203
AItIONAL FESOUICTES .. ettt ettt ettt et et et et e et e et e et e et e ebetn et eaneeenaeanns 204

I Te = 1A To] o I« [] e [IR P PPN 205
New features and Changesiuiiiiiiii et et e e et e e et e e e e e ee e e aeeneanaanean 205

AWS CLI version 2 NEW fRATUIESiiuniiiii ettt et et e e e et et e et e e e eneeneeas 205

Breaking changes between AWS CLI version T and AWS CLI version 2cccceeueenneenneenennnen. 206

MiIgration INSTIUCTIONS ...enieiti ettt et et et ea et et e e e et e eaeteneteneenanesaanennananns 211
Replacing version T With VEISION 2c.iieiiiiiiiiiii e a e e e aaas 212
Side-by-Side INSTALliunieii et a e 212

UNINSTALL oottt ettt et e e et e et e et e et et e tn e et e et e eb e en e e eaneeannas 213
Troubleshooting AWS CLI install and uninstall @rrorsco.veeiiiiiiiii e e 215
DOCUMENT HISTOY nuiiitiiit ettt e et et e et et et et et e et e et e ea et en s e eneaanesaneaananeaennes 216

Vi

AWS Command Line Interface User Guide for Version 2

vii

AWS Command Line Interface User Guide for Version 2
About AWS CLI version 2

What is the AWS Command Line
Interface?

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact with
AWS services using commands in your command-line shell. With minimal configuration, the AWS CLI
enables you to start running commands that implement functionality equivalent to that provided by the
browser-based AWS Management Console from the command prompt in your terminal program:

« Linux shells — Use common shell programs such as bash, zsh, and tcsh to run commands in Linux or
macOS.

« Windows command line — On Windows, run commands at the Windows command prompt or in
PowerShell.

« Remotely - Run commands on Amazon Elastic Compute Cloud (Amazon EC2) instances through a
remote terminal program such as PuTTY or SSH, or with AWS Systems Manager.

All laas (infrastructure as a service) AWS administration, management, and access functions in the AWS
Management Console are available in the AWS APl and AWS CLI. New AWS laaS features and services
provide full AWS Management Console functionality through the API and CLI at launch or within 180
days of launch.

The AWS CLI provides direct access to the public APIs of AWS services. You can explore a service's
capabilities with the AWS CLI, and develop shell scripts to manage your resources. In addition to the
low-level, API-equivalent commands, several AWS services provide customizations for the AWS CLI.
Customizations can include higher-level commands that simplify using a service with a complex API.

About AWS CLI version 2

The AWS CLI version 2 is the most recent major version of the AWS CLI and supports all of the latest
features. Some features introduced in version 2 are not backported to version 1 and you must upgrade
to access those features. There are some "breaking" changes from version 1 that might require you to
change your scripts. For a list of breaking changes in version 2, see Migrating from AWS CLI version 1 to
version 2 (p. 205).

The AWS CLI version 2 is available to install only as a bundled installer. While you might find it in
package managers, these are unsupported and unofficial packages that are not produced or managed
by AWS. We recommend that you install the AWS CLI from only the official AWS distribution points, as
documented in this guide.

To install the AWS CLI version 2, see the section called “Install/Update” (p. 6).

To check the currently installed version, use the following command:

$ aws --version
aws-cli/2.4.5 Python/3.8.8 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.13

For version history, see the AWS CLI version 2 Changelog on GitHub.

https://www.gnu.org/software/bash/
http://www.zsh.org/
https://www.tcsh.org/
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Maintenance and support for SDK major versions

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the AWS SDKs and Tools Reference Guide:

o AWS SDKs and tools maintenance policy
» AWS SDKs and tools version support matrix

About Amazon Web Services

Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model. You are charged
only for the services that you—or your applications—use. Also, to make AWS more approachable as a
platform for prototyping and experimentation, AWS offers a free usage tier. On this tier, services are free
below a certain level of usage. For more information about AWS costs and the Free Tier, see Test-Driving
AWS in the Free Usage Tier. To obtain an AWS account, open the AWS home page and then click Sign Up.

Using the AWS CLI examples

The AWS Command Line Interface (AWS CLI) examples in this guide are formatted using the following
conventions:

o Prompt — The command prompt uses the Linux prompt and is displayed as ($). For commands
that are Windows specific, C:\> is used as the prompt. Do not include the prompt when you type
commands.

« Directory - When commands must be executed from a specific directory, the directory name is shown
before the prompt symbol.

« User input - Command text that you enter at the command line is formatted as user input.

« Replaceable text - Variable text, including names of resources that you choose, or IDs generated by
AWS services that you must include in commands, is formatted as replaceable text.In multiple-
line commands or commands where specific keyboard input is required, keyboard commands can also
be shown as replaceable text.

o Output - Output returned by AWS services is shown under user input, and is formatted as computer
output.

The following aws configure command example demonstrates user input, replaceable text, and

output:

1. Enter aws configure at the command line, and then press Enter.

2. The AWS CLI outputs lines of text, prompting you to enter additional information.

3. Enter each of your access keys in turn, and then press Enter.

4. Then, enter an AWS Region name in the format shown, press Enter, and then press Enter a final time

to skip the output format setting.
5. The final Enter command is shown as replaceable text because there is no user input for that line.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2

https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html
https://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
https://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

AWS Command Line Interface User Guide for Version 2
Additional documentation and resources

Default output format [None]: ENTER

The following example shows a simple command with output. To use this example, enter the full text of
the command (the highlighted text after the prompt), and then press Enter. The name of the security
group, my-sg, is replaceable to your desired security group name. The JSON document, including the
curly braces, is output. If you configure your CLI to output in text or table format, the output will be
formatted differently. JSON is the default output format.

$ aws ec2 create-security-group --group-name my-sg --description "My security group"

{
"GroupId": "sg-903004f8"

}

Additional documentation and resources

AWS CLI documentation and resources

In addition to this user guide, the following are valuable online resources for the AWS CLI.

o AWS CLI version 2 reference guide
o AWS CLI code examples repository

o AWS CLI GitHub repository You can view and fork the source code for the AWS CLI on GitHub. Join
the community of users on GitHub to provide feedback, request features, and submit your own
contributions.

o AWS CLI alias examples repository You can view and fork AWS CLI alias examples on GitHub.
o AWS CLI version 2 change notes

Other AWS SDKs

Depending on your use case, you might want to choose one of the AWS SDKs or the AWS Tools for
PowerShell:

o AWS Tools for PowerShell

« AWS SDK for Java

o AWS SDK for .NET

« AWS SDK for JavaScript

o AWS SDK for Ruby

o AWS SDK for Python (Boto)
o AWS SDK for PHP

« AWS SDK for Go

o AWS Mobile SDK for iOS

« AWS Mobile SDK for Android

https://json.org
https://awscli.amazonaws.com/v2/documentation/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/aws-cli
https://github.com/aws/aws-cli
https://github.com/awslabs/awscli-aliases
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-php/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-go/api/
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/
https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/

AWS Command Line Interface User Guide for Version 2
Prerequisites

Getting started with the AWS CLI

This section provides links to information about how to get started with version 2 of the AWS Command
Line Interface (AWS CLI).

Topics
« Prerequisites to use the AWS CLI version 2 (p. 4)
« Installing or updating the latest version of the AWS CLI (p. 6)
« Installing past releases of the AWS CLI version 2 (p. 15)
« Using the official AWS CLI version 2 Docker image (p. 25)
 Quick setup (p. 31)

Prerequisites to use the AWS CLI version 2

To access AWS services with the AWS CLI, you need an AWS account, IAM credentials, and an IAM access
key pair. When running AWS CLI commands, the AWS CLI needs to have access to those AWS credentials.

To increase the security of your AWS account, we recommend that you do not use your root account
credentials. You should create an IAM user to provide access credentials to the tasks you'll be running in
AWS.

Topics
« Step 1: Sign up to AWS (p. 4)
o Step 2: Create an IAM user account (p. 4)
« Step 3: Create an access key ID and secret access key (p. 5)
» Next steps (p. 6)

Step 1: Sign up to AWS

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

Step 2: Create an IAM user account

To create an administrator user for yourself and add the user to an administrators group
(console)

1. Signin to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

https://portal.aws.amazon.com/billing/signup
https://console.aws.amazon.com/iam/

AWS Command Line Interface User Guide for Version 2
Step 3: Create an access key ID and secret access key

Note

We strongly recommend that you adhere to the best practice of using the Administrator
IAM user that follows and securely lock away the root user credentials. Sign in as the root
user only to perform a few account and service management tasks.

In the navigation pane, choose Users and then choose Add users.
For User name, enter Administrator.

4. Select the check box next to AWS Management Console access. Then select Custom password, and
then enter your new password in the text box.

5. (Optional) By default, AWS requires the new user to create a new password when first signing in. You
can clear the check box next to User must create a new password at next sign-in to allow the new
user to reset their password after they sign in.

Choose Next: Permissions.

Under Set permissions, choose Add user to group.

Choose Create group.

In the Create group dialog box, for Group name enter Administrators.

Choose Filter policies, and then select AWS managed - job function to filter the table contents.

23PN

= O

In the policy list, select the check box for AdministratorAccess. Then choose Create group.

Note

You must activate IAM user and role access to Billing before you can use the
AdministratorAccess permissions to access the AWS Billing and Cost Management
console. To do this, follow the instructions in step 1 of the tutorial about delegating access
to the billing console.

12. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary to
see the group in the list.

13. Choose Next: Tags.

14. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information
about using tags in 1AM, see Tagging IAM entities in the IAM User Guide.

15. Choose Next: Review to see the list of group memberships to be added to the new user. When you
are ready to proceed, choose Create user.

You can use this same process to create more groups and users and to give your users access to your AWS
account resources. To learn about using policies that restrict user permissions to specific AWS resources,
see Access management and Example policies.

Step 3: Create an access key ID and secret access key

For CLI access, you need an access key ID and secret access key. Use IAM user access keys instead of AWS
account root user access keys. IAM lets you securely control access to AWS services and resources in your
AWS account. For more information about creating access keys, see Understanding and getting your
security credentials in the AWS General Reference.

Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them from the AWS
Management Console. As a best practice, do not use the AWS account root user access keys for any task
where it's not required. Instead, create a new administrator IAM user with access keys for yourself.

The only time that you can view or download the secret access key is when you create the keys. You
cannot recover them later. However, you can create new access keys at any time. You must also have
permissions to perform the required IAM actions. For more information, see Permissions required to
access IAM resources in the IAM User Guide.

https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_billing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_billing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html

AWS Command Line Interface User Guide for Version 2
Next steps

To create access keys for an 1AM user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Inthe navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to create, and then choose the Security
credentials tab.

4. Inthe Access keys section, choose Create access key.

5. To view the new access key pair, choose Show. You will not have access to the secret access key again
after this dialog box closes. Your credentials will look something like this:

o Access key ID: AKIAIOSFODNN7EXAMPLE
« Secret access key: wlalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

6. To download the key pair, choose Download .csv file. Store the keys in a secure location. You will
not have access to the secret access key again after this dialog box closes.

Keep the keys confidential in order to protect your AWS account and never email them. Do not share
them outside your organization, even if an inquiry appears to come from AWS or Amazon.com. No
one who legitimately represents Amazon will ever ask you for your secret key.

7. After you download the .csv file, choose Close. When you create an access key, the key pair is active
by default, and you can use the pair right away.

Related topics

o What is IAM? in the IAM User Guide
o AWS security credentials in AWS General Reference

Next steps

After creating an AWS account, IAM credentials, and an IAM access key pair, to use the AWS CLI you can
do one of the following:

« Install the latest release (p. 6) of the AWS CLI version 2 on your computer.
« Install a past release (p. 15) of the AWS CLI version 2 on your computer.
o Access the AWS CLI version 2 from your computer using a Docker image. (p. 25)

« Access the AWS CLI version 2 in the AWS console from your browser using AWS CloudShell. For more
information see the AWS CloudShell User Guide.

Installing or updating the latest version of the
AWS CLI

This topic describes how to install or update the latest release of the AWS Command Line Interface (AWS
CLI) on supported operating systems. For information on the latest releases of AWS CLI, see the AWS CLI
change notes on GitHub.

To install a past release of the AWS CLI, see the section called “Past releases” (p. 15). For uninstall
instructions, see Uninstall (p. 213).

Topics
o AWS CLl installation instructions (p. 7)

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

o Troubleshooting AWS CLI install and uninstall errors (p. 15)
o Next steps (p. 15)

AWS CLI installation instructions

Important
AWS CLI versions 1 and 2 use the same aws command name. If you previously installed AWS CLI
version 1, see Migrating from AWS CLI version 1 to version 2 (p. 205).

For installation instructions, expand the section for your operating system.
Linux

Installation requirements

« You must be able to extract or "unzip" the downloaded package. If your operating system doesn't have
the built-in unzip command, use an equivalent.

o The AWS CLI uses glibc, groff, and less. These are included by default in most major distributions
of Linux.

« We support the AWS CLI on 64-bit versions of recent distributions of CentOS, Fedora, Ubuntu, Amazon
Linux 1, Amazon Linux 2 and Linux ARM.

« Because AWS doesn't maintain third-party repositories, we can't guarantee that they contain the latest
version of the AWS CLI.

Install or update the AWS CLI

Follow these steps from the command line to install the AWS CLI on Linux.

We provide the steps in one easy to copy and paste group based on whether you use 64-bit Linux or
Linux ARM. See the descriptions of each line in the steps that follow.

Linux x86 (64-bit)

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

Linux ARM

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-aarché64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

1. Download the installation file in one of the following ways:
Linux x86 (64-bit)

o Use the curl command - The -o option specifies the file name that the downloaded
package is written to. The options on the following example command write the downloaded
file to the current directory with the local name awscliv2.zip.

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
"awscliv2.zip"

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

« Downloading from the URL - To download the installer with your browser, use the following
URL: https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip

(Optional) To verify the integrity and authenticity of your downloaded installation file before
you unpack the package, follow the instructions in the section called “(Optional) Verifying the
integrity of your downloaded zip file” (p. 9).

Linux ARM

o Use the curl command - The -o option specifies the file name that the downloaded
package is written to. The options on the following example command write the downloaded
file to the current directory with the local name awscliv2.zip.

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-aarché64.zip" -o
"awscliv2.zip"

« Downloading from the URL - To download the installer with your browser, use the following
URL: https://awscli.amazonaws.com/awscli-exe-linux-aarch64.zip

(Optional) To verify the integrity and authenticity of your downloaded installation file before
you unpack the package, follow the instructions in the section called “(Optional) Verifying the
integrity of your downloaded zip file" (p. 9).

Unzip the installer. If your Linux distribution doesn't have a built-in unzip command, use an
equivalent to unzip it. The following example command unzips the package and creates a directory
named aws under the current directory.

$ unzip awscliv2.zip

Run the install program. The installation command uses a file named install in the newly
unzipped aws directory. By default, the files are all installed to /usr/local/aws-cli, and
a symbolic link is created in /usr/local/bin. The command includes sudo to grant write
permissions to those directories.

$ sudo ./aws/install

You can install without sudo if you specify directories that you already have write permissions to.
Use the following instructions for the install command to specify the installation location:

« Ensure that the paths you provide to the -i and -b parameters contain no volume name or
directory names that contain any space characters or other white space characters. If there is a
space, the installation fails.

e ——install-dir or -i - This option specifies the directory to copy all of the files to.

The default value is fusr/local/aws-cli.

e« —-bin-dir or -b - This option specifies that the main aws program in the install directory is
symbolically linked to the file aws in the specified path. You must have write permissions to the
specified directory. Creating a symlink to a directory that is already in your path eliminates the
need to add the install directory to the user's $PATH variable.

The default value is /usr/local/bin.

$./aws/install -i /usr/local/aws-cli -b Jusr/local/bin

https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip
https://awscli.amazonaws.com/awscli-exe-linux-aarch64.zip

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

Note
To update your current installation of the AWS CLI, add your existing symlink and installer
information to construct the install command with the --update parameter.

$ sudo ./aws/install --bin-dir /usr/local/bin --install-dir /usr/local/aws-cli
--update

To locate the existing symlink and installation directory, use the following steps:

1. Use the which command to find your symlink. This gives you the path to use with the --
bin-dir parameter.

$ which aws
/usr/local/bin/aws

2. Use the 1s command to find the directory that your symlink points to. This gives you the
path to use with the --install-dir parameter.

$ 1ls -1 /usr/local/bin/aws
lrwxrwxrwx 1 ec2-user ec2-user 49 Oct 22 09:49 /usr/local/bin/aws -> Jusr/
local/aws-cli/v2/current/bin/aws

4. Confirm the installation with the following command.

$ aws --version
aws-cli/2.4.5 Python/3.8.8 Linux/4.14.133-113.105.amzn2.x86_64 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

(Optional) Verifying the integrity of your downloaded zip file

If you chose to manually download the AWS CLI installer package . zip in the above steps, you use can
use the following steps to verify the signatures by using the GnuPG tool.

The AWS CLI installer package . zip files are cryptographically signed using PGP signatures. If there is
any damage or alteration of the files, this verification fails and you should not proceed with installation.

1. Download and install the gpg command using your package manager. For more information about
GnuPgG, see the GnuPG website.

2. To create the public key file, create a text file and paste in the following text.

MQINBF2Cr7UBEADJZHcgusOJ17ENSyumXh85z0TRVOxJorM2B/JLOKHOyigQluUG
ZMLhENaGObYatdrKP+3H911vKO50pXwnO/R7£fB/FSTouki4ciIx50uLlnJZIxSzx
PgGlOmkxIMLNbGWoi6LtoOLYxqHN2iQtz1wTVmg9733zd3XfcXrZ3+LblHAgEt5G
TfNXEKJ8soPLyWmwDH6HWCNnjZ/aIQRBTIQ05uVeEoYxShéwOai7ss/KveoSNBbYz
gbdzoqI2Y8cgH2nbfgp3DSasaLZEdCSsIsK1u05CinE7k2qZ7KgKAUIcT/cR/grk
C6VwsnDUOOUCideXcQ8WeHutqvgZH1JgKDbznoIzeQHJD238GEu+eKhRHcz8/jeG
942zkcgJ0z3KbZGYMiTh277Fvj9zzvZsbMBCedV1BTg3TqgvdX4bdkhf5cH+7NtWO
1rFj6UwAsGukBTAOXCO1l/dAnSmZhJ7Z1KmEWilro/gOrjtOxqRQutlIqG22TaqoPG
fYVN+en3Zwbt97kcgZDwgbuykNt640ZWc4XKCa3mprEGC3IbJTBFqglXmZ719ywG
EEUJYOlb2XrSuPWml39beWdKM8kzr10jnlOmé+1pTRCBfoOwa9F 8YZRhHPAKkwKKX
XDeOGpWRj40hOx0d2GWkyV5xyN14p2t00Cd00DMz80yUTgRpPVQUtOEhXQOARAQAB
tCFBV1MgQOxJIFR1YWOgPGF3cyljbGlAYWlhem9uLmNvbT6JA1QEEWEIAD4WIQT7
Xbd/1cEYuAURraimMQrMRnIJHXAUCXYKvtQIbAwWUJB4TOAAULCQgHAGYVCGKICWIE

https://www.gnupg.org/

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

FgIDAQIeAQIXgAAKCRCMMOrMRNJHXJIXEAChLUIkg80uPUKGjE3jejvQSAlaWuAM
yzy6£dpd1l1RUzZ6M6nmsUhOEXxjVIVibEJpzK5mhuSZ41b0vJI2ZUPgCv4zs2nBd7BGJT
MxKiWgBReGVTAdqZO0SzyYH4PYCJISE732x/Fw9hfnh1dMTXNcrQXzwOmmFNNegGOOx
au+VnpcR5Kz3smiTrIwZbRudolijhCYPQ7t5CMp9kjC6bObvylhSIg2xNbMAN/Do
ikebAl136uRA6Y/Uczjj3GxZW4ZWeFirMidKbtqvUz2yOUFszobjiBSqZZHCreC34B
hw9bFNpuWC/0SrXgohdsc6vK50pDGAV5kM2qo9tMQ/izsAwTh/d/GzZv8H41V9eO
tEis+EpR497PaxKKh9tJfON6Q1YLRHof5xePZt0I1S3gfvsH5hXA3HI9yIxb8TOH
QYmVr3alUes20i6meI3fuV36VFupwfrTKaL7VXnsrK2fq5cRvyJLNzXucgOWAjPF
RrAGLzY7nPlxeglaOaeP+pdsqjgqlPJom80CWc1l+6DWbg0jsC74WoesAqgBItODMB
rsally/q+bPzpsnWjzHV8+1/EtZmSc8ZUGSJOPKkfC7hObnfkl18h+1QtKTjZme4d
H17gsBJr+opwIw/Zio2LMjQBOqlm3K1A4zFTh7wBC7He6KPQealp2XAMgtvATtNe
YLZATHZKTJyiqA==

=vYOk

For reference, the following are the details of the public key.

Key ID: A6310ACC4672

Type: RSA

Size: 4096/4096

Created: 2019-09-18

Expires: 2023-09-17

User ID: AWS CLI Team <aws-cli@amazon.com>

Key fingerprint: FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C

Import the AWS CLI public key with the following command, substituting public-key-file-name
with the file name of the public key you created.

$ gpg --import public-key-file-name

gpg: /home/username/.gnupg/trustdb.gpg: trustdb created

gpg: key A6310ACC4672475C: public key "AWS CLI Team <aws-cli@amazon.com>" imported
gpg: Total number processed: 1

gpg: imported: 1

Download the AWS CLI signature file for the package you downloaded. It has the same path and
name as the . zip file it corresponds to, but has the extension . sig. In the following examples, we
save it to the current directory as a file named awscliv2.sig.

Linux x86 (64-bit)

For the latest version of the AWS CLI, use the following command block:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip.sig

For a specific version of the AWS CLI, append a hyphen and the version number to the
filename. For this example the filename for version 2. 0. 30 would be awscli-exe-1linux-
x86_64-2.0.30.zip.sig resulting in the following command:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-
X86_64-2.0.30.zip.sig

For a list of versions, see the AWS CLI changelog on GitHub.
Linux ARM

For the latest version of the AWS CLI, use the following command block:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-
aarch64.zip.sig

10

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

For a specific version of the AWS CLI, append a hyphen and the version number to the
filename. For this example the filename for version 2. 0. 30 would be awscli-exe-linux-
aarch64-2.0.30.zip.sig resulting in the following command:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-
aarch64-2.0.30.zip.sig

For a list of versions, see the AWS CLI changelog on GitHub.

5. Verify the signature, passing both the downloaded .sig and . zip file names as parameters to the
gpg command.

$ gpg --verify awscliv2.sig awscliv2.zip

The output should look similar to the following.

gpg: Signature made Mon Nov 4 19:00:01 2019 PST

gpg: using RSA key FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C
gpg: Good signature from "AWS CLI Team <aws-cli@amazon.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C

Important

The warning in the output is expected and doesn't indicate a problem. It occurs because
there isn't a chain of trust between your personal PGP key (if you have one) and the AWS
CLI PGP key. For more information, see Web of trust.

macOS

Installation requirements

« We support the AWS CLI on Apple-supported versions of 64-bit macOS.

« Because AWS doesn't maintain third-party repositories, we can’t guarantee that they contain the latest
version of the AWS CLI.

Install or update the AWS CLI

If you are updating to the latest version, use the same installation method that you used in your current
version. You can install the AWS CLI on macOS in the following ways.

GUl installer

The following steps show how to install the latest version of the AWS CLI by using the standard
macOS user interface and your browser.
1. In your browser, download the macOS pkg file: https://awscli.amazonaws.com/AWSCLIV2.pkg
2. Run your downloaded file and follow the on-screen instructions. You can choose to install the
AWS CLI in the following ways:
« For all users on the computer (requires sudo)

« You can install to any folder, or choose the recommended default folder of /usr/local/
aws-cli.

11

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://wikipedia.org/wiki/Web_of_trust
https://awscli.amazonaws.com/AWSCLIV2.pkg

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

o The installer automatically creates a symlink at /usr/local/bin/aws that links to the
main program in the installation folder you chose.

« For only the current user (doesn't require sudo)
« You can install to any folder to which you have write permission.

« Due to standard user permissions, after the installer finishes, you must manually create a
symlink file in your $PATH that points to the aws and aws_completer programs by using
the following commands at the command prompt. If your $PATH includes a folder you can
write to, you can run the following command without sudo if you specify that folder as the
target's path. If you don't have a writable folder in your $PATH, you must use sudo in the
commands to get permissions to write to the specified target folder. The default location
for a symlink is /usr/local/bin/.

$ sudo 1ln -s /folder/installed/aws-cli/aws /usr/local/bin/aws
$ sudo 1ln -s /folder/installed/aws-cli/aws_completer /usr/local/bin/
aws_completer

Note

You can view debug logs for the installation by pressing Cmd+L anywhere in the
installer. This opens a log pane that enables you to filter and save the log. The log file is
also automatically saved to /var/log/install.log.

3. To verify that the shell can find and run the aws command in your $PATH, use the following
commands.

$ which aws

/usr/local/bin/aws

$ aws --version

aws-cli/2.4.5 Python/3.8.8 Darwin/18.7.0 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

Command line installer - All users
If you have sudo permissions, you can install the AWS CLI for all users on the computer. We provide

the steps in one easy to copy and paste group. See the descriptions of each line in the following
steps.

$ curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o "AWSCLIV2.pkg"
$ sudo installer -pkg AWSCLIV2.pkg -target /

1. Download the file using the curl command. The -o option specifies the file name that the
downloaded package is written to. In this example, the file is written to AWSCLIV2.pkg in the
current folder.

$ curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o "AWSCLIV2.pkg"

2. Run the standard macOS installer program, specifying the downloaded .pkg file as the
source. Use the -pkg parameter to specify the name of the package to install, and the -
target / parameter for which drive to install the package to. The files are installed to /uszr/
local/aws-cli, and a symlink is automatically created in /usr/local/bin. You must include
sudo on the command to grant write permissions to those folders.

$ sudo installer -pkg ./AWSCLIV2.pkg -target /

12

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

After installation is complete, debug logs are written to /var/log/install. log.

To verify that the shell can find and run the aws command in your $PATH, use the following
commands.

$ which aws

/usr/local/bin/aws

$ aws --version

aws-cli/2.4.5 Python/3.8.8 Darwin/18.7.0 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

Command line - Current user

1.

3.

To specify which folder the AWS CLI is installed to, you must create an XML file with any file
name. This file is an XML-formatted file that looks like the following example. Leave all values
as shown, except you must replace the path /Users/myusername in line 9 with the path to the
folder you want the AWS CLI installed to. The folder must already exist, or the command fails.
The following XML example, named choices.xml, specifies the installer to install the AWS CLI
in the folder /Users/myusername, where it creates a folder named aws-c1i.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<dict>
<key>choiceAttribute</key>
<string>customLocation</string>
<key>attributeSetting</key>
<string>/Users/myusername</string>
<key>choiceIdentifier</key>
<string>default</string>
</dict>
</array>
</plist>

Download the pkg installer using the curl command. The -o option specifies the file name that
the downloaded package is written to. In this example, the file is written to AWSCLIV2.pkg in
the current folder.

$ curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o "AWSCLIV2.pkg"

Run the standard macOS installer program with the following options:

« Specify the name of the package to install by using the -pkg parameter.

« Specify installing to a current user only by setting the -target parameter to
CurrentUserHomeDirectory.

« Specify the path (relative to the current folder) and name of the XML file that you created in
the -applyChoiceChangesXML parameter.

The following example installs the AWS CLI in the folder /Users/myusername/aws-cli.

$ installer -pkg AWSCLIV2.pkg \
-target CurrentUserHomeDirectory \

13

AWS Command Line Interface User Guide for Version 2
AWS CLI installation instructions

-applyChoiceChangesXML choices.xml

4. Because standard user permissions typically don't allow writing to folders in your $PATH,
the installer in this mode doesn't try to add the symlinks to the aws and aws_completer
programs. For the AWS CLI to run correctly, you must manually create the symlinks after the
installer finishes. If your $PATH includes a folder you can write to and you specify the folder
as the target's path, you can run the following command without sudo. If you don't have a
writable folder in your $PATH, you must use sudo for permissions to write to the specified
target folder. The default location for a symlink is /usr/local/bin/.

$ sudo 1ln -s /folder/installed/aws-cli/aws /usr/local/bin/aws
$ sudo 1ln -s /folder/installed/aws-cli/aws_completer /usr/local/bin/aws_completer

After installation is complete, debug logs are written to /var/log/install. log.

5. To verify that the shell can find and run the aws command in your $PATH, use the following
commands.

$ which aws

/usr/local/bin/aws

$ aws --version

aws-cli/2.4.5 Python/3.8.8 Darwin/18.7.0 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

Windows

Installation requirements

« We support the AWS CLI on Microsoft-supported versions of 64-bit Windows.

o Admin rights to install software

Install or update the AWS CLI

To update your current installation of AWS CLI on Windows, download a new installer each time you

update to overwrite previous versions. AWS CLI is updated regularly. To see when the latest version was
released, see the AWS CLI changelog on GitHub.

1. Download and run the AWS CLI MSI installer for Windows (64-bit):
https://awscli.amazonaws.com/AWSCLIV2.msi

Alternatively, you can run the msiexec command to run the MSl installer.

C:\> msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2.msi

For various parameters that can be used with msiexec, see msiexec on the Microsoft Docs website.

2. To confirm the installation, open the Start menu, search for cmd to open a command prompt
window, and at the command prompt use the aws --version command.

C:\> aws --version
aws-cli/2.4.5 Python/3.8.8 Windows/10 exe/AMD64 prompt/off

14

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://awscli.amazonaws.com/AWSCLIV2.msi
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec

AWS Command Line Interface User Guide for Version 2
Troubleshooting AWS CLI install and uninstall errors

If Windows is unable to find the program, you might need to close and reopen the command prompt
window to refresh the path, or follow the troubleshooting in Troubleshooting errors (p. 192).

Troubleshooting AWS CLI install and uninstall errors

If you come across issues after installing or uninstalling the AWS CLI, see Troubleshooting errors (p. 192)
for troubleshooting steps. For the most relevant troubleshooting steps, see the section called “Command
not found errors” (p. 197), the section called “The "aws --version" command returns a different
version than you installed” (p. 199), and the section called “The "aws --version"command returns a
version after uninstalling the AWS CLI" (p. 200).

Next steps

After completing the steps in the section called “Prerequisites” (p. 4) and installing the AWS CLI, you
should perform a the section called "Quick setup” (p. 31).

Installing past releases of the AWS CLI version 2

This topic describes how to install the past releases of the AWS Command Line Interface version 2 (AWS
CLI) on supported operating systems. For information on the AWS CLI version 2 releases, see the AWS CLI
version 2 change notes on GitHub.

AWS CLI version 2 installation instructions:

Linux

Installation requirements

« You know which release of the AWS CLI version 2 you'd like to install. For a list of versions, see the AWS
CLI version 2 changelog on GitHub.

« You must be able to extract or "unzip" the downloaded package. If your operating system doesn't have
the built-in unzip command, use an equivalent.

o The AWS CLI version 2 uses glibc, groff, and less. These are included by default in most major
distributions of Linux.

« We support the AWS CLI version 2 on 64-bit versions of recent distributions of CentOS, Fedora,
Ubuntu, Amazon Linux 1, Amazon Linux 2 and Linux ARM.

« Because AWS doesn't maintain third-party repositories, we can’t guarantee that they contain the latest
version of the AWS CLI.

Installation instructions

Follow these steps from the command line to install the AWS CLI on Linux.

We provide the steps in one easy to copy and paste group based on whether you use 64-bit Linux or
Linux ARM. See the descriptions of each line in the steps that follow.

Linux x86 (64-bit)

To specify a version, append a hyphen and the version number to the filename. For this example the
filename for version 2. 0. 30 would be awscli-exe-1linux-x86_64-2.0.30.zip resulting in the
following command:

15

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Past releases

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64-2.0.30.zip" -o
"awscliv2.zip"

For a list of versions, see the AWS CLI version 2 changelog on GitHub.
Linux ARM
To specify a version, append a hyphen and the version number to the filename. For this example the

filename for version 2. 0. 30 would be awscli-exe-linux-aarch64-2.0.30.zip resulting in
the following command:

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-aarch64-2.0.30.zip" -o
"awscliv2.zip"

For a list of versions, see the AWS CLI version 2 changelog on GitHub.

1. Download the installation file in one of the following ways:
Linux x86 (64-bit)

o Use the curl command - The -o option specifies the file name that the downloaded
package is written to. The options on the following example command write the downloaded
file to the current directory with the local name awscliv2.zip.

To specify a version, append a hyphen and the version number to the filename.
For this example the filename for version 2. 0. 30 would be awscli-exe-linux-
x86_64-2.0.30.zip resulting in the following command:

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64-2.0.30.zip" -o
"awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

For a list of versions, see the AWS CLI version 2 changelog on GitHub.

« Downloading from the URL -

In your browser, download your specific version of the AWS CLI by appending a hyphen and
the version number to the filename.

https://awscli.amazonaws.com/awscli-exe-linux-x86_64-version.number.zip

For this example the filename for version 2. 0. 30 would be awscli-exe-linux-
aarch64-2.0.30.zip resulting in the following link: awscli-exe-linux-aarch64-2.0.30.zip

(Optional) To verify the integrity and authenticity of your downloaded installation file before
you unpack the package, follow the instructions in the section called “(Optional) Verifying the
integrity of your downloaded zip file” (p. 9).

Linux ARM

o Use the curl command - The -o option specifies the file name that the downloaded
package is written to. The options on the following example command write the downloaded
file to the current directory with the local name awscliv2.zip.

16

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
awscli-exe-linux-aarch64-2.0.30.zip

AWS Command Line Interface User Guide for Version 2
Past releases

To specify a version, append a hyphen and the version number to the filename.
For this example the filename for version 2. 0. 30 would be awscli-exe-linux-
aarch64-2.0.30.zip resulting in the following command:

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-aarch64-2.0.30.zip" -o
"awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

« Downloading from the URL -

In your browser, download your specific version of the AWS CLI by appending a hyphen and
the version number to the filename.

https://awscli.amazonaws.com/awscli-exe-linux-aarché64-version.number.zip

For this example the filename for version 2. 0. 30 would be awscli-exe-linux-
aarch64-2.0.30.zip resulting in the following link: awscli-exe-linux-aarch64-2.0.30.zip

(Optional) To verify the integrity and authenticity of your downloaded installation file before
you unpack the package, follow the instructions in the section called “(Optional) Verifying the
integrity of your downloaded zip file” (p. 9).

Unzip the installer. If your Linux distribution doesn't have a built-in unzip command, use an
equivalent to unzip it. The following example command unzips the package and creates a directory
named aws under the current directory.

$ unzip awscliv2.zip

Run the install program. The installation command uses a file named install in the newly
unzipped aws directory. By default, the files are all installed to /usr/local/aws-cli, and
a symbolic link is created in /usr/local/bin. The command includes sudo to grant write
permissions to those directories.

$ sudo ./aws/install

You can install without sudo if you specify directories that you already have write permissions to.
Use the following instructions for the install command to specify the installation location:

« Ensure that the paths you provide to the -i and -b parameters contain no volume name or
directory names that contain any space characters or other white space characters. If there is a
space, the installation fails.

e« —-install-dir or -i — This option specifies the directory to copy all of the files to.

The default value is /usr/local/aws-cli.

e« —-bin-dir or -b - This option specifies that the main aws program in the install directory is
symbolically linked to the file aws in the specified path. You must have write permissions to the
specified directory. Creating a symlink to a directory that is already in your path eliminates the
need to add the install directory to the user's $PATH variable.

The default value is /usr/local/bin.

$./aws/install -i /usr/local/aws-cli -b /usr/local/bin

17

awscli-exe-linux-aarch64-2.0.30.zip

AWS Command Line Interface User Guide for Version 2
Past releases

Note

To update your current installation of the AWS CLI version 2 to a newer version, add your
existing symlink and installer information to construct the install command with the --
update parameter.

$ sudo ./aws/install --bin-dir /usr/local/bin --install-dir /usr/local/aws-cli
--update

To locate the existing symlink and installation directory, use the following steps:

1. Use the which command to find your symlink. This gives you the path to use with the --
bin-dir parameter.

$ which aws
/usr/local/bin/aws

2. Use the 1s command to find the directory that your symlink points to. This gives you the
path to use with the --install-dir parameter.

$ 1ls -1 /usr/local/bin/aws
lrwxrwxrwx 1 ec2-user ec2-user 49 Oct 22 09:49 /usr/local/bin/aws -> /Jusr/
local/aws-cli/v2/current/bin/aws

4. Confirm the installation with the following command.

$ aws --version
aws-cli/2.4.5 Python/3.8.8 Linux/4.14.133-113.105.amzn2.x86_64 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

(Optional) Verifying the integrity of your downloaded zip file

If you chose to manually download the AWS CLI version 2 installer package . zip in the above steps, you
use can use the following steps to verify the signatures by using the GnuPG tool.

The AWS CLI version 2 installer package . zip files are cryptographically signed using PGP signatures.
If there is any damage or alteration of the files, this verification fails and you should not proceed with
installation.

1. Download and install the gpg command using your package manager. For more information about
GnuPgG, see the GnuPG website.

2. To create the public key file, create a text file and paste in the following text.

mMQINBF2Cx7UBEADJZHcgusOJ17ENSyumXh85z0TRVOxJorM2B/JLOKHOyigQluUG
ZMLhENaGObYatdrKP+3H911vKO50pXwnO/R7£fB/FSTouki4ciIx50uLlnJZIxSzx
PgGlOmkxIMLNbGWoi6LtoOLYxgqHN2iQtz1wTVmg9733zd3XfcXrZ3+LblHAgEt5G
TfNXEKJ8soPLyWmwDH6HWCNnjZ/aIQRBTIQ05uVeEoYxShéwOai7ss/KveoSNBbYz
gbdzoqI2Y8cgH2nbfgp3DSasaLZEdCSsIsK1u05CinE7k2qZ7KgKAUIcT/cR/grk
C6VwsnDUOOUCideXcQ8WeHutqvgZH1JgKDbznoIzeQHJID238GEu+eKhRHcz8/jeG
94zkcgJ0z3KbZGYMiTh277Fvj9zzvZsbMBCedV1BTg3TqgvdX4bdkhf5cH+7NtWO
1rFj6UwAsGukBTAOxXCOl/dAnSmZhJ7Z1KmEWilro/gOrjtOxqRQutlIqG22TaqoPG
fYVN+en3Zwbt97kcgZDwgbuykNt640ZWc4XKCa3mprEGC3IbJTBFqglXmZ719ywG
EEUJYOlb2XrSuPWml39beWdKM8kzr10jnlOmé+1pTRCBfoOwa9F 8YZRhHPAKkwKKX
XDeOGpWRj40hOx0d2GWkyV5xyN14p2t00Cd00DmMz80yUTgRpPVQUtOEhXQARAQAB

18

https://www.gnupg.org/

AWS Command Line Interface User Guide for Version 2
Past releases

tCFBV1MgQOxXxJIFR1YWOgPGF3cyljbGlAYWlhem9uLmNvbT6JA1QEEWEIAD4WIQT?7
Xbd/1cEYuAURraimMQrMRnIHXAUCXYKvtQIbAwWUIB4TOARAULCQgHAGYVCGKICWIE
FgIDAQIeAQIXgAAKCRCMMOrMRNJHXJIXEAChLUIkg80uPUKGjE3jejvQSAlaWuAM
yzy6£dpd1l1RUzZ6M6nmsUhOEXxjVIVibEJpzK5mhuSZ41b0vJI2ZUPgCv4zs2nBd7BGJT
MxKiWgBReGVTAdqZ0SzyYH4PYCJISE732x/Fw9hfnh1dMTXNcrQXzwOmmFNNegGOOx
au+VnpcR5Kz3smiTrIwZbRudolijhCYPQ7t5CMp9kjC6bObvylhSIg2xNbMAN/Do
ikebAl136uRA6Y/Uczjj3GxZW4ZWeFirMidKbtqvUz2yOUFszobjiBSqZZHCreC34B
hw9bFNpuWC/0SrXgohdsc6vK50pDGAV5kM2qo9tMQ/izsAwTh/d/GzZv8H41V9eO0
tEis+EpR497PaxKKh9tJfON6Q1YLRHof5xePZt0I1S3gfvsH5hXA3HI9yIxb8TOH
QYmVr3alIUes20i6meI3fuV36VFupwfrTKaL7VXnsrK2fq5cRvyJLNzXucgOWAjPF
RrAGLzY7nPlxeglaOaeP+pdsqjglPJom80CWc1l+6DWbg0jsC74WoesAqgBItODMB
rsally/q+bPzpsnWjzHV8+1/EtZmSc8ZUGSJOPKkfC7hObnfk1l18h+1Q0tKTjZme4d
H17gsBJr+opwIw/Zio2LMjQBOqlm3K1A4zFTh7wBC7He6KPQealp2XAMgtvATtNe
YLZATHZKTJyiqA==

=vYOk

For reference, the following are the details of the public key.

Key ID: A6310ACC4672

Type: RSA

Size: 4096/4096

Created: 2019-09-18

Expires: 2023-09-17

User ID: AWS CLI Team <aws-cli@amazon.com>

Key fingerprint: FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C

Import the AWS CLI public key with the following command, substituting public-key-file-name
with the file name of the public key you created.

$ gpg --import public-key-file-name

gpg: /home/username/.gnupg/trustdb.gpg: trustdb created

gpg: key A6310ACC4672475C: public key "AWS CLI Team <aws-cli@amazon.com>" imported
gpg: Total number processed: 1

gpg: imported: 1

Download the AWS CLI signature file for the package you downloaded. It has the same path and
name as the . zip file it corresponds to, but has the extension . sig. In the following examples, we
save it to the current directory as a file named awscliv2.sig.

Linux x86 (64-bit)

For the latest version of the AWS CLI, use the following command block:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip.sig

For a specific version of the AWS CLI, append a hyphen and the version number to the
filename. For this example the filename for version 2. 0. 30 would be awscli-exe-1linux-
x86_64-2.0.30.zip.sig resulting in the following command:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-
X86_64-2.0.30.zip.sig

For a list of versions, see the AWS CLI version 2 changelog on GitHub.
Linux ARM

For the latest version of the AWS CLI, use the following command block:

19

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Past releases

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-
aarché64.zip.sig

For a specific version of the AWS CLI, append a hyphen and the version number to the
filename. For this example the filename for version 2. 0. 30 would be awscli-exe-linux-
aarch64-2.0.30.zip.sig resulting in the following command:

$ curl -o awscliv2.sig https://awscli.amazonaws.com/awscli-exe-linux-
aarch64-2.0.30.zip.sig

For a list of versions, see the AWS CLI version 2 changelog on GitHub.

5. Verify the signature, passing both the downloaded .sig and . zip file names as parameters to the
gpg command.

$ gpg --verify awscliv2.sig awscliv2.zip

The output should look similar to the following.

gpg: Signature made Mon Nov 4 19:00:01 2019 PST

gpg: using RSA key FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C
gpg: Good signature from "AWS CLI Team <aws-cli@amazon.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: FB5D B77F D5C1 18B8 0511 ADA8 A631 OACC 4672 475C

Important

The warning in the output is expected and doesn't indicate a problem. It occurs because
there isn't a chain of trust between your personal PGP key (if you have one) and the AWS
CLI PGP key. For more information, see Web of trust.

macOS

Installation requirements

« You know which release of the AWS CLI version 2 you'd like to install. For a list of versions, see the AWS
CLI version 2 changelog on GitHub.

« We support the AWS CLI version 2 on Apple-supported versions of 64-bit macOS.

« Because AWS doesn't maintain third-party repositories, we can't guarantee that they contain the latest
version of the AWS CLI.

Installation instructions

You can install the AWS CLI version 2 on macOS in the following ways.
GUl installer

The following steps show how to install or update to the latest version of the AWS CLI version 2 by
using the standard macOS user interface and your browser. If you are updating to the latest version,
use the same installation method that you used for your current version.

1. In your browser, download your specific version of the AWS CLI by appending a hyphen and the
version number to the filename.

20

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://wikipedia.org/wiki/Web_of_trust
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Past releases

https://awscli.amazonaws.com/AWSCLIV2-version.number.pkg

For this example, the filename for version 2. 0. 30 would be AWSCLIV2-2.0.30.pkg resulting
in the following link: https://awscli.amazonaws.com/AWSCLIV2-2.0.30.pkg.

2. Run your downloaded file and follow the on-screen instructions. You can choose to install the
AWS CLI version 2 in the following ways:

« For all users on the computer (requires sudo)

« You can install to any folder, or choose the recommended default folder of /usr/local/
aws-cli.

o The installer automatically creates a symlink at /usr/local/bin/aws that links to the
main program in the installation folder you chose.

« For only the current user (doesn't require sudo)
+ You can install to any folder to which you have write permission.

« Due to standard user permissions, after the installer finishes, you must manually create a
symlink file in your $PATH that points to the aws and aws_completer programs by using
the following commands at the command prompt. If your $PATH includes a folder you can
write to, you can run the following command without sudo if you specify that folder as the
target's path. If you don't have a writable folder in your $PATH, you must use sudo in the
commands to get permissions to write to the specified target folder. The default location
for a symlink is /usr/local/bin/.

$ sudo 1ln -s /folder/installed/aws-cli/aws /usr/local/bin/aws
$ sudo 1ln -s /folder/installed/aws-cli/aws_completer /usr/local/bin/
aws_completer

Note

You can view debug logs for the installation by pressing Cmd+L anywhere in the
installer. This opens a log pane that enables you to filter and save the log. The log file is
also automatically saved to /var/log/install.log.

3. To verify that the shell can find and run the aws command in your $PATH, use the following
commands.

$ which aws

/usr/local/bin/aws

$ aws --version

aws-cli/2.4.5 Python/3.8.8 Darwin/18.7.0 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

Command line installer - All users

If you have sudo permissions, you can install the AWS CLI version 2 for all users on the computer.
We provide the steps in one easy to copy and paste group. See the descriptions of each line in the
following steps.

For a specific version of the AWS CLI, append a hyphen and the version number to the filename. For
this example the filename for version 2. 0. 30 would be AWSCLIV2-2.0.30.pkg resulting in the
following command:

$ curl "https://awscli.amazonaws.com/AWSCLIV2-2.0.30.pkg" -o "AWSCLIV2.pkg"

21

https://awscli.amazonaws.com/AWSCLIV2-2.0.30.pkg

AWS Command Line Interface User Guide for Version 2
Past releases

$ sudo installer -pkg AWSCLIV2.pkg -target /

Download the file using the curl command. The -o option specifies the file name that the
downloaded package is written to. In this example, the file is written to AWSCLIV2.pkg in the
current folder.

For a specific version of the AWS CLI, append a hyphen and the version number to the filename.
For this example the filename for version 2. 0. 30 would be AWSCLIV2-2.0.30.pkg resulting
in the following command:

$ curl "https://awscli.amazonaws.com/AWSCLIV2-2.0.30.pkg" -o "AWSCLIV2.pkg"

For a list of versions, see the AWS CLI version 2 changelog on GitHub.

Run the standard macOS installer program, specifying the downloaded . pkg file as the
source. Use the -pkg parameter to specify the name of the package to install, and the -

target / parameter for which drive to install the package to. The files are installed to /usr/
local/aws-cli, and a symlink is automatically created in /usr/local/bin. You must include
sudo on the command to grant write permissions to those folders.

$ sudo installer -pkg ./AWSCLIV2.pkg -target /

After installation is complete, debug logs are written to /var/log/install. log.

To verify that the shell can find and run the aws command in your $PATH, use the following
commands.

$ which aws

/usr/local/bin/aws

$ aws --version

aws-cli/2.4.5 Python/3.8.8 Darwin/18.7.0 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

Command line - Current user

1.

To specify which folder the AWS CLI is installed to, you must create an XML file. This file is an
XML-formatted file that looks like the following example. Leave all values as shown, except you
must replace the path /Users/myusername in line 9 with the path to the folder you want the
AWS CLI version 2 installed to. The folder must already exist, or the command fails. This XML
example specifies that the installer installs the AWS CLI in the folder /Users/myusername,
where it creates a folder named aws-c1i.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<dict>
<key>choiceAttribute</key>
<string>customLocation</string>
<key>attributeSetting</key>
<string>/Users/myusername</string>
<key>choiceIdentifier</key>
<string>default</string>
</dict>
</array>

22

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Past releases

</plist>

Download the pkg installer using the curl command. The -o option specifies the file name that
the downloaded package is written to. In this example, the file is written to AWSCLIV2.pkg in
the current folder.

For the specific version of the AWS CLI, append a hyphen and the version number to the
filename. For this example the filename for version 2. 0. 30 would be AWSCLIV2-2.0.30.pkg
resulting in the following command:

$ curl "https://awscli.amazonaws.com/AWSCLIV2-2.0.30.pkg" -o "AWSCLIV2.pkg"

For a list of versions, see the AWS CLI version 2 changelog on GitHub.
Run the standard macOS installer program with the following options:

« Specify the name of the package to install by using the -pkg parameter.

« Specify installing to a current user only by setting the -target parameter to
CurrentUserHomeDirectory.

« Specify the path (relative to the current folder) and name of the XML file that you created in
the -applyChoiceChangesXML parameter.

The following example installs the AWS CLI in the folder /Users/myusername/aws-cli.

$ installer -pkg AWSCLIV2.pkg \
-target CurrentUserHomeDirectory \
-applyChoiceChangesXML choices.xml

Because standard user permissions typically don't allow writing to folders in your $PATH,
the installer in this mode doesn't try to add the symlinks to the aws and aws_completer
programs. For the AWS CLI to run correctly, you must manually create the symlinks after the
installer finishes. If your $PATH includes a folder you can write to and you specify the folder
as the target's path, you can run the following command without sudo. If you don't have a
writable folder in your $PATH, you must use sudo for permissions to write to the specified
target folder. The default location for a symlink is /usr/local/bin/.

$ sudo 1ln -s /folder/installed/aws-cli/aws /usr/local/bin/aws
$ sudo 1ln -s /folder/installed/aws-cli/aws_completer /usr/local/bin/aws_completer

After installation is complete, debug logs are written to /var/log/install. log.

To verify that the shell can find and run the aws command in your $PATH, use the following
commands.

$ which aws

/usr/local/bin/aws

$ aws --version

aws-cli/2.4.5 Python/3.8.8 Darwin/18.7.0 botocore/2.4.5

If the aws command cannot be found, you might need to restart your terminal or follow the
troubleshooting in Troubleshooting errors (p. 192).

23

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Past releases

Windows

Installation requirements

« You know which release of the AWS CLI version 2 you'd like to install. For a list of versions, see the AWS
CLI version 2 changelog on GitHub.
« A 64-bit version of Windows XP or later.

o Admin rights to install software

Installation instructions

To update your current installation of AWS CLI version 2 on Windows, download a new installer each
time you update to overwrite previous versions. AWS CLI is updated regularly. To see when the latest
version was released, see the AWS CLI version 2 changelog on GitHub.

1. Download and run the AWS CLI MSI installer for Windows (64-bit) in one of the following ways:

« Downloading and running the MSI installer: To create your download link for a specific version
of the AWS CLI, append a hyphen and the version number to the filename.

https://awscli.amazonaws.com/AWSCLIV2-version.number.msi

For this example the filename for version 2. 0. 30 would be AWSCLIV2-2.0.30.ms1i resulting in
the following link: https://awscli.amazonaws.com/AWSCLIV2-2.0.30.msi.

« Using the msiexec command: Alternatively, you can use the MSl installer by adding the link to
the msiexec command. For a specific version of the AWS CLI, append a hyphen and the version
number to the filename.

C:\> msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2-version.number.msi

For this example the filename for version 2. 0. 30 would be AWSCLIV2-2.0.30.msi resulting in
the following link https://awscli.amazonaws.com/AWSCLIV2-2.0.30.msi.

C:\> msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2-2.0.30.msi

For various parameters that can be used with msiexec, see msiexec on the Microsoft Docs
website.

For a list of versions, see the AWS CLI version 2 changelog on GitHub.

2. To confirm the installation, open the Start menu, search for cmd to open a command prompt
window, and at the command prompt use the aws --version command.

C:\> aws --version
aws-cli/2.4.5 Python/3.8.8 Windows/10 exe/AMD64 prompt/off

If Windows is unable to find the program, you might need to close and reopen the command prompt
window to refresh the path, or follow the troubleshooting in Troubleshooting errors (p. 192).

24

https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst
https://awscli.amazonaws.com/AWSCLIV2-2.0.30.msi
https://awscli.amazonaws.com/AWSCLIV2-2.0.30.msi
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec
https://github.com/aws/aws-cli/blob/v2/CHANGELOG.rst

AWS Command Line Interface User Guide for Version 2
Troubleshooting AWS CLI install and uninstall errors

Troubleshooting AWS CLI install and uninstall errors

If you come across issues after installing or uninstalling the AWS CLI, see Troubleshooting errors (p. 192)
for troubleshooting steps. For the most relevant troubleshooting steps, see the section called “Command
not found errors” (p. 197), the section called “The "aws --version" command returns a different
version than you installed” (p. 199), and the section called “The "aws --version" command returns a
version after uninstalling the AWS CLI" (p. 200).

Next steps

After completing the steps in the section called “Prerequisites” (p. 4) and installing the AWS CLI, you
should perform a the section called “Quick setup” (p. 31).

Using the official AWS CLI version 2 Docker image

This topic describes how to run, version control, and configure the AWS CLI version 2 on Docker. For more
information on how to use Docker, see Docker's documentation.

Official Docker images provide isolation, portability, and security that AWS directly supports and
maintains. This enables you to use the AWS CLI version 2 in a container-based environment without
having to manage the installation yourself.

Topics
 Prerequisites (p. 25)
« Run the official AWS CLI version 2 Docker image (p. 25)
» Notes on interfaces and backwards compatibility of Docker image (p. 26)
» Use specific versions and tags (p. 26)
« Update to the latest Docker image (p. 27)
» Share host files, credentials, environment variables, and configuration (p. 27)
« Shorten the Docker command (p. 29)

Prerequisites

You must have Docker installed. For installation instructions, see the Docker website.

To verify your installation of Docker, run the following command and confirm there is an output.

$ docker --version
Docker version 19.03.1

Run the official AWS CLI version 2 Docker image

The official AWS CLI version 2 Docker image is hosted on DockerHub in the amazon/aws-cli repository.
The first time you use the docker run command, the latest Docker image is downloaded to your
computer. Each subsequent use of the docker run command runs from your local copy.

To run the AWS CLI version 2 Docker image, use the docker run command.

$ docker run --rm -it amazon/aws-cli command

25

https://docs.docker.com/
https://docs.docker.com/install/

AWS Command Line Interface User Guide for Version 2
Notes on interfaces and backwards
compatibility of Docker image

This is how the command functions:

docker run --rm -it amazon/aws-cli - The equivalent of the aws executable. Each time you
run this command, Docker spins up a container of your downloaded amazon/aws-c1i image, and
executes your aws command. By default, the Docker image uses the latest version of the AWS CLI
version 2.

For example, to call the aws --version command in Docker, you run the following.

$ docker run --rm -it amazon/aws-cli --version
aws-cli/2.4.5 Python/3.7.3 Linux/4.9.184-1linuxkit botocore/2.4.5dev10

--rm - Specifies to clean up the container after the command exits.

-it — Specifies to open a pseudo-TTY with stdin. This enables you to provide input to the AWS CLI
version 2 while it's running in a container, for example, by using the aws configure and aws help
commands. When choosing whether to omit -it, consider the following:

« If you are running scripts, -it is not needed.

« If you are experiencing errors with your scripts, omitting -it from your Docker call might fix the
issue.
« If you are trying to pipe output, —it might cause errors and omitting -it from your Docker call

might resolve this issue. If you'd like to keep the -it flag, but still would like to pipe output,
disabling the client-side pager (p. 116) the AWS CLI uses by default should resolve the issue.

For more information about the docker run command, see the Docker reference guide.

Notes on interfaces and backwards compatibility of
Docker image

The only tool supported on the image is the AWS CLI. Only the aws executable should ever be directly
run. For example, even though less and groff are explicitly installed on the image, they should not
be executed directly outside of an AWS CLI command.

The /aws working directory is user controlled. The image will not write to this directory, unless
instructed by the user in running an AWS CLI command.

There are no backwards compatibility guarantees in relying on the latest tag. To guarantee backwards
compatibility, you must pin to a specific <major.minor.patch> tag as those tags are immutable; they
will only ever be pushed to once.

Use specific versions and tags

The official AWS CLI version 2 Docker image has multiple versions you can use, starting with version
2.0.6. To run a specific version of the AWS CLI version 2, append the appropriate tag to your docker
run command. The first time you use the docker run command with a tag, the latest Docker image for
that tag is downloaded to your computer. Each subsequent use of the docker run command with that
tag runs from your local copy.

You can use two types of tags:

o latest — Defines the latest version of the AWS CLI version 2 for the Docker image. We recommend

you use the latest tag when you want the latest version of the AWS CLI version 2. However, there are
no backward-compatibility guarantees when relying on this tag. The latest tag is used by default in
the docker run command. To explicitly use the latest tag, append the tag to the container image
name.

26

https://docs.docker.com/engine/reference/run/

AWS Command Line Interface User Guide for Version 2
Update to the latest Docker image

‘$ docker run --rm -it amazon/aws-cli:latest command

e <major.minor.patch> - Defines a specific version of the AWS CLI version 2 for the Docker image. If
you plan to use the Docker image in production, we recommend you use a specific version of the AWS
CLI version 2 to ensure backward compatibility. For example, to run version 2.0.6, append the version
to the container image name.

‘$ docker run --rm -it amazon/aws-cli:2.0.6 command

Update to the latest Docker image

Because the latest Docker image is downloaded to your computer only the first time you use the docker
run command, you need to manually pull an updated image. To manually update to the latest version,
we recommend you pull the 1atest tagged image. Pulling the Docker image downloads the latest
version to your computer.

$ docker pull amazon/aws-cli:latest

Share host files, credentials, environment variables,
and configuration

Because the AWS CLI version 2 is run in a container, by default the CLI can't access the host file

system, which includes configuration and credentials. To share the host file system, credentials,

and configuration to the container, mount the host system’s ~/ . aws directory to the container at /
root/.aws with the -v flag to the docker run command. This allows the AWS CLI version 2 running in
the container to locate host file information.

Linux and macOS

$ docker run --rm -it -v ~/.aws:/root/.aws amazon/aws-cli command

Windows Command Prompt

$ docker run --rm -it -v %userprofile%\.aws:/root/.aws amazon/aws-cli command

Windows PowerShell

C:\> docker run --rm -it -v $env:userprofile\.aws:/root/.aws amazon/aws-cli command

For more information about the -v flag and mounting, see the Docker reference guide.

Note
For information on config and credentials files, see the section called “Configuration and
credential file settings” (p. 36).

Example 1: Providing credentials and configuration

In this example, we're providing host credentials and configuration when running the s3 1s command
to list your buckets in Amazon Simple Storage Service (Amazon S3). The below examples use the default
location for AWS CLI credentials and configuration files, to use a different location, change the file path.

27

https://docs.docker.com/storage/volumes/

AWS Command Line Interface User Guide for Version 2
Share host files, credentials,
environment variables, and configuration

Linux and macOS

$ docker run --rm -it -v ~/.aws:/root/.aws amazon/aws-cli s3 1ls
2020-03-25 00:30:48 aws-cli-docker-demo

Windows Command Prompt

$ docker run --rm -it -v %userprofile%\.aws:/root/.aws amazon/aws-cli s3 1ls
2020-03-25 00:30:48 aws-cli-docker-demo

Windows PowerShell

C:\> docker run --rm -it -v $env:userprofile\.aws:/root/.aws amazon/aws-cli s3 ls

You can call specific system's environment variables using the -e flag. To use an environment variable,
call it by name.

Linux and macOS

$ docker run --rm -it -v ~/.aws:/root/.aws -e ENVVAR_NAME amazon/aws-cli s3 ls
2020-03-25 00:30:48 aws-cli-docker-demo

Windows Command Prompt

1s
2020-03-25 00:30:48 aws-cli-docker-demo

$ docker run --rm -it -v %userprofile%\.aws:/root/.aws -e ENVVAR NAME amazon/aws-cli s3

Windows PowerShell

cli s3 1s

C:\> docker run --rm -it -v $env:userprofile\.aws:/root/.aws -e ENVVAR_NAME amazon/aws-

Example 2: Downloading an Amazon S3 file to your host system

For some AWS CLI version 2 commands, you can read files from the host system in the container or write
files from the container to the host system.

In this example, we download the s3 object s3://aws-cli-docker-demo/hello to your local file
system by mounting the current working directory to the container's /aws directory. By downloading
the hello object to the container's /aws directory, the file is saved to the host system’s current working
directory also.

Linux and macOS

$ docker run --rm -it -v ~/.aws:/root/.aws -v $(pwd):/aws amazon/aws-cli s3 cp s3://
aws-cli-docker-demo/hello .
download: s3://aws-cli-docker-demo/hello to ./hello

Windows Command Prompt

$ docker run --rm -it -v %userprofile%\.aws:/root/.aws -v %cd%:/aws amazon/aws-cli s3
cp s3://aws-cli-docker-demo/hello .
download: s3://aws-cli-docker-demo/hello to ./hello

28

AWS Command Line Interface User Guide for Version 2
Shorten the Docker command

Windows PowerShell

C:\> docker run --rm -it -v $env:userprofile\.aws:/root/.aws -v $pwd\aws:/aws amazon/
aws-cli s3 cp s3://aws-cli-docker-demo/hello .

To confirm the downloaded file exists in the local file system, run the following.

Linux and macOS

$ cat hello
Hello from Docker!

Windows

$ type hello
Hello from Docker!

Example 3: Using your AWS_PROFILE environment variable

You can call specific system's environment variables using the -e flag. Call each environment variable
you'd like to use. In this example, we're providing host credentials, configuration, and the AwS_PROFILE
environment variable when running the s3 1s command to list your buckets in Amazon Simple Storage
Service (Amazon S3).

Linux and macOS

$ docker run --rm -it -v ~/.aws:/root/.aws -e AWS_PROFILE amazon/aws-cli s3 1ls
2020-03-25 00:30:48 aws-cli-docker-demo

Windows

$ docker run --rm -it -v %userprofile%\.aws:/root/.aws -e AWS_PROFILE amazon/aws-cli s3
1s
2020-03-25 00:30:48 aws-cli-docker-demo

Windows PowerShell

C:\> docker run --rm -it -v $env:userprofile\.aws:/root/.aws -e AWS_PROFILE amazon/aws-
cli s3 1s

Shorten the Docker command

To shorten the Docker aws command, we suggest you use your operating system's ability to create a
symbolic link (symlink) or alias in Linux and macOS, or doskey in Windows. To set the aws alias,
you can run one of the following commands.

 For basic access to aws commands, run the following.
Linux and macOS

$ alias aws='docker run --rm -it amazon/aws-cli'

29

https://www.linux.com/tutorials/understanding-linux-links/
https://www.linux.com/tutorials/aliases-diy-shell-commands/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

AWS Command Line Interface User Guide for Version 2
Shorten the Docker command

Windows Command Prompt

C:\> doskey aws=docker run --rm -it amazon/aws-cli $*

Windows PowerShell

C:\> Function AWSCLI {docker run --rm -it amazon/aws-cli $args}
Set-Alias -Name aws -Value AWSCLI

« For access to the host file system and configuration settings when using aws commands, run the
following.

Linux and macOS

$ alias aws='docker run --rm -it -v ~/.aws:/root/.aws -v $(pwd):/aws amazon/aws-cli'

Windows Command Prompt

C:\> doskey aws=docker run --rm -it -v %userprofile%\.aws:/root/.aws -v %cd%:/aws
amazon/aws-cli $*

Windows PowerShell

C:\> Function AWSCLI {docker run --rm -it -v $env:userprofile\.aws:/root/.aws -v $pwd
\aws:/aws amazon/aws-cli $args}
Set-Alias -Name aws -Value AWSCLI

« To assign a specific version to use in your aws alias, append your version tag.

Linux and macOS

$ alias aws='docker run --rm -it -v ~/.aws:/root/.aws -v $(pwd):/aws amazon/aws-
cli:2.0.6"

Windows Command Prompt

C:\> doskey aws=docker run --rm -it -v %userprofile%\.aws:/root/.aws -v %cd%:/aws
amazon/aws-cli:2.0.6 $*

Windows PowerShell

C:\> Function AWSCLI {docker run --rm -it -v $env:userprofile\.aws:/root/.aws -v $pwd
\aws:/aws amazon/aws-cli:2.0.6 $args}
Set-Alias -Name aws -Value AWSCLI

After setting your alias, you can run the AWS CLI version 2 from within a Docker container as if it's
installed on your host system.

$ aws --version
aws-cli/2.4.5 Python/3.7.3 Linux/4.9.184-1linuxkit botocore/2.4.5dev10

30

AWS Command Line Interface User Guide for Version 2
Quick setup

Quick setup

This topic explains how to quickly configure basic settings that the AWS Command Line Interface (AWS
CLI) uses to interact with AWS. These include your security credentials, the default output format, and
the default AWS Region.

Topics
« New configuration quick setup (p. 31)
» Using existing configuration and credentials files (p. 31)

New configuration quick setup

For general use, the aws configure command is the fastest way to set up your AWS CLI installation.
When you enter this command, the AWS CLI prompts you for four pieces of information:

o Access key ID (p. 33)

« Secret access key (p. 33)
o AWS Region (p. 34)

o Output format (p. 35)

The AWS CLI stores this information in a profile (a collection of settings) named default in the
credentials file. By default, the information in this profile is used when you run an AWS CLI command
that doesn't explicitly specify a profile to use. For more information on the credentials file, see
Configuration and credential file settings (p. 36)

The following example shows sample values. Replace them with your own values as described in the
following sections.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJdalrXUtnFEMI/K7MDENG/bPXRfiCYEXAMPLEKEY
Default region name [None]: us-west-2

Default output format [None]: json

For more detailed information on configuration see the section called “Configuration basics” (p. 32).

Using existing configuration and credentials files

If you have existing configuration and credentials files, these can be used for the AWS CLI.

To use the config and credentials files, move them to the folder named . aws in your home
directory. Where you find your home directory location varies based on the operating system, but is
referred to using the environment variables %UserProfile% in Windows and $HOME or ~ (tilde) in Unix-
based systems.

You can specify a non-default location for the config and credentials files by setting the
AWS_CONFIG_FILE and AWS_SHARED_CREDENTIALS_FILE environment variables to another local
path. See Environment variables to configure the AWS CLI (p. 55) for details.

For more detailed information on configuration and credentials files, see the section called
“Configuration and credential file settings” (p. 36).

31

AWS Command Line Interface User Guide for Version 2
Configuration basics

Configuring the AWS CLI

This section explains how to configure the settings that the AWS Command Line Interface (AWS CLI) uses
to interact with AWS. These include your security credentials, the default output format, and the default
AWS Region.

Note

AWS requires that all incoming requests are cryptographically signed. The AWS CLI does this

for you. The "signature" includes a date/time stamp. Therefore, you must ensure that your
computer's date and time are set correctly. If you don't, and the date/time in the signature is too
far off of the date/time recognized by the AWS service, AWS rejects the request.

Topics

Configuration basics (p. 32)

Configuration and credential file settings (p. 36)

Named profiles for the AWS CLI (p. 48)

Configuring the AWS CLI to use AWS Single Sign-On (p. 49)
Environment variables to configure the AWS CLI (p. 55)
Command line options (p. 59)

Command completion (p. 63)

AWS CLlI retries (p. 67)

Sourcing credentials with an external process (p. 70)

Using credentials for Amazon EC2 instance metadata (p. 72)
Using an HTTP proxy (p. 73)

Using an IAM role in the AWS CLI (p. 75)

Configuration basics

This section explains how to quickly configure basic settings that the AWS Command Line Interface (AWS
CLI) uses to interact with AWS. These include your security credentials, the default output format, and
the default AWS Region.

Note

AWS requires that all incoming requests are cryptographically signed. The AWS CLI does this

for you. The "signature" includes a date/time stamp. Therefore, you must ensure that your
computer's date and time are set correctly. If you don't, and the date/time in the signature is too
far off of the date/time recognized by the AWS service, AWS rejects the request.

Topics

Quick configuration with aws configure (p. 33)
Access key ID and secret access key (p. 33)

« Creating a key pair (p. 33)

« Importing a key pair via .CSV file (p. 34)
Region (p. 34)
Output format (p. 35)
Profiles (p. 35)
Configuration settings and precedence (p. 35)

32

AWS Command Line Interface User Guide for Version 2
Quick configuration with aws configure

Quick configuration with aws configure

For general use, the aws configure command is the fastest way to set up your AWS CLI installation.
When you enter this command, the AWS CLI prompts you for four pieces of information:

o Access key ID (p. 33)

» Secret access key (p. 33)
« AWS Region (p. 34)

o Output format (p. 35)

The AWS CLI stores this information in a profile (a collection of settings) named default in the
credentials file. By default, the information in this profile is used when you run an AWS CLI command
that doesn't explicitly specify a profile to use. For more information on the credentials file, see
Configuration and credential file settings (p. 36)

The following example shows sample values. Replace them with your own values as described in the
following sections.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJdalrXUtnFEMI/K7MDENG/bPxXRfiCYEXAMPLEKEY
Default region name [None]: us-west-2

Default output format [None]: json

Access key ID and secret access key

Access keys use an access key ID and secret access key that you use to sign programmatic requests to
AWS.

Topics
« Creating a key pair (p. 33)
« Importing a key pair via .CSV file (p. 34)

Creating a key pair

Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them from the AWS
Management Console. As a best practice, do not use the AWS account root user access keys for any task
where it's not required. Instead, create a new administrator IAM user with access keys for yourself.

The only time that you can view or download the secret access key is when you create the keys. You
cannot recover them later. However, you can create new access keys at any time. You must also have
permissions to perform the required IAM actions. For more information, see Permissions required to
access IAM resources in the IAM User Guide.

To create access keys for an 1AM user

1. Signin to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to create, and then choose the Security
credentials tab.

4. Inthe Access keys section, choose Create access key.

33

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Command Line Interface User Guide for Version 2
Region

5. To view the new access key pair, choose Show. You will not have access to the secret access key again
after this dialog box closes. Your credentials will look something like this:

o Access key ID: AKIAIOSFODNN7EXAMPLE
« Secret access key: wlalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

6. To download the key pair, choose Download .csv file. Store the keys in a secure location. You will
not have access to the secret access key again after this dialog box closes.

Keep the keys confidential in order to protect your AWS account and never email them. Do not share
them outside your organization, even if an inquiry appears to come from AWS or Amazon.com. No
one who legitimately represents Amazon will ever ask you for your secret key.

7. After you download the . csv file, choose Close. When you create an access key, the key pair is active
by default, and you can use the pair right away.

Related topics

o What is IAM? in the IAM User Guide
o AWS security credentials in AWS General Reference

Importing a key pair via .CSV file

Instead of using aws configure to enter in a key pair, you can import the . csv file you downloaded
after you created your key pair.

The . csv file must contain the following headers.

e User Name
o Access key ID
« Secret access key

Note

During initial key pair creation, once you close the Download .csv file dialog box, you cannot
access your secret access key after you close the dialog box. If you need a . csv file, you'll need
to create one yourself with the required headers and your stored key pair information. If you do
not have access to your key pair information, you need to create a new key pair.

To import the . csv file, use the aws configure import command with the --csv option as follows:

$ aws configure import --csv file://credentials.csv

For more information, see aws_configure_ import (p. 38).

Region

The Default region name identifies the AWS Region whose servers you want to send your requests
to by default. This is typically the Region closest to you, but it can be any Region. For example, you can
type us-west-2 to use US West (Oregon). This is the Region that all later requests are sent to, unless
you specify otherwise in an individual command.

Note

You must specify an AWS Region when using the AWS CLI, either explicitly or by setting a
default Region. For a list of the available Regions, see Regions and Endpoints. The Region
designators used by the AWS CLI are the same names that you see in AWS Management Console
URLs and service endpoints.

34

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Command Line Interface User Guide for Version 2
Output format

Output format

The Default output format specifies how the results are formatted. The value can be any of the
values in the following list. If you don't specify an output format, json is used as the default.

* json (p. 109) — The output is formatted as a JSON string.
« yaml (p. 109) - The output is formatted as a YAML string.

o yaml-stream (p. 110) — The output is streamed and formatted as a YAML string. Streaming allows
for faster handling of large data types.

« text (p. 111) - The output is formatted as multiple lines of tab-separated string values. This can be
useful to pass the output to a text processor, like grep, sed, or awk.

o table (p. 113) — The output is formatted as a table using the characters +|- to form the cell borders.
It typically presents the information in a "human-friendly" format that is much easier to read than the
others, but not as programmatically useful.

Profiles

A collection of settings is called a profile. By default, the AWS CLI uses the default profile. You can
create and use additional named profiles with varying credentials and settings by specifying the --
profile option and assigning a name.

The following example creates a profile named produser.

$ aws configure --profile produser

AWS Access Key ID [None]: AKIAI440H8DHBEXAMPLE

AWS Secret Access Key [None]: je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
Default region name [None]: us-east-1

Default output format [None]: text

You can then specify a --profile profilename and use the credentials and settings stored under
that name.

$ aws s3 ls --profile produser

To update these settings, run aws configure again (with or without the --profile parameter,
depending on which profile you want to update) and enter new values as appropriate. The next sections
contain more information about the files that aws configure creates, additional settings, and named
profiles.

For more information on named profiles, see Named profiles for the AWS CLI (p. 48).

Configuration settings and precedence

The AWS CLI uses credentials and configuration settings located in multiple places, such as the system or
user environment variables, local AWS configuration files, or explicitly declared on the command line as
a parameter. Certain locations take precedence over others. The AWS CLI credentials and configuration
settings take precedence in the following order:

1. Command line options (p. 59) — Overrides settings in any other location. You can specify --
region, --output, and --profile as parameters on the command line.

2. Environment variables (p. 55) — You can store values in your system's environment variables.

3. CLI credentials file (p. 36) — The credentials and config file are updated when you run the
command aws configure. The credentials fileis located at ~/.aws/credentials on Linux

35

https://json.org/
https://yaml.org/
https://yaml.org/

AWS Command Line Interface User Guide for Version 2
Configuration and credential file settings

or macOS, or at C: \Users\USERNAME\ . aws\credentials on Windows. This file can contain the
credential details for the default profile and any named profiles.

4. CLI configuration file (p. 36) — The credentials and config file are updated when you run the
command aws configure. The config fileis located at ~/.aws/config on Linux or macOS, or at
C:\Users\USERNAME\ .aws\config on Windows. This file contains the configuration settings for
the default profile and any named profiles.

5. Container credentials — You can associate an IAM role with each of your Amazon Elastic Container
Service (Amazon ECS) task definitions. Temporary credentials for that role are then available to that
task's containers. For more information, see IAM Roles for Tasks in the Amazon Elastic Container
Service Developer Guide.

6. Instance profile credentials — You can associate an IAM role with each of your Amazon Elastic
Compute Cloud (Amazon EC2) instances. Temporary credentials for that role are then available to
code running in the instance. The credentials are delivered through the Amazon EC2 metadata service.
For more information, see IAM Roles for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances
and Using Instance Profiles in the IAM User Guide.

Configuration and credential file settings

You can save your frequently used configuration settings and credentials in files that are maintained by
the AWS CLI.

The files are divided into profiles. By default, the AWS CLI uses the settings found in the profile
named default. To use alternate settings, you can create and reference additional profiles. For more
information on named profiles, see Named profiles for the AWS CLI (p. 48).

You can override an individual setting by either setting one of the supported environment variables,
or by using a command line parameter. For more information on configuration setting precedence, see
Configuration settings and precedence (p. 35).

Topics
» Where are configuration settings stored? (p. 36)
 Set and view configuration settings (p. 37)
« Supported config file settings (p. 38)

Where are configuration settings stored?

The AWS CLI stores sensitive credential information that you specify with aws configure in a local file
named credentials, in a folder named . aws in your home directory. The less sensitive configuration
options that you specify with aws configure are stored in a local file named config, also stored in
the . aws folder in your home directory.

Storing credentials in the config file

You can keep all of your profile settings in a single file as the AWS CLI can read credentials from
the config file. If there are credentials in both files for a profile sharing the same name, the
keys in the credentials file take precedence.

These files are also used by the various language software development kits (SDKs). If you use
one of the SDKs in addition to the AWS CLI, confirm if the credentials should be stored in their
own file.

Where you find your home directory location varies based on the operating system, but is referred to
using the environment variables %UserProfile% in Windows and $HOME or ~ (tilde) in Unix-based
systems. You can specify a non-default location for the files by setting the AWS_CONFIG_FILE and
AWS_SHARED CREDENTIALS_ FILE environment variables to another local path. See Environment
variables to configure the AWS CLI (p. 55) for details.

36

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

AWS Command Line Interface User Guide for Version 2
Set and view configuration settings

For example, the files generated by the AWS CLI for a default profile configured with aws configure
looks similar to the following.

~/.aws/credentials

[default]
aws_access_key_ id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

~/.aws/config

[default]
region=us-west-2
output=json

For file examples with multiple named profiles, see Named profiles for the AWS CLI (p. 48).

When you use a shared profile that specifies an AWS Identity and Access Management (IAM) role, the
AWS CLI calls the AWS STS AssumeRole operation to retrieve temporary credentials. These credentials
are then stored (in ~/.aws/cli/cache). Subsequent AWS CLI commands use the cached temporary
credentials until they expire, and at that point the AWS CLI automatically refreshes the credentials.

Set and view configuration settings

There are several ways to view and set your configuration settings in the files.
Credentials and config file

View and edit your settings by directly editing the config and credentials files in a text editor.
For more information see Where are configuration settings stored? (p. 36)

To remove a setting, delete the corresponding setting in your config and credentials files.

aws configure

Run this command to quickly set and view your credentials, Region, and output format. The
following example shows sample values.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJdalrXUtnFEMI/K7MDENG/bPxXRfiCYEXAMPLEKEY
Default region name [None]: us-west-2

Default output format [None]: json

For more information see Quick configuration with aws configure (p. 33)

aws configure set

You can set any credentials or configuration settings using aws configure set. Specify the profile
that you want to view or modify with the —--profile setting.

For example, the following command sets the region in the profile named integ.

$ aws configure set region us-west-2 --profile integ

To remove a setting, use an empty string as the value, or manually delete the setting in your config
and credentials files in a text editor.

$ aws configure set cli_pager "" --profile integ

37

https://docs.aws.amazon.com/cli/latest/reference/configure/index.html
https://docs.aws.amazon.com/cli/latest/reference/configure/set.html

AWS Command Line Interface User Guide for Version 2
Supported config file settings

aws configure get

You can retrieve any credentials or configuration settings you've set using aws configure get.
Specify the profile that you want to view or modify with the —--profile setting.

For example, the following command retrieves the region setting in the profile named integ.

$ aws configure get region --profile integ
us-west-2

If the output is empty, the setting is not explicitly set and uses the default value.

aws configure import

Import ¢SV credentials generated from the AWS web console. A CSV file is imported with the profile
name matching the IAM user name. The CSV file must contain the following headers.

» User Name
+ Access key ID
« Secret access key

Note

During initial key pair creation, once you close the Download .csv file dialog box, you
cannot access your secret access key after you close the dialog box. If you need a .csv
file, you'll need to create one yourself with the required headers and your stored key pair

information. If you do not have access to your key pair information, you need to create a
new key pair.

$ aws configure import --csv file://credentials.csv

For more information on key pairs, see the section called “Access key ID and secret access
key" (p. 33).

aws configure list
To list all configuration data, use the aws configure 1list command. This command displays

the AWS CLI name of all settings you've configured, their values, and where the configuration was
retrieved from.

$ aws configure list
Name Value Type Location
profile <not set> None None
access_key kkkkkkkkxkx*x***¥ABCD shared-credentials-file
secret_key kkkkkkkkxkx*x***ABCD shared-credentials-file
region us-west-2 env AWS_DEFAULT_ REGION

aws configure list-profiles

To list all your profile names, use the aws configure list-profiles command.

$ aws configure list-profiles
default
test

Supported config file settings

Topics

38

https://docs.aws.amazon.com/cli/latest/reference/configure/get.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/configure/import.html
https://docs.aws.amazon.com/cli/latest/reference/configure/list.html
https://docs.aws.amazon.com/cli/latest/reference/configure/list-profiles.html

AWS Command Line Interface User Guide for Version 2
Supported config file settings

 Global settings (p. 39)
e S3 Custom command settings (p. 45)

The following settings are supported in the config file. The values listed in the specified (or default)
profile are used unless they are overridden by the presence of an environment variable with the same
name, or a command line option with the same name. For more information on what order settings take
precendence, see Configuration settings and precedence (p. 35)

Global settings

aws_access_key_id (p. 33)

Specifies the AWS access key used as part of the credentials to authenticate the command
request. Although this can be stored in the config file, we recommend that you store this in the
credentials file.

Can be overridden by the AWS_ACCESS_KEY_ID environment variable. You can't specify the access
key ID as a command line option.

aws_access_key_id = AKIAIOSFODNN7EXAMPLE

aws_secret_access_key (p. 33)

Specifies the AWS secret key used as part of the credentials to authenticate the command
request. Although this can be stored in the config file, we recommend that you store this in the
credentials file.

Can be overridden by the AWS_SECRET ACCESS_KEY environment variable. You can't specify the
secret access key as a command line option.

aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRf1CYEXAMPLEKEY

aws_session_token

Specifies an AWS session token. A session token is required only if you manually specify temporary
security credentials. Although this can be stored in the config file, we recommend that you store
this in the credentials file.

Can be overridden by the AWS_SESSION_TOKEN environment variable. You can't specify the session
token as a command line option.

aws_session_token = AQOEXAMPLEH4Q0AHOgNCAPyJxz4BlCFFXWNE1OPTgKk5TthT
+FvwgnKwRcOIfrRh3c/LTo6UDdyJwOOVEVPVLXCrrrUtdnniCEXAMPLE/
IvU1dYUg2RVAJBanLiHb4IgRmpRV3zrkuWJ0gQs8IZZaIv2BXIa2R401lgk

ca_bundle

Specifies a CA certificate bundle (a file with the . pem extension) that is used to verify SSL
certificates.

Can be overridden by the AWS_CA_BUNDLE (p. 56) environment variable or the --ca-
bundle (p. 60) command line option.

ca_bundle = dev/apps/ca-certs/cabundle-2019mar05.pem

39

AWS Command Line Interface User Guide for Version 2
Supported config file settings

cli_auto_prompt

Enables the auto-prompt for the AWS CLI version 2. There are two settings that can be used:

« on uses the full auto-prompt mode each time you attempt to run an aws command. This includes
pressing ENTER after both a complete command or incomplete command.

cli_auto_prompt = on

o on-partial uses partial auto-prompt mode. If a command is incomplete or cannot be run due
to client-side validation errors, auto-prompt is used. This mode is particular useful if you have
pre-existing scripts, runbooks, or you only want to be auto-prompted for commands you are
unfamiliar with rather than prompted on every command.

cli_auto_prompt = on-partial

You can override this setting by using the aws_cl1i_auto_prompt (p. 56) environment variable
orthe --cli-auto-prompt (p. 60)and --no-cli-auto-prompt (p. 61) command line
parameters.

For information on the AWS CLI version 2 auto-prompt feature, see Having the AWS CLI prompt you
for commands (p. 104).

cli_binary_format

Specifies how the AWS CLI version 2 interprets binary input parameters. It can be one of the
following values:

« base64 - This is the default value. An input parameter that is typed as a binary large object (BLOB)
accepts a base64-encoded string. To pass true binary content, put the content in a file and provide
the file's path and name with the fileb: // prefix as the parameter's value. To pass base64-
encoded text contained in a file, provide the file's path and name with the file: // prefix as the
parameter's value.

« raw-in-base64-out - Provides backward compatibility with the AWS CLI version 1 behavior where
binary values must be passed literally.

This entry does not have an equivalent environment variable. You can specify the value on a single
command by using the --cli-binary-format raw-in-baseé64-out parameter.

cli_binary_ format = raw-in-base64-out

If you reference a binary value in a file using the £ileb: // prefix notation, the AWS CLI always
expects the file to contain raw binary content and does not attempt to convert the value.

If you reference a binary value in a file using the £file: // prefix notation, the AWS CLI handles the
file according to the current c1i_binary_ format setting. If that setting's value is base64 (the
default when not explicitly set), the AWS CLI expects the file to contain base64-encoded text. If that
setting's value is raw-in-base64-out, the AWS CLI expects the file to contain raw binary content.

cli_history

Disabled by default. This setting enables command history for the AWS CLI. After enabling this
setting, the AWS CLI records the history of aws commands.

cli_history = enabled

You can this list your history using the aws history list command, and use the resulting
command_ids in the aws history show command for details. For more information see aws
history in the AWS CLI reference guide.

40

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/history/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/history/index.html

AWS Command Line Interface User Guide for Version 2
Supported config file settings

cli_pager

Specifies the pager program used for output. By default, AWS CLI version 2 returns all output
through your operating system's default pager program.

Can be overridden by the AWS_PAGER environment variable.

cli_pager=less

To disable all use of an external paging program, set the variable to an empty string as shown in the
following example.

cli_pager=

cli_timestamp_format

Specifies the format of timestamp values included in the output. You can specify either of the
following values:

 is08601 - The default value for the AWS CLI version 2. If specified, the AWS CLI reformats all
timestamps according to ISO 8601.

ISO 8601 formatted timestamps look like the following examples. The first example shows the
time in Coordinated Universal Time (UTC) by including a z after the time. The date and the time
are separated by a T.

2019-10-31T22:21:417

To specify a different time zone, instead of the z, specify a + or - and the number of hours the
desired time zone is ahead of or behind UTC, as a two-digit value. The following example shows
the same time as the previous example but adjusted to Pacific Standard time, which is eight hours
behind UTC.

2019-10-31T14:21:41-08

« wire — The default value for the AWS CLI version 1. If specified, the AWS CLI displays all timestamp
values exactly as received in the HTTP query response.

This entry does not have an equivalent environment variable or command line option.

cli_timestamp_format = iso8601

credential_process (p. 70)

Specifies an external command that the AWS CLI runs to generate or retrieve authentication
credentials to use for this command. The command must return the credentials in a specific format.
For more information about how to use this setting, see Sourcing credentials with an external
process (p. 70).

This entry does not have an equivalent environment variable or command line option.

credential_process = Jopt/bin/awscreds-retriever --username susan

credential_source (p. 75)

Used within Amazon EC2 instances or containers to specify where the AWS CLI can find credentials
to use to assume the role you specified with the role_arn parameter. You cannot specify both
source_profile and credential_source in the same profile.

41

https://www.iso.org/iso-8601-date-and-time-format.html
https://wikipedia.org/wiki/Coordinated_Universal_Time

AWS Command Line Interface User Guide for Version 2
Supported config file settings

This parameter can have one of three values:

« Environment - Specifies that the AWS CLI is to retrieve source credentials from environment
variables.

« Ec2InstanceMetadata - Specifies that the AWS CLI is to use the IAM role attached to the EC2
instance profile to get source credentials.

« EcsContainer - Specifies that the AWS CLI is to use the IAM role attached to the ECS container as
source credentials.

credential_source = Ec2InstanceMetadata

duration_seconds

Specifies the maximum duration of the role session, in seconds. The value can range from 900
seconds (15 minutes) up to the maximum session duration setting for the role (which can be a
maximum of 43200). This is an optional parameter and by default, the value is set to 3600 seconds.

external_id (p. 78)

Specifies a unique identifier that is used by third parties to assume a role in their customers'
accounts. This maps to the ExternalId parameter in the AssumeRole operation. This parameter is
needed only if the trust policy for the role specifies a value for Externalid. For more information,
see How to use an External Gateway When Granting Access to Your AWS Resources to a Third Party
in the IAM User Guide.

max_attempts (p. 67)

Specifies a value of maximum retry attempts the AWS CLI retry handler uses, where the initial call
counts toward the max_attempts value that you provide.

You can override this value by using the AWS_MAX_ATTEMPTS environment variable.

max_attempts = 3

mfa_serial (p. 77)

The identification number of an MFA device to use when assuming a role. This is mandatory
only if the trust policy of the role being assumed includes a condition that requires MFA
authentication. The value can be either a serial number for a hardware device (such as
GAHT12345678) or an Amazon Resource Name (ARN) for a virtual MFA device (such as
arn:aws:iam::123456789012:mfa/user).

output (p. 35)

Specifies the default output format for commands requested using this profile. You can specify any
of the following values:

e json (p. 109) — The output is formatted as a JSON string.
« yaml (p. 109) - The output is formatted as a YAML string.

o yaml-stream (p. 110) - The output is streamed and formatted as a YAML string. Streaming
allows for faster handling of large data types.

o text (p. 111) — The output is formatted as multiple lines of tab-separated string values. This
can be useful to pass the output to a text processor, like grep, sed, or awk.

o table (p. 113) — The output is formatted as a table using the characters +|- to form the cell
borders. It typically presents the information in a "human-friendly" format that is much easier to
read than the others, but not as programmatically useful.

Can be overridden by the AWS_DEFAULT OUTPUT environment variable or the --output command
line option.

42

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://json.org/
https://yaml.org/
https://yaml.org/

AWS Command Line Interface User Guide for Version 2
Supported config file settings

output = table

parameter_validation

Specifies whether the AWS CLI client attempts to validate parameters before sending them to the
AWS service endpoint.

« true - This is the default value. If specified, the AWS CLI performs local validation of command
line parameters.

« false - If specified, the AWS CLI does not validate command line parameters before sending them
to the AWS service endpoint.

This entry does not have an equivalent environment variable or command line option.

parameter_validation = false

region (p. 34)

Specifies the AWS Region to send requests to for commands requested using this profile.
« You can specify any of the Region codes available for the chosen service as listed in AWS Regions
and Endpoints in the Amazon Web Services General Reference.

« aws_global enables you to specify the global endpoint for services that support a global
endpoint in addition to Regional endpoints, such as AWS Security Token Service (AWS STS) and
Amazon Simple Storage Service (Amazon S3).

You can override this value by using the AWS_REGION environment variable, AWS_DEFAULT_REGION
environment variable, or the --region command line option.

region = us-west-2

retry _mode (p. 67)

Specifies which retry mode AWS CLI uses. There are three retry modes available: legacy (default),
standard, and adaptive. For more information on retries, see AWS CLI retries (p. 67).

You can override this value by using the AWS_RETRY MODE environment variable.

retry_mode = standard

role_arn (p. 75)

Specifies the Amazon Resource Name (ARN) of an IAM role that you want to use to run the AWS CLI
commands. You must also specify one of the following parameters to identify the credentials that
have permission to assume this role:

« source_profile
« credential_source

role_arn = arn:aws:iam::123456789012:role/role-name

The environment variable AWS_ROLE_ARN (p. 58) overrides this setting.

For more information on using web identities, see the section called “"Assume role with web
identity” (p. 79).
role_session_name (p. 79)

Specifies the name to attach to the role session. This value is provided to the
RoleSessionName parameter when the AWS CLI calls the AssumeRole operation, and

43

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Command Line Interface User Guide for Version 2
Supported config file settings

becomes part of the assumed role user ARN: arn:aws:sts::123456789012:assumed-
role/role_name/role_session_name. Thisis an optional parameter. If you do not provide this
value, a session name is generated automatically. This name appears in AWS CloudTrail logs for
entries associated with this session.

role_session_name = maria_garcia_role

The environment variable AWS_ROLE_SESSION_NAME (p. 58) overrides this setting.

For more information on using web identities, see the section called “Assume role with web
identity” (p. 79).

source_profile (p. 75)
Specifies a named profile with long-term credentials that the AWS CLI can use to assume a role

that you specified with the role_arn parameter. You cannot specify both source_profile and
credential_source in the same profile.

source_profile = production-profile

sso_account_id (p. 49)

Specifies the AWS account ID that contains the IAM role with the permission that you want to grant
to the associated AWS SSO user.

This setting does not have an environment variable or command line option.

sso_account_id = 123456789012

sso_region (p. 49)

Specifies the AWS Region that contains the AWS SSO portal host. This is separate from, and can be a
different Region than the default CLI region parameter.

This setting does not have an environment variable or command line option.

aws_sso_region = us_west-2

sso_role_name (p. 49)

Specifies the friendly name of the IAM role that defines the user's permissions when using this
profile.

This setting does not have an environment variable or command line option.

sso_role_name = ReadAccess

sso_start_url (p. 49)

Specifies the URL that points to the organization's AWS SSO user portal. The AWS CLI uses this URL
to establish a session with the AWS SSO service to authenticate its users. To find your user portal
URL, use one of the following:

« Open your invitation email, the user portal URL is listed.

44

AWS Command Line Interface User Guide for Version 2
Supported config file settings

« Open the AWS Single Sign-On console at https://console.aws.amazon.com/singlesignon/. The
user portal URL is listed in your settings.

This setting does not have an environment variable or command line option.

sso_start_url = https://my-sso-portal.awsapps.com/start

web_1identity_token_file (p. 79)

Specifies the path to a file that contains an OAuth 2.0 access token or OpenID Connect ID token that
is provided by an identity provider. The AWS CLI loads the contents of this file and passes it as the
WebIdentityToken argument to the AssumeRoleWithWebIdentity operation.

The environment variable AWS_WEB_IDENTITY TOKEN_ FILE (p.59) overrides this setting.

For more information on using web identities, see the section called “Assume role with web
identity” (p. 79).

tcp_keepalive
Specifies whether the AWS CLI client uses TCP keep-alive packets.

This entry does not have an equivalent environment variable or command line option.

tcp_keepalive = false

S3 Custom command settings

Amazon S3 supports several settings that configure how the AWS CLI performs Amazon S3 operations.
Some apply to all S3 commands in both the s3api and s3 namespaces. Others are specifically for the
S3 "custom" commands that abstract common operations and do more than a one-to-one mapping to
an APl operation. The aws s3 transfer commands cp, sync, mv, and rm have additional settings you can
use to control S3 transfers.

All of these options can be configured by specifying the s3 nested setting in your config file. Each
setting is then indented on its own line.

Note

These settings are entirely optional. You should be able to successfully use the aws s3 transfer
commands without configuring any of these settings. These settings are provided to enable you
to tune for performance or to account for the specific environment where you are running these
aws s3 commands.

These settings are all set under a top-level s3 key in the config file, as shown in the following example
for the development profile.

[profile development]

s3 =
max_concurrent_requests = 20
max_dqueue_size = 10000
multipart_threshold = 64MB
multipart_chunksize = 16MB
max_bandwidth = 50MB/s
use_accelerate_endpoint = true
addressing_style = path

The following settings apply to any S3 command in the s3 or s3api namespaces.

45

https://console.aws.amazon.com/singlesignon/

AWS Command Line Interface User Guide for Version 2
Supported config file settings

addressing_style

Specifies which addressing style to use. This controls whether the bucket name is in the hostname or
is part of the URL. Valid values are: path, virtual, and auto. The default value is auto.

There are two styles of constructing an Amazon S3 endpoint. The first is called

virtual and includes the bucket name as part of the hostname. For example:
https://bucketname.s3.amazonaws . com. Alternatively, with the path style, you treat the
bucket name as if it is a path in the URI; for example, https://s3.amazonaws.com/bucketname.
The default value in the CLI is to use auto, which attempts to use the virtual style where it

can, but will fall back to path style when required. For example, if your bucket name is not DNS
compatible, the bucket name cannot be part of the hostname and must be in the path. With auto,
the CLI will detect this condition and automatically switch to path style for you. If you set the
addressing style to path, you must then ensure that the AWS Region you configured in the AWS CLI
matches the Region of your bucket.

payload_signing enabled

Specifies whether to SHA256 sign sigv4 payloads. By default, this is disabled for streaming uploads
(UploadPart and PutObject) when using HTTPS. By default, this is set to false for streaming
uploads (UploadPart and PutObject), but only if a ContentMD5 is present (it is generated by
default) and the endpoint uses HTTPS.

If set to true, S3 requests receive additional content validation in the form of a SHA256 checksum
which is calculated for you and included in the request signature. If set to false, the checksum
isn't calculated. Disabling this can be useful to reduce the performance overhead created by the
checksum calculation.

use_dualstack_ endpoint

Use the Amazon S3 dual IPv4 / IPv6 endpoint for all s3 and s3api commands. The default value is
false. This is mutually exclusive with the use_accelerate_endpoint setting.

If set to true, the AWS CLI directs all Amazon S3 requests to the dual IPv4 / IPv6 endpoint for the
configured Region.

use_accelerate_endpoint

Use the Amazon S3 Accelerate endpoint for all s3 and s3api commands. The default value is false.
This is mutually exclusive with the use_dualstack_endpoint setting.

If set to true, the AWS CLI directs all Amazon S3 requests to the S3 Accelerate endpoint at
s3-accelerate.amazonaws.com. To use this endpoint, you must enable your bucket to use s3
Accelerate. All requests are sent using the virtual style of bucket addressing: my-bucket.s3-
accelerate.amazonaws.com. Any ListBuckets, CreateBucket, and DeleteBucket

requests aren't sent to the S3 Accelerate endpoint as that endpoint doesn't support those
operations. This behavior can also be set if the --endpoint-url parameteris set to https://s3-
accelerate.amazonaws.comor http://s3-accelerate.amazonaws.comfor any s3 or s3api
command.

The following settings apply only to commands in the s3 namespace command set.
max_bandwidth

Specifies the maximum bandwidth that can be consumed for uploading and downloading data to
and from Amazon S3. The default is no limit.

This limits the maximum bandwidth that the S3 commands can use to transfer data to and from
Amazon S3. This value applies to only uploads and downloads; it doesn't apply to copies or deletes.
The value is expressed as bytes per second. The value can be specified as:

« Aninteger. For example, 1048576 sets the maximum bandwidth usage to 1 megabyte per second.

46

AWS Command Line Interface User Guide for Version 2
Supported config file settings

« An integer followed by a rate suffix. You can specify rate suffixes using: KB/s, MB/s, or GB/s. For
example, 300KB/s, 10MB/s.

In general, we recommend that you first try to lower bandwidth consumption by lowering
max_concurrent_requests. If that doesn't adequately limit bandwidth consumption to the
desired rate, you can use the max_bandwidth setting to further limit bandwidth consumption. This
is because max_concurrent_requests controls how many threads are currently running. If you
instead first lower max_bandwidth but leave a highmax_concurrent_requests setting, it can
result in threads having to wait unnecessarily. This can lead to excess resource consumption and
connection timeouts.

max_concurrent_requests
Specifies the maximum number of concurrent requests. The default value is 10.

The aws s3 transfer commands are multithreaded. At any given time, multiple Amazon S3 requests
can be running. For example, when you use the command aws s3 cp localdir s3://bucket/
--recursive to upload files to an S3 bucket, the AWS CLI can upload the files localdir/filel,
localdir/file2, and localdir/file3 in parallel. The setting max_concurrent_requests
specifies the maximum number of transfer operations that can run at the same time.

You might need to change this value for a few reasons:

« Decreasing this value - On some environments, the default of 10 concurrent requests can
overwhelm a system. This can cause connection timeouts or slow the responsiveness of the
system. Lowering this value makes the S3 transfer commands less resource intensive. The tradeoff
is that S3 transfers can take longer to complete. Lowering this value might be necessary if you use
a tool to limit bandwidth.

« Increasing this value — In some scenarios, you might want the Amazon S3 transfers to complete
as quickly as possible, using as much network bandwidth as necessary. In this scenario, the
default number of concurrent requests might not be sufficient to use all of the available network
bandwidth. Increasing this value can improve the time it takes to complete an Amazon S3 transfer.

max_queue_size
Specifies the maximum number of tasks in the task queue. The default value is 1000.

The AWS CLI internally uses a model where it queues up Amazon S3 tasks that are then executed by
consumers whose numbers are limited by max_concurrent_requests. A task generally maps to a
single Amazon S3 operation. For example, a task could be a PutObjectTask, or a GetObjectTask,
or an UploadPartTask. The rate at which tasks are added to the queue can be much faster than
the rate at which consumers finish the tasks. To avoid unbounded growth, the task queue size is
capped to a specific size. This setting changes the value of that maximum number.

You generally don't need to change this setting. This setting also corresponds to the number of tasks
that the AWS CLI is aware of that need to be run. This means that by default the AWS CLI can only
see 1000 tasks ahead. Increasing this value means that the AWS CLI can more quickly know the total
number of tasks needed, assuming that the queuing rate is quicker than the rate of task completion.
The tradeoff is that a larger max_queue_size requires more memory.

multipart_chunksize

Specifies the chunk size that the AWS CLI uses for multipart transfers of individual files. The default
value is 8 MB, with a minimum of 5 MB.

When a file transfer exceeds the multipart_threshold, the AWS CLI divides the file into chunks
of this size. This value can be specified using the same syntax as multipart_threshold, either as
the number of bytes as an integer, or by using a size and a suffix.

multipart_threshold

Specifies the size threshold the AWS CLI uses for multipart transfers of individual files. The default
value is 8 MB.

47

AWS Command Line Interface User Guide for Version 2
Named profiles

When uploading, downloading, or copying a file, the Amazon S3 commands switch to multipart
operations if the file exceeds this size. You can specify this value in one of two ways:

« The file size in bytes. For example, 1048576.
« The file size with a size suffix. You can use KB, MB, GB, or TB. For example: 10MB, 1GB.
Note
S3 can impose constraints on valid values that can be used for multipart operations. For

more information, see the S3 Multipart Upload documentation in the Amazon Simple
Storage Service User Guide.

Named profiles for the AWS CLI

A named profile is a collection of settings and credentials that you can apply to a AWS CLI command.
When you specify a profile to run a command, the settings and credentials are used to run that
command. Multiple named profiles can be stored in the config and credentials files.

You can specify one default profile that is used when no profile is explicitly referenced. Other profiles
have names that you can specify as a parameter on the command line for individual commands.
Alternatively, you can specify a profile in the AwS_PROFILE (p. 55) environment variable which
overrides the default profile for commands that run in that session.

Topics
« Creating named profiles (p. 48)
» Using named profiles (p. 49)

Creating named profiles

You can configure additional profiles by using aws configure (p. 37) with the --profile option, or
by manually adding entries to the config and credentials files. For more information on the config
and credentials files, see the section called “Configuration and credential file settings” (p. 36).

Credentials profile

The following example shows a credentials file with two profiles. The first [default] is used when you
run a AWS CLI command with no profile. The second is used when you run a AWS CLI command with the
--profile userl parameter.

The credentials file uses a different naming format than the AWS CLI config file for named profiles.
Do not use the word profile when creating an entry in the credentials file.

~/.aws/credentials (Linux & Mac) or ¥USERPROFILE%\ .aws\credentials (Windows)

[default]
aws_access_key id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRf1CYEXAMPLEKEY

[userl]
aws_access_key id=AKIAI44QH8DHBEXAMPLE
aws_secret_access_key=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

Config profile

Each profile can specify different credentials—perhaps from different IAM users—and can also specify
different AWS Regions and output formats. When naming the profile in a config file, include the prefix
word "profile".

48

https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html

AWS Command Line Interface User Guide for Version 2
Using named profiles

The following example specifies Region and output information for the default and user1 profiles.

~/.aws/config (Linux & Mac) or ¥USERPROFILE%\ . aws\config (Windows)

[default]
region=us-west-2
output=json

[profile useril]
region=us-east-1
output=text

Using named profiles

To use a named profile, add the --profile profile-name option to your command. The following
example lists all of your Amazon EC2 instances using the credentials and settings defined in the user1
profile from the previous example files.

$ aws ec2 describe-instances --profile useril

To use a named profile for multiple commands, you can avoid specifying the profile in every command
by setting the AWS_PROFILE environment variable at the command line.

Linux or macOS

$ export AWS_PROFILE=userl

Windows

C:\> setx AWS_PROFILE userl

Using set to set an environment variable changes the value used until the end of the current command
prompt session, or until you set the variable to a different value.

Using setx to set an environment variable changes the value in all command shells that you create after
running the command. It does not affect any command shell that is already running at the time you run
the command. Close and restart the command shell to see the effects of the change.

Setting the environment variable changes the default profile until the end of your shell session, or until
you set the variable to a different value. You can make environment variables persistent across future
sessions by putting them in your shell's startup script. For more information, see Environment variables
to configure the AWS CLI (p. 55).

Note
If you specify a profile with --profile on an individual command, that overrides the setting
specified in the environment variable for only that command.

Configuring the AWS CLI to use AWS Single Sign-

On

If your organization uses AWS Single Sign-On (AWS SSO), your users can sign in to Active Directory, a
built-in AWS SSO directory, or another iDP connected to AWS SSO and get mapped to an AWS Identity
and Access Management (IAM) role that enables you to run AWS CLI commands. Regardless of which iDP
you use, AWS SSO abstracts those distinctions away, and they all work with the AWS CLI as described

49

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-idp.html

AWS Command Line Interface User Guide for Version 2
Configuring a named profile to use AWS SSO

below. For example, you can connect Microsoft Azure AD as described in the blog article The Next
Evolution in AWS Single Sign-On

For more information about AWS SSO, see the AWS Single Sign-On User Guide.

This topic describes how to configure the AWS CLI to authenticate the user with AWS SSO to get short-
term credentials to run AWS CLI commands. It includes the following sections:

« Configuring a named profile to use AWS SSO (p. 50) - How to create and configure profiles that
use AWS SSO for authentication and mapping to an IAM role for AWS permissions.

« Using an AWS SSO enabled named profile (p. 53) - how to login to AWS SSO from the CLI and use
the provided AWS temporary credentials to run AWS CLI commands.

Configuring a named profile to use AWS SSO

You can configure one or more of your AWS CLI named profiles (p. 48) to use a role from AWS SSO.
You can configure the profile in the following ways:

o Automatically (p. 50), using the command aws configure sso
« Manually (p. 52), by editing the .aws/config file that stores the named profiles.

Automatic configuration

You can add an AWS SSO enabled profile to your AWS CLI by running the following command, providing
your AWS SSO start URL and the AWS Region that hosts the AWS SSO directory.

$ aws configure sso
SSO start URL [None]: [None]: https://my-sso-portal.awsapps.com/start
SSO region [None]:us-east-1

The AWS CLI attempts to open your default browser and begin the login process for your AWS SSO
account.

SSO authorization page has automatically been opened in your default browser.
Follow the instructions in the browser to complete this authorization request.

If the AWS CLI cannot open the browser, the following message appears with instructions on how to
manually start the login process.

Using a browser, open the following URL:
https://my-sso-portal.awsapps.com/verify

and enter the following code:
OCFK-N451

AWS SSO uses the code to associate the AWS SSO session with your current AWS CLI session. The AWS
SSO browser page prompts you to sign in with your AWS SSO account credentials. This enables the AWS
CLI (through the permissions associated with your AWS SSO account) to retrieve and display the AWS
accounts and roles that you are authorized to use with AWS SSO.

Next, the AWS CLI displays the AWS accounts available for you to use. If you are authorized to use only
one account, the AWS CLI selects that account for you automatically and skips the prompt. The AWS
accounts that are available for you to use are determined by your user configuration in AWS SSO.

50

http://aws.amazon.com/blogs/aws/the-next-evolution-in-aws-single-sign-on/
http://aws.amazon.com/blogs/aws/the-next-evolution-in-aws-single-sign-on/
https://docs.aws.amazon.com/singlesignon/latest/userguide/

AWS Command Line Interface User Guide for Version 2
Configuring a named profile to use AWS SSO

There are 2 AWS accounts available to you.
> DeveloperAccount, developer-account-admin@example.com (123456789011)
ProductionAccount, production-account-admin@example.com (123456789022)

Use the arrow keys to select the account you want to use with this profile. The ">" character on the left
points to the current choice. Press ENTER to make your selection.

Next, the AWS CLI confirms your account choice, and displays the IAM roles that are available to you in
the selected account. If the selected account lists only one role, the AWS CLI selects that role for you
automatically and skips the prompt. The roles that are available for you to use are determined by your
user configuration in AWS SSO.

Using the account ID 123456789011
There are 2 roles available to you.
> ReadOnly

FullAccess

As before, use the arrow keys to select the IAM role you want to use with this profile. The ">" character
on the left points to the current choice. Press <ENTER> to make your selection.

The AWS CLI confirms your role selection.

Using the role name "ReadOnly"

Now you can finish the configuration of your profile, by specifying the default output format (p. 42),
the default AWS Region (p. 43) to send commands to, and providing a name for the profile (p. 35)

so you can reference this profile from among all those defined on the local computer. In the following
example, the user enters a default Region, default output format, and the name of the profile. You can
alternatively press <ENTER> to select any default values that are shown between the square brackets.
The suggested profile name is the account ID number followed by an underscore followed by the role
name.

CLI default client Region [None]: us-west-2<ENTER>
CLI default output format [None]: json<ENTER>
CLI profile name [123456789011_ReadOnly]: my-dev-profile<ENTER>

Note
If you specify default as the profile name, this profile becomes the one used whenever you run
an AWS CLI command and do not specify a profile name.

A final message describes the completed profile configuration.

To use this profile, specify the profile name using --profile, as shown:

aws s3 1ls --profile my-dev-profile

The previous example entries would result in a named profile in ~/.aws/config that looks like the
following example.

[profile my-dev-profile]

sso_start_url = https://my-sso-portal.awsapps.com/start
sso_region = us-east-1

sso_account_id = 123456789011

sso_role_name = readOnly

region = us-west-2

51

AWS Command Line Interface User Guide for Version 2
Configuring a named profile to use AWS SSO

output = json

At this point, you have a profile that you can use to request temporary credentials. You must use the
aws sso login command to actually request and retrieve the temporary credentials needed to run
commands. For instructions, see Using an AWS SSO enabled named profile (p. 53).

Note

You can also run an AWS CLI command using the specified profile. If you are not currently
logged in to the AWS SSO portal, it starts the login process for you automatically, just as if you
had manually ran the command aws sso login command.

Manual configuration

To manually add AWS SSO support to a named profile, you must add the following keys and values to
the profile definition in the file ~/ . aws /config (Linux or macOS) or ¥XUSERPROFILE%/ .aws/config
(Windows).

sso_start_url

Specifies the URL that points to the organization's AWS SSO user portal. The AWS CLI uses this URL
to establish a session with the AWS SSO service to authenticate its users. To find your user portal
URL, use one of the following:

« Open your invitation email, the user portal URL is listed.

« Open the AWS Single Sign-On console at https://console.aws.amazon.com/singlesignon/. The
user portal URL is listed in your settings.

sso_start_url = https://my-sso-portal.awsapps.com/start

sso_region

The AWS Region that contains the AWS SSO portal host. This is separate from, and can be a different
Region than the default CLI region parameter.

sso_region = us-west-2

sso_account_id

The AWS account ID that contains the IAM role that you want to use with this profile.

sso_account_id = 123456789011

sso_role_name

The name of the IAM role that defines the user's permissions when using this profile.

sso_role_name = ReadAccess

The presence of these keys identify this profile as one that uses AWS SSO to authenticate the user.

You can also include any other keys and values that are valid in the . aws/config file, such as region,
output, or s3. However, you can't include any credential related values, such as role_arn (p. 43) or
aws_secret_access_key (p. 39). If you do, the AWS CLI produces an error.

So a typical AWS SSO profile in . aws/config might look similar to the following example.

52

https://console.aws.amazon.com/singlesignon/

AWS Command Line Interface User Guide for Version 2
Using an AWS SSO enabled named profile

[profile my-dev-profile]

sso_start_url = https://my-sso-portal.awsapps.com/start
sso_region = us-east-1

sso_account_id = 123456789011

sso_role_name = readOnly

region = us-west-2

output = json

At this point, you have a profile that you can use to request temporary credentials. However, you can't
yet run an AWS CLI service command. You must first use the aws sso login command to actually
request and retrieve the temporary credentials needed to run commands. For instructions, see the next
section, Using an AWS SSO enabled named profile (p. 53).

Using an AWS SSO enabled named profile

This section describes how to use the AWS SSO profile you created in the previous section.

Signing in and getting temporary credentials

After you configure a named profile automatically or manually, you can invoke it to request temporary
credentials from AWS. Before you can run an AWS CLI service command, you must retrieve and cache a
set of temporary credentials. To get these temporary credentials, run the following command.

$ aws sso login --profile my-dev-profile

The AWS CLI opens your default browser and verifies your AWS SSO log in.

SSO authorization page has automatically been opened in your default browser.
Follow the instructions in the browser to complete this authorization request.
Successfully logged into Start URL: https://my-sso-portal.awsapps.com/start

If you are not currently signed in to your AWS SSO account, you must provide your AWS SSO user name
and password.

If the AWS CLI can't open your browser, it prompts you to open it yourself and enter the specified code.

$ aws sso login --profile my-dev-profile
Using a browser, open the following URL:

https://my-sso-portal.awsapps.com/verify

and enter the following code:
OCFK-N451

The AWS CLI opens your default browser (or you manually open the browser of your choice) to the
specified page, and enter the provided code. The webpage then prompts you for your AWS SSO
credentials.

Your AWS SSO session credentials are cached and include an expiration timestamp. When the credentials
expire, the AWS CLI requests you to sign in to AWS SSO again.

If your AWS SSO credentials are valid, the AWS CLI uses them to securely retrieve AWS temporary
credentials for the IAM role specified in the profile.

Welcome, you have successfully signed-in to the AWS-CLI.

53

AWS Command Line Interface User Guide for Version 2
Using an AWS SSO enabled named profile

Running a command with your AWS SSO enabled profile

You can use these temporary credentials to invoke an AWS CLI command with the associated named
profile. The following example shows that the command was run under an assumed role that is part of
the specified account.

$ aws sts get-caller-identity --profile my-dev-profile

{

"UserId": "AROA12345678901234567:test-user@example.com",

"Account": "123456789011",

"Arn": "arn:aws:sts::123456789011:assumed-role/AWSPeregrine_readOnly_1232labc454d123/
test-user@example.com"
}

As long as you signed in to AWS SSO and those cached credentials are not expired, the AWS CLI
automatically renews expired AWS temporary credentials when needed. However, if your AWS SSO
credentials expire, you must explicitly renew them by logging in to your AWS SSO account again.

$ aws s3 ls --profile my-sso-profile

Your short-term credentials have expired. Please sign-in to renew your credentials
SSO authorization page has automatically been opened in your default browser.
Follow the instructions in the browser to complete this authorization request.

You can create multiple AWS SSO enabled named profiles that each point to a different AWS account
or role. You can also use the aws sso login command on more than one profile at a time. If any of them
share the same AWS SSO user account, you must log in to that AWS SSO user account only once and
then they all share a single set of AWS SSO cached credentials.

The following command retrieves temporary credentials for the AWS account and role
specified in one named profile. If you are not yet signed in to AWS SSO or your

cached credentials have expired, it opens your browser and prompts you for your

AWS SSO user name and password. It then retrieves AWS temporary credentials for

the IAM role associated with this profile.

$ aws sso login --profile my-first-sso-profile

The next command retrieves a different set of temporary credentials for the AWS

account and role specified in the second named profile. It does not overwrite or

in any way compromise the first profile's credentials. If this profile specifies the
same AWS SSO portal, then it uses the SSO credentials that you retrieved in the

previous command. The AWS CLI then retrieves AWS temporary credentials for the

IAM role associated with the second profile. You don't have to sign in to

AWS SSO again.

$ aws sso login --profile my-second-sso-profile

The following command lists the Amazon EC2 instances accessible to the role

identified in the first profile.

$ aws ec2 describe-instances --profile my-first-sso-profile

The following command lists the Amazon EC2 instances accessible to the role

identified in the second profile.

$ aws ec2 describe-instances --profile my-second-sso-profile

Signing out of your AWS SSO sessions

When you are done using your AWS SSO enabled profiles, you can choose to do nothing and let the

AWS temporary credentials and your AWS SSO credentials expire. However, you can also choose to

run the following command to immediately delete all cached credentials in the SSO credential cache
folder and all AWS temporary credentials that were based on the AWS SSO credentials. This makes those
credentials unavailable to be used for any future command.

54

AWS Command Line Interface User Guide for Version 2
Environment Variables

$ aws sso logout
Successfully signed out of all SSO profiles.

If you later want to run commands with one of your AWS SSO enabled profiles, you must again run the
aws sso login command (see the previous section) and specify the profile to use.

Environment variables to configure the AWS CLI

Environment variables provide another way to specify configuration options and credentials, and can be
useful for scripting or temporarily setting a named profile as the default.

Precedence of options

« If you specify an option by using one of the environment variables described in this topic, it overrides
any value loaded from a profile in the configuration file.

« If you specify an option by using a parameter on the AWS CLI command line, it overrides any value
from either the corresponding environment variable or a profile in the configuration file.

For more information about precedence and how the AWS CLI determines which credentials to use, see
Configuration settings and precedence (p. 35).

Topics
« How to set environment variables (p. 55)
o AWS CLI supported environment variables (p. 56)

How to set environment variables

The following examples show how you can configure environment variables for the default user.

Linux or macOS

$ export AWS_ACCESS_KEY ID=AKIAIOSFODNN7EXAMPLE
$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ export AWS_DEFAULT REGION=us-west-2

Setting the environment variable changes the value used until the end of your shell session, or until
you set the variable to a different value. You can make the variables persistent across future sessions
by setting them in your shell's startup script.

Windows Command Prompt

To set for all sessions

C:\> setx AWS_ACCESS_KEY_ ID AKIAIOSFODNN7EXAMPLE
C:\> setx AWS_SECRET_ ACCESS_KEY wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
C:\> setx AWS_DEFAULT_REGION us-west-2

Using setx to set an environment variable changes the value used in both the current command
prompt session and all command prompt sessions that you create after running the command. It
does not affect other command shells that are already running at the time you run the command.

To set for current session only

55

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

AWS Command Line Interface User Guide for Version 2
AWS CLI supported environment variables

Using set to set an environment variable changes the value used until the end of the current
command prompt session, or until you set the variable to a different value.

C:\> set AWS_ACCESS_KEY_ ID=AKIAIOSFODNN7EXAMPLE
C:\> set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
C:\> set AWS_DEFAULT REGION=us-west-2

PowerShell

PS C:\> $Env:AWS_ACCESS_KEY_ ID="AKIAIOSFODNN7EXAMPLE"
PS C:\> $Env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfi1CYEXAMPLEKEY"
PS C:\> $Env:AWS_DEFAULT_ REGION="us-west-2"

If you set an environment variable at the PowerShell prompt as shown in the previous examples,

it saves the value for only the duration of the current session. To make the environment variable
setting persistent across all PowerShell and Command Prompt sessions, store it by using the System
application in Control Panel. Alternatively, you can set the variable for all future PowerShell sessions
by adding it to your PowerShell profile. See the PowerShell documentation for more information
about storing environment variables or persisting them across sessions.

AWS CLI supported environment variables

The AWS CLI supports the following environment variables.
AWS_ACCESS_KEY_ID
Specifies an AWS access key associated with an IAM user or role.

If defined, this environment variable overrides the value for the profile setting
aws_access_key_id. You can't specify the access key ID by using a command line option.

AWS_CA_BUNDLE
Specifies the path to a certificate bundle to use for HTTPS certificate validation.

If defined, this environment variable overrides the value for the profile setting
ca_bundle (p. 39).You can override this environment variable by using the --ca-
bundle (p. 60) command line parameter.

AWS_CLI_AUTO_ PROMPT

Enables the auto-prompt for the AWS CLI version 2. There are two settings that can be used:

« on uses the full auto-prompt mode each time you attempt to run an aws command. This includes
pressing ENTER after both a complete command or incomplete command.

aws_cli_auto_prompt=on

« on-partial uses partial auto-prompt mode. If a command is incomplete or cannot be run due
to client-side validation errors, auto-prompt is used. This mode is particular useful if you have
pre-existing scripts, runbooks, or you only want to be auto-prompted for commands you are
unfamiliar with rather than prompted on every command.

aws_cli_ auto_prompt=on-partial

If defined, this environment variable overrides the value for the c1i_auto_prompt (p. 40)
profile setting. You can override this environment variable by using the --cli-auto-
prompt (p. 60)and --no-cli-auto-prompt (p. 61) command line parameters.

56

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_environment_variables

AWS Command Line Interface User Guide for Version 2
AWS CLI supported environment variables

For information on the AWS CLI version 2 auto-prompt feature, see Having the AWS CLI prompt you
for commands (p. 104).

AWS_CLI_FILE_ENCODING

Specifies the encoding used for text files. By default encoding matches your locale. To set encoding
different from the locale, use the aws_c1i_file_ encoding environment variable. For example, if
you use Windows with default encoding cpP1252, setting aws_cli_file encoding=UTF-8 sets
the CLI to open text files using UTF-8.

AWS_CONFIG_FILE

Specifies the location of the file that the AWS CLI uses to store configuration profiles. The default
pathis ~/.aws/config.

You can't specify this value in a named profile setting or by using a command line parameter.
AWS_DATA_PATH

A list of additional directories to check outside of the built-in search path of ~/ . aws/models when
loading AWS CLI data. Setting this environment variable indicates additional directories to check
first before falling back to the built-in search path. Multiple entries should be separated with the
os.pathsep character, which is : on Linux or macOS and ; on Windows.

AWS_DEFAULT_OUTPUT (p. 35)
Specifies the output format (p. 108) to use.

If defined, this environment variable overrides the value for the profile setting output. You can
override this environment variable by using the --output command line parameter.

AWS_DEFAULT_ REGION (p. 34)
Specifies the AWS Region to send the request to.

If defined, this environment variable overrides the value for the profile setting region and . You can
override this environment variable by using the -—-region command line parameter and the AWS
SDK compatible AWS_REGION environment variable.

AWS_EC2_METADATA DISABLED
Disables the use of the Amazon EC2 instance metadata service (IMDS).

If set to true, user credentials or configuration (like the Region) are not requested from IMDS.
AWS_MAX_ATTEMPTS (p. 42)

Specifies a value of maximum retry attempts the AWS CLI retry handler uses, where the initial
call counts toward the value that you provide. For more information on retries, see AWS CLI
retries (p. 67).

If defined, this environment variable overrides the value for the profiles setting max_attempts.
AWS_METADATA SERVICE NUM_ATTEMPTS

When attempting to retrieve credentials on an Amazon EC2 instance that has been configured with
an IAM role, the AWS CLI attempts to retrieve credentials once from the instance metadata service
before stopping. If you know your commands will run on an Amazon EC2 instance, you can increase
this value to make AWS CLI retry multiple times before giving up.

AWS_METADATA_SERVICE_TIMEOUT

The number of seconds before a connection to the instance metadata service should time out. When
attempting to retrieve credentials on an Amazon EC2 instance that is configured with an IAM role,

a connection to the instance metadata service times out after 1 second by default. If you know
you're running on an Amazon EC2 instance with an IAM role configured, you can increase this value if
needed.

57

AWS Command Line Interface User Guide for Version 2
AWS CLI supported environment variables

AWS_PAGER (p. 41)

Specifies the pager program used for output. By default, AWS CLI version 2 returns all output
through your operating system's default pager program.

To disable all use of an external paging program, set the variable to an empty string.

If defined, this environment variable overrides the value for the profile setting c1i_pager.
AWS_PROFILE (p. 48)

Specifies the name of the AWS CLI profile with the credentials and options to use. This can be the

name of a profile stored in a credentials or config file, or the value default to use the default

profile.

If defined, this environment variable overrides the behavior of using the profile named [default]
in the configuration file. You can override this environment variable by using the --profile
command line parameter.

AWS_REGION (p. 34)

The AWS SDK compatible environment variable that specifies the AWS Region to send the request
to.

If defined, this environment variable overrides the values in the environment variable

AWS_DEFAULT_ REGION and the profile setting region. You can override this environment variable

by using the --region command line parameter.
AWS_RETRY_MODE (p. 43)

Specifies which retry mode AWS CLI uses. There are three retry modes available: legacy (default),
standard, and adaptive. For more information on retries, see AWS CLI retries (p. 67).

If defined, this environment variable overrides the value for the profiles setting retry_mode.
AWS_ROLE_ARN

Specifies the Amazon Resource Name (ARN) of an IAM role with a web identity provider that you
want to use to run the AWS CLI commands.

Used with the AWS_WEB_IDENTITY TOKEN FILE and AWS_ROLE_SESSION_NAME environment
variables.

If defined, this environment variable overrides the value for the profile setting role_arn (p. 43).
You can't specify a role session name as a command line parameter.

Note
This environment variable only applies to an assumed role with web identity provider it
does not apply to the general assume role provider configuration.

For more information on using web identities, see the section called "Assume role with web
identity” (p. 79).

AWS_ROLE_SESSION_ NAME

Specifies the name to attach to the role session. This value is provided to the
RoleSessionName parameter when the AWS CLI calls the AssumeRole operation, and
becomes part of the assumed role user ARN: arn:aws:sts::123456789012:assumed-
role/role_name/role_session_name. This is an optional parameter. If you do not provide this
value, a session name is generated automatically. This name appears in AWS CloudTrail logs for
entries associated with this session.

If defined, this environment variable overrides the value for the profile setting
role_session_name (p. 43).

58

AWS Command Line Interface User Guide for Version 2
Command line options

Used with the AWS_ROLE_ARN and AWS_WEB_IDENTITY TOKEN_FILE environment variables.

For more information on using web identities, see the section called “Assume role with web
identity” (p. 79).

Note
This environment variable only applies to an assumed role with web identity provider it
does not apply to the general assume role provider configuration.

AWS_SECRET_ACCESS_KEY

Specifies the secret key associated with the access key. This is essentially the "password" for the
access key.

If defined, this environment variable overrides the value for the profile setting
aws_secret_access_key. You can't specify the secret access key ID as a command line option.

AWS_SESSION_TOKEN

Specifies the session token value that is required if you are using temporary security credentials that
you retrieved directly from AWS STS operations. For more information, see the Output section of the
assume-role command in the AWS CLI Command Reference.

If defined, this environment variable overrides the value for the profile setting
aws_session_token.

AWS_SHARED_CREDENTIALS_FILE

Specifies the location of the file that the AWS CLI uses to store access keys. The default path is
~/.aws/credentials.

You can't specify this value in a named profile setting or by using a command line parameter.
AWS_WEB_IDENTITY TOKEN_FILE (p.55)

Specifies the path to a file that contains an OAuth 2.0 access token or OpenID Connect ID token that
is provided by an identity provider. The AWS CLI loads the contents of this file and passes it as the
WebIdentityToken argument to the AssumeRoleWithWebIdentity operation.

Used with the AWS_ROLE_ARN and AWS_ROLE_SESSION_NAME environment variables.

If defined, this environment variable overrides the value for the profile setting
web_identity_ token_file.

For more information on using web identities, see the section called "Assume role with web
identity” (p. 79).

Note
This environment variable only applies to an assumed role with web identity provider it
does not apply to the general assume role provider configuration.

Command line options

In the AWS CLI, command line options are global parameters you can use to override the default
configuration settings, any corresponding profile setting, or environment variable setting for that single
command. You can't use command line options to directly specify credentials, although you can specify
which profile to use.

Topics
« How to use command line options (p. 60)
o AWS CLI supported global command line options (p. 60)
o Common uses of command line options (p. 62)

59

https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html#output
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html#output

AWS Command Line Interface User Guide for Version 2
How to use command line options

How to use command line options

Most command line options are simple strings, such as the profile name profilel in the following
example:

$ aws s3 1ls --profile profilel
example-bucket-1
example-bucket-2

Each option that takes an argument requires a space or equals sign (=) separating the argument from
the option name. If the argument value is a string that contains a space, you must use quotation marks
around the argument. For details on argument types and formatting for parameters, see Specifying
parameter values for the AWS CLI (p. 87).

AWS CLI supported global command line options

In the AWS CLI you can use the following command line options to override the default configuration
settings, any corresponding profile setting, or environment variable setting for that single command.

--ca-bundle <string>
Specifies the certificate authority (CA) certificate bundle to use when verifying SSL certificates.

If defined, this option overrides the value for the profile setting ca_bundle (p. 39) and the
AWS_CA BUNDLE (p. 56) environment variable.

--cli-auto-prompt

Enables auto-prompt mode for a single command. As the following examples show, you can specify
it at any point.

$ aws --cli-auto-prompt
$ aws dynamodb --cli-auto-prompt
$ aws dynamodb describe-table --cli-auto-prompt

This option overrides the aws_cl1i_auto_prompt (p. 56) environment variable and the
cli_auto_prompt (p. 40) profile setting.

For information on the AWS CLI version 2 auto-prompt feature, see Having the AWS CLI prompt you
for commands (p. 104).

--cli-binary-format

Specifies how the AWS CLI version 2 interprets binary input parameters. It can be one of the
following values:

« base64 - This is the default value. An input parameter that is typed as a binary large object (BLOB)
accepts a base64-encoded string. To pass true binary content, put the content in a file and provide
the file's path and name with the fileb: // prefix as the parameter's value. To pass base64-
encoded text contained in a file, provide the file's path and name with the file: // prefix as the
parameter's value.

« raw-in-base64-out — Provides backward compatibility with the AWS CLI version 1 behavior where
binary values must be passed literally.

This overrides the c1i_binary format (p. 40) file configuration setting.

$ aws lambda invoke \
--cli-binary-format raw-in-base64-out \

60

AWS Command Line Interface User Guide for Version 2
AWS CLI supported global command line options

--function-name my-function \
--invocation-type Event \
--payload '{ "name": "Bob" }' \
response.json

If you reference a binary value in a file using the £ileb: // prefix notation, the AWS CLI always
expects the file to contain raw binary content and does not attempt to convert the value.

If you reference a binary value in a file using the file: // prefix notation, the AWS CLI handles the
file according to the current c1i_binary_ format setting. If that setting's value is base64 (the
default when not explicitly set), the AWS CLI expects the file to contain base64-encoded text. If that
setting's value is raw-in-base64-out, the AWS CLI expects the file to contain raw binary content.

--cli-connect-timeout <integer>

Specifies the maximum socket connect time in seconds. If the value is set to zero (0), the socket
connect waits indefinitely (is blocking) and doesn't timeout.

--cli-read-timeout <integer>

Specifies the maximum socket read time in seconds. If the value is set to zero (0) the socket read
waits indefinitely (is blocking) and doesn't timeout.

--color <string>

Specifies support for color output. Valid values are on, of £, and auto. The default value is auto.
--debug

A Boolean switch that enables debug logging. The AWS CLI by default provides cleaned

up information regarding any successes or failures regarding command outcomes in the

command output. The --debug option provides the full Python logs. This includes additional
stderr diagnostic information about the operation of the command that can be useful when
troubleshooting why a command provides unexpected results. To easily view debug logs, we suggest
sending the logs to a file to more easily search the information. You can do this by using one of the
following.

To send only the stderr diagnostic information, append 2> debug.txt where debug. txt is the
name you want to use for your debug file:

$ aws servicename commandname options --debug 2> debug.txt

To send both the output and stderr diagnostic information, append &> debug.txt where
debug.txt is the name you want to use for your debug file:

$ aws servicename commandname options --debug &> debug.txt

--endpoint-url <string>

Specifies the URL to send the request to. For most commands, the AWS CLI automatically
determines the URL based on the selected service and the specified AWS Region. However, some
commands require that you specify an account-specific URL. You can also configure some AWS
services to host an endpoint directly within your private VPC, which might then need to be specified.

For a list of the standard service endpoints available in each Region, see AWS Regions and Endpoints
in the Amazon Web Services General Reference.

--no-cli-auto-prompt

Disables auto-prompt mode for a single command.

$ aws dynamodb describe-table --table-name Tablel --no-cli-auto-prompt

61

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html#what-is-privatelink
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Command Line Interface User Guide for Version 2
Common uses of command line options

This option overrides the aws_cli auto_prompt (p. 56) environment variable and the
cli_auto_prompt (p. 40) profile setting.

For information on the AWS CLI version 2 auto-prompt feature, see Having the AWS CLI prompt you
for commands (p. 104).

--no-cli-pager

A Boolean switch that disables using a pager for the output of the command.
--no-paginate

A Boolean switch that disables the multiple calls the automatically AWS CLI makes to receive all
command results that creates pagination of the output. This means only the first page of your
output is displayed.

--no-sign-request
A Boolean switch that disables signing the HTTP requests to the AWS service endpoint. This prevents
credentials from being loaded.

--output <string>

Specifies the output format to use for this command. You can specify any of the following values:
+ json (p. 109) - The output is formatted as a JSON string.
o yaml (p. 109) — The output is formatted as a YAML string.

o yaml-stream (p. 110) - The output is streamed and formatted as a YAML string. Streaming
allows for faster handling of large data types.

o text (p. 111) — The output is formatted as multiple lines of tab-separated string values. This
can be useful to pass the output to a text processor, like grep, sed, or awk.

« table (p. 113) - The output is formatted as a table using the characters +|- to form the cell
borders. It typically presents the information in a "human-friendly" format that is much easier to
read than the others, but not as programmatically useful.

--profile <string>

Specifies the named profile (p. 48) to use for this command. To set up additional named profiles,
you can use the aws configure command with the --profile option.

$ aws configure --profile <profilename>

--query <string>

Specifies a JMESPath query to use in filtering the response data. For more information, see Filtering
AWS CLI output (p. 118).
--region <string>

Specifies which AWS Region to send this command's AWS request to. For a list of all of the Regions
that you can specify, see AWS Regions and Endpoints in the Amazon Web Services General Reference.

--version

A Boolean switch that displays the current version of the AWS CLI program that is running.

Common uses of command line options

Common uses for command line options include checking your resources in multiple AWS Regions, and
changing the output format for legibility or ease of use when scripting. In the following examples, we
run the describe-instances command against each Region until we find which Region our instance is in.

$ aws ec2 describe-instances --output table --region us-west-1

62

https://json.org/
https://yaml.org/
https://yaml.org/
http://jmespath.org/
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Command Line Interface User Guide for Version 2
Command completion

| DescribeInstances

B ettt et e +
| Reservations |
|+ o +|
|| OwneriId | 012345678901 |l
|| ReservationId | r-abcdefgh |
|+ o +|
| 1] Instances 111
|| #==mmmmmm oo b oo +11
||| AmiLaunchIndex | o0 |
||| Architecture | x86_64 |

Command completion

The AWS Command Line Interface (AWS CLI) includes a bash-compatible command-completion feature
that enables you to use the Tab key to complete a partially entered command. On most systems you
need to configure this manually.

For information on the AWS CLI version 2 auto-prompt feature instead, see Having the AWS CLI prompt
you for commands (p. 104).

Topics
o How it works (p. 63)
» Configuring command completion on Linux or macOS (p. 64)
« Configuring command completion on Windows (p. 66)

How it works

When you partially enter a command, parameter, or option, the command-completion feature either
automatically completes your command or displays a suggested list of commands. To prompt command
completion, you partially enter in a command and press the completion key, which is typically Tab in
most shells.

The following examples show different ways that you can use command completion:

« Partially enter a command and press Tab to display a suggested list of commands.

$ aws dynamodb dTAB

delete-backup describe-global-table

delete-item describe-global-table-settings
delete-table describe-limits

describe-backup describe-table
describe-continuous-backups describe-table-replica-auto-scaling
describe-contributor-insights describe-time-to-1live

describe-endpoints

« Partially enter a parameter and press Tab to display a suggested list of parameters.

$ aws dynamodb delete-table --TAB
--ca-bundle --endpoint-url --profile
--cli-connect-timeout --generate-cli-skeleton --query

63

AWS Command Line Interface User Guide for Version 2
Configuring command completion on Linux or macOS

--cli-input-json --no-paginate --region
--cli-read-timeout --no-sign-request --table-name
--color --no-verify-ssl --version
--debug —--output

« Enter a parameter and press Tab to display a suggested list of resource values. This feature is available
only in the AWS CLI version 2.

$ aws dynamodb db delete-table --table-name TAB
Table 1 Table 2 Table 3

Configuring command completion on Linux or macOS

To configure command completion on Linux or macOS, you must know the name of the shell you're
using and the location of the aws_completer script.

Note
Command completion is automatically configured and enabled by default on Amazon EC2
instances that run Amazon Linux.

Topics
« Confirm the completer's folder is in your path (p. 64)
« Enable command completion (p. 65)
 Verify command completion (p. 66)

Confirm the completer's folder is in your path

For the AWS completer to work successfully, the aws_completer needs to be in your shell's path. The
which command can check if the completer is in your path.

$ which aws_completer
/usr/local/bin/aws_completer

If the which command can't find the completer, then use the following steps to add the completer's
folder to your path.

Step 1: Locate the AWS completer
The location of the AWS completer can vary depending on the installation method used.

« Package Manager - Programs such as pip, yum, brew, and apt-get typically install the AWS
completer (or a symlink to it) to a standard path location.

« If you used pip without the --user parameter, the default path is /usr/local/bin/
aws_completer.

« If you used pip with the --user parameter the default path is /home /username/.local/bin/
aws_completer.

« Bundled Installer - If you used the bundled installer, the default path is /usr/local/bin/
aws_completer.

If all else fails, you can use the £ind command to search your file system for the AWS completer.

$ find / -name aws_completer
/usr/local/bin/aws_completer

64

AWS Command Line Interface User Guide for Version 2
Configuring command completion on Linux or macOS

Step 2: Identify your shell

To identify which shell you're using, you can use one of the following commands.

« echo $SHELL - Displays the shell's program file name. This usually matches the name of the in-use
shell, unless you launched a different shell after logging in.

$ echo $SHELL
/bin/bash

« ps - Displays the processes running for the current user. One of them is the shell.

$ ps
PID TTY TIME CMD
2148 pts/1 00:00:00 bash
8756 pts/1 00:00:00 ps

Step 3: Add the completer to your path

1. Find your shell's profile script in your user folder.

$ 1s -a ~/
. .bash_logout .bash_profile .bashrc Desktop Documents Downloads

o Bash- .bash_profile, .profile, or .bash_login
o Zsh- .zshrc
e Tcsh- . teshre, .cshre, or .1login

2. Add an export command at the end of your profile script that's similar to the following example.
Replace /usr/local/bin/ with the folder that you discovered in the previous section.

export PATH=/usr/local/bin/:$PATH

3. Reload the profile into the current session to put those changes into effect. Replace . bash_profile
with the name of the shell script you discovered in the first section.

$ source ~/.bash_profile

Enable command completion

After confirming the completer is in your path, enable command completion by running the appropriate
command for the shell that you're using. You can add the command to your shell's profile to run it each
time you open a new shell. In each command, replace the /usr/local/bin/ path with the one found
on your system in Confirm the completer's folder is in your path (p. 64).

« bash - Use the built-in command complete.

$ complete -C '/usr/local/bin/aws_completer' aws

Add the previous command to ~/ .bashrc to run it each time you open a new shell. Your
~/.bash_profile should source ~/.bashrec to ensure that the command is also run in login shells.

o zsh - To run command completion, you need to run bashcompinit by adding the following autoload
line at the end of your ~/ . zshrc profile script.

65

AWS Command Line Interface User Guide for Version 2
Configuring command completion on Windows

$ autoload bashcompinit && bashcompinit
$ autoload -Uz compinit && compinit

To enable command completion, use the built-in command complete.

$ complete -C '/usr/local/bin/aws_completer' aws

Add the previous commands to ~/ . zshrc to run it each time you open a new shell.
« tesh - Complete for tesh takes a word type and pattern to define the completion behavior.

> complete aws 'p/*/"aws_completer” /'

Add the previous command to ~/ . tschre to run it each time you open a new shell.

After you've enabled command completion, Verify command completion (p. 66) is working.

Verify command completion

After enabling command completion, reload your shell, enter a partial command, and press Tab to see
the available commands.

$ aws sTAB
s3 ses sgs sts swf
s3api sns storagegateway support

Configuring command completion on Windows

Note
For information on how PowerShell handles their completion, including their various completion
keys, see about_Tab_Expansion in the Microsoft PowerShell Docs.

To enable command completion for PowerShell on Windows, complete the following steps in
PowerShell.

1. Open your $PROFILE with the following command.

PS C:\> Notepad $PROFILE

If you do not have a $PROFILE, create a user profile using the following command.

PS C:\> if (!(Test-Path -Path $PROFILE))
{ New-Item -Type File -Path $PROFILE -Force }

For more information on PowerShell profiles, see How to Use Profiles in Windows PowerShell ISE on
the Microsoft Docs website.

2. To enable command completion, add the following code block to your profile, save, and then close the
file.

Register-ArgumentCompleter -Native -CommandName aws -ScriptBlock {
param($commandName, $wordToComplete, $cursorPosition)
$env:COMP_LINE=$wordToComplete
$env:COMP_POINT=$cursorPosition

66

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_tab_expansion?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/ise/how-to-use-profiles-in-windows-powershell-ise

AWS Command Line Interface User Guide for Version 2
Retries

aws_completer.exe | ForEach-Object {
[System.Management.Automation.CompletionResult]::new($_, $_,
'ParameterValue', $_)
}
Remove-Item Env:\COMP_LINE
Remove-Item Env:\COMP_POINT
}

3. After enabling command completion, reload your shell, enter a partial command, and press Tab to
cycle through the available commands.

$ aws sTab

$ aws s3

To see all available commands available to your completion, enter a partial command and press Ctrl +
Space.

$ aws sCtrl + Space
s3 ses sgs sts swf
s3api sns storagegateway support

AWS CLI retries

This topic describes how the AWS CLI might see calls to AWS services fail due to unexpected issues.
These issues can occur on the server side or might fail due to rate limiting from the AWS service
you're attempting to call. These kinds of failures usually don't require special handling and the call is
automatically made again, often after a brief waiting period. The AWS CLI provides many features to
assist in retrying client calls to AWS services when these kinds of errors or exceptions are experienced.

Topics
« Available retry modes (p. 67)
« Configuring a retry mode (p. 69)
» Viewing logs of retry attempts (p. 70)

Available retry modes

The AWS CLI has multiple modes to choose from depending on your version:
« Legacy retry mode (p. 67)
« Standard retry mode (p. 68)
» Adaptive retry mode (p. 69)

Legacy retry mode

Legacy mode uses an older retry handler that has limited functionality which includes:

o A default value of 4 for maximum retry attempts, making a total of 5 call attempts. This value can be
overwritten through the max_attempts configuration parameter.

« DynamoDB has a default value of 9 for maximum retry attempts, making a total of 10 call attempts.
This value can be overwritten through the max_attempts configuration parameter.

67

AWS Command Line Interface User Guide for Version 2
Available retry modes

« Retry attempts for the following limited number of errors/exceptions:
« General socket/connection errors:
e ConnectionError
e ConnectionClosedError
e ReadTimeoutError
¢ EndpointConnectionError
« Service-side throttling/limit errors and exceptions:
¢ Throttling
e ThrottlingException
e ThrottledException
e RequestThrottledException
e ProvisionedThroughputExceededException
« Retry attempts on several HTTP status codes, including 429, 500, 502, 503, 504, and 509.
« Any retry attempt will include an exponential backoff by a base factor of 2.

Standard retry mode

Standard mode is a standard set of retry rules across the AWS SDKs with more functionality than legacy.
This mode is the default for AWS CLI version 2. Standard mode was created for the AWS CLI version 2
and is backported to AWS CLI version 1. Standard mode's functionality includes:

o A default value of 2 for maximum retry attempts, making a total of 3 call attempts. This value can be
overwritten through the max_attempts configuration parameter.

+ Retry attempts for the following expanded list of errors/exceptions:
« Transient errors/exceptions
¢ RequestTimeout
¢ RequestTimeoutException
¢ PriorRequestNotComplete
e ConnectionError
e HTTPClientError
« Service-side throttling/limit errors and exceptions:
¢ Throttling
e ThrottlingException
e ThrottledException
¢ RequestThrottledException
 TooManyRequestsException
e ProvisionedThroughputExceededException
e TransactionInProgressException
¢ RequestLimitExceeded
¢ BandwidthLimitExceeded
e LimitExceededException
¢ RequestThrottled
¢ SlowDown

e EC2ThrottledException

« Retry attempts on nondescriptive, transient error codes. Specifically, these HTTP status codes: 500,
502, 503, 504.

68

AWS Command Line Interface User Guide for Version 2
Configuring a retry mode

« Any retry attempt will include an exponential backoff by a base factor of 2 for a maximum backoff
time of 20 seconds.

Adaptive retry mode

Warning
Adaptive mode is an experimental mode and is subject to change, both in features and behavior.

Adaptive retry mode is an experimental retry mode that includes all the features of standard mode. In
addition to the standard mode features, adaptive mode also introduces client-side rate limiting through
the use of a token bucket and rate-limit variables that are dynamically updated with each retry attempt.
This mode offers flexibility in client-side retries that adapts to the error/exception state response from
an AWS service.

With each new retry attempt, adaptive mode modifies the rate-limit variables based on the error,
exception, or HTTP status code presented in the response from the AWS service. These rate-limit
variables are then used to calculate a new call rate for the client. Each exception/error or non-success
HTTP response (provided in the list above) from an AWS service updates the rate-limit variables as retries
occur until success is reached, the token bucket is exhausted, or the configured maximum attempts value
is reached.

Configuring a retry mode

The AWS CLI includes a variety of both retry configurations as well as configuration methods to consider
when creating your client object.

Available configuration methods

In the AWS CLI, users can configure retries in the following ways:

o Environment variables
o AWS CLI configuration file

Users can customize the following retry options:

« Retry mode - Specifies which retry mode the AWS CLI uses. As described previously, there are three
retry modes available: legacy, standard, and adaptive. The default value for the AWS CLI version 2 is
standard.

« Max attempts - Specifies the value of maximum retry attempts the AWS CLI retry handler uses, where
the initial call counts toward the value that you provide. The default value is 5.

Defining a retry configuration in your environment variables

To define your retry configuration for the AWS CLI, update your operating system's environment
variables.

The retry environment variables are:

« AWS_RETRY_MODE
« AWS_MAX_ATTEMPTS

For more information on environment variables, see Environment variables to configure the AWS
CLI (p. 55).

69

AWS Command Line Interface User Guide for Version 2
Viewing logs of retry attempts

Defining a retry configuration in your AWS configuration file

To change your retry configuration, update your global AWS configuration file. The default location for
your AWS config file is ~/.aws/config.

The following is an example of an AWS config file:

[default]
retry_mode = standard
max_attempts = 6

For more information on configuration files, see Configuration and credential file settings (p. 36).

Viewing logs of retry attempts

The AWS CLI uses Boto3's retry methodology and logging. You can use the —--debug option on
any command to receive debug logs. For more information on how to use the --debug option, see
Command line options (p. 59).

If you search for "retry" in your debug logs, you'll find the retry information you need. The client log
entries for retry attempts depend on which retry mode you've enabled.

Legacy mode:
Retry messages are generated by botocore.retryhandler. You'll see one of three messages:

e No retry needed
e Retry needed, action of: <action_name>

*» Reached the maximum number of retry attempts: <attempt_number>

Standard or adaptive mode:
Retry messages are generated by botocore.retries.standard. You'll see one of three messages:

e No retrying request
e Retry needed, retrying request after delay of: <delay_value>

e Retry needed but retry quota reached, not retrying request

For the full definition file of botocore retries, see _retry.json on the botocore GitHub Repository.

Sourcing credentials with an external process

Warning

This topic discusses sourcing credentials from an external process. This could be a security risk
if the command to generate the credentials becomes accessible by non-approved processes

or users. We recommend that you use the supported, secure alternatives provided by the AWS
CLI and AWS to reduce the risk of compromising your credentials. Ensure that you secure the
config file and any supporting files and tools to prevent disclosure.

Ensure that your custom credential tool does not write any secret information to StdErr
because the SDKs and AWS CLI can capture and log such information, potentially exposing it to
unauthorized users.

If you have a method to generate or look up credentials that isn't directly supported by the AWS CLI, you
can configure the AWS CLI to use it by configuring the credential_process setting in the config file.

70

https://github.com/boto/botocore/blob/develop/botocore/data/_retry.json

AWS Command Line Interface User Guide for Version 2
External credentials

For example, you might include an entry similar to the following in the config file.

[profile developer]
credential process = /opt/bin/awscreds-custom --username helen

Syntax
To create this string in a way that is compatible with any operating system, follow these rules:
« If the path or file name contains a space, surround the complete path and file name with double-

quotation marks (" "). The path and file name can consist of only the characters: A-Z a-z 0-9 - _ . space

« If a parameter name or a parameter value contains a space, surround that element with double-
quotation marks (" "). Surround only the name or value, not the pair.

« Do not include any environment variables in the strings. For example, you can't include $HOME or
%USERPROFILE%.

« Do not specify the home folder as ~. You must specify the full path.

Example for Windows

credential_process = "C:\Path\To\credentials.cmd" parameterWithoutSpaces "parameter with
spaces"

Example for Linux or macOS

credential_process = "/Users/Dave/path/to/credentials.sh" parameterWithoutSpaces "parameter
with spaces"

Expected output from the Credentials program

The AWS CLI runs the command as specified in the profile and then reads data from STDOUT. The
command you specify must generate JSON output on STDOUT that matches the following syntax.

{
"Version": 1,
"AccessKeyId": "an AWS access key",
"SecretAccessKey": "your AWS secret access key",
"SessionToken": "the AWS session token for temporary credentials",
"Expiration": "IS08601 timestamp when the credentials expire"
}
Note

As of this writing, the Version key must be set to 1. This might increment over time as the
structure evolves.

The Expiration key is an ISO8601 formatted timestamp. If the Expiration key is not present in

the tool's output, the CLI assumes that the credentials are long-term credentials that do not refresh.
Otherwise the credentials are considered temporary credentials and are refreshed automatically by

rerunning the credential_ process command before they expire.

Note
The AWS CLI does not cache external process credentials the way it does assume-role
credentials. If caching is required, you must implement it in the external process.

The external process can return a non-zero return code to indicate that an error occurred while retrieving
the credentials.

71

https://wikipedia.org/wiki/ISO_8601

AWS Command Line Interface User Guide for Version 2
Using credentials for Amazon EC2 instance metadata

Using credentials for Amazon EC2 instance
metadata

When you run the AWS CLI from within an Amazon Elastic Compute Cloud (Amazon EC2) instance, you
can simplify providing credentials to your commands. Each Amazon EC2 instance contains metadata that
the AWS CLI can directly query for temporary credentials. When an IAM role is attached to the instance,
the AWS CLI automatically and securely retrieves the credentials from the instance metadata.

To disable this service, use the AWS_EC2_METADATA_DISABLED (p. 57) environment variable.

Topics
 Prerequisites (p. 72)
« Configuring a profile for Amazon EC2 metadata (p. 72)

Prerequisites

To use Amazon EC2 credentials with the AWS CLI, you need to complete the following:

« Install and configure the AWS CLI. For more information, see the section called “Install/Update” (p. 6)
and Configuration basics (p. 32).

» You understand configuration files and named profiles. For more information, see Configuration and
credential file settings (p. 36) and Named profiles for the AWS CLI (p. 48).

« You've created an AWS Identity and Access Management (IAM) role that has access to the resources
needed, and attached that role to the Amazon EC2 instance when you launch it. For more information,
see |IAM policies for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances and Granting
Applications That Run on Amazon EC2 Instances Access to AWS Resources in the IAM User Guide.

Configuring a profile for Amazon EC2 metadata

To specify that you want to use the credentials available in the hosting Amazon EC2 instance profile, use
the following syntax in the named profile in your configuration file. See the following steps for more
instructions.

[profile profilename]

role_arn = arn:aws:iam::123456789012:role/rolename
credential_source = Ec2InstanceMetadata

region = region

1. Create a profile in your configuration file.

[profile profilename]

2. Add your IAM arn role that has access to the resources needed.

role_arn = arn:aws:iam::123456789012:role/rolename

3. Specify Ec2InstanceMetadata as your credential source.

credential source = Ec2InstanceMetadata

4. Set your Region.

72

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

AWS Command Line Interface User Guide for Version 2
Using an HTTP proxy

region = region

Example

The following example assumes the marketingadminrole role and uses the us-west-2 Region in an
Amazon EC2 instance profile named marketingadmin.

[profile marketingadmin]

role_arn = arn:aws:iam::123456789012:role/marketingadminrole
credential_source = Ec2InstanceMetadata

region = us-west-2

Using an HTTP proxy

To access AWS through proxy servers, you can configure the HTTP_PROXY and HTTPS_PROXY
environment variables with either the DNS domain names or IP addresses and port numbers that your
proxy servers use.

Topics
» Using the examples (p. 73)
« Authenticating to a proxy (p. 74)
« Using a proxy on Amazon EC2 instances (p. 74)

Using the examples

Note

The following examples show the environment variable name in all uppercase letters. However,
if you specify a variable twice using different cases, the lowercase letters take precedence. We
recommend that you define each variable only once to avoid system confusion and unexpected
behavior.

The following examples show how you can use either the explicit IP address of your proxy or a DNS name
that resolves to the IP address of your proxy. Either can be followed by a colon and the port number to
which queries should be sent.

Linux or macOS

export HTTP_PROXY=http://10.15.20.25:1234
export HTTP_PROXY=http://proxy.example.com:1234
export HTTPS_PROXY=http://10.15.20.25:5678
export HTTPS_PROXY=http://proxy.example.com:5678

® w W W

Windows Command Prompt

To set for all sessions

:\> setx HTTP_PROXY http://10.15.20.25:1234
:\> setx HTTP_PROXY http://proxy.example.com:1234
:\> setx HTTPS_PROXY http://10.15.20.25:5678
:\> setx HTTPS_PROXY http://proxy.example.com:5678

oo e Ne]

73

AWS Command Line Interface User Guide for Version 2
Authenticating to a proxy

Using setx to set an environment variable changes the value used in both the current command
prompt session and all command prompt sessions that you create after running the command. It
does not affect other command shells that are already running at the time you run the command.

To set for current session only

Using set to set an environment variable changes the value used until the end of the current
command prompt session, or until you set the variable to a different value.

:\> set HTTP_PROXY=http://10.15.20.25:1234
:\> set HTTP_PROXY=http://proxy.example.com:1234
:\> set HTTPS_PROXY=http://10.15.20.25:5678
:\> set HTTPS_PROXY=http://proxy.example.com:5678

[eeNeNe!

Authenticating to a proxy

Note
The AWS CLI doesn't support NTLM proxies. If you use an NTLM or Kerberos protocol proxy, you
might be able to connect through an authentication proxy like Cntlm.

The AWS CLI supports HTTP Basic authentication. Specify the user name and password in the proxy URL,
as follows.

Linux or macOS

$ export HTTP_PROXY=http://username:passwordeproxy.example.com:1234
$ export HTTPS_PROXY=http://username:passwordeproxy.example.com:5678

Windows Command Prompt

To set for all sessions

C:\> setx HTTP_PROXY http://username:password@proxy.example.com:1234
C:\> setx HTTPS_PROXY http://username:passwordeproxy.example.com:5678

To set for current session only

C:\> set HTTP_PROXY=http://username:password@proxy.example.com:1234
C:\> set HTTPS_PROXY=http://username:password@eproxy.example.com:5678

Using a proxy on Amazon EC2 instances

If you configure a proxy on an Amazon EC2 instance launched with an attached IAM role, ensure that you
exempt the address used to access the instance metadata. To do this, set the NO_PROXY environment
variable to the IP address of the instance metadata service, 169.254.169.254. This address does not vary.

Linux or macOS

$ export NO_PROXY=169.254.169.254

Windows Command Prompt

To set for all sessions

74

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
http://cntlm.sourceforge.net
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

AWS Command Line Interface User Guide for Version 2
Using IAM roles

C:\> setx NO_PROXY 169.254.169.254

To set for current session only

C:\> set NO_PROXY=169.254.169.254

Using an IAM role in the AWS CLI

An AWS Identity and Access Management (IAM) role is an authorization tool that lets an IAM user gain
additional (or different) permissions, or get permissions to perform actions in a different AWS account.

Topics
« Prerequisites (p. 75)
« Overview of using IAM roles (p. 75)
« Configuring and using a role (p. 76)
« Using multi-factor authentication (p. 77)
« Cross-account roles and external ID (p. 78)
« Specifying a role session name for easier auditing (p. 79)
« Assume role with web identity (p. 79)
 Clearing cached credentials (p. 80)

Prerequisites

To run the iam commands, you need to install and configure the AWS CLI. For more information, see the
section called “Install/Update” (p. 6).

Overview of using IAM roles

You can configure the AWS Command Line Interface (AWS CLI) to use an IAM role by defining a profile
for the role in the ~/ . aws /config file.

The following example shows a role profile named marketingadmin. If you run commands with --
profile marketingadmin (or specify it with the AWS_PROFILE environment variable (p. 55)), the
AWS CLI uses the credentials defined in a separate profile user1 to assume the role with the Amazon
Resource Name (ARN) arn:aws:iam::123456789012:role/marketingadminrole. YOu can run any
operations that are allowed by the permissions assigned to that role.

[profile marketingadmin]
role_arn = arn:aws:iam::123456789012:role/marketingadminrole
source_profile = userl

You can then specify a source_profile that points to a separate named profile that contains IAM user
credentials with permission to use the role. In the previous example, the marketingadmin profile uses
the credentials in the user1 profile. When you specify that an AWS CLI command is to use the profile
marketingadmin, the AWS CLI automatically looks up the credentials for the linked user1 profile and
uses them to request temporary credentials for the specified IAM role. The CLI uses the sts:AssumeRole
operation in the background to accomplish this. Those temporary credentials are then used to run the
requested AWS CLI command. The specified role must have attached IAM permission policies that allow
the requested AWS CLI command to run.

75

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Command Line Interface User Guide for Version 2
Configuring and using a role

To run a AWS CLI command from within an Amazon Elastic Compute Cloud (Amazon EC2) instance
or an Amazon Elastic Container Service (Amazon ECS) container, you can use an IAM role attached to
the instance profile or the container. If you specify no profile or set no environment variables, that
role is used directly. This enables you to avoid storing long-lived access keys on your instances. You
can also use those instance or container roles only to get credentials for another role. To do this, you
use credential source (instead of source_profile) to specify how to find the credentials. The
credential_source attribute supports the following values:

« Environment — Retrieves the source credentials from environment variables.
e Ec2InstanceMetadata — Uses the IAM role attached to the Amazon EC2 instance profile.
e EcsContainer — Uses the IAM role attached to the Amazon ECS container.

The following example shows the same marketingadminrole role used by referencing an Amazon EC2
instance profile.

[profile marketingadmin]
role_arn = arn:aws:iam::123456789012:role/marketingadminrole
credential_source = Ec2InstanceMetadata

When you invoke a role, you have additional options that you can require, such as the use of multi-factor
authentication and an External ID (used by third-party companies to access their clients' resources). You
can also specify unique role session names that can be more easily audited in AWS CloudTrail logs.

Configuring and using a role

When you run commands using a profile that specifies an IAM role, the AWS CLI uses the source profile's
credentials to call AWS Security Token Service (AWS STS) and request temporary credentials for the
specified role. The user in the source profile must have permission to call sts:assume-role for the role
in the specified profile. The role must have a trust relationship that allows the user in the source profile
to use the role. The process of retrieving and then using temporary credentials for a role is often referred
to as assuming the role.

You can create a role in IAM with the permissions that you want users to assume by following the
procedure under Creating a Role to Delegate Permissions to an IAM User in the AWS Identity and Access
Management User Guide. If the role and the source profile's IAM user are in the same account, you can
enter your own account ID when configuring the role's trust relationship.

After creating the role, modify the trust relationship to allow the IAM user (or the users in the AWS
account) to assume it.

The following example shows a trust policy that you could attach to a role. This policy allows the role to
be assumed by any IAM user in the account 123456789012, if the administrator of that account explicitly
grants the sts:assumerole permission to the user.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal”: {
"AWS": "arn:aws:iam::123456789012:root"
Iy
"Action": "sts:AssumeRole"
}
]
}

76

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole-user.html

AWS Command Line Interface User Guide for Version 2
Using MFA

The trust policy doesn't actually grant permissions. The administrator of the account must delegate the
permission to assume the role to individual users by attaching a policy with the appropriate permissions.
The following example shows a policy that you can attach to an IAM user that allows the user to assume
only the marketingadminrole role. For more information about granting a user access to assume a
role, see Granting a User Permission to Switch Roles in the IAM User Guide.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "arn:aws:iam::123456789012:role/marketingadminrole"
}
1
}

The IAM user doesn't need to have additional permissions to run the AWS CLI commands using the role
profile. Instead, the permissions to run the command come from those attached to the role. You attach
permission policies to the role to specify which actions can be performed against which AWS resources.
For more information about attaching permissions to a role (which works identically to an IAM user), see
Changing Permissions for an IAM User in the IAM User Guide.

Now that you have the role profile, role permissions, role trust relationship, and user permissions
correctly configured, you can use the role at the command line by invoking the --profile option.
For example, the following calls the Amazon S3 1s command using the permissions attached to the
marketingadmin role as defined by the example at the beginning of this topic.

$ aws s3 ls --profile marketingadmin

To use the role for several calls, you can set the AWS_PROFILE environment variable for the current
session from the command line. While that environment variable is defined, you don't have to specify the
--profile option on each command.

Linux or macOS

$ export AWS_PROFILE=marketingadmin

Windows

C:\> setx AWS_PROFILE marketingadmin

For more information about configuring IAM users and roles, see Users and Groups and Roles in the IAM
User Guide.

Using multi-factor authentication

For additional security, you can require that users provide a one-time key generated from a multi-factor
authentication (MFA) device, a U2F device, or mobile app when they attempt to make a call using the
role profile.

First, you can choose to modify the trust relationship on the IAM role to require MFA. This prevents
anyone from using the role without first authenticating by using MFA. For an example, see the
Condition line in the following example. This policy allows the IAM user named anika to assume the
role the policy is attached to, but only if they authenticate by using MFA.

{

77

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_permissions-to-switch.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_WorkingWithGroupsAndUsers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html

AWS Command Line Interface User Guide for Version 2
Cross-account roles and external ID

"Version": "2012-10-17",
"Statement": [
{
"sid": ",
"Effect": "Allow",
"Principal": { "AWS": "arn:aws:iam::123456789012:user/anika" },
"Action": "sts:AssumeRole",

"Condition": { "Bool": { "aws:multifactorAuthPresent": true } }

Next, add a line to the role profile that specifies the ARN of the user's MFA device. The following sample
config file entries show two role profiles that both use the access keys for the IAM user anika to
request temporary credentials for the role c1i-role. The user anika has permissions to assume the
role, granted by the role's trust policy.

[profile role-without-mfa]

region = us-west-2

role_arn= arn:aws:iam::128716708097:role/cli-role
source_profile=cli-user

[profile role-with-mfa]

region = us-west-2

role_arn= arn:aws:iam::128716708097:role/cli-role
source_profile = cli-user

mfa_serial = arn:aws:iam::128716708097:mfa/cli-user

[profile anika]
region = us-west-2
output = json

Themfa_serial setting can take an ARN, as shown, or the serial number of a hardware MFA token.

The first profile, role-without-mfa, doesn't require MFA. However, because the previous example trust
policy attached to the role requires MFA, any attempt to run a command with this profile fails.

$ aws iam list-users --profile role-without-mfa

An error occurred (AccessDenied) when calling the AssumeRole operation: Access denied

The second profile entry, role-with-mfa, identifies an MFA device to use. When the user attempts to
run a AWS CLI command with this profile, the AWS CLI prompts the user to enter the one-time password
(OTP) that the MFA device provides. If the MFA authentication succeeds, the command performs the
requested operation. The OTP is not displayed on the screen.

$ aws iam list-users --profile role-with-mfa
Enter MFA code for arn:aws:iam::123456789012:mfa/cli-user:
{

"Users": [

{

Cross-account roles and external ID

You can enable IAM users to use roles that belong to different accounts by configuring the role as
a cross-account role. During role creation, set the role type to Another AWS account, as described
in Creating a Role to Delegate Permissions to an IAM user. Optionally, select Require MFA. Require

78

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

AWS Command Line Interface User Guide for Version 2
Specifying a role session name for easier auditing

MFA configures the appropriate condition in the trust relationship, as described in Using multi-factor
authentication (p. 77).

If you use an external ID to provide additional control over who can use a role across accounts, you must
also add the external_id parameter to the role profile. You typically use this only when the other
account is controlled by someone outside your company or organization.

[profile crossaccountrole]

role _arn = arn:aws:iam::234567890123:role/SomeRole
source_profile = default

mfa_serial = arn:aws:iam::123456789012:mfa/saanvi
external_id = 123456

Specifying a role session name for easier auditing

When many individuals share a role, auditing becomes more of a challenge. You want to associate each
operation invoked with the individual who invoked the action. However, when the individual uses a role,
the assumption of the role by the individual is a separate action from the invoking of an operation, and
you must manually correlate the two.

You can simplify this by specifying unique role session names when users assume a role. You do this by
adding a role_session_name parameter to each named profile in the config file that specifies a role.
The role_session_name value is passed to the AssumeRole operation and becomes part of the ARN
for the role session. It is also included in the AWS CloudTrail logs for all logged operations.

For example, you could create a role-based profile as follows.

[profile namedsessionrole]

role_arn = arn:aws:iam::234567890123:role/SomeRole
source_profile = default

role_session_name = Session_Maria_Garcia

This results in the role session having the following ARN.

arn:aws:iam::234567890123:assumed-role/SomeRole/Session_Maria_Garcia

Also, all AWS CloudTrail logs include the role session name in the information captured for each
operation.

Assume role with web identity

You can configure a profile to indicate that the AWS CLI should assume a role using web identity
federation and Open ID Connect (OIDC). When you specify this in a profile, the AWS CLI automatically
makes the corresponding AWS STS AssumeRoleWithWebIdentity call for you.

Note

When you specify a profile that uses an IAM role, the AWS CLI makes the appropriate calls

to retrieve temporary credentials. These credentials are stored in ~/.aws/cli/cache.
Subsequent AWS CLI commands that specify the same profile use the cached temporary
credentials until they expire. At that point, the AWS CLI automatically refreshes the credentials.

To retrieve and use temporary credentials using web identity federation, you can specify the following
configuration values in a shared profile.

role_arn (p. 75)

Specifies the ARN of the role to assume.

79

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html

AWS Command Line Interface User Guide for Version 2
Clearing cached credentials

web_identity_token_file

Specifies the path to a file which contains an OAuth 2.0 access token or OpenID Connect ID token
that is provided by the identity provider. The AWS CLI loads this file and passes its content as the
WebIdentityToken argument of the AssumeRoleWithWebIdentity operation.

role_session_name (p. 79)

Specifies an optional name applied to this assume-role session.

The following is an example of the minimal amount of configuration needed to configure an assume role
with web identity profile.

In ~/.aws/config

[profile web-identity]
role_arn=arn:aws:iam:123456789012:role/RoleNameToAssume
web_identity_token file=/path/to/a/token

You can also provide this configuration by using environment variables (p. 55).
AWS_ROLE_ARN

The ARN of the role to assume.
AWS_WEB_IDENTITY_TOKEN_FILE

The path to the web identity token file.
AWS_ROLE_SESSION_NAME

The name applied to this assume-role session.
Note

These environment variables currently apply only to the assume role with web identity provider.
They don't apply to the general assume role provider configuration.

Clearing cached credentials

When you use a role, the AWS CLI caches the temporary credentials locally until they expire. The next
time you try to use them, the AWS CLI attempts to renew them on your behalf.

If your role's temporary credentials are revoked, they are not renewed automatically, and attempts to use
them fail. However, you can delete the cache to force the AWS CLI to retrieve new credentials.

Linux or macOS

$ rm -r ~/.aws/cli/cache

Windows

C:\> del /s /q %UserProfile%\.aws\cli\cache

80

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html

AWS Command Line Interface User Guide for Version 2
Getting Help

Using the AWS CLI

This section introduces you to many of the common features and options available in the AWS Command
Line Interface (AWS CLI). For a list of commands, see the AWS CLI version 2 reference guide.

Note
By default, the AWS CLI sends requests to AWS services by using HTTPS on TCP port 443. To use
the AWS CLI successfully, you must be able to make outbound connections on TCP port 443.

Topics in this guide
« Getting help with the AWS CLI (p. 81)
o Command structure in the AWS CLI (p. 85)
» Specifying parameter values for the AWS CLI (p. 87)
« Having the AWS CLI prompt you for commands (p. 104)
» Controlling command output from the AWS CLI (p. 108)
« Understanding return codes from the AWS CLI (p. 134)
« Using the AWS CLI wizards (p. 135)
« Creating and using AWS CLI aliases (p. 136)

Getting help with the AWS CLI

This topic describes how to access help content for the AWS Command Line Interface (AWS CLI).

Topics
« The built-in AWS CLI help command (p. 81)
o AWS CLI reference guide (p. 85)
o APl documentation (p. 85)
« Troubleshooting errors (p. 85)
« Additional help (p. 85)

The built-in AWS CLI help command

You can get help with any command when using the AWS Command Line Interface (AWS CLI). To do so,
simply type help at the end of a command name.

For example, the following command displays help for the general AWS CLI options and the available
top-level commands.

$ aws help

The following command displays the available Amazon Elastic Compute Cloud (Amazon EC2) specific
commands.

$ aws ec2 help

81

https://awscli.amazonaws.com/v2/documentation/api/latest/index.html

AWS Command Line Interface User Guide for Version 2
The built-in AWS CLI help command

The following example displays detailed help for the Amazon EC2 DescribelInstances operation. The
help includes descriptions of its input parameters, available filters, and what is included as output. It also
includes examples showing how to type common variations of the command.

$ aws ec2 describe-instances help

The help for each command is divided into six sections:
Name

The name of the command.

NAME
describe-instances -

Description

A description of the API operation that the command invokes.

DESCRIPTION
Describes one or more of your instances.

If you specify one or more instance IDs, Amazon EC2 returns information
for those instances. If you do not specify instance 1IDs, Amazon EC2
returns information for all relevant instances. If you specify an
instance ID that is not valid, an error is returned. If you specify an
instance that you do not own, it 1is not included in the returned
results.

Synopsis

The basic syntax for using the command and its options. If an option is shown in square brackets, it's
optional, has a default value, or has an alternative option that you can use.

SYNOPSIS

describe-instances
[--dry-run | --no-dry-run]
[--instance-ids <value>]
[--filters <value>]
[--cli-input-json <value>]
[--starting-token <value>]
[--page-size <value>]
[--max-items <value>]
[--generate-cli-skeleton]

For example, describe-instances has a default behavior that describes all instances in the
current account and AWS Region. You can optionally specify a list of instance-ids to describe one
or more instances; dry-run is an optional Boolean flag that doesn't take a value. To use a Boolean
flag, specify either shown value, in this case --dry-run or --no-dry-run. Likewise, --generate-
cli-skeleton doesn't take a value. If there are conditions on an option's use, they are described in
the OPTIONS section, or shown in the examples.

Options

A description of each of the options shown in the synopsis.

OPTIONS
--dry-run | --no-dry-run (boolean)
Checks whether you have the required permissions for the action,

82

AWS Command Line Interface User Guide for Version 2
The built-in AWS CLI help command

without actually making the request, and provides an error response.
If you have the required permissions, the error response is DryRun-
Operation . Otherwise, it is UnauthorizedOperation

--instance-ids (1list)
One or more instance IDs.

Default: Describes all your instances.

Examples

Examples showing the usage of the command and its options. If no example is available for a
command or use case that you need, request one using the feedback link on this page, or in the AWS
CLI command reference on the help page for the command.

EXAMPLES
To describe an Amazon EC2 instance

Command :

aws ec2 describe-instances --instance-ids i-5203422c

To describe all instances with the instance type ml.small

Command :

aws ec2 describe-instances --filters "Name=instance-type,Values=ml.small"
To describe all instances with an Owner tag

Command :

aws ec2 describe-instances --filters "Name=tag-key,Values=Owner"

Output
Descriptions of each of the fields and data types included in the response from AWS.

For describe-instances, the output is a list of reservation objects, each of which contains several
fields and objects that contain information about the instances associated with it. This information
comes from the APl documentation for the reservation data type used by Amazon EC2.

OUTPUT
Reservations -> (list)
One or more reservations.

(structure)
Describes a reservation.

ReservationId -> (string)
The ID of the reservation.

OwnerId -> (string)
The ID of the AWS account that owns the reservation.

RequesterId -> (string)
The ID of the requester that launched the instances on your
behalf (for example, AWS Management Console or Auto Scaling).

Groups -> (list)
One or more security groups.

83

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Reservation.html

AWS Command Line Interface User Guide for Version 2
The built-in AWS CLI help command

(structure)
Describes a security group.

GroupName -> (string)
The name of the security group.

GroupId -> (string)
The ID of the security group.

Instances -> (list)
One or more instances.

(structure)
Describes an instance.

InstanceId -> (string)
The ID of the instance.

ImageId -> (string)
The ID of the AMI used to launch the instance.

State -> (structure)
The current state of the instance.

Code -> (integer)
The low byte represents the state. The high byte
is an opaque internal value and should be ignored.

When the AWS CLI renders the output into JSON, it becomes an array of reservation objects, similar
to the following example.

{
"Reservations": [
{
"OwnerId": "012345678901",
"ReservationId": "r-4c58f8al0",
"Groups": [],
"RequesterId": "012345678901",
"Instances": [
{
"Monitoring": {
"State": "disabled"
}r
"PublicDnsName": "ec2-52-74-16-12.us-west-2.compute.amazonaws.com",
"State": {
"Code": 16,
"Name": "running"
}r

Each reservation object contains fields describing the reservation and an array of instance objects,
each with its own fields (for example, PublicDnsName) and objects (for example, State) that
describe it.

Windows users

You can pipe (]) the output of the help command to the more command to view the help file
one page at a time. Press the space bar or PgDn to view more of the document, and g to
quit.

C:\> aws ec2 describe-instances help | more

84

AWS Command Line Interface User Guide for Version 2
AWS CLI reference guide

AWS CLI reference guide

The help files contain links that cannot be viewed or navigated to from the command line. You can view
and interact with these links by using the online AWS CLI version 2 reference guide. The reference also
contains the help content for all AWS CLI commands. The descriptions are presented for easy navigation
and viewing on mobile, tablet, or desktop screens.

APl documentation

All commands in the AWS CLI correspond to requests made to an AWS service's public API. Each service
with a public API has an API reference that can be found on the service's home page on the AWS
Documentation website. The content for an API reference varies based on how the API is constructed and
which protocol is used. Typically, an API reference contains detailed information about the operations
supported by the API, the data sent to and from the service, and any error conditions that the service can
report.

APl Documentation Sections

« Actions - Detailed information on each operation and its parameters (including constraints on length
or content, and default values). It lists the errors that can occur for this operation. Each operation
corresponds to a subcommand in the AWS CLI.

« Data Types - Detailed information about structures that a command might require as a parameter, or
return in response to a request.

« Common Parameters — Detailed information about the parameters that are shared by all of action for
the service.

o Common Errors — Detailed information about errors that can be returned by any of the service's
operations.

The name and availability of each section can vary, depending on the service.

Service-specific CLIs

Some services have a separate CLI that dates from before a single AWS CLI was created to work
with all services. These service-specific CLIs have separate documentation that is linked from the
service's documentation page. Documentation for service-specific CLIs do not apply to the AWS
CLI.

Troubleshooting errors

For help diagnosing and fixing AWS CLI errors, see Troubleshooting errors (p. 192).

Additional help

For additional help with your AWS CLI issues, visit the AWS CLI community on GitHub.

Command structure in the AWS CLI

This topic covers how AWS Command Line Interface (AWS CLI) command is structured, and how to use
wait commands.

Topics
« Command structure (p. 86)
« Wait commands (p. 86)

85

https://awscli.amazonaws.com/v2/documentation/api/latest/index.html
http://aws.amazon.com/documentation/
http://aws.amazon.com/documentation/
https://github.com/aws/aws-cli/issues

AWS Command Line Interface User Guide for Version 2
Command structure

Command structure

The AWS CLI uses a multipart structure on the command line that must be specified in this order:

. The base call to the aws program.
. The top-level command, which typically corresponds to an AWS service supported by the AWS CLI.
. The subcommand that specifies which operation to perform.

. General AWS CLI options or parameters required by the operation. You can specify these in any order
as long as they follow the first three parts. If an exclusive parameter is specified multiple times, only
the last value applies.

AW N =

$ aws <command> <subcommand> [options and parameters]

Parameters can take various types of input values, such as numbers, strings, lists, maps, and JSON
structures. What is supported is dependent upon the command and subcommand you specify.

Examples

Amazon S3

The following example lists all of your Amazon S3 buckets.

$ aws s3 1s
2018-12-11 17:08:50 my-bucket
2018-12-14 14:55:44 my-bucket2

For more information on the Amazon S3 commands, see aws s3 in the AWS CLI Command Reference.
AWS CloudFormation

The following create-change-setcommand example changes the cloudformation stack name to my-
change-set.

$ aws cloudformation create-change-set --stack-name my-stack --change-set-name my-change-
set

For more information on the AWS CloudFormation commands, see aws cloudformation in the AWS
CLI Command Reference.

Wait commands

Some AWS services have wait commands available. Any command that uses aws wait usually waits
until a command is complete before it moves on to the next step. This is especially useful for multipart
commands or scripting, as you can use a wait command to prevent moving to subsequent steps if the
wait command fails.

The AWS CLI uses a multipart structure on the command line for the wait command that must be
specified in this order:

1. The base call to the aws program.

2. The top-level command, which typically corresponds to an AWS service supported by the AWS CLI.
3. The wait command.

4. The subcommand that specifies which operation to perform.

86

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudformation/create-change-set.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudformation/index.html

AWS Command Line Interface User Guide for Version 2
Specifying Parameter Values

5. General CLI options or parameters required by the operation. You can specify these in any order as
long as they follow the first three parts. If an exclusive parameter is specified multiple times, only the
last value applies.

$ aws <command> wait <subcommand> [options and parameters]

Parameters can take various types of input values, such as numbers, strings, lists, maps, and JSON
structures. What is supported is dependent upon the command and subcommand you specify.

Note
Not every AWS service supports wait commands. See the AWS CLI version 2 reference guide to
see if your service supports wait commands.

Examples

AWS CloudFormation

The following wait change-set-create-complete command examples pauses and resumes only
after it can confirm that the my-change-set change set in the my-stack stack is ready to run.

$ aws cloudformation wait change-set-create-complete --stack-name my-stack --change-set-
name my-change-set

For more information on the AWS CloudFormation wait commands, see wait in the AWS CLI Command
Reference.

AWS CodeDeploy

The following wait deployment-successful command examples pauses until the d-A1B2¢3111
deployment completes successfully.

$ aws deploy wait deployment-successful --deployment-id d-A1B2C3111

For more information on the AWS CodeDeploy wait commands, see wait in the AWS CLI Command
Reference.

Specifying parameter values for the AWS CLI

Many parameters used in the AWS Command Line Interface (AWS CLI) are simple string or numeric
values, such as the key-pair name my-key-pair in the following example.

$ aws ec2 create-key-pair --key-name my-key-pair

You can surround strings that do not contain any space characters with quotation marks or not. However,
you must use quotation marks around strings that include one or more space characters. For more
information about using quotation marks around complex parameters, see Using quotation marks with
strings in the AWS CLI (p. 91).

Parameter topics
« Common AWS CLI parameter types (p. 88)
« Using quotation marks with strings in the AWS CLI (p. 91)
o Loading AWS CLI parameters from a file (p. 93)
o AWS CLI skeletons and input files (p. 95)

87

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudformation/wait/change-set-create-complete.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudformation/wait/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudformation/wait/change-set-create-complete.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudformation/wait/index.html

AWS Command Line Interface User Guide for Version 2
Common Parameter Types

« Using shorthand syntax with the AWS CLI (p. 103)

Common AWS CLI parameter types

This section describes some of the common parameter types and the typical required format.

If you are having trouble formatting a parameter for a specific command, check the help by entering
help after the command name. The help for each subcommand includes an option's name and
description. The option's parameter type is listed in parentheses. For more information on viewing help,
see the section called “Getting Help” (p. 81).

Parameter types include:
« String (p. 88)
o Timestamp (p. 88)
o List (p. 88)
« Boolean (p. 89)
« Integer (p. 89)
« Binary/Blob (binary large object) (p. 89)
« Map (p. 89)
o Document (p. 90)

String

String parameters can contain alphanumeric characters, symbols, and white spaces from the ASCII
character set. Strings that contain white spaces must be surrounded by quotation marks. We recommend
that you don't use symbols or white spaces other than the standard space character and to observe your
terminal's quoting rules (p. 91) to prevent unexpected results.

Some string parameters can accept binary data from a file. See Binary files (p. 94) for an example.
Timestamp

Timestamps are formatted according to the ISO 8601 standard. These are often referred to as
"DateTime" or "Date" parameters.

$ aws ec2 describe-spot-price-history --start-time 2014-10-13T19:00:00Z

Acceptable formats include:

e YYYY-MM-DDThhimmiss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z
e YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00
o YYYY-MM-DD, for example, 2014-10-01

« Unix time in seconds, for example, 1412195400. This is sometimes referred to as Unix Epoch time and
represents the number of seconds since midnight, January 1, 1970 UTC.

By default, the AWS CLI version 2 translates all response DateTime values to ISO 8601 format.
List

One or more strings separated by spaces. If any of the string items contain a space, you must put
quotation marks around that item. Observe your terminal's quoting rules (p. 91) to prevent
unexpected results

88

https://wikipedia.org/wiki/ASCII
https://www.iso.org/iso-8601-date-and-time-format.html
https://wikipedia.org/wiki/Unix_time

AWS Command Line Interface User Guide for Version 2
Common Parameter Types

$ aws ec2 describe-spot-price-history --instance-types mil.xlarge mil.medium

Boolean

Binary flag that turns an option on or off. For example, ec2 describe-spot-price-history has
a Boolean --dry-run parameter that, when specified, validates the query with the service without
actually running the query.

$ aws ec2 describe-spot-price-history --dry-run

The output indicates whether the command was well formed. This command also includes a --no-dry-
run version of the parameter that you can use to explicitly indicate that the command should be run
normally. Including it isn't necessary because this is the default behavior.

Integer

An unsigned, whole number.

$ aws ec2 describe-spot-price-history --max-items 5

Binary/Blob (binary large object)

In the AWS CLI version 2, you can pass a binary value as a base64-encoded string directly on the
command line. By default, the files referenced with the £ile:// prefix are treated as base64-encoded
text.

You can revert the AWS CLI version 2 to be compatible with AWS CLI version 1 by setting the
cli_binary_format (p. 40) setting:

« If the setting's value is raw-in-base64-out, files referenced using the file: // prefix are treated as
raw unencoded binary.

« If the setting's value is baseé64 (the default value), files referenced using the file: // prefix are
treated as base64-encoded text.

Files referenced using the fileb: // prefix are always treated as raw unencoded binary, regardless of
the cli_binary_format setting.

For more information, see the file setting c1i_binary format (p. 40)or --cli-binary-
format (p. 60) command line option.

Map

A set of key-value pairs specified in JSON or by using the CLI's shorthand syntax (p. 103). The following
JSON example reads an item from an Amazon DynamoDB table named my-table with a map parameter,
--key. The parameter specifies the primary key named id with a number value of 7 in a nested JSON
structure.

For more advanced JSON usage in a command line, consider using a command line JSON processor, like
jq, to create JSON strings. For more information on jg, see the jq repository on GitHub.

$ aws dynamodb get-item --table-name my-table --key '{"id": {"N":"1"}}"'

{
"Item": {

89

http://stedolan.github.io/jq/

AWS Command Line Interface User Guide for Version 2
Common Parameter Types

"name": {
"S": "John"
Y,
midn:
"NT:omLt
}
}
}
Document
Note

Shorthand syntax (p. 103) is not compatible with document types.

Document types are used to send data without needing to embed JSON inside strings. The document
type enables services to provide arbitrary schemas for you to use more flexible data types.

This allows for sending JSON data without needing to escape values. For example, instead of using the
following escaped JSON input:

{"document": "{\"key\":true}"}

You can use the following document type:

{"document": {"key": true}}

Valid values for document types

Due to the flexible nature of document types, there are multiple valid value types. Valid values include
the following:

String

--option '"value"'

Number

--option 123
--option 123.456

Boolean

--option true

Null

--option null
Array

--option '["valuel”, "value2", "value3"]'

--option '["value”, 1, true, null, ["keyl", 2.34], {"key2": "value2"}]'
Object

--option '{"key": "value"}'

90

AWS Command Line Interface User Guide for Version 2
Quotes with Strings

--option '{"keyl": "valuel", "key2": 123, "key3": true, "key4": null, "key5":
["value3", "value4"], "key6": {"value5": "value6"}'

Using quotation marks with strings in the AWS CLI

There are primarily two ways single and double quotes are used in the AWS CLI.

« Using quotation marks around strings that contain white spaces (p. 91)
» Using quotation marks inside strings (p. 92)

Using quotation marks around strings that contain white spaces

Parameter names and their values are separated by spaces on the command line. If a string value
contains an embedded space, then you must surround the entire string with quotation marks to prevent
the AWS CLI from misinterpreting the space as a divider between the value and the next parameter
name. Which type of quotation mark you use depends on the operating system you are running the AWS
CLI on.

Linux and macOS

Use single quotation marks ' '

$ aws ec2 create-key-pair --key-name 'my key pair’

For more information on using quotes, see the user documentation for your preferred shell.
PowerShell

Single quotations (recommended)

Use single quotation marks ' '.

PS C:\> aws ec2 create-key-pair --key-name 'my key pair'

Double quotations

Use double quotation marks " ™.

PS C:\> aws ec2 create-key-pair --key-name "my key pair"

For more information on using quotes, see About Quoting Rules in the Microsoft PowerShell Docs.
Windows command prompt

Use double quotation marks " " .

C:\> aws ec2 create-key-pair --key-name "my key pair"

Optionally, you can separate the parameter name from the value with an equals sign = instead of a
space. This is typically necessary only if the value of the parameter starts with a hyphen.

$ aws ec2 delete-key-pair --key-name=-mykey

91

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules?view=powershell-7

AWS Command Line Interface User Guide for Version 2
Quotes with Strings

Using quotation marks inside strings

Strings might contain quotation marks, and your shell might require escaping quotations for them
to work properly. One of the common parameter value types is a JSON string. This is complex since it
includes spaces and double quotation marks " " around each element name and value in the JSON
structure. The way you enter JSON-formatted parameters on the command line differs depending on
your operating system.

For more advanced JSON usage in the command line, consider using a command line JSON processor,
like jg, to create JSON strings. For more information on jq, see the jq repository on GitHub.

Linux and macOS

For Linux and macOS to interpret strings literally use single quotation marks ' ' to enclose the
JSON data structure, as in the following example. You do not need to escape double quotation
marks embedded in the JSON string, as they are being treated literally. Since the JSON is enclosed
in single quotation marks, any single quotation marks in the string will need to be escaped, this is
usually accomplished using a backslash before the single quote \ '.

$ aws ec2 run-instances \

--image-id ami-12345678 \

--block-device-mappings '[{"DeviceName":"/dev/sdb","Ebs":
{"VolumeSize":20,"DeleteOnTermination":false,"VolumeType":"standard"}}]’

For more information on using quotes, see the user documentation for your preferred shell.
PowerShell

Use single quotation marks ' ' or double quotation marks " .
Single quotations (recommended)

Since JSON data structures include double quotes, we suggest single quotation marks ' ' to
enclose it. If you use single quotation marks, you do not need to escape double quotation marks
embedded in the JSON string. However, you need to escape each single quotation mark with a
backtick ~ within the JSON structure.

PS C:\> aws ec2 run-instances °~

--image-id ami-12345678 ~

--block-device-mappings '[{"DeviceName":"/dev/sdb","Ebs":
{"VolumeSize":20,"DeleteOnTermination":false,"VolumeType":"standard"}}]"’

Double quotations

If you use double quotation marks, you do not need to escape single quotation marks embedded in
the JSON string. However, you need to escape each double quotation mark with a backtick > within
the JSON structure, as with the following example.

PS C:\> aws ec2 run-instances ~
--image-id ami-12345678 °
--block-device-mappings "[{ "DeviceName ": "/dev/sdb"", ""Ebs ":
{ "VolumeSize ":20, "DeleteOnTermination ":false, ~"VolumeType ": "standard "}}]"

For more information on using quotes, see About Quoting Rules in the Microsoft PowerShell Docs.

Warning

Before PowerShell sends a command to the AWS CLlI, it determines if your command

is interpreted using typical PowerShell or CommandLineToArgvW quoting rules. When
PowerShell processes using CommandLineToArgvW, you must surround strings with single
quotation marks ' ' and escape characters with a backslash \.

92

http://stedolan.github.io/jq/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules?view=powershell-7

AWS Command Line Interface User Guide for Version 2
Parameters from Files

PS C:\> aws ec2 run-instances ~

--image-id ami-12345678 ~

--block-device-mappings '[{\"DeviceName\":\"/dev/sdb\",\"Ebs\":
{\"VolumeSize\"”:20, \"DeleteOnTermination\"”:false, \"VolumeType\":\ "standard\"}}]’

To bypass PowerShell quoting rules for JSON data input, use Blobs to pass your JSON
data directly to the AWS CLI. For more information on Blobs, see Binary/Blob (binary large
object) (p. 89).

For more information on CommandLineToArgvW in PowerShell, see What's up with the
strange treatment of quotation marks and backslashes by CommandLineToArgvW in the
Microsoft DevBlogs, Everyone quotes command line arguments the wrong way in the
Microsoft Docs Blog, and CommandLineToArgvW function in the Microsoft Docs.

Windows command prompt

The Windows command prompt requires double quotation marks " " to enclose the JSON data
structure. Also, to prevent the command processor from misinterpreting the double quotation marks
embedded in the JSON, you must also escape (precede with a backslash \ character) each double
quotation mark " within the JSON data structure itself, as in the following example.

C:\> aws ec2 run-instances *

--image-id ami-12345678 4

--block-device-mappings "[{\"DeviceName\":\"/dev/sdb\",\"Ebs\":
{\"VolumeSize\":20, \"DeleteOnTermination)\":false, \"VolumeType\":\"standard\"}}]"

Only the outermost double quotation marks are not escaped.

Loading AWS CLI parameters from a file

Some parameters expect file names as arguments, from which the AWS CLI loads the data. Other
parameters enable you to specify the parameter value as either text typed on the command line or read
from a file. Whether a file is required or optional, you must encode the file correctly so that the AWS CLI
can understand it. The file's encoding must match the reading system's default locale. You can determine
this by using the Python locale.getpreferredencoding() method.

Note

By default, Windows PowerShell outputs text as UTF-16, which conflicts with the UTF-8
encoding used by many Linux systems. We recommend that you use -Encoding ascii with
your PowerShell out-File commands to ensure the AWS CLI can read the resulting file.

Topics
« How to load parameters from a file (p. 93)
« Binary files (p. 94)

How to load parameters from a file

Sometimes it's convenient to load a parameter value from a file instead of trying to type it all as a
command line parameter value, such as when the parameter is a complex JSON string. To specify a file
that contains the value, specify a file URL in the following format.

file://complete/path/to/file

« The first two slash '/' characters are part of the specification. If the required path begins with a '/', the
result is three slash characters: file:///folder/file.

93

https://devblogs.microsoft.com/oldnewthing/20100917-00/?p=12833
https://devblogs.microsoft.com/oldnewthing/20100917-00/?p=12833
https://docs.microsoft.com/en-us/archive/blogs/twistylittlepassagesallalike/everyone-quotes-command-line-arguments-the-wrong-way
https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-commandlinetoargvw#remarks

AWS Command Line Interface User Guide for Version 2
Parameters from Files

« The URL provides the path to the file that contains the actual parameter content.

« When using files with spaces or special characters, following the quoting and escaping rules (p. 91)
for your terminal.

The file paths in the following examples are interpreted to be relative to the current working directory.

Linux or macOS

// Read from a file in the current directory
$ aws ec2 describe-instances --filters file://filter. json

// Read from a file in /tmp
$ aws ec2 describe-instances --filters file:///tmp/filter.json

// Read from a file with a filename with whitespaces
$ aws ec2 describe-instances --filters 'file://filter content.json'

Windows command prompt

// Read from a file in C:\temp
C:\> aws ec2 describe-instances --filters file://C:\temp\filter.json

// Read from a file with a filename with whitespaces
C:\> aws ec2 describe-instances --filters "file://C:\temp\filter content.json"

The file:// prefix option supports Unix-style expansions, including "~/",". /", and ". . /". On Windows,
the "~ /" expression expands to your user directory, stored in the ¥USERPROFILE% environment variable.
For example, on Windows 10 you would typically have a user directory under C: \Users\UserName\.

You must still escape JSON documents that are embedded as the value of another JSON document.

$ aws sgs create-queue --queue-name my-queue --attributes file://attributes.json

attributes.json

{

"RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sgs:us-
west-2:0123456789012:deadletter\", \"maxReceiveCount\":\"5\"}"
}

Binary files

For commands that take binary data as a parameter, specify that the data is binary content by using the
fileb: // prefix. Commands that accept binary data include:

e aws ec2 run-instances: --user-data parameter.
e aws s3api put-object: --sse-customer-key parameter.
e aws kms decrypt: --ciphertext-blob parameter.

The following example generates a binary 256-bit AES key using a Linux command line tool, and then
provides it to Amazon S3 to encrypt an uploaded file server-side.

$ dd if=/dev/urandom bs=1 count=32 > sse.key
3240 records in

94

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

32+0 records out
32 bytes (32 B) copied, 0.000164441 s, 195 kB/s
$ aws s3api put-object \
--bucket my-bucket \
--key test.txt \
--body test.txt \
--sse-customer-key fileb://sse.key \
--sse-customer-algorithm AES256

{
"SSECustomerKeyMD5": "iVg8oWa8sy714+FjtesrJg==",
"SSECustomerAlgorithm": "AES256",
"ETag": "\"a6118e84b76cf98bf04bbel4b6045c6c\""

}

For another example referencing a file containing JSON-formatted parameters, see Attaching an IAM
managed policy to an IAM user (p. 166).

AWS CLI skeletons and input files

Most of the AWS Command Line Interface (AWS CLI) commands accept all parameter inputs from a file.
These templates can be generated using the generate-cli-skeleton option.

Topics
o About AWS CLI skeletons and input files (p. 95)
» Generating a command skeleton (p. 100)

About AWS CLI skeletons and input files

Most of the AWS Command Line Interface (AWS CLI) commands support the ability to accept all
parameter inputs from a file using the --cli-input-jsonand --cli-input-yaml parameters.

Those same commands helpfully provide the --generate-cli-skeleton parameter to generate a file
in either JSON or YAML format with all of the parameters that you can edit and fill in. Then you can run
the command with the relevant --cli-input-json or -—cli-input-yaml parameter and point to
the filled-in file.

Important

Several AWS CLI commands don't map directly to individual AWS API operations, such as the
aws s3 commands. Such commands don't support either the --generate-cli-skeleton or
—-cli-input-jsonand --cli-input-yaml parameters described in this topic. If you don't
know whether a specific command supports these parameters, run the following command,
replacing the service and command names with the ones you're interested in.

$ aws service command help

The output includes a Synopsis section that shows the parameters that the specified command
supports.

$ aws iam list-users help
SYNOPSIS
list-users
[--cli-input-json | --cli-input-yaml]

[--generate-cli-skeleton <value>]

95

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

The --generate-cli-skeleton parameter causes the command not to run, but instead to generate
and display a parameter template that you can customize and use as input on a later command. The
generated template includes all of the parameters that the command supports.

The --generate-cli-skeleton parameter accepts one of the following values:

« input - The generated template includes all input parameters formatted as JSON. This is the default
value.

o yaml-input — The generated template includes all input parameters formatted as YAML.

« output - The generated template includes all output parameters formatted as JSON. You can't
currently request the output parameters as YAML.

Because the AWS CLI is essentially a "wrapper" around the service's API, the skeleton file expects you

to reference all parameters by their underlying APl parameter names. This is likely different from the
AWS CLI parameter name. For example, an AWS CLI parameter named user-name might map to the
AWS service's APl parameter named UserName (notice the altered capitalization and missing dash). We
recommend that you use the --generate-cli-skeleton option to generate the template with the
"correct" parameter names to avoid errors. You can also reference the API Reference Guide for the service
to see the expected parameter names. You can delete any parameters from the template that are not
required and for which you don't want to supply a value.

For example, if you run the following command, it generates the parameter template for the Amazon
Elastic Compute Cloud (Amazon EC2) command run-instances.

JSON

The following example shows how to generate a template formatted in JSON by using the default
value (input) for the --generate-cli-skeleton parameter.

$ aws ec2 run-instances --generate-cli-skeleton

"DryRun": true,
"ImageId": "",
"MinCount": 0,
"MaxCount": 0,
"KeyName": "",
"SecurityGroups": [
1,
"SecurityGroupIds": [
1,
"UserData": "",
"InstanceType": "",
"Placement": {
"AvailabilityZone": "",
"GroupName": "",
"Tenancy": ""
I
"KernelId": "",
"RamdiskId": "",
"BlockDeviceMappings": [
{
"VirtualName": "",
"DeviceName": "",
"Ebs": {
"SnapshotId": "",
"VolumeSize": 0,
"DeleteOnTermination": true,

96

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

"VolumeType": "",
"Iops": O,
"Encrypted": true
Y
"NoDevice": ""
}
1,
"Monitoring": {
"Enabled": true
T
"SubnetId": "",
"DisableApiTermination": true,
"InstanceInitiatedShutdownBehavior": "",

"PrivateIpAddress": "",
"ClientToken": "",
"AdditionalInfo": "",
"NetworkInterfaces": [
{
"NetworkInterfaceId": "",
"DeviceIndex": O,
"SubnetId": "",
"Description": "",
"PrivateIpAddress": "",

"Groups": [
1,
"DeleteOnTermination": true,
"PrivateIpAddresses": [
{
"PrivateIpAddress": "",
"Primary": true
}
1,
"SecondaryPrivateIpAddressCount": 0,
"AssociatePublicIpAddress": true

}
1,
"IamInstanceProfile": {
"Arn": "",
"Name": ""
Iy
"EbsOptimized": true
}
YAML

The following example shows how to generate a template formatted in YAML by using the value
yaml-input for the -—-generate-cli-skeleton parameter.

$ aws ec2 run-instances --generate-cli-skeleton yaml-input

BlockDeviceMappings: # The block device mapping entries.
- DeviceName: '' # The device name (for example, /dev/sdh or xvdh).
VirtualName: '' # The virtual device name (ephemeralN).
Ebs: # Parameters used to automatically set up Amazon EBS volumes when the instance
is launched.
DeleteOnTermination: true # Indicates whether the EBS volume is deleted on
instance termination.
Iops: 0 # The number of I/O operations per second (IOPS) that the volume supports.
SnapshotId: '' # The ID of the snapshot.
VolumeSize: 0 # The size of the volume, in GiB.
VolumeType: stl # The volume type. Valid values are: standard, iol, gp2, scl, stl.
Encrypted: true # Indicates whether the encryption state of an EBS volume is
changed while being restored from a backing snapshot.

97

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

KmsKeyId: '' # Identifier (key ID, key alias, ID ARN, or alias ARN) for a customer
managed CMK under which the EBS volume is encrypted.
NoDevice: '' # Suppresses the specified device included in the block device mapping
of the AMI.
ImageId: '' # The ID of the AMI.

InstanceType: c4.4xlarge # The instance type. Valid values are: tl.micro, t2.nano,
t2.micro, t2.small, t2.medium, t2.large, t2.xlarge, t2.2xlarge, t3.nano, t3.micro,
t3.small, t3.medium, t3.large, t3.xlarge, t3.2xlarge, t3a.nano, t3a.micro, t3a.small,
t3a.medium, t3a.large, t3a.xlarge, t3a.2xlarge, ml.small, ml.medium, ml.large,
ml.xlarge, m3.medium, m3.large, m3.xlarge, m3.2xlarge, m4.large, m4.xlarge,
m4.2xlarge, m4.4xlarge, m4.l0xlarge, m4.1l6xlarge, m2.xlarge, m2.2xlarge, m2.4xlarge,
crl.8xlarge, r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, r4.large,
r4.xlarge, r4.2xlarge, r4.4xlarge, r4.8xlarge, r4.l6xlarge, r5.large, r5.xlarge,
r5.2xlarge, r5.4xlarge, r5.8xlarge, r5.12xlarge, r5.16xlarge, r5.24xlarge, r5.metal,
r5a.large, rb5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.l2xlarge,
r5a.l6xlarge, rb5a.24xlarge, r5d.large, r5d.xlarge, r5d.2xlarge, r5d.4xlarge,
r5d.8xlarge, r5d.l2xlarge, r5d.léxlarge, r5d.24xlarge, r5d.metal, r5ad.large,
r5ad.xlarge, r5ad.2xlarge, r5ad.4xlarge, r5ad.8xlarge, r5ad.l2xlarge, r5ad.léxlarge,
r5ad.24xlarge, xl.1l6xlarge, x1l.32xlarge, xle.xlarge, xle.2xlarge, xle.4xlarge,
xle.8xlarge, xle.lé6xlarge, xle.32xlarge, i2.xlarge, i2.2xlarge, i2.4xlarge,
i2.8xlarge, i3.large, i3.xlarge, i3.2xlarge, i3.4xlarge, i3.8xlarge, i3.1lé6xlarge,
i3.metal, i3en.large, i3en.xlarge, i3en.2xlarge, i3en.3xlarge, i3en.é6xlarge,
i3en.12xlarge, i3en.24xlarge, i3en.metal, hil.4xlarge, hsl.8xlarge, cl.medium,
cl.xlarge, c3.large, c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge, c4.large,
c4.xlarge, c4.2xlarge, c4.4xlarge, c4.8xlarge, c5.large, c5.xlarge, c5.2xlarge,
c5.4xlarge, c5.9xlarge, c5.12xlarge, c5.18xlarge, c5.24xlarge, c5.metal, c5d.large,
c5d.xlarge, c5d.2xlarge, cb5d.4xlarge, c5d.9xlarge, c5d.18xlarge, cb5n.large,
c5n.xlarge, c5n.2xlarge, cbn.4xlarge, c5n.9xlarge, cbn.18xlarge, ccl.4xlarge,
cc2.8xlarge, g2.2xlarge, g2.8xlarge, g3.4xlarge, g3.8xlarge, g3.l6xlarge, g3s.xlarge,
g4dn.xlarge, g4dn.2xlarge, g4dn.4xlarge, g4dn.8xlarge, g4dn.l2xlarge, g4dn.lé6xlarge,
cgl.4xlarge, p2.xlarge, p2.8xlarge, p2.l6xlarge, p3.2xlarge, p3.8xlarge, p3.1l6xlarge,
p3dn.24xlarge, d2.xlarge, d2.2xlarge, d2.4xlarge, d2.8xlarge, fl.2xlarge, fl.4xlarge,
fl.1l6xlarge, m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, m5.8xlarge, m5.12xlarge,
m5.16xlarge, m5.24xlarge, m5.metal, m5a.large, mbSa.xlarge, mba.2xlarge, m5a.4xlarge,
m5a.8xlarge, m5a.l2xlarge, mbSa.l6xlarge, mb5a.24xlarge, m5d.large, m5d.xlarge,
m5d.2xlarge, m5d.4xlarge, m5d.8xlarge, m5d.12xlarge, m5d.l6xlarge, m5d.24xlarge,
m5d.metal, m5ad.large, m5ad.xlarge, m5ad.2xlarge, m5ad.4xlarge, m5ad.8xlarge,
m5ad.12xlarge, mbSad.l6xlarge, m5ad.24xlarge, hl.2xlarge, hl.4xlarge, hl.8xlarge,
hl.1lé6xlarge, zld.large, zld.xlarge, zld.2xlarge, zld.3xlarge, zld.é6xlarge,
zld.1l2xlarge, zld.metal, u-6tbl.metal, u-9tbl.metal, u-12tbl.metal, u-18tbl.metal,
u-24tbl.metal, al.medium, al.large, al.xlarge, al.2xlarge, al.4xlarge, al.metal,
m5dn.large, m5dn.xlarge, m5dn.2xlarge, m5dn.4xlarge, m5dn.8xlarge, m5dn.l2xlarge,
m5dn.1l6xlarge, m5dn.24xlarge, m5n.large, mSn.xlarge, m5n.2xlarge, m5n.4xlarge,
m5n.8xlarge, m5n.l2xlarge, m5n.l6xlarge, m5n.24xlarge, r5dn.large, r5dn.xlarge,
r5dn.2xlarge, r5dn.4xlarge, r5dn.8xlarge, r5dn.l2xlarge, r5dn.lé6xlarge, r5dn.24xlarge,
r5n.large, r5n.xlarge, r5n.2xlarge, r5n.4xlarge, r5n.8xlarge, r5n.l2xlarge,
r5n.l6xlarge, rb5n.24xlarge.

Ipv6AddressCount: 0 # [EC2-VPC] The number of IPvé addresses to associate with the
primary network interface.

Ipv6Addresses: # [EC2-VPC] The IPvé6 addresses from the range of the subnet to associate
with the primary network interface.

- Ipvé6Address: '' # The IPvé address.
KernelId: '' # The ID of the kernel.
KeyName: '' # The name of the key pair.

MaxCount: 0 # [REQUIRED] The maximum number of instances to launch.
MinCount: 0 # [REQUIRED] The minimum number of instances to launch.
Monitoring: # Specifies whether detailed monitoring is enabled for the instance.
Enabled: true # [REQUIRED] Indicates whether detailed monitoring is enabled.
Placement: # The placement for the instance.
AvailabilityZone: '' # The Availability Zone of the instance.
Affinity: '' # The affinity setting for the instance on the Dedicated Host.
GroupName: '' # The name of the placement group the instance is in.
PartitionNumber: 0 # The number of the partition the instance is in.
HostId: '' # The ID of the Dedicated Host on which the instance resides.
Tenancy: dedicated # The tenancy of the instance (if the instance is running in a
VPC). Valid values are: default, dedicated, host.

98

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

SpreadDomain: '' # Reserved for future use.
RamdiskId: '' # The ID of the RAM disk to select.
SecurityGroupIds: # The IDs of the security groups.

SecurityGroups: # [EC2-Classic, default VPC] The names of the security groups.

SubnetId: '' # [EC2-VPC] The ID of the subnet to launch the instance into.
UserData: '' # The user data to make available to the instance.
AdditionalInfo: '' # Reserved.

ClientToken: '' # Unique, case-sensitive identifier you provide to ensure the

idempotency of the request.

DisableApiTermination: true # If you set this parameter to true, you can't terminate
the instance using the Amazon EC2 console, CLI, or API; otherwise, you can.

DryRun: true # Checks whether you have the required permissions for the action, without
actually making the request, and provides an error response.

EbsOptimized: true # Indicates whether the instance is optimized for Amazon EBS I/O.

IamInstanceProfile: # The IAM instance profile.

Arn: '' # The Amazon Resource Name (ARN) of the instance profile.
Name: '' # The name of the instance profile.

InstanceInitiatedShutdownBehavior: stop # Indicates whether an instance stops or
terminates when you initiate shutdown from the instance (using the operating system
command for system shutdown). Valid values are: stop, terminate.

NetworkInterfaces: # The network interfaces to associate with the instance.

- AssociatePublicIpAddress: true # Indicates whether to assign a public IPv4 address
to an instance you launch in a VPC.

DeleteOnTermination: true # If set to true, the interface is deleted when the
instance is terminated.

Description: '' # The description of the network interface.

DeviceIndex: 0 # The position of the network interface in the attachment order.
Groups: # The IDs of the security groups for the network interface.

Ipv6AddressCount: 0 # A number of IPvé addresses to assign to the network interface.
Ipv6Addresses: # One or more IPv6 addresses to assign to the network interface.

- Ipv6Address: '' # The IPvé address.
NetworkInterfaceId: '' # The ID of the network interface.
PrivateIpAddress: '' # The private IPv4 address of the network interface.

PrivateIpAddresses: # One or more private IPv4 addresses to assign to the network
interface.
- Primary: true # Indicates whether the private IPv4 address is the primary private
IPv4 address.
PrivateIpAddress: '' # The private IPv4 addresses.
SecondaryPrivateIpAddressCount: 0 # The number of secondary private IPv4 addresses.
SubnetId: '' # The ID of the subnet associated with the network interface.
InterfaceType: '' # The type of network interface.
PrivateIpAddress: '' # [EC2-VPC] The primary IPv4 address.
ElasticGpuSpecification: # An elastic GPU to associate with the instance.
- Type: '' # [REQUIRED] The type of Elastic Graphics accelerator.
ElasticInferenceAccelerators: # An elastic inference accelerator to associate with the
instance.
- Type: '' # [REQUIRED] The type of elastic inference accelerator.
TagSpecifications: # The tags to apply to the resources during launch.
- ResourceType: network-interface # The type of resource to tag. Valid values are:
client-vpn-endpoint, customer-gateway, dedicated-host, dhcp-options, elastic-ip,
fleet, fpga-image, host-reservation, image, instance, internet-gateway, launch-
template, natgateway, network-acl, network-interface, reserved-instances, route-table,
security-group, snapshot, spot-instances-request, subnet, traffic-mirror-filter,
traffic-mirror-session, traffic-mirror-target, transit-gateway, transit-gateway-
attachment, transit-gateway-route-table, volume, vpc, vpc-peering-connection, vpn-
connection, vpn-gateway.

Tags: # The tags to apply to the resource.

- Key: '' # The key of the tag.

Value: '' # The value of the tag.

LaunchTemplate: # The launch template to use to launch the instances.

LaunchTemplateId: '' # The ID of the launch template.

LaunchTemplateName: '' # The name of the launch template.

Version: '' # The version number of the launch template.

99

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

InstanceMarketOptions: # The market (purchasing) option for the instances.
MarketType: spot # The market type. Valid values are: spot.
SpotOptions: # The options for Spot Instances.
MaxPrice: '' # The maximum hourly price you're willing to pay for the Spot
Instances.
SpotInstanceType: one-time # The Spot Instance request type. Valid values are: one-
time, persistent.
BlockDurationMinutes: 0 # The required duration for the Spot Instances (also known
as Spot blocks), in minutes.
ValidUntil: 1970-01-01 00:00:00 # The end date of the request.
InstanceInterruptionBehavior: terminate # The behavior when a Spot Instance is
interrupted. Valid values are: hibernate, stop, terminate.
CreditSpecification: # The credit option for CPU usage of the T2 or T3 instance.
CpuCredits: '' # [REQUIRED] The credit option for CPU usage of a T2 or T3 instance.
CpuOptions: # The CPU options for the instance.
CoreCount: 0 # The number of CPU cores for the instance.
ThreadsPerCore: 0 # The number of threads per CPU core.
CapacityReservationSpecification: # Information about the Capacity Reservation
targeting option.
CapacityReservationPreference: none # Indicates the instance's Capacity Reservation
preferences. Valid values are: open, none.
CapacityReservationTarget: # Information about the target Capacity Reservation.
CapacityReservationId: '' # The ID of the Capacity Reservation.
HibernationOptions: # Indicates whether an instance is enabled for hibernation.
Configured: true # If you set this parameter to true, your instance is enabled for
hibernation.
LicenseSpecifications: # The license configurations.
- LicenseConfigurationArn: '' # The Amazon Resource Name (ARN) of the license
configuration.

Generating a command skeleton

To generate and use a parameter skeleton file

1.

Run the command with the --generate-cli-skeleton parameter to produce either JSON or
YAML and direct the output to a file to save it.

JSON

$ aws ec2 run-instances --generate-cli-skeleton input > ec2runinst.json

YAML

$ aws ec2 run-instances --generate-cli-skeleton yaml-input > ec2runinst.yaml

Open the parameter skeleton file in your text editor and remove any of the parameters that you
don't need. For example, you might strip the template down to the following. Be sure that the file is
still valid JSON or YAML after you remove the elements you don't need.

JSON
{

"DryRun": true,
" ImageId" H nn ,
"KeyName": "",
"SecurityGroups": [
]!
"InstanceType": "",

"Monitoring": {

100

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

"Enabled": true

YAML

DryRun: true
ImageId: ''
KeyName: ''
SecurityGroups:

InstanceType:
Monitoring:
Enabled: true

In this example, we leave the DryRun parameter set to true to use the Amazon EC2 dry run feature.
This feature lets you safely test the command without actually creating or modifying any resources.

Fill in the remaining values with values appropriate for your scenario. In this example, we provide
the instance type, key name, security group, and identifier of the Amazon Machine Image (AMI) to
use. This example assumes the default AWS Region. The AMI ami-dfc39aef is a 64-bit Amazon
Linux image hosted in the us-west-2 Region. If you use a different Region, you must find the
correct AMI ID to use.

JSON
{
"DryRun": true,
"ImageId": "ami-dfc39aef",
"KeyName": "mykey",
"SecurityGroups": [
"my-sg"
1,
"InstanceType": "t2.micro",
"Monitoring": {
"Enabled": true
}
}
YAML

DryRun: true
ImageId: 'ami-dfc39aef'
KeyName: 'mykey'
SecurityGroups:
- 'my—sg‘
InstanceType: 't2.micro'
Monitoring:

Enabled: true

Run the command with the completed parameters by passing the completed template file to either
the --cli-input-jsonor--cli-input-yaml parameter by using the file:// prefix. The AWS
CLI interprets the path to be relative to your current working directory, so in the following example
that displays only the file name with no path, it looks for the file directly in the current working
directory.

JSON

$ aws ec2 run-instances --cli-input-json file://ec2runinst.json

101

http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/amazon-linux-ami/

AWS Command Line Interface User Guide for Version 2
Generating a CLI Skeleton Template

A client error (DryRunOperation) occurred when calling the RunInstances operation:
Request would have succeeded, but DryRun flag is set.

YAML

$ aws ec2 run-instances --cli-input-yaml file://ec2runinst.yaml

A client error (DryRunOperation) occurred when calling the RunInstances operation:
Request would have succeeded, but DryRun flag is set.

The dry run error indicates that the JSON or YAML is formed correctly and that the parameter values
are valid. If other issues are reported in the output, fix them and repeat the previous step until the
"Request would have succeeded" message is displayed.

Now you can set the DryRun parameter to £alse to disable dry run.

JSON
{
"DryRun": false,
"ImageId": "ami-dfc39aef",
"KeyName": "mykey",
"SecurityGroups": [
llmy_sgll
] r
"InstanceType": "t2.micro",
"Monitoring": {
"Enabled": true
¥
¥
YAML

DryRun: false
ImageId: 'ami-dfc39aef'
KeyName: 'mykey'
SecurityGroups:
- ’my_sgl
InstanceType: 't2.micro'
Monitoring:

Enabled: true

Run the command, and run-instances actually launches an Amazon EC2 instance and displays the
details generated by the successful launch. The format of the output is controlled by the --output
parameter, separately from the format of your input parameter template.

JSON
$ aws ec2 run-instances --cli-input-json file://ec2runinst.json --output json
{
"OwnerId": "123456789012",
"ReservationId": "r-d94a2bl",

"Groups": [],
"Instances": [

102

AWS Command Line Interface User Guide for Version 2
Shorthand Syntax

YAML

$ aws ec2 run-instances --cli-input-yaml file://ec2runinst.yaml --output yaml

OwnerId: '123456789012'
ReservationId: 'r-d94a2bil’',
Groups":

Instances:

Using shorthand syntax with the AWS CLI

The AWS Command Line Interface (AWS CLI) can accept many of its option parameters in JSON format.
However, it can be tedious to enter large JSON lists or structures on the command line. To make this
easier, the AWS CLI also supports a shorthand syntax that enables a simpler representation of your
option parameters than using the full JSON format.

Topics
« Structure parameters (p. 103)
« Using shorthand syntax with the AWS Command Line Interface (p. 104)

Structure parameters

The shorthand syntax in the AWS CLI makes it easier for users to input parameters that are flat (non-
nested structures). The format is a comma-separated list of key-value pairs.

Linux or macOS

--option keyl=valuel,key2=value2, key3=value3

PowerShell

--option "keyl=valuel, key2=value2, key3=value3"

These are both equivalent to the following example, formatted in JSON.

--option '{"keyl":"valuel"”,"key2":"value2", "key3":"value3"}'

There must be no white space between each comma-separated key-value pair. Here is an example of the
Amazon DynamoDB update-table command with the --provisioned-throughput option specified
in shorthand.

$ aws dynamodb update-table \
--provisioned-throughput ReadCapacityUnits=15,WriteCapacityUnits=10 \
--table-name MyDDBTable

This is equivalent to the following example formatted in JSON.

$ aws dynamodb update-table \

103

AWS Command Line Interface User Guide for Version 2
Auto-prompt

--provisioned-throughput '{"ReadCapacityUnits":15,"WriteCapacityUnits":10}' \
--table-name MyDDBTable

Using shorthand syntax with the AWS Command Line Interface

You can specify Input parameters in a list form in two ways: JSON or shorthand. The AWS CLI shorthand
syntax is designed to make it easier to pass in lists with number, string, or non-nested structures.

The basic format is shown here, where values in the list are separated by a single space.

--option valuel value2 value3

This is equivalent to the following example, formatted in JSON.

--option '[valuel,value2,value3]’

As previously mentioned, you can specify a list of numbers, a list of strings, or a list of non-nested
structures in shorthand. The following is an example of the stop-instances command for Amazon
Elastic Compute Cloud (Amazon EC2), where the input parameter (list of strings) for the --instance-
ids option is specified in shorthand.

$ aws ec2 stop-instances \
--instance-ids i-1486157a i1-1286157c i-ec3a7e87

This is equivalent to the following example formatted in JSON.

$ aws ec2 stop-instances \
--instance-ids '["i-1486157a","1-1286157¢c","i-ec3a7e87"]"

The following example shows the Amazon EC2 create-tags command, which takes a list of non-
nested structures for the --tags option. The --resources option specifies the ID of the instance to
tag.

$ aws ec2 create-tags \
--resources i-1286157c \
--tags Key=MylstTag,Value=Valuel Key=My2ndTag,Value=Value2 Key=My3rdTag,Value=Value3

This is equivalent to the following example, formatted in JSON. The JSON parameter is written over
multiple lines for readability.

$ aws ec2 create-tags \
--resources i-1286157c \
--tags '[
{"Key": "MylstTag", "Value": "Valuel"},
{"Key": "My2ndTag", "Value": "Value2"},
{"Key": "My3rdTag", "Value": "Value3"}
]'

Having the AWS CLI prompt you for commands

You can have the AWS CLI version 2 prompt you commands, parameters, and resources when you run an
aws command.

104

AWS Command Line Interface User Guide for Version 2
How it works

Topics
« How it works (p. 105)
o Auto-prompt features (p. 105)
« Auto-prompt modes (p. 107)
« Configure auto-prompt (p. 107)

How it works

If enabled, the auto-prompt enables you to use the ENTER key to complete a partially entered
command. After pressing the ENTER key, commands, parameters, and resources are suggested based on
what you continue to type. The suggestions list the name of the command, parameter, or resource on the
left and a description of it on the right. To select and use a suggestion, use the arrows keys to highlight a
row, and then press the SPACE key. When you've finished entering in your command, press ENTER to use
the command. The following example demonstrates what a suggested list from auto-prompt looks like.

$ aws
> aws a
accessanalyzer Access Analyzer
acm AWS Certificate Manager
acm-pca AWS Certificate Manager Private Certificate Authority
alexaforbusiness Alexa For Business
amplify AWS Amplify

Auto-prompt features

The auto-prompt contains the following useful features:
Documentation panel

Provides the help documentation for the current command. To open the documentation, press the
F3 key.
Command completion

Suggests aws commands to use. To see a list, partially enter the command. The following example is
searching for a service starting with the letter a.

$ aws
> aws a

accessanalyzer Access Analyzer

acm AWS Certificate Manager

acm-pca AWS Certificate Manager Private Certificate
Authority

alexaforbusiness Alexa For Business

amplify AWS Amplify

Parameter completion

After a command is typed, auto-prompt starts to suggest parameters. The descriptions for the
parameters include the value type, and a description of what the parameter is. Required parameters
are listed first, and are labeled as required. The following example shows the auto-prompt list of
parameters for aws dynamodb describe-table.

$ aws dynamodb describe-table
> aws dynamodb describe-table

105

AWS Command Line Interface User Guide for Version 2
Auto-prompt features

--table-name (required) [string] The name of the table
to describe.

--cli-input-json [string] Reads arguments from
the JSON string provided. The JSON string follows the format provide...
--cli-input-yaml [string] Reads arguments from

the YAML string provided. The YAML string follows the format provide...
--generate-cli-skeleton [string] Prints a JSON skeleton
to standard output without sending an API request. If provided wit...

Resource completion

The auto-prompt makes AWS API calls using available AWS resource properties to suggest resource
values. This allows for auto-prompt to suggest possible resources you own when entering in
parameters. In the following example auto-prompt lists your table names when filling in the --
table-name parameter for the aws dynamodb describe-table command.

$ aws dynamodb describe-table

> aws dynamodb describe-table --table-name
Tablel
Table2
Table3

Shorthand completion

For parameters that use shorthand syntax, auto-prompt suggests values to use. In the following
example, auto-prompt lists shorthand syntax values for the --placement parameter in the aws
ec2 run-instances command.

$ aws ec2 run-instances
> aws ec2 run-instances --placement

AvailabilityZone= [string] The Availability Zone of the instance. If not
specified, an Availability Zone wil...

Affinity= [string] The affinity setting for the instance on the Dedicated
Host. This parameter is no...

GroupName= [string] The name of the placement group the instance is in.
PartitionNumber= [integer] The number of the partition the instance is in. Valid

only if the placement grou...

File completion

When filling out parameters in aws commands, auto-complete suggests local filenames after using
the prefix file:// or fileb://. In the following example, auto-prompt suggests local files after
enteringin --item file:// forthe aws ec2 run-instances command.

$ aws ec2 run-instances

> aws ec2 run-instances --item file://
iteml.txt
filel.json
file2.json

Region completion

When using the global parameter --region, auto-prompt lists possible Regions to select from.
In the following example, auto-prompt suggests Regions in alphabetical order after entering in —-
region for the aws dynamodb list-tables command.

$ aws dynamodb list-tables
> aws dynamodb list-tables --region
af-south-1

106

AWS Command Line Interface User Guide for Version 2
Auto-prompt modes

ap-east-1
ap-northeast-1
ap-northeast-2

Profile completion

When using the global parameter --profile, auto-prompt lists your profiles. In the following
example, auto-prompt suggests your profiles after entering in --profile for the aws dynamodb
list-tables command.

$ aws dynamodb list-tables

> aws dynamodb list-tables --profile
profilel
profile2
profile3

Fuzzy searching

Complete commands and values that contain a specific set of characters. In the following example,
auto-prompt suggests Regions that contain eu after entering in --region eu for the aws
dynamodb list-tables command.

$ aws dynamodb list-tables

> aws dynamodb list-tables --region west
eu-west-1
eu-west-2
eu-west-3
us-west-1

History

To view and run previously used commands in auto-prompt mode, press CTRL + R. History lists
previous commands that you can select by using the arrow keys. In the following example, the auto-
prompt mode history is displayed.

$ aws

> aws
dynamodb list-tables
s3 1s

Auto-prompt modes

Auto-prompt for the AWS CLI version 2 has 2 modes that can be configured:

Full mode: Uses auto-prompt each time you attempt to run an aws command, whether you manually
call it using the --cli-auto-prompt parameter or permanently enabled it. This includes pressing
ENTER after both a complete command or incomplete command.

Partial mode: Uses auto-prompt if a command is incomplete or cannot be run due to client-side
validation errors. This mode is particular useful if you have pre-existing scripts, runbooks, or you only
want to be auto-prompted for commands you are unfamiliar with rather than prompted on every
command.

Configure auto-prompt

To configure auto-prompt you can use the following methods in order of precedence:

107

AWS Command Line Interface User Guide for Version 2
Controlling Command Output

« Command line options enable or disable auto-prompt for a single command. Use --cli-auto-
prompt (p. 60) to call auto-prompt and --no-cli-auto-prompt (p. 61) to disable auto-
prompt.

« Environment variables use the aws_cl1i_auto_prompt (p. 56) variable.
« Shared config files use the c1i_auto_prompt (p. 40) setting.

Controlling command output from the AWS CLI

This section describes the different ways to control the output from the AWS Command Line Interface
(AWS CLlI).

Topics
» Setting the AWS CLI output format (p. 108)
« Using AWS CLI pagination options (p. 114)
« Filtering AWS CLI output (p. 118)

Setting the AWS CLI output format

This topic describes the different output formats for the AWS Command Line Interface (AWS CLI). The
AWS CLI supports the following output formats:

+ json (p. 109) - The output is formatted as a JSON string.
« yaml (p. 109) - The output is formatted as a YAML string.

o yaml-stream (p. 110) — The output is streamed and formatted as a YAML string. Streaming allows
for faster handling of large data types.

o text (p. 111) - The output is formatted as multiple lines of tab-separated string values. This can be
useful to pass the output to a text processor, like grep, sed, or awk.

« table (p. 113) - The output is formatted as a table using the characters +|- to form the cell borders.
It typically presents the information in a "human-friendly" format that is much easier to read than the
others, but not as programmatically useful.

How to select the output format

As explained in the configuration (p. 32) topic, you can specify the output format in three ways:

« Using the output option in a named profile in the config file — The following example sets the
default output format to text.

[default]
output=text

« Using the AWS_DEFAULT_OUTPUT environment variable — The following output sets the format to
table for the commands in this command line session until the variable is changed or the session
ends. Using this environment variable overrides any value set in the config file.

$ export AWS_DEFAULT_OUTPUT="table"

+ Using the --output option on the command line - The following example sets the output of
only this one command to json. Using this option on the command overrides any currently set
environment variable or the value in the config file.

108

https://json.org/
https://yaml.org/
https://yaml.org/

AWS Command Line Interface User Guide for Version 2
Output Format

$ aws swf list-domains --registration-status REGISTERED --output json

JSON output format

JSON is the default output format of the AWS CLI. Most programming languages can easily decode JSON
strings using built-in functions or with publicly available libraries. You can combine JSON output with the
--query option (p. 118) in powerful ways to filter and format the AWS CLI JSON-formatted output.

For more advanced filtering that you might not be able to do with --query, you can consider
jg, a command line JSON processor. You can download it and find the official tutorial at http://
stedolan.github.io/jq/.

The following is an example of JSON output.

$ aws iam list-users --output json

"Users": [
{

"Path": "/",
"UserName": "Admin",
"UserId": "AIDA1111111111EXAMPLE",
"Arn": "arn:aws:iam::123456789012:user/Admin",
"CreateDate": "2014-10-16T16:03:09+00:00",
"PasswordLastUsed": "2016-06-03T18:37:29+00:00"

"Path": "/backup/",

"UserName": "backup-user",

"UserId": "AIDA2222222222EXAMPLE",

"Arn": "arn:aws:iam::123456789012:user/backup/backup-user",
"CreateDate": "2019-09-17T19:30:40+00:00"

"Path": "/",

"UserName": "cli-user",

"UserId": "AIDA3333333333EXAMPLE",

"Arn": "arn:aws:iam::123456789012:user/cli-user",
"CreateDate": "2019-09-17T19:11:39+00:00"

YAML output format

YAML is a good choice for handling the output programmatically with services and tools that emit or
consume YAML-formatted strings, such as AWS CloudFormation with its support for YAML-formatted
templates.

For more advanced filtering that you might not be able to do with --query, you can consider
yvq, a command line YAML processor. You can download it and find documentation at https://
mikefarah.gitbook.io/yq/.

The following is an example of YAML output.

$ aws iam list-users --output yaml

109

https://json.org
http://stedolan.github.io/jq/
http://stedolan.github.io/jq/
https://yaml.org
https://yaml.org
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-formats.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-formats.html
https://mikefarah.gitbook.io/yq/
https://mikefarah.gitbook.io/yq/

AWS Command Line Interface User Guide for Version 2
Output Format

Users:

- Arn: arn:aws:iam::123456789012:user/Admin
CreateDate: '2014-10-16T16:03:09+00:00"'
PasswordLastUsed: '2016-06-03T18:37:29+00:00"
Path: /

UserId: AIDA1111111111EXAMPLE
UserName: Admin

- Arn: arn:aws:iam::123456789012:user/backup/backup-user

CreateDate: '2019-09-17T19:30:40+00:00"

Path: /backup/

UserId: AIDA2222222222EXAMPLE

UserName: arg-45EFD6D1-CE56-459B-B39F-F9C1F78FBE19

- Arn: arn:aws:iam::123456789012:user/cli-user
CreateDate: '2019-09-17T19:30:40+00:00"

Path: /
UserId: AIDA3333333333EXAMPLE
UserName: cli-user

YAML stream output format

The yaml-stream format takes advantage of the YAML format while providing more responsive/faster

viewing of large data sets by streaming the data to you. You can start viewing and using YAML data
before the entire query downloads.

For more advanced filtering that you might not be able to do with --query, you can consider
yq, a command line YAML processor. You can download it and find documentation at http://
mikefarah.github.io/yq/.

The following is an example of yaml-stream output.

$ aws iam list-users --output yaml-stream

- IsTruncated: false

Users:

- Arn: arn:aws:iam::123456789012:user/Admin
CreateDate: '2014-10-16T16:03:09+00:00"
PasswordLastUsed: '2016-06-03T18:37:29+00:00"
Path: /

UserId: AIDA1111111111EXAMPLE
UserName: Admin

- Arn: arn:aws:iam::123456789012:user/backup/backup-user

CreateDate: '2019-09-17T19:30:40+00:00"

Path: /backup/

UserId: AIDA2222222222EXAMPLE

UserName: arg-45EFD6D1-CE56-459B-B39F-F9C1F78FBE19

- Arn: arn:aws:iam::123456789012:user/cli-user
CreateDate: '2019-09-17T19:30:40+00:00"

Path: /
UserId: AIDA3333333333EXAMPLE
UserName: cli-user

The following is an example of yaml-stream output in conjunction with using the --page-size
parameter to paginate the streamed YAML content.

$ aws iam list-users --output yaml-stream --page-size 2

- IsTruncated: true
Marker: abl234cdef5ghi67jk81lmo9p/
q012rs3t445uv6789w0x1y22z/345a6b78c9d00/1efgh2341ij56k1lmno78pqrstu90vwxyx

110

https://yaml.org
http://mikefarah.github.io/yq/
http://mikefarah.github.io/yq/

AWS Command Line Interface User Guide for Version 2
Output Format

Users:

- Arn: arn:aws:iam::123456789012:user/Admin
CreateDate: '2014-10-16T16:03:09+00:00"
PasswordLastUsed: '2016-06-03T18:37:29+00:00"'
Path: /

UserId: AIDA1111111111EXAMPLE
UserName: Admin

- Arn: arn:aws:iam::123456789012:user/backup/backup-user

CreateDate: '2019-09-17T19:30:40+00:00"

Path: /backup/

UserId: AIDA2222222222EXAMPLE

UserName: arqg-45EFD6D1-CE56-459B-B39F-F9C1F78FBE19
- IsTruncated: false

Users:

- Arn: arn:aws:iam::123456789012:user/cli-user
CreateDate: '2019-09-17T19:30:40+00:00"

Path: /
UserId: AIDA3333333333EXAMPLE
UserName: cli-user

Text output format

The text format organizes the AWS CLI output into tab-delimited lines. It works well with traditional
Unix text tools such as grep, sed, and awk, and the text processing performed by PowerShell.

The text output format follows the basic structure shown below. The columns are sorted alphabetically
by the corresponding key names of the underlying JSON object.

IDENTIFIER sorted-columnl sorted-column2
IDENTIFIER2 sorted-columnl sorted-column2

The following is an example of text output. Each field is tab separated from the others, with an extra
tab where there is an empty field.

$ aws iam list-users --output text

USERS arn:aws:iam::123456789012:user/Admin 2014-10-16T16:03:09+00:00
2016-06-03T18:37:29+00:00 / AIDA1111111111EXAMPLE Admin
USERS arn:aws:iam::123456789012:user/backup/backup-user 2019-09-17T19:30:40+00:00
/backup/ AIDA2222222222EXAMPLE backup-user
USERS arn:aws:iam::123456789012:user/cli-user 2019-09-17T19:11:39+00:00
/ AIDA3333333333EXAMPLE cli-user

The fourth column is the PasswordLastUsed field, and is empty for the last two entries because those
users never sign in to the AWS Management Console.

Important

We strongly recommend that if you specify text output, you also always use the —-

query (p. 118) option to ensure consistent behavior.

This is because the text format alphabetically orders output columns by the key name of the
underlying JSON object returned by the AWS service, and similar resources might not have the
same key names. For example, the JSON representation of a Linux-based Amazon EC2 instance
might have elements that are not present in the JSON representation of a Windows-based
instance, or vice versa. Also, resources might have key-value elements added or removed in
future updates, altering the column ordering. This is where --query augments the functionality
of the text output to provide you with complete control over the output format.

In the following example, the command specifies which elements to display and defines the
ordering of the columns with the list notation [key1, key2, ...].This gives you full

AWS Command Line Interface User Guide for Version 2
Output Format

confidence that the correct key values are always displayed in the expected column. Finally,
notice how the AWS CLI outputs None as the value for keys that don't exist.

$ aws iam list-users --output text --query 'Users[*].
[UserName,Arn,CreateDate,PasswordLastUsed,UserId]’

Admin arn:aws:iam::123456789012:user/Admin
2014-10-16T16:03:09+00:00 2016-06-03T18:37:29+00:00 AIDA1111111111EXAMPLE
backup-user arn:aws:iam::123456789012:user/backup-user

2019-09-17T19:30:40+00:00 None ATIDA2222222222EXAMPLE
cli-user arn:aws:iam::123456789012:user/cli-backup
2019-09-17T19:11:39+00:00 None ATDA3333333333EXAMPLE

The following example shows how you can use grep and awk with the text output from the aws ec2
describe-instances command. The first command displays the Availability Zone, current state, and
the instance ID of each instance in text output. The second command processes that output to display
only the instance IDs of all running instances in the us-west-2a Availability Zone.

$ aws ec2 describe-instances --query 'Reservations[*].Instances[*].

[Placement.AvailabilityZone, State.Name, InstanceId]' --output text
us-west-2a running i-4b41a37c
us-west-2a stopped i-a071c394
us-west-2b stopped i-97a217a0
us-west-2a running i-3045b007
us-west-2a running i-6£fc67758

$ aws ec2 describe-instances --query 'Reservations[*].Instances[*].
[Placement.AvailabilityZone, State.Name, InstanceId]' --output text | grep us-west-2a |
grep running | awk '{print $3}°'

i-4b41a37c
i-3045b007
i-6£fc67758

The following example goes a step further and shows not only how to filter the output, but how to use
that output to automate changing instance types for each stopped instance.

$ aws ec2 describe-instances --query 'Reservations[*].Instances[*].[State.Name,
InstanceId]' --output text |

> grep stopped |

> awk '{print $2}' |

> while read line;

> do aws ec2 modify-instance-attribute --instance-id $line --instance-type '{"Value":
"ml.medium"}"';

> done

The text output can also be useful in PowerShell. Because the columns in text output are tab
delimited, you can easily split the output into an array by using PowerShell's ~ t delimiter. The following
command displays the value of the third column (Instance1d) if the first column (AvailabilityZone)
matches the string us-west-2a.

PS C:\>aws ec2 describe-instances --query 'Reservations[*].Instances[*].
[Placement.AvailabilityZone, State.Name, InstanceId]' --output text |
%{if ($_.split(""t")[0] -match "us-west-2a") { $_.split(""t")[2]; } }

112

AWS Command Line Interface User Guide for Version 2
Output Format

-4b41la37c

i-a071c394
i-3045b007
i-6£fc67758

Notice that although the previous example does show how to use the --query parameter to parse the
underlying JSON objects and pull out the desired column, PowerShell has its own ability to handle JSON,
if cross-platform compatibility isn't a concern. Instead of handling the output as text, as most command
shells require, PowerShell lets you use the ConvertFrom-JSON cmdlet to produce a hierarchically
structured object. You can then directly access the member you want from that object.

(aws ec2 describe-instances --output json | ConvertFrom-
Json) .Reservations.Instances.Instanceld

Tip

If you output text, and filter the output to a single field using the --query parameter, the
output is a single line of tab-separated values. To get each value onto a separate line, you can
put the output field in brackets, as shown in the following examples.

Tab separated, single-line output:

$ aws iam list-groups-for-user --user-name susan --output text --query
"Groups[] .GroupName"

HRDepartment Developers SpreadsheetUsers LocalAdmins

Each value on its own line by putting [GroupName] in brackets:

$ aws iam list-groups-for-user --user-name susan --output text --query
"Groups[].[GroupName]"

HRDepartment
Developers
SpreadsheetUsers
LocalAdmins

Table output format

The table format produces human-readable representations of complex AWS CLI output in a tabular
form.

$ aws iam list-users --output table

ListUsers
S I
+
| Users

Il
|+— - o
o o —————— o o ———— +|
|| Arn CreateDate
PasswordLastUsed | Path | UserId | UserName |
|+— - o
o o —————— o o ———— +|

113

AWS Command Line Interface User Guide for Version 2
Pagination

|| arn:aws:iam::123456789012:user/Admin | 2014-10-16T16:03:09+00:00 |

2016-06-03T18:37:29+00:00 | / | AIDA1111111111EXAMPLE | Admin |l

|| arn:aws:iam::123456789012:user/backup/backup-user | 2019-09-17T19:30:40+00:00 |
| /backup/ | AIDA2222222222EXAMPLE | backup-user ||

|| arn:aws:iam::123456789012:user/cli-user | 2019-09-17T19:11:39+00:00 |
|/ | AIDA3333333333EXAMPLE | cli-user |l

You can combine the --query option with the table format to display a set of elements preselected
from the raw output. Notice the output differences between dictionary and list notations: in the first
example, column names are ordered alphabetically, and in the second example, unnamed columns are
ordered as defined by the user. For more information about the --query option, see Filtering AWS CLI
output (p. 118).

$ aws ec2 describe-volumes --query 'Volumes[*].

{ID:VolumeId, InstanceId:Attachments[0].Instanceld,AZ:AvailabilityZone,Size:Size}' --output
table

| DescribeVolumes

o o — o o +

| AZ | ID | InstanceId | Size

o o — o o +

| us-west-2a| vol-ella5288 | 1i-a071c394 | 30 |

| us-west-2a| vol-2e410a47 | i-4b4la37c | 8 |

o o — o o +

$ aws ec2 describe-volumes --query 'Volumes[*].
[VolumeId,Attachments[0].Instanceld,AvailabilityZone,Size]' --output table
| DescribeVolumes

o o — o +————= +

| vol-ella5288| i-a071c394 | us-west-2a | 30 |

| vol-2e410a47| i-4b4la37c | us-west-2a | 8 |

o o — o +————= +

Using AWS CLI pagination options

This topic describes the different ways to paginate output from the AWS Command Line Interface (AWS
CLI).

There are primarily two ways to control pagination from the AWS CLI.
« Using server-side pagination parameters. (p. 114)

« Using your default output client-side paging program (p. 116).

Server-side pagination parameters process first and any output is sent to client-side pagination.

Server-side pagination

For commands that can return a large list of items, the AWS Command Line Interface (AWS CLI) has
multiple options to control the number of items included in the output when the AWS CLI calls a
service's API to populate the list.

114

AWS Command Line Interface User Guide for Version 2
Pagination

e —-no-paginate
e —-page-size
e —-max-items

e —-—-starting-token

By default, the AWS CLI uses a page size determined by the individual service and retrieves all available
items. For example, Amazon S3 has a default page size of 1000. If you run aws s3api list-objects
on an Amazon S3 bucket that contains 3,500 objects, the AWS CLI automatically makes four calls to
Amazon S3, handling the service-specific pagination logic for you in the background and returning all
3,500 objects in the final output.

How to use the --no-paginate parameter

The --no-paginate option disables following pagination tokens on the client side. When using a
command, by default the AWS CLI automatically makes multiple calls to return all possible results to
create pagination. One call for each page. Disabling pagination has the AWS CLI only call once for the
first page of command results.

For example, if you run aws s3api list-objects onan Amazon S3 bucket that contains 3,500
objects, the AWS CLI only makes the first call to Amazon S3, returning only the first 1,000 objects in the
final output.

$ aws s3api list-objects \
--bucket my-bucket \
--no-paginate

"Contents": [

How to use the --page-size parameter

If you see issues when running list commands on a large number of resources, the default page size
might be too high. This can cause calls to AWS services to exceed the maximum allowed time and
generate a "timed out" error. You can use the --page-size option to specify that the AWS CLI request
a smaller number of items from each call to the AWS service. The AWS CLI still retrieves the full list, but
performs a larger number of service API calls in the background and retrieves a smaller number of items
with each call. This gives the individual calls a better chance of succeeding without a timeout. Changing
the page size doesn't affect the output; it affects only the number of API calls that need to be made to
generate the output.

$ aws s3api list-objects \
--bucket my-bucket \
--page-size 100

"Contents": [

How to use the --max-items parameter

To include fewer items at a time in the AWS CLI output, use the --max-items option. The AWS CLI still
handles pagination with the service as described previously, but prints out only the number of items at a
time that you specify.

$ aws s3api list-objects \
--bucket my-bucket \
--max-items 100

115

AWS Command Line Interface User Guide for Version 2
Pagination

"NextToken": "eyJNYXJrZXIiOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91lbnQiOiAxfQ==",
"Contents": [

How to use the --starting-token parameter

If the number of items output (--max-items) is fewer than the total number of items returned by the
underlying API calls, the output includes a NextToken that you can pass to a subsequent command to
retrieve the next set of items. The following example shows how to use the NextToken value returned
by the previous example, and enables you to retrieve the second 100 items.

Note

The parameter --starting-token cannot be null or empty. If the previous command does not
return a NextToken value, there are no more items to return and you do not need to call the
command again.

$ aws s3api list-objects \
--bucket my-bucket \
--max-items 100 \
--starting-token eyJNYXJrZXIiO0iBudWxsLCAiYm90b190cnVuY2F0ZVOhbW91bnQiOiAxfQ==

"Contents": [

The specified AWS service might not return items in the same order each time you call. If you specify
different values for --page-size and --max-items, you can get unexpected results with missing or
duplicated items. To prevent this, use the same number for --page-size and --max-items to sync
the AWS CLI pagination with the pagination of the underlying service. You can also retrieve the whole list
and perform any necessary paging operations locally.

Client-side pager

AWS CLI version 2 provides the use of a client-side pager program for output. By default, this feature
returns all output through your operating system'’s default pager program.

In order of precedence, you can specify the output pager in the following ways:

« Using the cli_pager setting in the config file in the default or named profile.
« Using the AWS_PAGER environment variable.
« Using the PAGER environment variable.

In order of precedence, you can disable all use of an external paging program in the following ways:

« Use the --no-cli-pager command line option to disable the pager for a single command use.
« Setthe cli_pager setting or AWS_PAGER variable to an empty string.

How to use the cli_pager setting

You can save your frequently used configuration settings and credentials in files that are maintained by
the AWS CLI. Settings in a name profile take precedence over settings in the default profile. For more
information on configuration settings, see Configuration and credential file settings (p. 36).

The following example sets the default output pager to the less program.

[default]
cli_pager=less

116

AWS Command Line Interface User Guide for Version 2
Pagination

The following example sets the default to disable the use of a pager.

[default]
cli_pager=

How to use the AWS_PAGER environment variable

The following example sets the default output pager to the 1less program. For more information on
environment variables, seeEnvironment variables to configure the AWS CLI (p. 55).

Linux and macOS

$ export AWS_PAGER="less"

Windows

C:\> setx AWS_PAGER "less"

The following example disables the use of a pager.

Linux and macOS

$ export AWS_PAGER=""

Windows

C:\> setx AWS_PAGER ""

How to use the --no-cli-pager option

To disable the use of a pager on a single command, use the --no-cli-pager option. For more
information on command line options, see Command line options (p. 59).

$ aws s3api list-objects \
--bucket my-bucket \
--no-cli-pager

"Contents": [

How to use pager flags

You can specify flags to use automatically with your paging program. Flags are dependent on the paging
program you use. The below examples are for the typical defaults of 1ess and more.

Linux and macOS

If you do not specify otherwise, the pager AWS CLI version 2 uses by default is 1ess. If you don't
have the LESS environment variable set, the AWS CLI version 2 uses the FRX flags. You can combine
flags by specifying them when setting the AWS CLI pager.

The following example uses the s flag. This flag then combines with the default FRX flags to create a
final FrRXS flag.

117

AWS Command Line Interface User Guide for Version 2
Filtering

$ export AWS_PAGER="less -S"

If you don't want any of the FRX flags, you can negate them. The following example negates the F
flag to create a final RX flag.

$ export AWS_PAGER="less -+F"

For more information on less flags see less on manpages.org.
Windows

If you do not specify otherwise, the pager AWS CLI version 2 uses by default is more with no
additional flags.

The following example uses the /c parameter.

C:\> setx AWS_PAGER "more /c"

For more information on more flags see more on Microsoft Docs.

Filtering AWS CLI output

The AWS Command Line Interface (AWS CLI) has both server-side and client-side filtering that you can
use individually or together to filter your AWS CLI output. Server-side filtering is processed first and
returns your output for client-side filtering.

« Server-side filtering is supported by the API, and you usually implement it witha --filter
parameter. The service only returns matching results which can speed up HTTP response times for
large data sets.

« Client-side filtering is supported by the AWS CLI client using the --query parameter. This parameter
has capabilities the server-side filtering might not have.

Topics
« Server-side filtering (p. 118)
« Client-side filtering (p. 119)
« Combining server-side and client-side filtering (p. 133)
« Additional resources (p. 134)

Server-side filtering

Server-side filtering in the AWS CLI is provided by the AWS service API. The AWS service only returns the
records in the HTTP response that match your filter, which can speed up HTTP response times for large
data sets. Since server-side filtering is defined by the service API, the parameter names and functions
vary between services. Some common parameter names used for filtering are:

e ——filter such as ses and ce.
o« ——filters such as ec2, autoscaling, and rds.

« Names starting with the word filter, for example --filter-expression for the aws dynamodb
scan command.

For information about whether a specific command has server-side filtering and the filtering rules, see
the AWS CLI version 2 reference guide.

118

http://manpages.org/less/1#options
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/more
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ses/create-receipt-filter.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ce/get-cost-and-usage.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-volumes.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/autoscaling/describe-tags.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/scan.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/scan.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html

AWS Command Line Interface User Guide for Version 2
Filtering

Client-side filtering

The AWS CLI provides built-in JSON-based client-side filtering capabilities with the --query parameter.
The --query parameter is a powerful tool you can use to customize the content and style of your
output. The --query parameter takes the HTTP response that comes back from the server and filters
the results before displaying them. Since the entire HTTP response is sent to the client before filtering,
client-side filtering can be slower than server-side filtering for large data-sets.

Querying uses JMESPath syntax to create expressions for filtering your output. To learn JMESPath syntax,
see Tutorial on the JMESPath website.

Important
The output type you specify changes how the --query option operates:

« If you specify --output text, the output is paginated before the --query filter is applied,
and the AWS CLI runs the query once on each page of the output. Due to this, the query
includes the first matching element on each page which can result in unexpected extra
output. To additionally filter the output, you can use other command line tools such as head
or tail.

« If you specify --output json, --output yaml, or --output yaml-stream the output
is completely processed as a single, native structure before the --query filter is applied. The
AWS CLI runs the query only once against the entire structure, producing a filtered result that
is then output.

Client-side filtering topics
« Before you start (p. 119)
« ldentifiers (p. 120)
« Selecting from a list (p. 122)
« Filtering nested data (p. 125)
« Flattening results (p. 126)
« Filtering for specific values (p. 127)
» Piping expressions (p. 127)
« Filtering for multiple identifier values (p. 128)
» Adding labels to identifier values (p. 129)
« Functions (p. 130)
« Advanced --query examples (p. 131)

Before you start

When using filter expressions used in these examples, be sure to use the correct quoting rules for your
terminal shell. For more information, see the section called “Quotes with Strings” (p. 91).

The following JSON output shows an example of what the —--query parameter can produce. The output
describes three Amazon EBS volumes attached to separate Amazon EC2 instances.

Example output

$ aws ec2 describe-volumes

{

"Volumes": [

{
"AvailabilityZone": "us-west-2a",
"Attachments": [

119

http://jmespath.org/
https://jmespath.org/tutorial.html

AWS Command Line Interface User Guide for Version 2

Filtering
{
"AttachTime": "2013-09-17T00:55:03.000z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000z",
"Size": 30
Iy
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-18T20:26:16.000z",
"InstanceId": "i-4b41a37c",
"VolumeId": "vol-2e410a47",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-2e410a47",
"State": "in-use",
"SnapshotId": "snap-708e8348",
"CreateTime": "2013-09-18T20:26:15.000z",
"Size": 8
Iy
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2020-11-20T19:54:06.000z2",
"InstanceId": "i-1jd73kv8",
"VolumeId": "vol-alb3c7nd",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-alb3c7nd",
"State": "in-use",
"SnapshotId": "snap-234087fb",
"CreateTime": "2020-11-20T19:54:05.000z",
"Size": 15
}
1
}
Identifiers

Identifier are the labels for output values. When creating filters, you use identifiers to narrow down your
query results. In the following output example, all identifiers such as Volumes, AvailabilityZone,
and AttachTime are highlighted.

$ aws ec2 describe-volumes

120

AWS Command Line Interface User Guide for Version 2
Filtering

"Volumes": [
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000Z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.0002",
"Size": 30
Iy
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-18T20:26:16.000Z",
"InstanceId": "i-4b41a37c",
"VolumeId": "vol-2e410a47",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-2e410a47",
"State": "in-use",
"SnapshotId": "snap-708e8348",
"CreateTime": "2013-09-18T20:26:15.0002",
"Size": 8
Iy
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2020-11-20T19:54:06.000Z",
"InstanceId": "i-1jd73kvs",
"VolumeId": "vol-alb3c7nd",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-alb3c7nd",
"State": "in-use",
"SnapshotId": "snap-234087fb",
"CreateTime": "2020-11-20T19:54:05.000z",
"Size": 15
}
1
}

For more information, see Identifiers on the JMESPath website.

121

https://jmespath.org/specification.html#identifiers

AWS Command Line Interface User Guide for Version 2
Filtering

Selecting from a list

A list or array is an identifier that is followed by a square bracket "[" such as Volumes and Attachments
in the the section called “Before you start” (p. 119).

Syntax

<listName>[]

To filter through all output from an array, you can use the wildcard notation. Wildcard expressions are
expressions used to return elements using the * notation.

The following example queries all Volumes content.

$ aws ec2 describe-volumes \
--query 'Volumes[*]'
[
{

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000Z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
]!
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2020-11-20T19:54:06.000Z",
"InstanceId": "i-1jd73kv8",
"VolumeId": "vol-alb3c7nd",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
]!
"VolumeType": "standard",
"VolumeId": "vol-alb3c7nd",
"State": "in-use",
"SnapshotId": "snap-234087fb",
"CreateTime": "2020-11-20T19:54:05.000Z",
"Size": 15

To view a specific volume in the array by index, you call the array index. For example, the first item in the
Volumes array has an index of 0, resulting in the Volumes[0] query. For more information about array
indexes, see index expressions on the JMESPath website.

$ aws ec2 describe-volumes \

122

http://jmespath.org/specification.html#wildcard-expressions
http://jmespath.org/specification.html#index-expressions

AWS Command Line Interface User Guide for Version 2

Filtering
--query 'Volumes[O0]'
{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30
}

To view a specific range of volumes by index, use s1ice with the following syntax, where start is the
starting array index, stop is the index where the filter stops processing, and step is the skip interval.

Syntax

<arrayName>[<start>:<stop>:<step>]

If any of these are omitted from the slice expression, they use the following default values:

« Start — The first index in the list, O.
« Stop — The last index in the list.
« Step — No step skipping, where the value is 1.

To return only the first two volumes, you use a start value of 0, a stop value of 2, and a step value of 1 as
shown in the following example.

$ aws ec2 describe-volumes \
--query 'Volumes[0:2:1]"'

{
"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30
}
{

"AvailabilityZone": "us-west-2a",

123

AWS Command Line Interface User Guide for Version 2

Filtering
"Attachments": [
{
"AttachTime": "2013-09-18T20:26:16.000Z",
"InstanceId": "i-4b41a37c",
"VolumeId": "vol-2e410a47",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-2e410a47",
"State": "in-use",
"SnapshotId": "snap-708e8348",
"CreateTime": "2013-09-18T20:26:15.0002",
"Size": 8

Since this example contains default values, you can shorten the slice from Vvolumes[0:2:1] to
Volumes[:2].

The following example omits default values and returns every two volumes in the entire array.

$ aws ec2 describe-volumes \
--query 'Volumes[::2]'

{

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000z2",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000z",
"Size": 30

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2020-11-20T19:54:06.0002",
"InstanceId": "i-1jd73kvs",
"VolumeId": "vol-alb3c7nd",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-alb3c7nd",
"State": "in-use",
"SnapshotId": "snap-234087fb",
"CreateTime": "2020-11-20T19:54:05.000z",
"Size": 15

124

AWS Command Line Interface User Guide for Version 2

Filtering

Steps can also use negative numbers to filter in the reverse order of an array as shown in the following

example.

$ aws ec2 describe-volumes \
--query 'Volumes[::-2]"'

[

{

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2020-11-20T19:54:06.0002",
"InstanceId": "i-1jd73kvs",
"VolumeId": "vol-alb3c7nd",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-alb3c7nd",
"State": "in-use",
"SnapshotId": "snap-234087fb",
"CreateTime": "2020-11-20T19:54:05.000z",
"Size": 15

"AvailabilityZone": "us-west-2a",
"Attachments": [
{
"AttachTime": "2013-09-17T00:55:03.000z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"
}
1,
"VolumeType": "standard",
"VolumeId": "vol-ella5288",
"State": "in-use",
"SnapshotId": "snap-f23eclc8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30

For more information, see Slices on the JMESPath website.

Filtering nested data

To narrow the filtering of the Volumes[*] for nested values, you use subexpressions by appending a

period and your filter criteria.

Syntax

<expression>.<expression>

The following example shows all Attachments information for all volumes.

125

https://jmespath.org/specification.html#slices

AWS Command Line Interface User Guide for Version 2
Filtering

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments'
[
[

{
"AttachTime": "2013-09-17T00:55:03.000Z",

"InstanceId": "i-a071c394",
"VolumeId": "vol-ella5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sdal"

"AttachTime": "2013-09-18T20:26:16.0002",
"InstanceId": "i-4b41a37c",

"VolumeId": "vol-2e410a47",

"State": "attached",
"DeleteOnTermination": true,

"Device": "/dev/sdal"

"AttachTime": "2020-11-20T19:54:06.0002",
"InstanceId": "i-1jd73kvs",

"VolumeId": "vol-alb3c7nd",

"State": "attached",
"DeleteOnTermination": true,

"Device": "/dev/sdal"

To filter further into the nested values, append the expression for each nested indentifier. The following
example lists the state for all volumes.

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments[*].State’

[
[
"attached"
1,
[
"attached"
1,
[
"attached"
1
]

Flattening results
For more information, see SubExpressions on the JMESPath website.

You can flatten the results for Volumes[*].Attachments[*].State by removing the wildcard
notation resulting in the Volumes[*].Attachments[].State query. Flattening often is useful to
improve the readablity of results.

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments[].State'

126

https://jmespath.org/specification.html#subexpressions

AWS Command Line Interface User Guide for Version 2
Filtering

[
"attached",

"attached",
"attached"

For more information, see Flatten on the JMESPath website.

Filtering for specific values
To filter for specific values in a list, you use a filter expression as shown in the following syntax.

Syntax

? <expression> <comparator> <expression>]

Expression comparators include ==, ! =, <, <=, >, and >=. The following example filters for the
VolumeIds for all Vvolumes in an AttachedState.

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments[?State=="attached”].VolumeId'
[

[
"vol-ella5288"

]l
[

"vol-2e410a47"
]l
[

"vol-alb3c7nd"

This can then be flattened resulting in the following example.

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments[?State=="attached”].VolumeId[]"

"vol-ella5288",
"vol-2e410a47",
"vol-alb3c7nd"

The following example filters for the VolumeIds of all Volumes that have a size less than 20.

$ aws ec2 describe-volumes \
--query 'Volumes[?Size < ~20"].VolumeId'
[
"vol-2e410a47",
"vol-alb3c7nd"

For more information, see Filter Expressions on the JMESPath website.

Piping expressions

You can pipe results of a filter to a new list, and then filter the result with another expression using the

following syntax:

Syntax

127

https://jmespath.org/specification.html#flatten
https://jmespath.org/specification.html#filterexpressions

AWS Command Line Interface User Guide for Version 2
Filtering

<expression> | <expression>]

The following example takes the filter results of the Volumes[*].Attachments[].InstancelId
expression and outputs the first result in the array.

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments[].InstanceId | [0]'
"i-a071c394"

This example does this by first creating the array from the following expression.

$ aws ec2 describe-volumes \
--query 'Volumes[*].Attachments[].InstanceId’'
"i-a071c394",
"i-4b41a37c",
"i-1jd73kv8"

And then returns the first element in that array.

"i-a071c394"

For more information, see Pipe Expressions on the JMESPath website.
Filtering for multiple identifier values

To filter for multiple identifiers, you use a multiselect list by using the following syntax:

Syntax

<listName>[].[<expression>, <expression>]

In the following example, VolumeId and VolumeType are filtered in the Volumes list resulting in the
following expression.

$ aws ec2 describe-volumes \
--query 'Volumes[].[VolumeId, VolumeType]'

"vol-ella5288",
"standard"

"vol-2e410a47",
"standard"

"vol-alb3c¢7nd",
"standard"

To add nested data to the list, you add another multiselect list. The following example expands on the
previous example by also filtering for InstanceId and State in the nested Attachments list. This
results in the following expression.

$ aws ec2 describe-volumes \
--query 'Volumes[].[VolumeId, VolumeType, Attachments[].[InstanceId, State]]’

128

https://jmespath.org/specification.html#pipe-expressions

AWS Command Line Interface User Guide for Version 2
Filtering

[

[
"vol-ella5288",

"standard",
[

[
"i-a071c394",

"attached"

1
1,
[
"vol-2e410a47",

"standard",
[

[
"i-4b41a37c",

"attached"

1
1,
[
"vol-alb3c¢7nd",

"standard",
[
[
"i-1jd73kvs",
"attached"

To be more readable, flatten out the expression as shown in the following example.

$ aws ec2 describe-volumes \
--query 'Volumes[].[VolumeId, VolumeType, Attachments[].[InstanceId, State][]]1[]’
[
"vol-ella5288",
"standard",
[
"i-a071c394",
"attached"
1,
"vol-2e410a47",
"standard",
[
"i-4b41a37c",
"attached"
1,
"vol-alb3c7nd",
"standard",
[
"i-1jd73kv8",
"attached"

For more information, see Multiselect list on the JMESPath website.

Adding labels to identifier values

To make this output easier to read, use a multiselect hash with the following syntax.

129

https://jmespath.org/specification.html#multiselectlist

AWS Command Line Interface User Guide for Version 2
Filtering

Syntax

<listName>[].{<label>: <expression>, <label>: <expression>}

Your identifier label does not need to be the same as the name of the identifier. The following example
uses the label Type for the VolumeType values.

$ aws ec2 describe-volumes \
--query 'Volumes[].{VolumeType: VolumeType}'
[

{

"VolumeType": "standard",
T
{

"VolumeType": "standard",
T
{

"VolumeType": "standard",
}

]

For simplicity, the following example keeps the identifier names for each label and displays the
VolumeId, VolumeType, Instanceld, and State for all volumes:

$ aws ec2 describe-volumes \
--query 'Volumes[].{VolumeId: VolumeId, VolumeType: VolumeType, Instanceld:
Attachments[0].InstancelId, State: Attachments[0].State}'
[

{
"VolumeId": "vol-ella5288",
"VolumeType": "standard",
"InstanceId": "i-a071c394",
"State": "attached"

T

{
"VolumeId": "vol-2e410a47",
"VolumeType": "standard",
"InstanceId": "i-4b41a37c",
"State": "attached"

T

{
"VolumeId": "vol-alb3c7nd",
"VolumeType": "standard",
"InstanceId": "i-1jd73kvs",
"State": "attached"

}

For more information, see Multiselect hash on the JMESPath website.
Functions

The JMESPath syntax contains many functions that you can use for your queries. For information on
JMESPath functions, see Built-in Functions on the JMESPath website.

To demonstrate how you can incorporate a function into your queries, the following example uses the
sort_by function. The sort_by function sorts an array using an expression as the sort key using the
following syntax:

Syntax

130

https://jmespath.org/specification.html#multiselecthash
https://jmespath.org/specification.html#built-in-functions

AWS Command Line Interface User Guide for Version 2
Filtering

sort_by(<listName>, <sort expression>)[].<expression>

The following example uses the previous multiselect hash example (p. 129) and sorts the output by
VolumeId.

$ aws ec2 describe-volumes \
--query 'sort_by(Volumes, &VolumeId)[].{VolumeId: VolumeId, VolumeType: VolumeType,
InstanceId: Attachments[0].InstancelId, State: Attachments[0].State}’

[

{
"VolumeId": "vol-2e410a47",
"VolumeType": "standard",
"InstanceId": "i-4b41a37c",
"State": "attached"

Iy

{
"VolumeId": "vol-alb3c7nd",
"VolumeType": "standard",
"InstanceId": "i-1jd73kvs",
"State": "attached"

Iy

{
"VolumeId": "vol-ella5288",
"VolumeType": "standard",
"InstanceId": "i-a071c394",
"State": "attached"

}

For more information, see sort_by on the JMESPath website.

Advanced --query examples

To extract information from a specific item

The following example uses the --query parameter to find a specific item in a list and then extracts
information from that item. The example lists all of the AvailabilityZones associated with the

specified service endpoint. It extracts the item from the ServiceDetails list that has the specified
ServiceName, then outputs the AvailabilityZones field from that selected item.

$ aws --region us-east-1 ec2 describe-vpc-endpoint-services \
--query 'ServiceDetails[?ServiceName=="com.amazonaws.us-east-1l.ecs”].AvailabilityZones'
[
[
"us-east-la",
"us-east-1b",
"us-east-1lc",
"us-east-14",
"us-east-le",
"us-east-1f"

To show snapshots after the specified creation date

The following example shows how to list all of your snapshots that were created after a specified date,
including only a few of the available fields in the output.

$ aws ec2 describe-snapshots --owner self \

131

https://jmespath.org/specification.html#sort-by

AWS Command Line Interface User Guide for Version 2
Filtering

--output json \

--query 'Snapshots[?StartTime>="2018-02-07"].
{Id:SnapshotId,VId:VolumeId,Size:VolumeSize}'
[

{
"id": "snap-0effb42b7alb2c3d4",
"vid": "vol-0be9bb0bf12345678",
"Size": 8

}

To show the most recent AMIs

The following example lists the five most recent Amazon Machine Images (AMls) that you created, sorted
from most recent to oldest.

$ aws ec2 describe-images \
--owners self \
--query 'reverse(sort_by(Images,&CreationDate))[:5].{id:ImagelId,date:CreationDate}’

{
"id": "ami-0alb2c3d4e5£60001",
"date": "2018-11-28T17:16:38.000Z"
Y
{
"id": "ami-0alb2c3d4e5£60002",
"date": "2018-09-15T13:51:22.000Z"
Y
{
"id": "ami-0alb2c3d4e5£60003",
"date": "2018-08-19T10:22:45.000Z"
Y
{
"id": "ami-0alb2c3d4e5£60004",
"date": "2018-05-03T12:04:02.000Z"
Y
{
"id": "ami-0alb2c3d4e5£60005",
"date": "2017-12-13T17:16:38.000Z"
¥

To show unhealthy Auto Scaling instances

The following example shows only the InstanceId for any unhealthy instances in the specified Auto
Scaling group.

$ aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name My-AutoScaling-Group-Name \
--output text \
--query 'AutoScalingGroups[*].Instances[?HealthStatus=="Unhealthy”].InstanceId’

To exclude volumes with the specified tag

The following example describes all instances without a test tag. Using a simple ?Value != “test’
expression does not work for excluding a volume as volumes can have multiple tags. As long as there is
another tag beside test attached to the volume, the volume is still returned in the results.

To exclude all volumes with the test tag, start with the below expression to return all tags with the
test tag in an array. Any tags that are not the test tag contain a null value.

132

AWS Command Line Interface User Guide for Version 2
Filtering

$ aws ec2 describe-volumes \
--query 'Volumes.Tags[?Value == “test™]'

Then filter out all the positive test results using the not_null function.

$ aws ec2 describe-volumes \
--query 'Volumes[?not_null(Tags[?Value == “test”].vValue)]'

Pipe the results to flatten out the results resulting in the following query.

$ aws ec2 describe-volumes \
--query 'Volumes[?not_null(Tags[?Value == “test”].Value)] | []"'

Combining server-side and client-side filtering

You can use server-side and client-side filtering together. Server-side filtering is completed first, which
sends the data to the client that the ——query parameter then filters. If you're using large data sets,
using server-side filtering first can lower the amount of data sent to the client for each AWS CLI call,
while still keeping the powerful customization that client-side filtering provides.

The following example lists Amazon EC2 volumes using both server-side and client-side filtering.

The service filters a list of all attached volumes in the us-west-2a Availability Zone. The --query
parameter further limits the output to only those volumes with a Size value that is larger than 50, and
shows only the specified fields with user-defined names.

$ aws ec2 describe-volumes \
--filters "Name=availability-zone,Values=us-west-2a" "Name=status,Values=attached" \
--query 'Volumes[?Size > “50°].{Id:VolumeId,Size:Size,Type:VolumeType}'

{
"Id": "vol-0be9bb0bf12345678",
"Size": 80,
"VolumeType": "gp2"

}

The following example retrieves a list of images that meet several criteria. It then uses the -—-query
parameter to sort the output by CreationDate, selecting only the most recent. Finally, it displays the
ImageId of that one image.

$ aws ec2 describe-images \

--owners amazon \

--filters "Name=name,Values=amzn*gp2" "Name=virtualization-type,Valueszhvm" "Name=root-
device-type,Values=ebs" \

--query "sort_by(Images, &CreationDate)[-1].ImageId" \

--output text
ami-00ced3122871a4921

The following example displays the number of available volumes that are more than 1000 IOPS by using
length to count how many are in a list.

$ aws ec2 describe-volumes \
--filters "Name=status,Values=available" \
--query 'length(Volumes[?Iops > ~1000°])'

133

AWS Command Line Interface User Guide for Version 2
Return Codes

Additional resources

AWS CLI autoprompt

When beginning to use filter expressions, you can use the auto-prompt feature in the AWS CLI
version 2. The auto-prompt feature provides a preview when you press the F5 key. For more
information, see the section called “Auto-prompt” (p. 104).

JMESPath Terminal
JMESPath Terminal is an interactive terminal command to experiment with JMESPath expressions
that are used for client-side filtering. Using the jpterm command, the terminal shows immediate

query results as you're typing. You can directly pipe AWS CLI output to the terminal, enabling
advanced querying experimentation.

The following example pipes aws ec2 describe-volumes output directly to JMESPath Terminal.

$ aws ec2 describe-volumes | jpterm

For more information on JMESPath Terminal and installation instructions, see JMESPath Terminal on
GitHub.

iq utility

The jq utility provides you a way to transform your output on the client-side to an output format
you desire. For more information on jq and installation instructions, see jq on GitHub.

Understanding return codes from the AWS CLI

The return code is usually a hidden code sent after running a AWS Command Line Interface (AWS CLI)
command which describes the status of the command. You can use the echo command to display

the code sent from the last AWS CLI command and use these codes to determine if a command was
successful or if it failed, and why a command might have an error. In addition to the return codes, you
can view more details about a failure by running your commands with the --debug switch. This switch
produces a detailed report of the steps the AWS CLI uses to process the command, and what the result of
each step was.

To determine the return code of an AWS CLI command, run one of the following commands immediately
after running the CLI command.

Linux and macOS

$ echo $?
0

Windows PowerShell

PS> echo $lastexitcode
0

Windows Command Prompt

C:\> echo %errorlevel%
0

The following are the return code values that can be returned at the end of running an AWS Command
Line Interface (AWS CLI) command.

134

https://github.com/jmespath/jmespath.terminal
https://stedolan.github.io/jq/

AWS Command Line Interface User Guide for Version 2
Wizards

Code | Meaning

0 The service responded with an HTTP response status code of 200 indicating that there were no
errors generated by the AWS CLI and AWS service the request was sent to.

1 One or more Amazon S3 transfer operations failed. Limited to S3 commands.
2 The meaning of this return code depends on the command:

« Applicable to all AWS CLI commands — the command entered couldn't be parsed. Parsing
failures can be caused by, but aren't limited to, missing required subcommands or arguments,
or using unknown commands or arguments.

« Limited to S3 commands — One or more files marked for transfer were skipped during the
transfer process. However, all other files marked for transfer were successfully transferred.
Files that are skipped during the transfer process include: files that don't exist; files that are
character special devices, block special device, FIFO queues, or sockets; and files that the user
doesn't have read permissions to.

130 | The command was interrupted by a SIGINT. This is the signal sent by you to cancel a command
with ctrl+c.

252 | Command syntax was invalid, an unknown parameter was provided, or a parameter value was
incorrect and prevented the command from running.

253 | The system environment or configuration was invalid. While the command provided might be
syntactically valid, missing configuration or credentials prevented the command from running.

254 | The command successfully parsed and a request made to the specified service but the service
returned an error. This will generally indicate incorrect APl usage or other service specific issues.

255 | The command failed. There were errors generated by the AWS CLI or by the AWS service to
which the request was sent.

Using the AWS CLI wizards

The AWS Command Line Interface (AWS CLI) provides the ability to use a wizard for some commands. To
contribute or view the full list of available AWS CLI wizards, see the AWS CLI wizards folder on GitHub.

How it works

Similar to the AWS console, the AWS CLI has a Ul wizard that guides you through managing your AWS
resources. To use the wizard, you call the wizard subcommand and the wizard name after the service
name in a command. The command structure is as follows:

Syntax:

$ aws <command> wizard <wizardName>

The following example is calling the wizard to create a new dynamodb table.

$ aws dynamodb wizard new-table

aws configure is the only wizard that does not have a wizard name. When running the wizard, run the
aws configure wizard command as the following example demonstrates:

135

https://github.com/aws/aws-cli/tree/v2/awscli/customizations/wizard/wizards

AWS Command Line Interface User Guide for Version 2
Aliases

$ aws configure wizard

After calling a wizard, a form in the shell is displayed. For each parameter, you are either provided a

list of options to select from or prompted to enter in a string. To select from a list, use your up and
down arrow keys and press ENTER. To view details on an option, press the right arrow key. When you've
finished filling out a parameter, press ENTER.

$ aws configure wizard
What would you like to configure
> Static Credentials

Assume Role

Process Provider

Additional CLI configuration
Enter the name of the profile:
Enter your Access Key Id:
Enter your Secret Access Key:

To edit previous prompts, use SHIFT + TAB. For some wizards, after filling in all prompts, you can
preview an AWS CloudFormation template or the AWS CLI command filled with your information. This
preview mode is useful to learn the AWS CLI, service APIs, and creating templates for scripts.

Press ENTER after previewing or the last prompt to run the final command.

$ aws configure wizard

What would you like to configure

Enter the name of the profile: testWizard

Enter your Access Key Id: AB1C2D3EF4GH5I678J90K

Enter your Secret Access Key: ablc2def34gh5i67j8k9011mnop2qr3s45tu678v90
<ENTER>

Creating and using AWS CLI aliases

Aliases are shortcuts you can create in the AWS Command Line Interface (AWS CLI) to shorten commands
or scripts that you frequently use. You create aliases in the alias file located in your configuration
folder.

Topics
« Prerequisites (p. 136)
» Step 1: Creating the alias file (p. 137)
« Step 2: Creating an alias (p. 137)
» Step 3: Calling an alias (p. 139)
« Alias repository examples (p. 140)
« Resources (p. 141)

Prerequisites

To use alias commands, you need to complete the following:

« Install and configure the AWS CLI. For more information, see the section called “Install/Update” (p. 6)
and Configuration basics (p. 32).

« Use a minimum AWS CLI version of 1.11.24 or 2.0.0.
« (Optional) To use AWS CLI alias bash scripts, you must use a bash-compatible terminal.

136

AWS Command Line Interface User Guide for Version 2
Step 1: Creating the alias file

Step 1: Creating the alias file

To create the alias file, you can use your file navigation and a text editor, or use your preferred terminal
by using the step-by-step procedure. To quickly create your alias file, use the following command block.

Linux and macOS

$ mkdir -p ~/.aws/cli
$ echo '[toplevel]' > ~/.aws/cli/alias

Windows

C:\> md %USERPROFILE%\.aws\cli
C:\> echo [toplevel] > %USERPROFILE%/.aws/cli/alias

To create the alias file

1.

Create a folder named c1i in your AWS CLI configuration folder. By default the configuration folder
is ~/.aws/ on Linux or macOS and ¥USERPROFILE%\ .aws\ on Windows. You can create this
through your file navigation or by using the following command.

Linux and macOS

$ mkdir -p ~/.aws/cli

Windows

C:\> md %USERPROFILE%\.aws\cli

The resulting c1i folder default path is ~/.aws/c1i/ on Linux or macOS and $USERPROFILE%
\ .aws\cli on Windows.

In the c1i folder, create a text file named alias with no extension and add [toplevel] to the
first line. You can create this file through your preferred text editor or use the following command.

Linux and macOS

$ echo '[toplevel]' > ~/.aws/cli/alias

Windows

$ echo [toplevel] > %USERPROFILE%/.aws/cli/alias

Step 2: Creating an alias

You can create an alias using basic commands or bash scripting.

Creating a basic command alias

You can create your alias by adding a command using the following syntax in the alias file you created
in the previous step.

137

AWS Command Line Interface User Guide for Version 2
Step 2: Creating an alias

Syntax

aliasname = command [--options]

The aliasname is what you call your alias. The command is the command you want to call, which can
include other aliases. You can include options or parameters in your alias, or add them when calling your
alias.

The following example creates an alias named aws whoami using the aws sts get-caller-
identity command. Since this alias calls an existing AWS CLI command, you can write the command
without the aws prefix.

whoami = sts get-caller-identity

The following example takes the previous whoami example and adds the Account filter and text
output options.

whoami2 = sts get-caller-identity --query AccountName --output text

Creating a bash scripting alias

Warning
To use AWS CLI alias bash scripts, you must use a bash-compatible terminal

You can create an alias using bash scripts for more advanced processes using the following syntax.

Syntax

aliasname =
() |
script content
Yi f

The aliasname is what you call your alias and script content is the script you want to run when you
call the alias.

The following example uses opendns to output your current IP address. Since you can use aliases in
other aliases, the following myip alias is useful to allow or revoke access for your IP address from within
other aliases.

myip =
£O) {
dig +short myip.opendns.com @resolverl.opendns.com
i £

The following script example calls the previous aws myip alias to authorize your IP address for an
Amazon EC2 security group ingress.

authorize-my-ip =
() |
ip=$(aws myip)
aws ec2 authorize-security-group-ingress --group-id ${1} --cidr $ip/32 --protocol tcp
--port 22
Y £

When you call aliases that use bash scripting, the variables are always passed in the order that you
entered them. In bash scripting, the variable names are not taken into consideration, only the order they

138

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-caller-identity.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-caller-identity.html

AWS Command Line Interface User Guide for Version 2
Step 3: Calling an alias

appear. In the following textalert alias example, the variable for the --message option is first and --
phone-number option is second.

textalert =
() |
aws sns publish --message "${1}" --phone-number ${2}
yi f

Step 3: Calling an alias

To run the alias you created in your alias file use the following syntax. You can add additional options
when you call your alias.

Syntax

$ aws aliasname

The following example uses the aws whoami alias.

$ aws
whoami
{
"UserId": "A12BCD34ES5FGHI6JKLM",
"Account": "1234567890987",
"Arn": "arn:aws:iam::1234567890987:user/userName"

The following example uses the aws whoami alias with additional options to only return the Account
number in text output.

$ aws whoami --query Account --output
text
1234567890987

Calling an alias using bash scripting variables

When you call aliases that use bash scripting, variables are passed in the order they are entered. In bash
scripting, the name of the variables are not taken into consideration, only the order they appear. For
example, in the following textalert alias, the variable for the option --message is first and --phone-
number is second.

textalert =
() |
aws sns publish --message "${1}" --phone-number ${2}
yi £

When you call the textalert alias, you need to pass variables in the same order as they are run in the
alias. In the following example we use the variables $message and $phone. The $message variable is
passed as ${1} for the --message option and the $phone variable is passed as ${2} for the --phone-
number option. This results in successfully calling the textalert alias to send a message.

$ aws textalert $message
$phone

{
"MessageId": "lab2cd3e4-fg56-7h89-i01j-2klmn34567"

139

AWS Command Line Interface User Guide for Version 2
Alias repository examples

}

In the following example, the order is switched when calling the alias to $phone and $message. The
$phone variable is passed as ${1} for the --message option and the $message variable is passed as
${2} for the -—-phone-number option. Since the variables are out of order, the alias passes the variables
incorrectly. This causes an error because the contents of $message do not match the phone number
formatting requirements for the --phone-number option.

$ aws textalert $phone

$message
usage: aws [options] <command> <subcommand> [<subcommand> ...] [parameters]
To see help text, you can run:

aws help
aws <command> help

aws <command> <subcommand> help

Unknown options: text

Alias repository examples

The AWS CLI alias repository on GitHub contains AWS CLI alias examples created by the AWS CLI
developer team and community. You can use the entire alias file example or take individual aliases for
your own use.

Warning
Running the commands in this section deletes your existing alias file. To avoid overwriting
your existing alias file, change your download location.

To use aliases from the repository

Install Git. For installation instructions, see Getting Started - Installing Git in the Git Documentation.

2. Install the jp command. The jp command is used in the tostring alias. For installation
instructions, see the JMESPath (jp) README.md on GitHub.

3. Install the jg command. The jg command is used in the tostring-with-jq alias. For installation
instructions, see the JSON processor (jq) on GitHub.

4. Download the alias file by doing one of the following:

« Run the following commands that downloads from the repository and copies the alias file to
your configuration folder.

Linux and macOS

$ git clone https://github.com/awslabs/awscli-aliases.git
$ mkdir -p ~/.aws/cli
$ cp awscli-aliases/alias ~/.aws/cli/alias

Windows

C:\> git clone https://github.com/awslabs/awscli-aliases.git
C:\> md %USERPROFILE%\.aws\cli
C:\> copy awscli-aliases\alias %USERPROFILE%\.aws\cli

« Download directly from the repository and save to the c1i folder in your AWS CLI configuration
folder. By default the configuration folder is ~/.aws/ on Linux or macOS and %USERPROFILE%
\ .aws\ on Windows.

5. To verify the aliases are working, run the following alias.

140

https://github.com/awslabs/awscli-aliases
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/jmespath/jp
https://stedolan.github.io/jq/download/

AWS Command Line Interface User Guide for Version 2
Resources

$ aws whoami

This displays the same response as the aws sts get-caller-identity command:

{

"Account": "012345678901",

"UserId": "AIUAINBADX2VEG2TC6HD6",

"Arn": "arn:aws:iam::012345678901:user/myuser"
}

« The AWS CLI alias repository on GitHub contains AWS CLI alias examples created by the AWS CLI
developer team and the contribution of the AWS CLI community.

« The alias feature announcement from AWS re:Invent 2016: The Effective AWS CLI User on YouTube.
e aws sts get-caller-identity
e aws ec2 describe-instances

e aws sns publish

141

https://github.com/awslabs/awscli-aliases
https://www.youtube.com/watch?t=1590&v=Xc1dHtWa9-Q
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-caller-identity.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/publish.html

AWS Command Line Interface User Guide for Version 2
DynamoDB

Using the AWS CLI to work with AWS
Services

This section provides examples that show how to use the AWS Command Line Interface (AWS CLI) to
access various AWS services.

Note

For a complete reference of all the available commands for each service, see the AWS CLI
version 2 reference guide, or use the built-in command line help. For more information, see
Getting help with the AWS CLI (p. 81).

Services
» Using Amazon DynamoDB with the AWS CLI (p. 142)
« Using Amazon EC2 with the AWS CLI (p. 145)
» Using Amazon S3 Glacier with the AWS CLI (p. 160)
« Using AWS Identity and Access Management from the AWS CLI (p. 165)
» Using Amazon S3 with the AWS CLI (p. 168)
« Using Amazon SNS with the AWS CLI (p. 181)
» Using Amazon Simple Workflow Service with the AWS CLI (p. 183)

Using Amazon DynamoDB with the AWS CLI

An introduction to Amazon DynamoDB

What is Amazon DynamoDB?

The AWS Command Line Interface (AWS CLI) provides support for all of the AWS database services,
including Amazon DynamoDB. You can use the AWS CLI for impromptu operations, such as creating a
table. You can also use it to embed DynamoDB operations within utility scripts.

For more information about using the AWS CLI with DynamoDB, see dynamodb in the AWS CLI Command
Reference.

To list the AWS CLI commands for DynamoDB, use the following command.

$ aws dynamodb help

Topics
« Prerequisites (p. 142)
« Creating and using DynamoDB tables (p. 143)
« Using DynamoDB Local (p. 144)
» Resources (p. 144)

Prerequisites

To run the dynamodb commands, you need to:

142

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://www.youtube-nocookie.com/embed/sI-zciHAh-4
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/index.html

AWS Command Line Interface User Guide for Version 2
Creating and using DynamoDB tables

o AWS CLl installed, see the section called “Install/Update” (p. 6) for more information.

« AWS CLI configured, see Configuration basics (p. 32) for more information. The profile that you use
must have permissions that allow the AWS operations performed by the examples.

Creating and using DynamoDB tables

The command line format consists of an DynamoDB command name, followed by the parameters for
that command. The AWS CLI supports the CLI shorthand syntax (p. 103) for the parameter values, and
full JSON.

The following example creates a table named MusicCollection.

$ aws dynamodb create-table \
--table-name MusicCollection \
--attribute-definitions AttributeName=Artist,AttributeType=S
AttributeName=SongTitle,AttributeType=S \
--key-schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

You can add new lines to the table with commands similar to those shown in the following example.
These examples use a combination of shorthand syntax and JSON.

$ aws dynamodb put-item \
--table-name MusicCollection \

--item '{
"Artist": {"S": "No One You Know"},
"SongTitle": {"S": "Call Me Today"} ,
"AlbumTitle": {"S": "Somewhat Famous"}
A
--return-consumed-capacity TOTAL
{
"ConsumedCapacity": {
"CapacityUnits": 1.0,
"TableName": "MusicCollection"
}
}

$ aws dynamodb put-item \
--table-name MusicCollection \

--item '{
"Artist": {"S": "Acme Band"},
"SongTitle": {"S": "Happy Day"} ,
"AlbumTitle": {"S": "Songs About Life"}
A
--return-consumed-capacity TOTAL
{

"ConsumedCapacity": {
"CapacityUnits": 1.0,
"TableName": "MusicCollection"

}

}

It can be difficult to compose valid JSON in a single-line command. To make this easier, the AWS CLI
can read JSON files. For example, consider the following JSON snippet, which is stored in a file named
expression-attributes. json.

{

":vl": {"S": "No One You Know"},

143

AWS Command Line Interface User Guide for Version 2
Using DynamoDB Local

":v2": {"S": "Call Me Today"}
}

You can use that file to issue a query request using the AWS CLI. In the following example, the content
of the expression-attributes. json file is used as the value for the --expression-attribute-
values parameter.

$ aws dynamodb query --table-name MusicCollection \
--key-condition-expression "Artist = :vl AND SongTitle = :v2" \
--expression-attribute-values file://expression-attributes.json

{
"Count": 1,
"Items": [
{
"AlbumTitle": {
"S": "Somewhat Famous"
Iy
"SongTitle": {
"S": "Call Me Today"
Iy
"Artist": {
"S": "No One You Know"
}
}
1,
"ScannedCount": 1,
"ConsumedCapacity": null
}

Using DynamoDB Local

In addition to DynamoDB, you can use the AWS CLI with DynamoDB Local. DynamoDB Local is a small
client-side database and server that mimics the DynamoDB service. DynamoDB Local enables you

to write applications that use the DynamoDB API, without manipulating any tables or data in the
DynamoDB web service. Instead, all of the API actions are rerouted to a local database. This lets you save
on provisioned throughput, data storage, and data transfer fees.

For more information about DynamoDB Local and how to use it with the AWS CLI, see the following
sections of the Amazon DynamoDB Developer Guide:

« DynamoDB Local
« Using the AWS CLI with DynamoDB Local

Resources

AWS CLI reference:

*» aws dynamodb
e aws dynamodb create-table
¢ aws dynamodb put-item

¢ aws dynamodb query

Service reference:

« DynamoDB Local in the Amazon DynamoDB Developer Guide
o Using the AWS CLI with DynamoDB Local in the Amazon DynamoDB Developer Guide

144

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.CLI.html#UsingWithDDBLocal
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/create-table.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/put-item.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/query.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.CLI.html#UsingWithDDBLocal

AWS Command Line Interface User Guide for Version 2
Amazon EC2

Using Amazon EC2 with the AWS CLI

An introduction to Amazon Elastic Compute Cloud

Introduction to Amazon EC2 - Elastic Cloud Server and Hosting with AWS

You can access the features of Amazon Elastic Compute Cloud (Amazon EC2) using the AWS Command
Line Interface (AWS CLI). To list the AWS CLI commands for Amazon EC2, use the following command.

aws ec2 help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

This topic shows short-form examples of AWS CLI commands that perform common tasks for Amazon
EC2.

For long-form examples of AWS CLI commands, see AWS CLI code examples repository on GitHub.

Topics
« Creating, displaying, and deleting Amazon EC2 key pairs (p. 145)
» Creating, configuring, and deleting security groups for Amazon EC2 (p. 147)
 Launching, listing, and terminating Amazon EC2 instances (p. 152)
» Change an Amazon EC2 instance type using a bash script (p. 158)

Creating, displaying, and deleting Amazon EC2 key
pairs

You can use the AWS Command Line Interface (AWS CLI) to create, display, and delete your key pairs for
Amazon Elastic Compute Cloud (Amazon EC2). You use key pairs to connect to an Amazon EC2 instance.

You must provide the key pair to Amazon EC2 when you create the instance, and then use that key pair
to authenticate when you connect to the instance.

Note
For additional command examples, see the AWS CLI reference guide.

Topics
« Prerequisites (p. 145)
« Create a key pair (p. 146)
« Display your key pair (p. 146)
« Delete your key pair (p. 147)
« References (p. 147)

Prerequisites

To run the ec2 commands, you need to:

« Install and configure the AWS CLI. For more information, see the section called “Install/Update” (p. 6)
and Configuration basics (p. 32).

145

https://www.youtube-nocookie.com/embed/sI-zciHAh-4
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/aws-cli
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html

AWS Command Line Interface User Guide for Version 2
Amazon EC2 Key Pairs

« Set your IAM permissions to allow for Amazon EC2 access. For more information about IAM
permissions for Amazon EC2, see IAM policies for Amazon EC2 in the Amazon EC2 User Guide for Linux
Instances.

Create a key pair

To create a key pair, use the aws ec2 create-key-pair command with the --query option, and the
--output text option to pipe your private key directly into a file.

$ aws ec2 create-key-pair --key-name MyKeyPair --query 'KeyMaterial' --output text
> MyKeyPair.pem

For PowerShell, the > f£ile redirection defaults to UTF-8 encoding, which cannot be used with some
SSH clients. So, you must convert the output by piping it to the out-£ile command and explicitly set
the encoding to ascii.

PS C:\>aws ec2 create-key-pair --key-name MyKeyPair --query 'KeyMaterial' --output text |
out-file -encoding ascii -filepath MyKeyPair.pem

The resulting MyKeyPair .pem file looks similar to the following.

EXAMPLEKEYKCAQEAy7WZhaDsrA1W3mR1QtvhwyORRX8gnxgDAfRt /gx42KkWXsT4rXE/b5CpSgie/
vBoU7jLxx92pNHOFnByP+Dc21eyyz6CvjTmWAOJWEWiW5/akH7i05dSrvC7dQkW2duv5QuUdEOQW
Z/aNxMniGQE6XAgfwlnXVBwrerrQo+zZWQeqiUwwMkuEbLeJFLhMCVYURpUMSCloehm449i1x9X1F
G50TCFe0z£f18dqqCP6GzbPaljiUl19xX/azOR9V+tpUOZEL+wmXnZt3 /nHPQ5xvD20JH67km6SuPW
oPzev/D8V+x4+bHthfSjRIY7DVQF jfBVwHXigBdtZcU2/wei8D/HYWIDAQABAOIBAGZ1lkaEvnrqu
/uler7vgIn5m71N5LKw4hJLAIW6tUT/£2vtcHKOSKkbQCOXur iHmQ2MQyJX/0kn2Nf jLV/ufGxbL1
mb5qwMGUNEpJazZD6QSSs3kICLWWUYUiGfcOuiSbmJoap/GTLUOW5MEcv36PaBUNy5p53V6G7hXb2
bahyWyJINf jLe4M86yd2YK3V2CmK+X/BOsShnJ36+hjrXPPWmV3N9zEmMCdJjA+K15DYmhm/tJWSD9
810Gk9TopEp7CKIfatEATYyZiVqoRg6k64iuM9JkA30zdXzMQexXVJI1TLZVEHOE7bh1Y9d80102R
0Qs/FiZNAxX21iijCWyv0lpjE73+kCgYEAIMZtyhkHKkFDpwr SM1APaL8oNAbbjwEy7Z5Maqfql+1Ipl
YkriLODbLX1VRAH+yHPRit2hHOjtUNZh4AXvV+cpg09qbUI3+43eEy24B7G/Uh+GTfbjsXs0x0x/x
p90otyVwc7hsQ5TA5PZb+mvkI50BEKZet 9XcKwONBYELGhnEPe7cCgYEAO06Vgov6YHleHui9kHuws
ayav0elc5zkxjFInfHFJRry21R1trw2Vdpn+9g481URrpzWVOEihvm+xTtmazZlSp//1kqg75XDwnU
WA8gkn603QE3fq2yN98BURSAKAJfI5RL1HVGQVTel0HLYYXpJnEKHV+Unl2ajLiviWUt5pbBrKbUC
gYBjb0+0Zk0sCcpZ29sbzjYjpIddErySIyRX5gV2uNQwA jLdp9PEfN295yQ+BXMBXiIycWVQiwObH
oMo 7yykABY70zd5wQewBQ4AdS1WSX4nGDtsiFXWiI5sKuAAeOCbTosyls8w8£fxoJ5Tz1sdoxNeGs
Arg6Wv/G1l6zQUAE9zZK9VVWKBgF+09VI/1wIBirsDGzO9wWhVWEFPrTkINvIZzYt69gezxls jgFKshy
WBhd4xHZtmCqpBPlAymEjr/TOlbxyARmMXMnIOWIANNXMGB4KGSyl1lmzSVAoQ+fqR+cJI3d0dyP1l1j
jjbOEd/NY8fr1NDXAVHE8BSkdsx2f6ELEYBKISRr9snRAOGAMrTwYneXzvTskF/S5Fyu0iOegLDa
NWUH38v/nDCgEpIXD5HN3gAECcjull jmbwlvtW+nY2jVhv7UGd8MjwUTNGItdbénsYgM2asrnF3qsS
VRKAKKKYeGjkpUfVTrWOYF jXkfcrR/V+QFL50ndHAKIX jW7a4ejJLncTzmZSpYzZwApc=

Your private key isn't stored in AWS and can be retrieved only when it's created. You can't recover it later.
Instead, if you lose the private key, you must create a new key pair.

If you're connecting to your instance from a Linux computer, we recommend that you use the following
command to set the permissions of your private key file so that only you can read it.

$ chmod 400 MyKeyPair.pem

Display your key pair

A "fingerprint" is generated from your key pair, and you can use it to verify that the private key that you
have on your local machine matches the public key that's stored in AWS.

146

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-key-pair.html

AWS Command Line Interface User Guide for Version 2
Amazon EC2 Security Groups

The fingerprint is an SHA1 hash taken from a DER-encoded copy of the private key. This value is captured
when the key pair is created, and is stored in AWS with the public key. You can view the fingerprint in the
Amazon EC2 console or by running the AWS CLI command aws ec2 describe-key-pairs.

The following example displays the fingerprint for MyKeyPair.

$ aws ec2 describe-key-pairs --key-name MyKeyPair

{
"KeyPairs": [
{
"KeyName": "MyKeyPair",
"KeyFingerprint": "1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f"
}
]
}

For more information about keys and fingerprints, see Amazon EC2 Key Pairs in the Amazon EC2 User
Guide for Linux Instances.

Delete your key pair

To delete a key pair, run the aws ec2 delete-key-pair command, substituting MyKeyPair with the
name of the pair to delete.

$ aws ec2 delete-key-pair --key-name MyKeyPair

References

AWS CLI reference:

e aws ec2
e aws ec2 create-key-pair
e aws ec2 delete-key-pair

e aws ec2 describe-key-pairs

Other reference:

» Amazon Elastic Compute Cloud Documentation

« To view and contribute to AWS SDK and AWS CLI code examples, see the AWS Code Examples
Repository on GitHub.

Creating, configuring, and deleting security groups
for Amazon EC2

Warning

This topic includes some examples for how to use EC2-Classic. AWS is retiring EC2-Classic on
August 15, 2022. If you have not already, we recommend that you migrate from EC2-Classic to a
VPC. For more information, see Migrate from EC2-Classic to a VPC in the Amazon EC2 User Guide
and the blog EC2-Classic Networking is Retiring — Here's How to Prepare.

You can create a security group for your Amazon Elastic Compute Cloud (Amazon EC2) instances that
essentially operates as a firewall, with rules that determine what network traffic can enter and leave.

147

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/delete-key-pair.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-key-pair.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/delete-key-pair.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-key-pairs.html
https://docs.aws.amazon.com/ec2/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
http://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare

AWS Command Line Interface User Guide for Version 2
Amazon EC2 Security Groups

You can create security groups to use in a virtual private cloud (VPC), or in the EC2-Classic shared flat
network. For more information about the differences between EC2-Classic and EC2-VPC, see Supported
Platforms in the Amazon EC2 User Guide for Linux Instances.

Use the AWS Command Line Interface (AWS CLI) to create a security group, add rules to existing security
groups, and delete security groups.

Note
For additional command examples, see the AWS CLI reference guide.

Topics
« Prerequisites (p. 148)
« Create a security group (p. 148)
o Add rules to your security group (p. 149)
« Delete your security group (p. 151)
« References (p. 152)

Prerequisites

To run the ec2 commands, you need to:

« Install and configure the AWS CLI. For more information, see the section called “Install/Update” (p. 6)
and Configuration basics (p. 32).

« Set your IAM permissions to allow for Amazon EC2 access. For more information about IAM
permissions for Amazon EC2, see IAM policies for Amazon EC2 in the Amazon EC2 User Guide for Linux
Instances.

Create a security group

You can create security groups associated with VPCs or for EC2-Classic.

EC2-VPC

The following aws ec2 create-security-group example shows how to create a security group for a
specified VPC.

$ aws ec2 create-security-group --group-name my-sg --description "My security group" --vpc-
id vpc-1a2b3c4d
{
"GroupId": "sg-903004f8"
}

To view the initial information for a security group, run the aws ec2 describe-security-groups
command. You can reference an EC2-VPC security group only by its vpc-id, not its name.

$ aws ec2 describe-security-groups --group-ids sg-903004f8

{

"SecurityGroups": [

{
"IpPermissionsEgress": [
{
"IpProtocol": "-1",
"IpRanges": [
{
"CidrIp": "0.0.0.0/0"

148

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-security-group.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-security-groups.html

AWS Command Line Interface User Guide for Version 2
Amazon EC2 Security Groups

}
1,
"UserIdGroupPairs": []
}

1,
"Description": "My security group"
"IpPermissions": [],
"GroupName": "my-sg",
"VpcId": "vpc-la2b3c4d",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"

EC2-Classic

The following aws ec2 create-security-group example shows how to create a security group for
EC2-Classic.

$ aws ec2 create-security-group --group-name my-sg --description "My security group"

{
"GroupId": "sg-903004f8"

}

To view the initial information for my-sg, run the aws ec2 describe-security-groups command.
For an EC2-Classic security group, you can reference it by its name.

$ aws ec2 describe-security-groups --group-names my-sg
{
"SecurityGroups": [
{
"IpPermissionsEgress": [],
"Description": "My security group"
"IpPermissions": [],
"GroupName": "my-sg",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"

Add rules to your security group

When you run an Amazon EC2 instance, you must enable rules in the security group to allow incoming
network traffic for your means of connecting to the image.

For example, if you're launching a Windows instance, you typically add a rule to allow inbound traffic
on TCP port 3389 to support Remote Desktop Protocol (RDP). If you're launching a Linux instance, you
typically add a rule to allow inbound traffic on TCP port 22 to support SSH connections.

Use the aws ec2 authorize-security-group-ingress command to add a rule to your security
group. A required parameter of this command is the public IP address of your computer, or the network
(in the form of an address range) that your computer is attached to, in CIDR notation.

Note

We provide the following service, https://checkip.amazonaws.com/, to enable you to determine
your public IP address. To find other services that can help you identify your IP address, use
your browser to search for "what is my IP address". If you connect through an ISP or from behind
your firewall using a dynamic IP address (through a NAT gateway from a private network), your

149

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-security-group.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-security-groups.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/authorize-security-group-ingress.html
https://wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://checkip.amazonaws.com/

AWS Command Line Interface User Guide for Version 2
Amazon EC2 Security Groups

address can change periodically. In that case, you must find out the range of IP addresses used
by client computers.

EC2-VPC

The following example shows how to add a rule for RDP (TCP port 3389) to an EC2-VPC security group
with the ID sg-903004£8 using your IP address.

To start, find your IP address.

$ curl https://checkip.amazonaws.com
X.X.X.X

You can then add the IP address to your security group by running the aws ec2 authorize-
security-group-ingress command.

$ aws ec2 authorize-security-group-ingress --group-id sg-903004f8 --protocol tcp --port
3389 --cidr x.X.Xx.Xx

The following command adds another rule to enable SSH to instances in the same security group.

$ aws ec2 authorize-security-group-ingress --group-id sg-903004f8 --protocol tcp --port 22
--cidr x.x.x.x

To view the changes to the security group, run the aws ec2 describe-security-groups command.

$ aws ec2 describe-security-groups --group-ids sg-903004f8

{
"SecurityGroups": [
{
"IpPermissionsEgress": [
{
"IpProtocol": "-1",
"IpRanges": [
{
"CidrIp": "0.0.0.0/0"
}
1,
"UserIdGroupPairs": []
}
1,
"Description": "My security group"
"IpPermissions": [
{
"ToPort": 22,
"IpProtocol": "tcp",
"IpRanges": [
{
"CidrIp": "x.x.x.x"
}
]
"UserIdGroupPairs": [],
"FromPort": 22
¥
1,
"GroupName": "my-sg",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"
}
]
}

150

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/authorize-security-group-ingress.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/authorize-security-group-ingress.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-security-groups.html

AWS Command Line Interface User Guide for Version 2
Amazon EC2 Security Groups

EC2-Classic

The following aws ec2 authorize-security-group-ingress command adds a rule for RDP to the
EC2-Classic security group named my-sg.

$ aws ec2 authorize-security-group-ingress --group-name my-sg --protocol tcp --port 3389 --
cidr x.x.%x.x

The following command adds another rule for SSH to the same security group.

$ aws ec2 authorize-security-group-ingress --group-name my-sg --protocol tcp --port 22 --
cidr x.x.x.x

To view the changes to your security group, run the aws ec2 describe-security-groups
command.

$ aws ec2 describe-security-groups --group-names my-sg
{
"SecurityGroups": [
{
"IpPermissionsEgress": [],
"Description": "My security group"
"IpPermissions": [
{
"ToPort": 22,
"IpProtocol": "tcp",
"IpRanges": [
{
"CidrIp": "x.x.x.x"
}
1

"UserIdGroupPairs": [],
"FromPort": 22
}
]V
"GroupName": "my-sg",
"OwnerId": "123456789012",
"GroupId": "sg-903004f8"

Delete your security group

To delete a security group, run the aws ec2 delete-security-group command.

Note
You can't delete a security group if it's currently attached to an environment.

EC2-VPC

The following command example deletes an EC2-VPC security group.

$ aws ec2 delete-security-group --group-id sg-903004f8

EC2-Classic

The following command example deletes the EC2-Classic security group named my-sg.

151

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/authorize-security-group-ingress.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-security-groups.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/delete-security-group.html

AWS Command Line Interface User Guide for Version 2
EC2 Instances

$ aws ec2 delete-security-group --group-name my-sg

References

AWS CLI reference:

e aws ec2

e aws ec2 authorize-security-group-ingress
e aws ec2 create-security-group

e aws ec2 delete-security-group

e aws ec2 describe-security-groups

Other reference:

» Amazon Elastic Compute Cloud Documentation

« To view and contribute to AWS SDK and AWS CLI code examples, see the AWS Code Examples
Repository on GitHub.

Launching, listing, and terminating Amazon EC2
instances

Warning

This topic includes some examples for how to use EC2-Classic. AWS is retiring EC2-Classic on
August 15, 2022. If you have not already, we recommend that you migrate from EC2-Classic to a
VPC. For more information, see Migrate from EC2-Classic to a VPC in the Amazon EC2 User Guide
and the blog EC2-Classic Networking is Retiring — Here's How to Prepare.

You can use the AWS Command Line Interface (AWS CLI) to launch, list, and terminate Amazon Elastic
Compute Cloud (Amazon EC2) instances. If you launch an instance that isn't within the AWS Free Tier,
you are billed after you launch the instance and charged for the time that the instance is running, even if
it remains idle.

Not
Foor aedditional command examples, see the AWS CLI reference guide.
Topics
« Prerequisites (p. 152)
» Launch your instance (p. 153)
« Add a block device to your instance (p. 156)
« Add a tag to your instance (p. 157)
« Connect to your instance (p. 157)
o List your instances (p. 157)
« Terminate your instance (p. 157)
« References (p. 158)

Prerequisites

To run the ec2 commands in this topic, you need to:

152

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/authorize-security-group-ingress.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-security-group.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/delete-security-group.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-security-groups.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/ec2/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
http://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html

AWS Command Line Interface User Guide for Version 2
EC2 Instances

« Install and configure the AWS CLI. For more information, see the section called “Install/Update” (p. 6)
and Configuration basics (p. 32).

« Set your IAM permissions to allow for Amazon EC2 access. For more information about IAM
permissions for Amazon EC2, see IAM policies for Amazon EC2 in the Amazon EC2 User Guide for Linux
Instances.

« Create a key pair (p. 145) and a security group (p. 147).

« Select an Amazon Machine Image (AMI) and note the AMI ID. For more information, see Finding a
Suitable AMI in the Amazon EC2 User Guide for Linux Instances.

Launch your instance

To launch an Amazon EC2 instance using the AMI you selected, use the aws ec2 run-instances
command. You can launch the instance into a virtual private cloud (VPC), or if your account supports it,
into EC2-Classic.

Initially, your instance appears in the pending state, but changes to the running state after a few
minutes.

EC2-VPC

The following example shows how to launch a t2.micro instance in the specified subnet of a VPC.
Replace the italicized parameter values with your own.

$ aws ec2 run-instances --image-id ami-xxxxxxxx --count 1 --instance-type t2.micro --key-
name MyKeyPair --security-group-ids sg-903004f8 --subnet-id subnet-6e7f829e
{

"OwnerId": "123456789012",
"ReservationId": "r-5875ca20",
"Groups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"
}
1,
"Instances": [
{
"Monitoring": {
"State": "disabled"
I
"PublicDnsName": null,
"Platform": "windows",
"State": {
"Code": O,
"Name": "pending"
I
"EbsOptimized": false,
"LaunchTime": "2013-07-19T02:42:39.000Z",
"PrivateIpAddress": "10.0.1.114",

"ProductCodes": [],
"VpcId": "vpc-la2b3c4d",
"InstanceId": "i-5203422c",
"ImageId": "ami-173d747e",
"PrivateDnsName": ip-10-0-1-114.ec2.internal,
"KeyName": "MyKeyPair",
"SecurityGroups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"

153

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/run-instances.html

AWS Command Line Interface User Guide for Version 2
EC2 Instances

"ClientToken": null,

"SubnetId": "subnet-6e7£829%e",

"InstanceType": "t2.micro",

"NetworkInterfaces": [

{

"Status": "in-use",
"SourceDestCheck": true,
"VpcId": "vpc-la2b3c4d",

"Description": "Primary network interface",
"NetworkInterfaceId": "eni-a7edblc9",
"PrivateIpAddresses": [
{
"PrivateDnsName": "ip-10-0-1-114.ec2.internal",
"Primary": true,
"PrivateIpAddress": "10.0.1.114"
}
1,
"PrivateDnsName": "ip-10-0-1-114.ec2.internal",
"Attachment": {
"Status": "attached",

"DeviceIndex": O,
"DeleteOnTermination": true,

"AttachmentId": "eni-attach-52193138",
"AttachTime": "2013-07-19T02:42:39.000Z"
}
"Groups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"
}
1,
"SubnetId": "subnet-6e7£829e",
"OwnerId": "123456789012",
"PrivateIpAddress": "10.0.1.114"

1,
"SourceDestCheck": true,
"Placement": {
"Tenancy": "default",
"GroupName": null,
"AvailabilityZone": "us-west-2b"
Iy
"Hypervisor": "xen",
"BlockDeviceMappings": [
{
"DeviceName": "/dev/sdal",
"Ebs": {
"Status": "attached",
"DeleteOnTermination": true,
"VolumeId": "vol-877166c8",
"AttachTime": "2013-07-19T02:42:39.0002"

1,
"Architecture": "x86_64",
"StateReason": {
"Message": "pending",
"Code": "pending"
Iy
"RootDeviceName": "/dev/sdal",
"VirtualizationType": "hvm",
"RootDeviceType": "ebs",
"Tags": [
{
"Value": "MyInstance",
"Key": "Name"

154

AWS Command Line Interface User Guide for Version 2
EC2 Instances

}
1,
"AmiLaunchIndex": 0

EC2-Classic

If your account supports it, you can use the following command to launch a t1.micro instance in EC2-
Classic. Replace the italicized parameter values with your own.

$ aws ec2 run-instances --image-id ami-173d747e --count 1 --instance-type tl.micro --key-
name MyKeyPair --security-groups my-sg
{
"OwnerId": "123456789012",
"ReservationId": "r-5875ca20",
"Groups": [
{
"GroupName": "my-sg",
"GroupId": "sg-903004f8"

1,
"Instances": [
{

"Monitoring": {

"State": "disabled"
Iy
"PublicDnsName": null,
"Platform": "windows",
"State": {

"Code": O,

"Name": "pending"
Iy
"EbsOptimized": false,
"LaunchTime": "2013-07-19T02:42:39.000Z",
"ProductCodes": [],
"InstanceId": "i-5203422c",
"ImageId": "ami-173d747e",
"PrivateDnsName": null,
"KeyName": "MyKeyPair",
"SecurityGroups": [

{

"GroupName": "my-sg",
"GroupId": "sg-903004f8"

}
1,
"ClientToken": null,
"InstanceType": "tl.micro",
"NetworkInterfaces": [],
"Placement": {

"Tenancy": "default",
"GroupName": null,
"AvailabilityZone": "us-west-2b"
I
"Hypervisor": "xen",
"BlockDeviceMappings": [
{
"DeviceName": "/dev/sdal",
"Ebs": {
"Status": "attached",
"DeleteOnTermination": true,
"VolumeId": "vol-877166c8",
"AttachTime": "2013-07-19T02:42:39.000Z"

155

AWS Command Line Interface User Guide for Version 2
EC2 Instances

}
}
1,
"Architecture": "x86_64",
"StateReason": {
"Message": "pending",
"Code": "pending"
Iy
"RootDeviceName": "/dev/sdal",
"VirtualizationType": "hvm",
"RootDeviceType": "ebs",
"Tags": [
{
"Value": "MyInstance",
"Key": "Name"
}

1,
"AmiLaunchIndex": 0

Add a block device to your instance

Each instance that you launch has an associated root device volume. You can use block device mapping
to specify additional Amazon Elastic Block Store (Amazon EBS) volumes or instance store volumes to
attach to an instance when it's launched.

To add a block device to your instance, specify the --block-device-mappings option when you use
run-instances.

The following example parameter provisions a standard Amazon EBS volume that is 20 GB in size, and
maps it to your instance using the identifier /dev/sdf.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdf\",\"Ebs\":{\"VolumeSize\":20,
\"DeleteOnTermination\":false}}]"

The following example adds an Amazon EBS volume, mapped to /dev/sdf, based on an existing
snapshot. A snapshot represents an image that is loaded onto the volume for you. When you specify a
snapshot, you don't have to specify a volume size; it will be large enough to hold your image. However, if
you do specify a size, it must be greater than or equal to the size of the snapshot.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdf\",\"Ebs\":{\"SnapshotId\":\"snap-
alb2c3d4\"}} 1"

The following example adds two volumes to your instance. The number of volumes available to your
instance depends on its instance type.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdf\",\"VirtualName\":\"ephemeralO\"},
{\"DeviceName\":\"/dev/sdg\",\"VirtualName\":\"ephemerall\"}]"

The following example creates the mapping (/dev/sdj), but doesn't provision a volume for the
instance.

--block-device-mappings "[{\"DeviceName\":\"/dev/sdj\",\"NoDevice\":\"\"}]"

For more information, see Block Device Mapping in the Amazon EC2 User Guide for Linux Instances.

156

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/block-device-mapping-concepts.html

AWS Command Line Interface User Guide for Version 2
EC2 Instances

Add a tag to your instance

A tag is a label that you assign to an AWS resource. It enables you to add metadata to your resources that
you can use for a variety of purposes. For more information, see Tagging Your Resources in the Amazon
EC2 User Guide for Linux Instances.

The following example shows how to add a tag with the key name "Name" and the value "MyInstance"
to the specified instance, by using the aws ec2 create-tags command.

$ aws ec2 create-tags --resources i1-5203422c --tags Key=Name,Value=MyInstance

Connect to your instance

When your instance is running, you can connect to it and use it just as you'd use a computer sitting in
front of you. For more information, see Connect to Your Amazon EC2 Instance in the Amazon EC2 User
Guide for Linux Instances.

List your instances

You can use the AWS CLI to list your instances and view information about them. You can list all your
instances, or filter the results based on the instances that you're interested in.

The following examples show how to use the aws ec2 describe-instances command.

The following command filters the list to only your t2 .micro instances and outputs only the
InstanceId values for each match.

$ aws ec2 describe-instances --filters "Name=instance-type,Values=t2.micro" --query
"Reservations[].Instances[].InstanceId"
[
"i-05e998023d9c69f9a"
]

The following command lists any of your instances that have the tag Name=MyInstance.

$ aws ec2 describe-instances --filters "Name=tag:Name,Values=MyInstance"

The following command lists your instances that were launched using any of the following AMls: ami-
x0123456, ami-y0123456, and ami-z0123456.

$ aws ec2 describe-instances --filters "Name=image-id,Values=zami-x0123456,ami-y0123456,ami-
z0123456"

Terminate your instance

Terminating an instance deletes it. You can't reconnect to an instance after you've terminated it.

As soon as the state of the instance changes to shutting-down or terminated, you stop incurring
charges for that instance. If you want to reconnect to an instance later, use stop-instances instead of
terminate-instances. For more information, see Terminate Your Instance in the Amazon EC2 User
Guide for Linux Instances.

To delete an instance, you use the command aws ec2 terminate-instances to delete it.

$ aws ec2 terminate-instances --instance-ids i-5203422c

157

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/stop-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/terminate-instances.html

AWS Command Line Interface User Guide for Version 2
Change EC2 type using bash scripting

{
"TerminatingInstances": [
{
"InstanceId": "i-5203422c",
"CurrentState": {
"Code": 32,
"Name": "shutting-down"
Iy
"PreviousState": {
"Code": 16,
"Name": "running"
}
}
]
}
References

AWS CLI reference:

e aws ec2

e aws ec2 create-tags

e aws ec2 describe-instances
e aws ec2 run-instances

e aws ec2 terminate-instances

Other reference:

» Amazon Elastic Compute Cloud Documentation

« To view and contribute to AWS SDK and AWS CLI code examples, see the AWS Code Examples
Repository on GitHub.

Change an Amazon EC2 instance type using a bash
script

This bash scripting example for Amazon EC2 changes the instance type for an Amazon EC2 instance
using the AWS Command Line Interface (AWS CLI). It stops the instance if it's running, changes the
instance type, and then, if requested, restarts the instance. Shell scripts are programs designed to run in
a command line interface.

Note
For additional command examples, see the AWS CLI reference guide.

Topics
« Before you start (p. 158)
« About this example (p. 159)
o Parameters (p. 159)
« Files (p. 159)
« References (p. 160)

Before you start

Before you can run any of the below examples, the following things need to be completed.

158

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-tags.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/run-instances.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/terminate-instances.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/ec2/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html

AWS Command Line Interface User Guide for Version 2
Change EC2 type using bash scripting

o AWS CLl installed, see the section called “Install/Update” (p. 6) for more information.

« AWS CLI configured, see Configuration basics (p. 32) for more information. The profile that you use
must have permissions that allow the AWS operations performed by the examples.

« A running Amazon EC2 instance in the account for which you have permission to stop and modify. If
you run the test script, it launches an instance for you, tests changing the type, and then terminates
the instance.

« As an AWS best practice, grant this code least privilege, or only the permissions required to perform a
task. For more information, see Grant Least Privilege in the AWS Identity and Access Management (IAM)
User Guide.

« This code has not been tested in all AWS Regions. Some AWS services are available only in specific
Regions. For more information, see Service Endpoints and Quotas in the AWS General Reference Guide.

« Running this code can result in charges to your AWS account. It is your responsibility to ensure that any
resources created by this script are removed when you are done with them.

About this example

This example is written as a function in the shell script file change_ec2_instance_type.sh that
you can source from another script or from the command line. Each script file contains comments
describing each of the functions. Once the function is in memory, you can invoke it from the command
line. For example, the following commands change the type of the specified instance to t2 .nano:

$ source ./change_ec2_instance_type.sh
$./change_ec2_instance_type -i *instance-id* -t new-type

For the full example and downloadable script files, see Change Amazon EC2 Instance Type in the AWS
Code Examples Repository on GitHub.

Parameters

-i - (string) Specifies the instance ID to modify.
-t - (string) Specifies the Amazon EC2 instance type to switch to.
-r - (switch) By default, this is unset. If -r is set, restarts the instance after the type switch.

-f - (switch) By default, the script prompts the user to confirm shutting down the instance before making
the switch. If - £ is set, the function doesn't prompt the user before shutting down the instance to make
the type switch

-v - (switch) By default, the script operates silently and displays output only in the event of an error. If -v
is set, the function displays status throughout its operation.

Files

change_ec2_instance_type.sh

The main script file contains the change_ec2_instance_type() function that performs the
following tasks:

« Verifies that the specified Amazon EC2 instance exists.

« Unless - £ is selected, warns the user before stopping the instance.

« Changes the instance type

« If you set -r, restarts the instance and confirms that the instance is running

View the code for change_ec2_instance_type.sh on GitHub.

159

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/aws-cli/bash-linux/ec2/change-ec2-instance-type
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/aws-cli/bash-linux/ec2/change-ec2-instance-type/change_ec2_instance_type.sh

AWS Command Line Interface User Guide for Version 2
S3 Glacier

test_change_ec2_instance_type.sh

The file change_ec2_instance_type_test.sh script tests the various code paths for the
change_ec2_instance_type function. If all steps in the test script work correctly, the test script
removes all resources that it created.

You can run the test script with the following parameters:

« -V - (switch) The each test shows a pass/failure status as they run. By default, the tests runs
silently and the output includes only the final overall pass/failure status.

o -i - (switch) The script pauses after each test to enable you to browse the intermediate results
of each step. Enables you to examine the current status of the instance using the Amazon EC2
console. The script proceeds to the next step after you press ENTER at the prompt.

View the code for test_change_ec2_ instance_type.sh on GitHub.

awsdocs_general.sh

The script file awsdocs_general. sh holds general purpose functions used across advanced
examples for the AWS CLI.

View the code for awsdocs_general.sh on GitHub.

References
AWS CLI reference:

e aws ec2

e aws ec2 describe-instances

e aws ec2 modify-instance-attribute
e aws ec2 start-instances

e aws ec2 stop-instances

e aws ec2 wait instance-running

e aws ec2 wait instance-stopped

Other reference:

» Amazon Elastic Compute Cloud Documentation

« To view and contribute to AWS SDK and AWS CLI code examples, see the AWS Code Examples
Repository on GitHub.

Using Amazon S3 Glacier with the AWS CLI

An introduction to Amazon S3 Glacier

Introduction to Amazon S3 Glacier

This topic shows examples of AWS CLI commands that perform common tasks for S3 Glacier. The
examples demonstrate how to use the AWS CLI to upload a large file to S3 Glacier by splitting it into
smaller parts and uploading them from the command line.

You can access Amazon S3 Glacier features using the AWS Command Line Interface (AWS CLI). To list the
AWS CLI commands for S3 Glacier, use the following command.

160

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/aws-cli/bash-linux/ec2/change-ec2-instance-type/test_change_ec2_instance_type.sh
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/aws-cli/bash-linux/ec2/change-ec2-instance-type/awsdocs_general.sh
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-attribute.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/start-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/stop-instances.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/wait/instance-running.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/wait/instance-stopped.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/ec2/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://www.youtube-nocookie.com/embed/EKaJENJqD8E

AWS Command Line Interface User Guide for Version 2
Prerequisites

aws glacier help

Note
For command reference and additional examples, see aws glacier in the AWS CLI Command
Reference.

Topics
« Prerequisites (p. 161)
« Create an Amazon S3 Glacier vault (p. 161)
« Prepare a file for uploading (p. 161)
« Initiate a multipart upload and upload files (p. 162)
« Complete the upload (p. 163)
« Resources (p. 164)

Prerequisites

To run the glacier commands, you need to:

o AWS CLl installed, see the section called “Install/Update” (p. 6) for more information.

« AWS CLI configured, see Configuration basics (p. 32) for more information. The profile that you use
must have permissions that allow the AWS operations performed by the examples.

« This tutorial uses several command line tools that typically come preinstalled on Unix-like operating
systems, including Linux and macOS. Windows users can use the same tools by installing Cygwin and
running the commands from the Cygwin terminal. We note Windows native commands and utilities
that perform the same functions where available.

Create an Amazon S3 Glacier vault

Create a vault with the create-vault command.

$ aws glacier create-vault --account-id - --vault-name myvault
{

"location": "/123456789012/vaults/myvault"
}

Note

All S3 Glacier commands require an account ID parameter. Use the hyphen character (--
account-id -)to use the current account.

Prepare a file for uploading

Create a file for the test upload. The following commands create a file named largefile that contains
exactly 3 MiB of random data.

Linux or macOS

$ dd if=/dev/urandom of=largefile bs=3145728 count=1
1+0 records in
1+0 records out
3145728 bytes (3.1 MB) copied, 0.205813 s, 15.3 MB/s

161

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/index.html
https://www.cygwin.com/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/create-vault.html

AWS Command Line Interface User Guide for Version 2
Initiate a multipart upload and upload files

dd is a utility that copies a number of bytes from an input file to an output file. The previous example
uses the system device file /dev/urandom as a source of random data. £sutil performs a similar
function in Windows.

Windows

C:\> fsutil file createnew largefile 3145728
File C:\temp\largefile is created

Next, split the file into 1 MiB (1,048,576 byte) chunks.

$ split -b 1048576 --verbose largefile chunk
creating file ~chunkaa’'
creating file ~chunkab'
creating file ~chunkac’

Note
HJ-Split is a free file splitter for Windows and many other platforms.

Initiate a multipart upload and upload files

Create a multipart upload in Amazon S3 Glacier by using the initiate-multipart-upload
command.

$ aws glacier initiate-multipart-upload --account-id - --archive-description "multipart
upload test" --part-size 1048576 --vault-name myvault
{

"uploadId": "19gaRezEXAMPLES6Ry5YYdqthHOC_kGRCTO03L9yetr220UmPtBYKk-
OssZtLgyFu7sY1l_1R7vgFuJVeNtcV5zpsJ",

"location": "/123456789012/vaults/myvault/multipart-
uploads/19gaRezEXAMPLES6Ry5YYdqthHOC_kGRCT03L9yetr220UmPtBYKk-
0OssZtLgyFu7sY1l_1R7vgFuJVeNtcV5zpsJ"

}

S3 Glacier requires the size of each part in bytes (1 MiB in this example), your vault name, and an account
ID to configure the multipart upload. The AWS CLI outputs an upload ID when the operation is complete.
Save the upload ID to a shell variable for later use.

Linux or macOS

$ UPLOADID="19gaRezEXAMPLES6Ry5YYdqthHOC_ KGRCT03L9yetr220UmPtBYKk-
OssZtLqyFu7sY1_LR7vgFuJV6NtcV5zpsJ"

Windows

C:\> set UPLOADID="19gaRezEXAMPLES6Ry5YYdqthHOC KGRCTO03L9yetr220UmPtBYKk-
OssZtLqyFu7sY1l_LR7vgFudV6NtcV5zpsJ"

Next, use the upload-multipart-part command to upload each of the three parts.

$ aws glacier upload-multipart-part --upload-id $UPLOADID --body chunkaa --range 'bytes

0-1048575/*%' --account-id - --vault-name myvault
{
"checksum": "elf2a7cd6e047fa606£fe2£f0280350£69b9f8cfab02097a9a026360a7edcl1£f553"
}
$ aws glacier upload-multipart-part --upload-id $UPLOADID --body chunkab --range 'bytes
1048576-2097151/*' --account-id - --vault-name myvault
{

162

http://www.hjsplit.org/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/initiate-multipart-upload.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/upload-multipart-part.html

AWS Command Line Interface User Guide for Version 2
Complete the upload

"checksum": "elf2a7cd6e047fa606£fe2£f0280350£69b9f8cfab02097a9a026360a7edcl£f553"

}
$ aws glacier upload-multipart-part --upload-id $UPLOADID --body chunkac --range 'bytes
2097152-3145727/*%' --account-id - --vault-name myvault
{
"checksum": "elf2a7cd6e047fa606£fe2£f0280350£69b9f8cfab02097a9a026360a7edcl1£553"
}

Note

The previous example uses the dollar sign ($) to reference the contents of the UPLOADID shell
variable on Linux. On the Windows command line, use a percent sign (%) on either side of the
variable name (for example, ¥UPLOADID%).

You must specify the byte range of each part when you upload it so that S3 Glacier can reassemble it in
the correct order. Each piece is 1,048,576 bytes, so the first piece occupies bytes 0-1048575, the second
1048576-2097151, and the third 2097152-3145727.

Complete the upload

Amazon S3 Glacier requires a tree hash of the original file to confirm that all of the uploaded pieces
reached AWS intact.

To calculate a tree hash, you must split the file into 1 MiB parts and calculate a binary SHA-256 hash of
each piece. Then you split the list of hashes into pairs, combine the two binary hashes in each pair, and
take hashes of the results. Repeat this process until there is only one hash left. If there is an odd number
of hashes at any level, promote it to the next level without modifying it.

The key to calculating a tree hash correctly when using command line utilities is to store each hash in
binary format and convert to hexadecimal only at the last step. Combining or hashing the hexadecimal
version of any hash in the tree will cause an incorrect result.

Note
Windows users can use the type command in place of cat. OpenSSL is available for Windows at
OpenSSL.org.

To calculate a tree hash

1. If you haven't already, split the original file into 1 MiB parts.

$ split --bytes=1048576 --verbose largefile chunk
creating file “chunkaa'
creating file “chunkab'
creating file “chunkac'

2. Calculate and store the binary SHA-256 hash of each chunk.

$ openssl dgst -sha256 -binary chunkaa > hashil
$ openssl dgst -sha256 -binary chunkab > hash2
$ openssl dgst -sha256 -binary chunkac > hash3

3. Combine the first two hashes and take the binary hash of the result.

$ cat hashl hash2 > hashil2
$ openssl dgst -sha256 -binary hashl2 > hashl2hash

4. Combine the parent hash of chunks aa and ab with the hash of chunk ac and hash the result, this
time outputting hexadecimal. Store the result in a shell variable.

$ cat hashl2hash hash3 > hash123

163

https://www.openssl.org/related/binaries.html

AWS Command Line Interface User Guide for Version 2
Resources

$ openssl dgst -sha256 hash123
SHA256(hash123)= 9628195fcdbcbbe76cdde932d4646fa7de5£219fb39823836d81f0cc0el8aa6b7
$ TREEHASH=9628195fcdbcbbe76cdde932d4646fa7de5f219fb39823836d81f0cc0el8aa67

Finally, complete the upload with the complete-multipart-upload command. This command takes
the original file's size in bytes, the final tree hash value in hexadecimal, and your account ID and vault
name.

$ aws glacier complete-multipart-upload --checksum $TREEHASH --archive-size 3145728 --
upload-id $UPLOADID --account-id - --vault-name myvault
{
"archiveId": "d3AbWhEOYEIm6f_ fI1jPG82F8xzbMEEZmrAl1LGAAONJAZ0o5QdP~
N83MKgd96Unspoa5H51ItWX-sK8-0S0ZhwsyGiu9-R-kwWUyS1dSB1lmgPPWkEbeFfqDSav053rU7FvVLHfRc6hg",
"checksum": "9628195fcdbcbbe76cdde932d4646fa7de5£219fb39823836d81£f0cc0elB8aab7",
"location": "/123456789012/vaults/myvault/archives/
d3AbWhEOYE1Im6f_ fI1jPG82F8xzbMEEZmrAl1LGAAONJAZ05Q0dP-N83MKgd96UnspoaSH51ItWX-sK8~-
0S0ZhwsyGiu9-R-kwWUyS1dSB1lmgPPWkEbeFfgqDSav053rU7FvVLHfRc6hg"

}

You can also check the status of the vault using the describe-vault command.

$ aws glacier describe-vault --account-id - --vault-name myvault
{
"SizeInBytes": 3178496,
"VaultARN": "arn:aws:glacier:us-west-2:123456789012:vaults/myvault",
"LastInventoryDate": "2018-12-07T00:26:19.028Z2",
"NumberOfArchives": 1,
"CreationDate": "2018-12-06T21:23:45.708Z",
"VaultName": "myvault"
¥
Note

Vault status is updated about once per day. See Working with Vaults for more information.

Now it's safe to remove the chunk and hash files that you created.

$ rm chunk* hash¥*

For more information on multipart uploads, see Uploading Large Archives in Parts and Computing
Checksums in the Amazon S3 Glacier Developer Guide.

Resources

AWS CLI reference:

e aws glacier

e aws glacier complete-multipart-upload
e aws glacier create-vault

e aws glacier describe-vault

e aws glacier initiate-multipart-upload

Service reference:

« Amazon S3 Glacier Developer Guide
« Uploading Large Archives in Parts in the Amazon S3 Glacier Developer Guide

164

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/complete-multipart-upload.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/describe-vault.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/working-with-vaults.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-archive-mpu.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/checksum-calculations.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/checksum-calculations.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/complete-multipart-upload.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/create-vault.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/describe-vault.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/glacier/initiate-multipart-upload.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-archive-mpu.html

AWS Command Line Interface User Guide for Version 2
1AM

« Computing Checksums in the Amazon S3 Glacier Developer Guide
« Working with Vaults in the Amazon S3 Glacier Developer Guide

Using AWS Identity and Access Management from
the AWS CLI

An introduction to AWS Identity and Access Management

Introduction to AWS Identity and Access Management

You can access the features of AWS Identity and Access Management (IAM) using the AWS Command
Line Interface (AWS CLI). To list the AWS CLI commands for IAM, use the following command.

aws iam help

This topic shows examples of AWS CLI commands that perform common tasks for IAM.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

For more information on the IAM service, see the AWS Identity and Access Management User Guide.

Topics
» Creating IAM users and groups (p. 165)
« Attaching an IAM managed policy to an IAM user (p. 166)
 Setting an initial password for an IAM user (p. 167)
« Create an access key for an IAM user (p. 167)

Creating IAM users and groups

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to create an AWS
Identity and Access Management (IAM) group and a new IAM user, and then add the user to the group.
For more information on the IAM service, see the AWS Identity and Access Management User Guide.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

To create an IAM group and add a new IAM user to it

1. Use the create-group command to create the group.

$ aws iam create-group --group-name MyIamGroup
{
"Group": {
"GroupName": "MyIamGroup",
"CreateDate": "2018-12-14T03:03:52.8342Z",
"GroupId": "AGPAJNUJ2W4IJVEXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyIamGroup",
"Path": "/"
}
}

165

https://docs.aws.amazon.com/amazonglacier/latest/dev/checksum-calculations.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/working-with-vaults.html
https://www.youtube-nocookie.com/embed/Ul6FW4UANGc
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-group.html

AWS Command Line Interface User Guide for Version 2
Attaching an 1AM managed policy to an IAM user

Use the create-user command to create the user.

$ aws iam create-user --user-name MyUser

{
"User": {
"UserName": "MyUser",
"Path": "/",
"CreateDate": "2018-12-14T03:13:02.581Z",
"UserId": "AIDAJY2PE5XUZ4EXAMPLE",
"Arn": "arn:aws:iam::123456789012:user/MyUser"
}
}

Use the add-user-to-group command to add the user to the group.

$ aws iam add-user-to-group --user-name MyUser --group-name MyIamGroup

To verify that the MyIamGroup group contains the MyUser, use the get-group command.

$ aws iam get-group --group-name MyIamGroup
{
"Group": {
"GroupName": "MyIamGroup",
"CreateDate": "2018-12-14T03:03:52Z2",
"GroupId": "AGPAJNUJ2W4IJVEXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyIamGroup",
"Path": "/"
}V
"Users": [
{
"UserName": "MyUser",
"Path": "/",
"CreateDate": "2018-12-14T03:13:02Z2",
"UserId": "AIDAJY2PE5XUZ4EXAMPLE",
"Arn": "arn:aws:iam::123456789012:usexr/MyUser"
}
]V

"IsTruncated": "false"

Attaching an IAM managed policy to an IAM user

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to attach an AWS
Identity and Access Management (IAM) policy to an IAM user. The policy in this example provides the
user with "Power User Access". For more information on the IAM service, see the AWS Identity and Access
Management User Guide.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

To attach an IAM managed policy to an IAM user

1.

Determine the Amazon Resource Name (ARN) of the policy to attach. The following command uses
list-policies to find the ARN of the policy with the name PowerUserAccess. It then stores
that ARN in an environment variable.

$ export POLICYARN=$(aws iam list-policies --query 'Policies[?
PolicyName=="PowerUserAccess].{ARN:Arn}' --output text) ~
$ echo $POLICYARN

166

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-user.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/add-user-to-group.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS Command Line Interface User Guide for Version 2
Setting an initial password for an IAM user

arn:aws:iam: :aws:policy/PowerUserAccess

2. To attach the policy, use the attach-user-policy command, and reference the environment
variable that holds the policy ARN.

$ aws iam attach-user-policy --user-name MyUser --policy-arn $POLICYARN

3. Verify that the policy is attached to the user by running the 1ist-attached-user-policies

command.
$ aws iam list-attached-user-policies --user-name MyUser
{
"AttachedPolicies": [
{
"PolicyName": "PowerUserAccess",
"PolicyArn": "arn:aws:iam::aws:policy/PowerUserAccess"
}
]
}

For more information, see Access Management Resources. This topic provides links to an overview of
permissions and policies, and links to examples of policies for accessing Amazon S3, Amazon EC2, and
other services.

Setting an initial password for an IAM user

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to set an initial
password for an AWS Identity and Access Management(IAM) user. For more information on the IAM
service, see the AWS Identity and Access Management User Guide.

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

The following command uses create-login-profile to set an initial password on the specified user.
When the user signs in for the first time, the user is required to change the password to something that
only the user knows.

$ aws iam create-login-profile --user-name MyUser --password My!UserlLogin8P@ssword --
password-reset-required

{
"LoginProfile": {
"UserName": "MyUser",
"CreateDate": "2018-12-14T17:27:18Z2",
"PasswordResetRequired": true
}
}

You can use the update-login-profile command to change the password for an IAM user.

$ aws iam update-login-profile --user-name MyUser --password My!UserlADifferentP@ssword

Create an access key for an IAM user

This topic describes how to use AWS Command Line Interface (AWS CLI) commands to create a set of
access keys for an AWS Identity and Access Management (IAM) user. For more information on the IAM
service, see the AWS Identity and Access Management User Guide.

167

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-user-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/list-attached-user-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-additional-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-login-profile.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS Command Line Interface User Guide for Version 2
Amazon S3

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

You can use the create-access-key command to create an access key for an IAM user. An access key is
a set of security credentials that consists of an access key ID and a secret key.

An IAM user can create only two access keys at one time. If you try to create a third set, the command
returns a LimitExceeded error.

$ aws iam create-access-key --user-name MyUser
{
"AccessKey": {
"UserName": "MyUser",
"AccessKeyId": "AKIAIOSFODNN7EXAMPLE",
"Status": "Active",
"SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
"CreateDate": "2018-12-14T17:34:16Z"
}
}

Use the delete-access-key command to delete an access key for an IAM user. Specify which access
key to delete by using the access key ID.

$ aws iam delete-access-key --user-name MyUser --access-key-id AKIAIOSFODNN7EXAMPLE

Using Amazon S3 with the AWS CLI

An introduction to Amazon Simple Storage Service (Amazon S3)

Introduction to Amazon Simple Storage Service (Amazon S3 - Cloud Storage on AWS

You can access the features of Amazon Simple Storage Service (Amazon S3) using the AWS Command
Line Interface (AWS CLI). The AWS CLI provides two tiers of commands for accessing Amazon S3:

+ s3 — High-level commands that simplify performing common tasks, such as creating, manipulating,
and deleting objects and buckets.

 s3api - Exposes direct access to all Amazon S3 API operations which enables you to carry out advanced
operations.

Topics in this guide:
« Using high-level (s3) commands with the AWS CLI (p. 168)
« Using API-Level (s3api) commands with the AWS CLI (p. 177)
» Amazon S3 bucket lifecycle operations scripting example (p. 179)

Using high-level (s3) commands with the AWS CLI

This topic describes some of the commands you can use to manage Amazon S3 buckets and objects
using the aws s3 commands in the AWS CLI. For commands not covered in this topic and additional
command examples, see the aws s3 commands in the AWS CLI Reference.

The high-level aws s3 commands simplify managing Amazon S3 objects. These commands enable you
to manage the contents of Amazon S3 within itself and with local directories.

168

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-access-key.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/delete-access-key.html
https://www.youtube-nocookie.com/embed/77lMCiiMilo
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

Topics
« Prerequisites (p. 169)
» Before you start (p. 169)
« Create a bucket (p. 170)
« List buckets and objects (p. 170)
« Delete buckets (p. 171)
« Delete objects (p. 171)
» Move objects (p. 172)
« Copy objects (p. 172)
« Sync objects (p. 173)
» Frequently used options for s3 commands (p. 175)
« Resources (p. 177)

Prerequisites

To run the s3 commands, you need to:

« AWS CLl installed, see the section called “Install/Update” (p. 6) for more information.

o AWS CLI configured, see Configuration basics (p. 32) for more information. The profile that you use
must have permissions that allow the AWS operations performed by the examples.

« Understand these Amazon S3 terms:
o Bucket - A top-level Amazon S3 folder.
 Prefix — An Amazon S3 folder in a bucket.
o Object — Any item that's hosted in an Amazon S3 bucket.

Before you start

This section describes a few things to note before you use aws s3 commands.

Large object uploads

When you use aws s3 commands to upload large objects to an Amazon S3 bucket, the AWS CLI
automatically performs a multipart upload. You can't resume a failed upload when using these aws s3
commands.

If the multipart upload fails due to a timeout, or if you manually canceled in the AWS CLI, the AWS CLI
stops the upload and cleans up any files that were created. This process can take several minutes.

If the multipart upload or cleanup process is canceled by a kill command or system failure, the created
files remain in the Amazon S3 bucket. To clean up the multipart upload, use the s3api abort-multipart-
upload command.

File properties and tags in multipart copies
When you use the AWS CLI version 1 version of commands in the aws s3 namespace to copy a file
from one Amazon S3 bucket location to another Amazon S3 bucket location, and that operation uses

multipart copy, no file properties from the source object are copied to the destination object.

By default, the AWS CLI version 2 commands in the s3 namespace that perform multipart copies
transfers all tags and the following set of properties from the source to the destination copy: content-

169

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cli/latest/reference/s3api/abort-multipart-upload.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cli/latest/reference/s3api/abort-multipart-upload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/CopyingObjctsMPUapi.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

type, content-language, content-encoding, content-disposition, cache-control,
expires, and metadata.

This can result in additional AWS API calls to the Amazon S3 endpoint that would not have been
made if you used AWS CLI version 1. These can include: HeadObject, GetObjectTagging, and
PutObjectTagging.

If you need to change this default behavior in AWS CLI version 2 commands, use the --copy-props
parameter to specify one of the following options:

« default - The default value. Specifies that the copy includes all tags attached to the source object
and the properties encompassed by the --metadata-directive parameter used for non-multipart
copies: content-type, content-language, content-encoding, content-disposition,
cache-control, expires, and metadata.

« metadata-directive - Specifies that the copy includes only the properties that are encompassed by the
--metadata-directive parameter used for non-multipart copies. It doesn't copy any tags.

« none - Specifies that the copy includes none of the properties from the source object.

Create a bucket

Use the s3 mb command to make a bucket. Bucket names must be globally unique (unique across all of
Amazon S3) and should be DNS compliant.

Bucket names can contain lowercase letters, numbers, hyphens, and periods. Bucket names can start and
end only with a letter or number, and cannot contain a period next to a hyphen or another period.

Syntax

$ aws s3 mb <target> [--options]

s3 mb examples

The following example creates the s3://bucket-name bucket.

$ aws s3 mb s3://bucket-name

List buckets and objects

To list your buckets, folders, or objects, use the s3 1s command. Using the command without a target
or options lists all buckets.

Syntax

$ aws s3 ls <target> [--options]

For a few common options to use with this command, and examples, see Frequently used options for
s3 commands (p. 175). For a complete list of available options, see s3 1s in the AWS CLI Command
Reference.

s3 ls examples

The following example lists all of your Amazon S3 buckets.

$ aws s3 1ls

170

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mb.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/ls.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/ls.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

2018-12-11 17:08:50 my-bucket
2018-12-14 14:55:44 my-bucket2

The following command lists all objects and prefixes in a bucket. In this example output, the prefix
example/ has one file named MyFilel. txt.

$ aws s3 1ls s3://bucket-name
PRE example/
2018-12-04 19:05:48 3 MyFilel.txt

You can filter the output to a specific prefix by including it in the command. The following command
lists the objects in bucket-name/example/ (that is, objects in bucket-name filtered by the prefix
example/).

$ aws s3 1ls s3://bucket-name/example/
2018-12-06 18:59:32 3 MyFilel.txt

Delete buckets

To delete a bucket, use the s3 rb command.

Syntax

$ aws s3 rb <target> [--options]

s3 rb examples

The following example removes the s3://bucket-name bucket.

$ aws s3 rb s3://bucket-name

By default, the bucket must be empty for the operation to succeed. To remove a bucket that's not empty,
you need to include the --force option. If you're using a versioned bucket that contains previously
deleted—but retained—objects, this command does not allow you to remove the bucket. You must first
remove all of the content.

The following example deletes all objects and prefixes in the bucket, and then deletes the bucket.

$ aws s3 rb s3://bucket-name --force

Delete objects

To delete objects in a bucket or your local directory, use the s3 rm command.

Syntax

$ aws s3 rm <target> [--options]

For a few common options to use with this command, and examples, see Frequently used options for s3
commands (p. 175). For a complete list of options, see s3 rmin the AWS CLI Command Reference.

s3 rm examples

The following example deletes filename.txt from s3://bucket-name/example.

171

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/rb.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/rm.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/rm.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

$ aws s3 rm s3://bucket-name/example/filename.txt --recursive

The following example deletes all objects from s3: //bucket-name/example using the --recursive
option.

$ aws s3 rm s3://bucket-name/example --recursive

Move objects

Use the s3 mv command to move objects from a bucket or a local directory.

Syntax

$ aws s3 mv <source> <target> [--options]

For a few common options to use with this command, and examples, see Frequently used options for
s3 commands (p. 175). For a complete list of available options, see s3 mv in the AWS CLI Command
Reference.

s3 mv examples

The following example moves all objects from s3: //bucket-name/example to s3://my-bucket/.

$ aws s3 mv s3://bucket-name/example s3://my-bucket/

The following example moves a local file from your current working directory to the Amazon S3 bucket
with the s3 ¢p command.

$ aws s3 mv filename.txt s3://bucket-name

The following example moves a file from your Amazon S3 bucket to your current working directory,
where . / specifies your current working directory.

$ aws s3 mv s3://bucket-name/filename.txt ./

Copy objects

Use the s3 cp command to copy objects from a bucket or a local directory.

Syntax

$ aws s3 cp <source> <target> [--options]

You can use the dash parameter for file streaming to standard input (stdin) or standard output
(stdout).

Warning
If you're using PowerShell, the shell might alter the encoding of a CRLF or add a CRLF to piped
input or output, or redirected output.

The s3 c¢p command uses the following syntax to upload a file stream from stdin to a specified bucket.

Syntax

172

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mv.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mv.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/cp.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

$ aws s3 cp - <target> [--options]

The s3 c¢p command uses the following syntax to download an Amazon S3 file stream for stdout.

Syntax

$ aws s3 cp <target> [--options] -

For a few common options to use with this command, and examples, see Frequently used options for s3
commands (p. 175). For the complete list of options, see s3 cp in the AWS CLI Command Reference.

s3 cp examples

The following example copies all objects from s3: //bucket-name/example to s3://my-bucket/.

$ aws s3 cp s3://bucket-name/example s3://my-bucket/

The following example copies a local file from your current working directory to the Amazon S3 bucket
with the s3 ¢p command.

$ aws s3 cp filename.txt s3://bucket-name

The following example copies a file from your Amazon S3 bucket to your current working directory,
where . / specifies your current working directory.

$ aws s3 cp s3://bucket-name/filename.txt ./

The following example uses echo to stream the text "hello world" to the s3://bucket-name/
filename. txt file.

$ echo "hello world" | aws s3 cp - s3://bucket-name/filename.txt

The following example streams the s3: //bucket-name/filename. txt file to stdout and prints the
contents to the console.

$ aws s3 cp s3://bucket-name/filename.txt -
hello world

The following example streams the contents of s3://bucket-name/pre to stdout, uses the bzip2
command to compress the files, and uploads the new compressed file named key.bz2 to s3://
bucket-name.

$ aws s3 cp s3://bucket-name/pre - | bzip2 --best | aws s3 cp - s3://bucket-name/key.bz2

Sync objects

The s3 sync command synchronizes the contents of a bucket and a directory, or the contents of two
buckets. Typically, s3 sync copies missing or outdated files or objects between the source and target.
However, you can also supply the --delete option to remove files or objects from the target that are
not present in the source.

Syntax

173

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/cp.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/sync.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

$ aws s3 sync <source> <target> [--options]

For a few common options to use with this command, and examples, see Frequently used options for s3
commands (p. 175). For a complete list of options, see s3 sync in the AWS CLI Command Reference.

s3 sync examples

The following example synchronizes the contents of an Amazon S3 prefix named path in the bucket
named my-bucket with the current working directory.

s3 sync updates any files that have a size or modified time that are different from files with the same

name at the destination. The output displays specific operations performed during the sync. Notice that
the operation recursively synchronizes the subdirectory MySubdirectory and its contents with s3://

my-bucket/path/MySubdirectory.

$ aws s3 sync . s3://my-bucket/path

upload: MySubdirectory\MyFile3.txt to s3://my-bucket/path/MySubdirectory/MyFile3.txt
upload: MyFile2.txt to s3://my-bucket/path/MyFile2.txt

upload: MyFilel.txt to s3://my-bucket/path/MyFilel.txt

The following example, which extends the previous one, shows how to use the --delete option.

// Delete local file
$ rm ./MyFilel.txt

// Attempt sync without --delete option - nothing happens
$ aws s3 sync . s3://my-bucket/path

// Sync with deletion - object is deleted from bucket
$ aws s3 sync . s3://my-bucket/path --delete
delete: s3://my-bucket/path/MyFilel.txt

// Delete object from bucket
$ aws s3 rm s3://my-bucket/path/MySubdirectory/MyFile3.txt
delete: s3://my-bucket/path/MySubdirectory/MyFile3.txt

// Sync with deletion - local file is deleted
$ aws s3 sync s3://my-bucket/path . --delete
delete: MySubdirectory\MyFile3.txt

// Sync with Infrequent Access storage class
$ aws s3 sync . s3://my-bucket/path --storage-class STANDARD_IA

When using the --delete option, the --exclude and --include options can filter files or objects
to delete during an s3 sync operation. In this case, the parameter string must specify files to exclude
from, or include for, deletion in the context of the target directory or bucket. The following shows an
example.

Assume local directory and s3://my-bucket/path currently in sync and each contains 3 files:
MyFilel.txt
MyFile2.rtf
MyFile88.txt

// Sync with delete, excluding files that match a pattern. MyFile88.txt is deleted, while
remote MyFilel.txt is not.

$ aws s3 sync . s3://my-bucket/path --delete --exclude "path/MyFile?.txt"

delete: s3://my-bucket/path/MyFile88.txt

174

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/sync.html

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

// Sync with delete, excluding MyFile2.rtf - local file is NOT deleted
$ aws s3 sync s3://my-bucket/path . --delete --exclude "./MyFile2.rtf"
download: s3://my-bucket/path/MyFilel.txt to MyFilel.txt

// Sync with delete, local copy of MyFile2.rtf is deleted
$ aws s3 sync s3://my-bucket/path . --delete
delete: MyFile2.rtf

Frequently used options for s3 commands

The following options are frequently used for the commands described in this topic. For a complete list
of options you can use on a command, see the specific command in the AWS CLI version 2 reference
guide.

acl

s3 sync and s3 cp can use the --acl option. This enables you to set the access permissions for
files copied to Amazon S3. The --ac1 option accepts private, public-read, and public-read-
write values. For more information, see Canned ACL in the Amazon Simple Storage Service User
Guide.

$ aws s3 sync . s3://my-bucket/path --acl public-read

exclude

When you use the s3 cp, s3 mv, s3 sync, or s3 rm command, you can filter the results by using
the —-exclude or --include option. The --exclude option sets rules to only exclude objects
from the command, and the options apply in the order specified. This is shown in the following
example.

Local directory contains 3 files:
MyFilel.txt
MyFile2.rtf
MyFile88.txt

// Exclude all .txt files, resulting in only MyFile2.rtf being copied
$ aws s3 cp . s3://my-bucket/path --exclude "*.txt"

// Exclude all .txt files but include all files with the "MyFile*.txt" format,
resulting in, MyFilel.txt, MyFile2.rtf, MyFile88.txt being copied
$ aws s3 cp . s3://my-bucket/path --exclude "*.txt" --include "MyFile*.txt"

// Exclude all .txt files, but include all files with the "MyFile*.txt" format,

but exclude all files with the "MyFile?.txt" format resulting in, MyFile2.rtf and
MyFile88.txt being copied

$ aws s3 cp . s3://my-bucket/path --exclude "*.txt" --include "MyFile*.txt" --exclude
"MyFile?.txt"

include

When you use the s3 c¢p, s3 mv, 83 sync, or s3 rm command, you can filter the results using
the —--exclude or --include option. The --include option sets rules to only include objects
specified for the command, and the options apply in the order specified. This is shown in the
following example.

Local directory contains 3 files:
MyFilel.txt
MyFile2.rtf

175

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

AWS Command Line Interface User Guide for Version 2
High-level (s3) commands

MyFile88.txt

// Include all .txt files, resulting in MyFilel.txt and MyFile88.txt being copied
$ aws s3 cp . s3://my-bucket/path --include "*.txt"

// Include all .txt files but exclude all files with the "MyFile*.txt" format,
resulting in no files being copied
$ aws s3 cp . s3://my-bucket/path --include "*.txt" --exclude "MyFile*.txt"

// Include all .txt files, but exclude all files with the "MyFile*.txt" format, but
include all files with the "MyFile?.txt" format resulting in MyFilel.txt being copied

$ aws s3 cp . s3://my-bucket/path --include "*.txt" --exclude "MyFile*.txt" --include
"MyFile?.txt"

grant

The s3 c¢p, s3 mv, and s3 sync commands include a --grants option that you can use to
grant permissions on the object to specified users or groups. Set the --grants option to a list of
permissions using the following syntax. Replace Permission, Grantee_Type, and Grantee_ID
with your own values.

Syntax

--grants Permission=Grantee_Type=Grantee_ID
[Permission=Grantee_Type=Grantee_ID ...]

Each value contains the following elements:

o Permission — Specifies the granted permissions. Can be set to read, readacl, writeacl, or
full.

« Grantee_Type - Specifies how to identify the grantee. Can be set to uri, emailaddress, or id.
e Grantee_ID - Specifies the grantee based on Grantee_Type.

o uri-The group's URI. For more information, see Who is a grantee?

o emailaddress — The account's email address.

e id - The account's canonical ID.

For more information about Amazon S3 access control, see Access control.
The following example copies an object into a bucket. It grants read permissions on the object to

everyone, and full permissions (read, readacl, and writeacl) to the account associated with
user@example.com.

$ aws s3 cp file.txt s3://my-bucket/ --grants read=uri=http://acs.amazonaws.com/groups/
global/AllUsers full=emailaddress=user@example.com

You can also specify a nondefault storage class (REDUCED REDUNDANCY or STANDARD_IA) for
objects that you upload to Amazon S3. To do this, use the --storage-class option.

$ aws s3 cp file.txt s3://my-bucket/ --storage-class REDUCED_ REDUNDANCY

recursive

When you use this option, the command is performed on all files or objects under the specified
directory or prefix. The following example deletes s3: //my-bucket/path and all of its contents.

$ aws s3 rm s3://my-bucket/path --recursive

176

https://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html#SpecifyingGrantee
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Command Line Interface User Guide for Version 2
API-level (s3 api) commands

Resources

AWS CLI reference:

e aws s3

e aws s3 cp
e aws s3 mb
e aws s3 mv
e aws s3 1ls
e aws s3 rb
e aws s3 rm

e aws sS3 sync

Service reference:

« Working with Amazon S3 buckets in the Amazon Simple Storage Service User Guide
« Working with Amazon S3 objects in the Amazon Simple Storage Service User Guide
« Listing keys hierarchically using a prefix and delimiter in the Amazon Simple Storage Service User Guide

« Abort multipart uploads to an S3 bucket using the AWS SDK for .NET (low-level) in the Amazon Simple
Storage Service User Guide

Using API-Level (s3api) commands with the AWS CLI

The API-level commands (contained in the s3api command set) provide direct access to the Amazon
Simple Storage Service (Amazon S3) APIs, and enable some operations that are not exposed in the high-
level s3 commands. These commands are the equivalent of the other AWS services that provide API-
level access to the services' functionality. For more information on the s3 commands, see Using high-
level (s3) commands with the AWS CLI (p. 168)

This topic provides examples that demonstrate how to use the lower-level commands that map to the
Amazon S3 APIs. In addition, you can find examples for each S3 APl command in the s3api section of
the AWS CLI version 2 reference guide.

Topics
« Prerequisites (p. 177)
o Apply a custom ACL (p. 178)
« Configure a logging policy (p. 178)
« Resources (p. 179)

Prerequisites

To run the s3api commands, you need to:

o AWS CLl installed, see the section called “Install/Update” (p. 6) for more information.

« AWS CLI configured, see Configuration basics (p. 32) for more information. The profile that you use
must have permissions that allow the AWS operations performed by the examples.

» Understand these Amazon S3 terms:
« Bucket - A top-level Amazon S3 folder.
« Prefix - An Amazon S3 folder in a bucket.

177

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/cp.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mb.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mv.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/ls.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/rb.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/rm.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/sync.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysHierarchy.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/LLAbortMPUnet.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html

AWS Command Line Interface User Guide for Version 2
API-level (s3 api) commands

» Object — Any item that's hosted in an Amazon S3 bucket.

Apply a custom ACL

With high-level commands, you can use the --ac1 option to apply predefined access control lists (ACLs)
to Amazon S3 objects. But you can't use that command to set bucket-wide ACLs. However, you can do
this by using the put-bucket-acl API-level command.

The following example shows how to grant full control to two AWS users (user1@example.com and
user2@example.com) and read permission to everyone. The identifier for "everyone" comes from a
special URI that you pass as a parameter.

$ aws s3api put-bucket-acl --bucket MyBucket --grant-full-control
'emailaddress="userl@example.com" ,emailaddress="user2@example.com"' --grant-read
'uri="http://acs.amazonaws.com/groups/global/AllUsers""

For details about how to construct the ACLs, see PUT Bucket acl in the Amazon Simple Storage Service
API Reference. The s3api ACL commands in the CLI, such as put-bucket-acl, use the same shorthand
argument notation.

Configure a logging policy

The APl command put-bucket-logging configures a bucket logging policy.

In the following example, the AWS user user@example.com is granted full control over the log files, and
all users have read access to them. Notice that the put-bucket-acl command is also required to grant
the Amazon S3 log delivery system (specified by a URI) the permissions needed to read and write the
logs to the bucket.

$ aws s3api put-bucket-acl --bucket MyBucket --grant-read-acp 'URI="http://
acs.amazonaws.com/groups/s3/LogDelivery"' --grant-write 'URI="http://acs.amazonaws.com/
groups/s3/LogDelivery"’'

$ aws s3api put-bucket-logging --bucket MyBucket --bucket-logging-status file://
logging.json

The logging. json file in the previous command has the following content.

{
"LoggingEnabled": {
"TargetBucket": "MyBucket",
"TargetPrefix": "MyBucketLogs/",
"TargetGrants": [
{
"Grantee": {
"Type": "AmazonCustomerByEmail",
"EmailAddress": "user@example.com"
}!
"Permission": "FULL_CONTROL"
}I
{
"Grantee": {
"Type": "Group",
"URI": "http://acs.amazonaws.com/groups/global/AllUsers"
}!
"Permission": "READ"
}
]
}

178

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-acl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-shorthand.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-shorthand.html

AWS Command Line Interface User Guide for Version 2
Bucket lifecycle scripting example (s3api)

‘ }

Resources

AWS CLI reference:

e aws s3api
e aws s3api put-bucket-acl

e aws s3api put-bucket-logging

Service reference:

« Working with Amazon S3 buckets in the Amazon Simple Storage Service User Guide
« Working with Amazon S3 objects in the Amazon Simple Storage Service User Guide
« Listing keys hierarchically using a prefix and delimiter in the Amazon Simple Storage Service User Guide

o Abort multipart uploads to an S3 bucket using the AWS SDK for .NET (low-level) in the Amazon Simple
Storage Service User Guide

Amazon S3 bucket lifecycle operations scripting
example

This topic uses a bash scripting example for Amazon S3 bucket lifecycle operations using the AWS
Command Line Interface (AWS CLI). This scripting example uses the aws s3api set of commands. Shell
scripts are programs designed to run in a command line interface.

Topics
« Before you start (p. 179)
« About this example (p. 180)
« Files (p. 180)
« References (p. 180)

Before you start

Before you can run any of the below examples, the following things need to be completed.

o AWS CLl installed, see the section called “Install/Update” (p. 6) for more information.

« AWS CLI configured, see Configuration basics (p. 32) for more information. The profile that you use
must have permissions that allow the AWS operations performed by the examples.

« As an AWS best practice, grant this code least privilege, or only the permissions required to perform a
task. For more information, see Grant Least Privilege in the IAM User Guide.

« This code has not been tested in all AWS Regions. Some AWS services are available only in specific
Regions. For more information, see Service Endpoints and Quotas in the AWS General Reference Guide.

« Running this code can result in charges to your AWS account. It is your responsibility to ensure that any
resources created by this script are removed when you are done with them.

The Amazon S3 service uses the following terms:

« Bucket — A top level Amazon S3 folder.

179

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-acl.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-logging.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysHierarchy.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/LLAbortMPUnet.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

AWS Command Line Interface User Guide for Version 2
Bucket lifecycle scripting example (s3api)

« Prefix — An Amazon S3 folder in a bucket.
« Object — Any item hosted in an Amazon S3 bucket.

About this example

This example demonstrates how to interact with some of the basic Amazon S3 operations using a
set of functions in shell script files. The functions are located in the shell script file named bucket-
operations.sh. You can call these functions in another file. Each script file contains comments
describing each of the functions.

To see the intermediate results of each step, run the script with a -i parameter. You can view the current
status of the bucket or its contents using the Amazon S3 console. The script only proceeds to the next
step when you press enter at the prompt.

For the full example and downloadable script files, see Amazon S3 Bucket Lifecycle Operations in the
AWS Code Examples Repository on GitHub.

Files

The example contains the following files:
bucket-operations.sh

This main script file can be sourced from another file. It includes functions that perform the
following tasks:

« Creating a bucket and verifying that it exists

» Copying a file from the local computer to a bucket

« Copying a file from one bucket location to a different bucket location
« Listing the contents of a bucket

+ Deleting a file from a bucket

« Deleting a bucket

View the code for bucket-operations.sh on GitHub.

test-bucket-operations.sh
The shell script file test-bucket-operations.sh demonstrates how to call the functions by
sourcing the bucket-operations. sh file and calling each of the functions. After calling functions,
the test script removes all resources that it created.

View the code for test-bucket-operations.sh on GitHub.

awsdocs-general.sh

The script file awsdocs-general. sh holds general purpose functions used across advanced code
examples for the AWS CLI.

View the code for awsdocs-general.sh on GitHub.

References

AWS CLI reference:

180

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/aws-cli/bash-linux/s3/bucket-lifecycle-operations
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/aws-cli/bash-linux/s3/bucket-lifecycle-operations/bucket_operations.sh
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/aws-cli/bash-linux/s3/bucket-lifecycle-operations/test_bucket_operations.sh
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/aws-cli/bash-linux/s3/bucket-lifecycle-operations/awsdocs_general.sh

AWS Command Line Interface User Guide for Version 2
Amazon SNS

e aws s3api

e aws s3api create-bucket
e aws s3api copy-object

e aws s3api delete-bucket
e aws s3api delete-object
e aws s3api head-bucket

e aws s3api list-objects

e aws s3api put-object

Other reference:

« Working with Amazon S3 buckets in the Amazon Simple Storage Service User Guide
« Working with Amazon S3 objects in the Amazon Simple Storage Service User Guide

« To view and contribute to AWS SDK and AWS CLI code examples, see the AWS Code Examples
Repository on GitHub.

Using Amazon SNS with the AWS CLI

Getting Started with Amazon SNS - Push Notification Service on AWS

You can access the features of Amazon Simple Notification Service (Amazon SNS) using the AWS
Command Line Interface (AWS CLI). To list the AWS CLI commands for Amazon SNS, use the following
command.

aws sns help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

This topic shows examples of AWS CLI commands that perform common tasks for Amazon SNS.

Topics
« Create a topic (p. 181)
« Subscribe to a topic (p. 182)
« Publish to a topic (p. 182)
e Unsubscribe from a topic (p. 182)
 Delete a topic (p. 183)

Create a topic

To create a topic, use the sns create-topic command and specify the name to assign to the topic.

$ aws sns create-topic --name my-topic

{

"TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic"

}

Make a note of the response's TopicArn, which you use later to publish a message.

181

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/create-bucket.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/copy-object.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/delete-bucket.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/delete-object.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/head-bucket.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/list-objects.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-object.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html
https://github.com/awsdocs/aws-doc-sdk-examples/
https://github.com/awsdocs/aws-doc-sdk-examples/
https://www.youtube-nocookie.com/embed/u5j1U3qFXDY
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/create-topic.html

AWS Command Line Interface User Guide for Version 2
Subscribe to a topic

Subscribe to a topic

To subscribe to a topic, use the sns subscribe command.

The following example specifies the email protocol and an email address for the notification-
endpoint.

$ aws sns subscribe --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic --
protocol email --notification-endpoint saanvieexample.com

{

"SubscriptionArn": "pending confirmation"

}

AWS immediately sends a confirmation message by email to the address you specified in the subscribe
command. The email message has the following text.

You have chosen to subscribe to the topic:

arn:aws:sns:us-west-2:123456789012:my-topic

To confirm this subscription, click or visit the following link (If this was in error no
action is necessary):

Confirm subscription

After the recipient clicks the Confirm subscription link, the recipient's browser displays a notification
message with information similar to the following.

Subscription confirmed!
You have subscribed saanvieexample.com to the topic:my-topic.

Your subscription's id is:
arn:aws:sns:us-west-2:123456789012:my-topic:1328£f057-de93-4c15-512e-8bb22EXAMPLE

If it was not your intention to subscribe, click here to unsubscribe.

Publish to a topic

To send a message to all subscribers of a topic, use the sns publish command.

The following example sends the message "Hello World!" to all subscribers of the specified topic.

$ aws sns publish --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic --message "Hello
World!"
{
"MessageId": "4e41661d-5eec-5ddf-8dab-2c867EXAMPLE"
}

In this example, AWS sends an email message with the text "Hello World!" to saanvieexample.com.

Unsubscribe from a topic

To unsubscribe from a topic and stop receiving messages published to that topic, use the sns
unsubscribe command and specify the ARN of the topic you want to unsubscribe from.

$ aws sns unsubscribe --subscription-arn arn:aws:sns:us-west-2:123456789012:my-
topic:1328f057-de93-4c15-512e-8bb22EXAMPLE

182

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/subscribe.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/publish.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/unsubscribe.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/unsubscribe.html

AWS Command Line Interface User Guide for Version 2
Delete a topic

To verify that you successfully unsubscribed, use the sns list-subscriptions command to confirm
that the ARN no longer appears in the list.

$ aws sns list-subscriptions

Delete a topic

To delete a topic, run the sns delete-topic command.

$ aws sns delete-topic --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic

To verify that AWS successfully deleted the topic, use the sns 1list-topics command to confirm that
the topic no longer appears in the list.

$ aws sns list-topics

Using Amazon Simple Workflow Service with the
AWS CLI

An introduction to Amazon Simple Workflow Service

Amazon Simple Workflow Service

You can access the features of Amazon Simple Workflow Service (Amazon SWF) using the AWS
Command Line Interface (AWS CLI).

To list the AWS CLI commands for Amazon SWF, use the following command.

aws swf help

Before you run any commands, set your default credentials. For more information, see Configuring the
AWS CLI (p. 32).

The following topics show examples of AWS CLI commands that perform common tasks for Amazon
SWF.

Topics
« List of Amazon SWF commands by category (p. 183)
» Working with Amazon SWF domains using the AWS CLI (p. 186)

List of Amazon SWF commands by category

You can use the AWS Command Line Interface (AWS CLI) to create, display, and manage workflows in
Amazon Simple Workflow Service (Amazon SWF).

This section lists the reference topics for Amazon SWF commands in the AWS CLI, grouped by functional
category.

183

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/list-subscriptions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/delete-topic.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/list-topics.html
https://www.youtube-nocookie.com/embed/y7Mff1ceypo

AWS Command Line Interface User Guide for Version 2
List of Amazon SWF Commands

For an alphabetic list of commands, see the Amazon SWF section of the AWS CLI Command Reference, or
use the following command.

$ aws swf help

You can also get help for an individual command, by placing the help directive after the command
name. The following shows an example.

$ aws swf register-domain help

Topics
« Commands related to activities (p. 184)
« Commands related to deciders (p. 184)
« Commands related to workflow executions (p. 184)
« Commands related to administration (p. 185)
« Visibility commands (p. 185)

Commands related to activities

Activity workers use poll-for-activity-task to get new activity tasks. After a worker receives an
activity task from Amazon SWF, it performs the task and responds using respond-activity-task-
completed if successful or respond-activity-task-failed if unsuccessful.

The following are commands that are performed by activity workers:

e poll-for-activity-task

e respond-activity-task-completed
e respond-activity-task-failed

e respond-activity-task-canceled

e record-activity-task-heartbeat

Commands related to deciders

Deciders use poll-for-decision-task to get decision tasks. After a decider receives a decision task
from Amazon SWF, it examines its workflow execution history and decides what to do next. It calls
respond-decision-task-completed to complete the decision task and provides zero or more next
decisions.

The following are commands that are performed by deciders:

e poll-for-decision-task

e respond-decision-task-completed

Commands related to workflow executions

The following commands operate on a workflow execution:

e request-cancel-workflow-execution

e start-workflow-execution

184

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/poll-for-activity-task.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/respond-activity-task-completed.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/respond-activity-task-failed.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/respond-activity-task-canceled.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/record-activity-task-heartbeat.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/poll-for-decision-task.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/respond-decision-task-completed.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/request-cancel-workflow-execution.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/start-workflow-execution.html

AWS Command Line Interface User Guide for Version 2
List of Amazon SWF Commands

e signal-workflow-execution

¢ terminate-workflow-execution

Commands related to administration

Although you can perform administrative tasks from the Amazon SWF console, you can use the
commands in this section to automate functions or build your own administrative tools.

Activity management
e register-activity-type

e deprecate-activity-type

Workflow management

e register-workflow-type

e deprecate-workflow-type

Domain management

e register-domain

e deprecate-domain

For more information and examples of these domain management commands, see Working with
Amazon SWF domains using the AWS CLI (p. 186).

Workflow execution management

* request-cancel-workflow-execution

e terminate-workflow-execution

Visibility commands

Although you can perform visibility actions from the Amazon SWF console, you can use the commands in
this section to build your own console or administrative tools.

Activity visibility
e list-activity-types

e describe-activity-type

Workflow visibility

e list-workflow-types

e describe-workflow-type

Workflow execution visibility

e describe-workflow-execution

185

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/signal-workflow-execution.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/terminate-workflow-execution.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/register-activity-type.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/deprecate-activity-type.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/register-workflow-type.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/deprecate-workflow-type.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/register-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/deprecate-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/request-cancel-workflow-execution.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/terminate-workflow-execution.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-activity-types.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-activity-type.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-workflow-types.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-workflow-type.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-workflow-execution.html

AWS Command Line Interface User Guide for Version 2
Working with Amazon SWF Domains

e list-open-workflow-executions

e list-closed-workflow-executions
e count-open-workflow-executions

e count-closed-workflow-executions

« get-workflow-execution-history

Domain visibility

e list-domains

e describe-domain

For more information and examples of these domain visibility commands, see Working with Amazon
SWF domains using the AWS CLI (p. 186).

Task list visibility

e count-pending-activity-tasks

e count-pending-decision-tasks

Working with Amazon SWF domains using the AWS
CLI

You can use the AWS Command Line Interface (AWS CLI) to manage your Amazon Simple Workflow
Service (Amazon SWF) domains.

Topics
o List your domains (p. 186)
« Get information about a domain (p. 187)
» Register a domain (p. 187)
» Deprecate a domain (p. 188)

List your domains

To list the Amazon SWF domains that you have registered for your AWS account, you can use swf
list-domains. You mustinclude --registration-status and specify either REGISTERED or
DEPRECATED.

Here's a minimal example.

$ aws swf list-domains --registration-status REGISTERED

{
"domainInfos": [

{
"status": "REGISTERED",
"name": "ExampleDomain"

Iy

{
"status": "REGISTERED",
"name": "mytest"

}

186

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-open-workflow-executions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-closed-workflow-executions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/count-open-workflow-executions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/count-closed-workflow-executions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/get-workflow-execution-history.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-domains.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/count-pending-activity-tasks.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/count-pending-decision-tasks.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-domains.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-domains.html

AWS Command Line Interface User Guide for Version 2
Working with Amazon SWF Domains

}

Note
For an example of using DEPRECATED, see Deprecate a domain (p. 188).

For more information, see swf list-domains inthe AWS CLI Command Reference.
Get information about a domain
To get detailed information about a particular domain, use swf describe-domain. There is one

required parameter, --name, which takes the name of the domain you want information about, as shown
in the following example.

$ aws swf describe-domain --name ExampleDomain

{
"domainInfo": {
"status": "REGISTERED",
"name": "ExampleDomain"
}l
"configuration": {
"workflowExecutionRetentionPeriodInDays": "1"
¥
¥

For more information, see swf describe-domain in the AWS CLI Command Reference.

Register a domain

To register new domains, use swf register-domain.

There are two required parameters: --name and --workflow-execution-retention-period-
in-days. The --name parameter takes the domain name to register. The --workflow-execution-
retention-period-in-days parameter takes an integer to specify the number of days to retain
workflow execution data on this domain, up to a maximum period of 90 days (for more information, see
the Amazon SWF FAQ).

If you specify zero (0) for this value, the retention period is automatically set at the maximum duration.
Otherwise, workflow execution data isn't retained after the specified number of days have passed. The
following example shows how to register a new domain.

$ aws swf register-domain --name MyNeatNewDomain --workflow-execution-retention-period-in-
days O

The command doesn't return any output, but you can use swf list-domains or swf describe-
domain to see the new domain, as shown in the following example.

$ aws swf describe-domain --name MyNeatNewDomain

{
"domainInfo": {
"status": "REGISTERED",
"name": "MyNeatNewDomain"
}l
"configuration": {
"workflowExecutionRetentionPeriodInDays": "0"
¥
¥

For more information, see swf register-domain inthe AWS CLI Command Reference.

187

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/list-domains.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/register-domain.html
http://aws.amazon.com/swf/faqs/#retain_limit
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/register-domain.html

AWS Command Line Interface User Guide for Version 2
Working with Amazon SWF Domains

Deprecate a domain

To deprecate a domain (you can still see it, but cannot create new workflow executions or register types
onit), use swf deprecate-domain. It has a sole required parameter, --name, which takes the name of
the domain to deprecate.

$ aws swf deprecate-domain --name MyNeatNewDomain

As with register-domain, no output is returned. If you use 1ist-domains to view the registered
domains, however, you will see that the domain no longer appears among them. You can also use --
registration-status DEPRECATED.

$ aws swf list-domains --registration-status DEPRECATED

{
"domainInfos": [
{
"status": "DEPRECATED",
"name": "MyNeatNewDomain"
}
]
}

For more information, see deprecate-domain in the AWS CLI Command Reference.

188

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/deprecate-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/deprecate-domain.html

AWS Command Line Interface User Guide for Version 2
Data Protection

Security in the AWS Command Line
Interface

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

« Security of the cloud - AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To
learn about the compliance programs that apply to AWS Command Line Interface, see AWS Services in
Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You are also

responsible for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using the
AWS Command Line Interface (AWS CLI). The following topics show you how to configure the AWS CLI
to meet your security and compliance objectives. You also learn how to use the AWS CLI to help you to
monitor and secure your AWS resources.

Topics
« Data protection in the AWS CLI (p. 189)
« ldentity and Access Management for the AWS CLI (p. 190)
o Compliance validation for the AWS CLI (p. 191)
« Enforcing a minimum version of TLS (p. 191)

Data protection in the AWS CLI

The AWS shared responsibility model applies to data protection in AWS Command Line Interface.

As described in this model, AWS is responsible for protecting the global infrastructure that runs all

of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on

this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your data
in the following ways:

« Use multi-factor authentication (MFA) with each account.
e Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.
« Set up API and user activity logging with AWS CloudTrail.

189

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/data-privacy-faq
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Command Line Interface User Guide for Version 2
Data encryption

« Use AWS encryption solutions, along with all default security controls within AWS services.

« Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

« If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command
line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints,
see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form fields such as a Name field. This includes when you
work with AWS CLI or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that
you enter into tags or free-form fields used for names may be used for billing or diagnostic logs. If
you provide a URL to an external server, we strongly recommend that you do not include credentials
information in the URL to validate your request to that server.

Data encryption

A key feature of any secure service is that information is encrypted when it is not being actively used.

Encryption at rest

The AWS CLI does not itself store any customer data other than the credentials it needs to interact with
the AWS services on the user's behalf.

If you use the AWS CLI to invoke an AWS service that transmits customer data to your local computer for
storage, then refer to the Security & Compliance chapter in that service's User Guide for information on
how that data is stored, protected, and encrypted.

Encryption in transit

By default, all data transmitted from the client computer running the AWS CLI and AWS service
endpoints is encrypted by sending everything through a HTTPS/TLS connection.

You don't need to do anything to enable the use of HTTPS/TLS. It is always enabled unless you explicitly
disable it for an individual command by using the --no-verify-ss1 command line option.

Identity and Access Management for the AWS CLI

The AWS Command Line Interface (AWS CLI) uses the same users and roles to access your AWS resources
and their services. The policies that grant permissions are the same because the AWS CLI calls the same
API operations that are used by the service console. For more information, see the "Identity and Access
Management" section in the "Security" chapter of the AWS service that you want to use.

The only major difference is how you authenticate when using a standard IAM user and long-term
credentials. Although an IAM user requires a password to access an AWS service's console, that same IAM
user requires an access key pair to perform the same operations using the AWS CLI. All other short-term
credentials are used in the same way they are used with the console.

The credentials used by the AWS CLI are stored in plaintext files and are not encrypted.

o The $HOME/ .aws/credentials file stores long-term credentials required to access your AWS
resources. These include your access key ID and secret access key.

« Short-term credentials, such as those for roles that you assume, or that are for AWS Single Sign-
On services, are also stored in the $HOME/ . aws /c1i/cache and $HOME/.aws/sso/cache folders,
respectively.

190

http://aws.amazon.com/compliance/fips/

AWS Command Line Interface User Guide for Version 2
Compliance Validation

Mitigation of Risk

« We strongly recommend that you configure your file system permissions on the $HOME/ . aws folder
and its child folders and files to restrict access to only authorized users.
« Use roles with temporary credentials wherever possible to reduce the opportunity for damage if the

credentials are compromised. Use long-term credentials only to request and refresh short-term role
credentials.

Compliance validation for the AWS CLI

Third-party auditors assess the security and compliance of AWS services as part of multiple AWS
compliance programs. Using the AWS Command Line Interface (AWS CLI) to access a service does not
alter that service's compliance.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using the AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS CLI is determined by the sensitivity of your data, your
company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

« Security and Compliance Quick Start Guides — These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

« Architecting for HIPAA Security and Compliance Whitepaper - This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

o AWS Compliance Resources — This collection of workbooks and guides might apply to your industry
and location.

« Evaluating Resources with Rules in the AWS Config Developer Guide - The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

« AWS Security Hub - This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

Enforcing a minimum version of TLS

To add increased security when communicating with AWS services, you should use TLS 1.2 or later. When
you use the AWS CLI, Python is used to set the TLS version.

AWS CLI version 2 uses an internal Python script that's compiled to use a minimum of TLS 1.2 when
the service it's talking to supports it. As long as you use version 2 of the AWS CLI, no further steps are
needed to enforce this minimum.

191

http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Command Line Interface User Guide for Version 2
General troubleshooting to try first

Troubleshooting AWS CLI errors

This section covers common errors and troubleshooting steps to follow to resolve your issue. We suggest
following the general troubleshooting (p. 192) first.
Contents
» General troubleshooting to try first (p. 192)
o Check your AWS CLI command formatting (p. 192)
« Confirm that you're running a recent version of the AWS CLI (p. 193)
 Use the --debug option (p. 193)
« Enable and review the AWS CLI command history logs (p. 197)
« Confirm that your AWS CLI is configured (p. 197)
« Command not found errors (p. 197)
» The "aws --version" command returns a different version than you installed (p. 199)
» The "aws --version" command returns a version after uninstalling the AWS CLI (p. 200)
« Access denied errors (p. 201)
« Invalid credentials and key errors (p. 201)
« Signature does not match errors (p. 202)
o SSL certificate errors (p. 203)
« Additional resources (p. 204)

General troubleshooting to try first

If you receive an error or encounter an issue with the AWS CLI, we suggest the following general tips to
help you troubleshoot.

Back to top (p. 192)

Check your AWS CLI command formatting

If you receive an error that indicates that a command doesn't exist, or that it doesn't recognize a
parameter that the documentation says is available, then your command might be formatted incorrectly.
We suggest that you check the following:

« Check your command for spelling and formatting errors.
« Confirm all quotes and escaping appropriate for your terminal (p. 91) is correct in your command.
« Generate an AWS CLI skeleton (p. 95) to confirm your command structure.

« If you're having issues with your terminal processing JSON formatting, we suggest skipping past the
terminal's quoting rules by using Blobs to pass JSON data directly to the AWS CLI (p. 89).

For more information on how a specific command should be structured, see the AWS CLI version 2
reference guide.

Back to top (p. 192)

192

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html

AWS Command Line Interface User Guide for Version 2
Confirm that you're running a
recent version of the AWS CLI

Confirm that you're running a recent version of the
AWS CLI

If you receive an error that indicates that a command doesn't exist, or that it doesn't recognize a
parameter that the AWS CLI version 2 reference guide says is available, first confirm that your command
is correctly formatted. If the formatting is correct, then we recommend that you upgrade to the most
recent version of the AWS CLI. Updated versions of the AWS CLI are released almost every business day.
New AWS services, features, and parameters are introduced in those new versions of the AWS CLI. The
only way to get access to those new services, features, or parameters is to upgrade to a version that was
released after that element was first introduced.

How you update your version of the AWS CLI depends on how you originally installed it as described in
the section called “Install/Update” (p. 6).

If you used one of the bundled installers, you might need to remove the existing installation before you
download and install the latest version for your operating system.

Back to top (p. 192)

Use the --debug option

When the AWS CLI reports an error that you don't immediately understand, or produces results that you
don't expect, you can get more detail about the error by running the command again with the --debug
option. With this option, the AWS CLI outputs details about every step it takes to process your command.
The details in the output can help you to determine when the error occurs and provides clues about
where it started.

You can send the output to a text file for later review, or to send to AWS Support when asked for it.
When you include the --debug option, some of the details include:

« Looking for credentials

« Parsing the provided parameters

« Constructing the request sent to AWS servers
« The contents of the request sent to AWS

« The contents of the raw response

o The formatted output

Here's an example of a command run with and without the --debug option.

$ aws iam list-groups --profile MyTestProfile

{
"Groups": [
{
"Path": "/",
"GroupName": "MyTestGroup",
"GroupId": "AGPA0123456789EXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyTestGroup",
"CreateDate": "2019-08-12T19:34:047Z"
}
]
¥

$ aws iam list-groups --profile MyTestProfile --debug
2019-08-12 12:36:18,305 - MainThread - awscli.clidriver - DEBUG - CLI version: aws-
cli/1.16.215 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.12.205

193

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/index.html

AWS Command Line Interface User Guide for Version 2
Use the --debug option

2019-08-12 12:36:18,305 - MainThread - awscli.clidriver - DEBUG - Arguments entered to CLI:
['iam', 'list-groups', '--debug']

2019-08-12 12:36:18,305 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function add_scalar_parsers at 0x7fdf173161e0>

2019-08-12 12:36:18,305 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function register_uri_param handler at 0x7fdf17dec400>

2019-08-12 12:36:18,305 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function inject_assume_role_provider_cache at 0x7fdf17da9378>

2019-08-12 12:36:18,307 - MainThread - botocore.credentials - DEBUG - Skipping environment
variable credential check because profile name was explicitly set.

2019-08-12 12:36:18,307 - MainThread - botocore.hooks - DEBUG - Event session-initialized:
calling handler <function attach_history handler at 0x7fdf173ed9d8>

2019-08-12 12:36:18,308 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/iam/2010-05-08/service-2.json
2019-08-12 12:36:18,317 - MainThread - botocore.hooks - DEBUG - Event building-command-

table.iam: calling handler <function add_waiters at 0x7fdf1731a840>

2019-08-12 12:36:18,320 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/iam/2010-05-08/waiters-2.json
2019-08-12 12:36:18,321 - MainThread - awscli.clidriver - DEBUG - OrderedDict([('path-

prefix', <awscli.arguments.CLIArgument object at 0x7fdf171ac780>), ('marker',
<awscli.arguments.CLIArgument object at 0x7£fdf171b09e8>), ('max-items',
<awscli.arguments.CLIArgument object at 0x7£df171b09b0>)1])

2019-08-12 12:36:18,322 - MainThread - botocore.hooks - DEBUG - Event building-

argument-table.iam.list-groups: calling handler <function add_streaming output_arg at
0x7£df17316510>

2019-08-12 12:36:18,322 - MainThread - botocore.hooks - DEBUG - Event building-argument-

table.iam.list-groups: calling handler <function add_cli_input_json at 0x7fdf17da9d90>
2019-08-12 12:36:18,322 - MainThread - botocore.hooks - DEBUG - Event building-argument-

table.iam.list-groups: calling handler <function unify_ paging params at 0x7£df17328048>
2019-08-12 12:36:18,326 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/iam/2010-05-08/paginators-1.json
2019-08-12 12:36:18,326 - MainThread - awscli.customizations.paginate - DEBUG - Modifying
paging parameters for operation: ListGroups

2019-08-12 12:36:18,326 - MainThread - botocore.hooks - DEBUG - Event building-argument-
table.iam.list-groups: calling handler <function add_generate_skeleton at 0x7fdf1737eae8>
2019-08-12 12:36:18,326 - MainThread - botocore.hooks - DEBUG - Event
before-building-argument-table-parser.iam.list-groups: calling handler

<bound method OverrideRequiredArgsArgument.override_required_args of
<awscli.customizations.cliinputjson.CliInputJSONArgument object at 0x7fdf171b0a58>>
2019-08-12 12:36:18,327 - MainThread - botocore.hooks - DEBUG - Event
before-building-argument-table-parser.iam.list-groups: calling handler

<bound method GenerateCliSkeletonArgument.override_required_args of
<awscli.customizations.generatecliskeleton.GenerateCliSkeletonArgument object at
0x7£df171c5978>>

2019-08-12 12:36:18,327 - MainThread - botocore.hooks - DEBUG - Event operation-
args-parsed.iam.list-groups: calling handler functools.partial(<function
check_should_enable_pagination at 0x7£df17328158>, ['marker', 'max-items'], {'max-
items': <awscli.arguments.CLIArgument object at 0x7fdf171b09b0>}, OrderedDict([('path-

prefix', <awscli.arguments.CLIArgument object at 0x7fdf171ac780>), ('marker',
<awscli.arguments.CLIArgument object at 0x7£fdf171b09e8>), ('max-items',
<awscli.customizations.paginate.PageArgument object at 0x7£fdf171c58d0>), ('cli-
input-json', <awscli.customizations.cliinputjson.CliInputJSONArgument object at
0x7fdf171b0a58>), ('starting-token',6 <awscli.customizations.paginate.PageArgument

object at 0x7fdf171b0a20>), ('page-size', <awscli.customizations.paginate.PageArgument
object at 0x7fdf171c5828>), ('generate-cli-skeleton',
<awscli.customizations.generatecliskeleton.GenerateCliSkeletonArgument object at
0x7£df171¢5978>)1))

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-
arg.iam.list-groups.path-prefix: calling handler <awscli.paramfile.URIArgumentHandler
object at 0x7fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-
arg.iam.list-groups.marker: calling handler <awscli.paramfile.URIArgumentHandler object at
0x7£df1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-
arg.iam.list-groups.max-items: calling handler <awscli.paramfile.URIArgumentHandler object
at 0x7£fdf1725c978>

194

AWS Command Line Interface User Guide for Version 2
Use the --debug option

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-
arg.iam.list-groups.cli-input-json: calling handler <awscli.paramfile.URIArgumentHandler
object at 0x7fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-
arg.iam.list-groups.starting-token: calling handler <awscli.paramfile.URIArgumentHandler
object at 0x7fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event load-cli-
arg.iam.list-groups.page-size: calling handler <awscli.paramfile.URIArgumentHandler object
at 0x7£fdf1725c978>

2019-08-12 12:36:18,328 - MainThread - botocore.hooks - DEBUG - Event
load-cli-arg.iam.list-groups.generate-cli-skeleton: calling handler
<awscli.paramfile.URIArgumentHandler object at 0x7£df1725c978>

2019-08-12 12:36:18,329 - MainThread - botocore.hooks - DEBUG

- Event calling-command.iam.list-groups: calling handler

<bound method CliInputJSONArgument.add_to_call_parameters of
<awscli.customizations.cliinputjson.CliInputJSONArgument object at 0x7fdf171b0a58>>
2019-08-12 12:36:18,329 - MainThread - botocore.hooks - DEBUG -

Event calling-command.iam.list-groups: calling handler <bound

method GenerateCliSkeletonArgument.generate_json_skeleton of
<awscli.customizations.generatecliskeleton.GenerateCliSkeletonArgument object at
0x7£df171c5978>>

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - DEBUG - Looking for
credentials via: assume-role

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - DEBUG - Looking for
credentials via: assume-role-with-web-identity

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - DEBUG - Looking for
credentials via: shared-credentials-file

2019-08-12 12:36:18,329 - MainThread - botocore.credentials - INFO - Found credentials in
shared credentials file: ~/.aws/credentials

2019-08-12 12:36:18,330 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/endpoints. json

2019-08-12 12:36:18,334 - MainThread - botocore.hooks - DEBUG - Event choose-service-name:
calling handler <function handle_service_name_alias at 0x7£df1898eb70>

2019-08-12 12:36:18,337 - MainThread - botocore.hooks - DEBUG - Event creating-client-

class.iam: calling handler <function add_generate_presigned_url at 0x7fdf18a028c8>
2019-08-12 12:36:18,337 - MainThread - botocore.regions - DEBUG - Using partition endpoint
for iam, us-west-2: aws-global

2019-08-12 12:36:18,337 - MainThread - botocore.args - DEBUG - The s3 config key is not a
dictionary type, ignoring its value of: None

2019-08-12 12:36:18,340 - MainThread - botocore.endpoint - DEBUG - Setting iam timeout as
(60, 60)

2019-08-12 12:36:18,341 - MainThread - botocore.loaders - DEBUG - Loading JSON file: /home/

ec2-user/venv/1lib/python3.7/site-packages/botocore/data/_retry.json

2019-08-12 12:36:18,341 - MainThread - botocore.client - DEBUG - Registering retry handlers
for service: iam

2019-08-12 12:36:18,342 - MainThread - botocore.hooks - DEBUG - Event before-parameter-

build.iam.ListGroups: calling handler <function generate_idempotent_uuid at 0x7£df189b10d0>
2019-08-12 12:36:18,342 - MainThread - botocore.hooks - DEBUG - Event before-

call.iam.ListGroups: calling handler <function inject_api_version_header_ if needed at
0x7£df189b2a60>

2019-08-12 12:36:18,343 - MainThread - botocore.endpoint - DEBUG - Making

request for OperationModel(name=ListGroups) with params: {'url_path': '/',
'query_string': '', 'method': 'POST', 'headers': {'Content-Type': 'application/x-
www—-form-urlencoded; charset=utf-8', 'User-Agent': 'aws-cli/1.16.215 Python/3.7.3
Linux/4.14.133-113.105.amzn2.x86_64 botocore/1.12.205'}, 'body': {'Action':
'ListGroups', 'Version': '2010-05-08'}, 'url': 'https://iam.amazonaws.com/', 'context':
{'client_region': 'aws-global', 'client_config': <botocore.config.Config object at

0x7fdfl6e9a4a8>, 'has_streaming_input': False, 'auth_type': None}}
2019-08-12 12:36:18,343 - MainThread - botocore.hooks - DEBUG - Event request-
created.iam.ListGroups: calling handler <bound method RequestSigner.handler of
<botocore.signers.RequestSigner object at 0x7fdf16e9a470>>
2019-08-12 12:36:18,343 - MainThread - botocore.hooks - DEBUG - Event choose-
signer.iam.ListGroups: calling handler <function set_operation_specific_signer at
0x7£df18996£28>
2019-08-12 12:36:18,343 - MainThread - botocore.auth - DEBUG - Calculating signature using
v4 auth.

195

AWS Command Line Interface User Guide for Version 2
Use the --debug option

2019-08-12 12:36:18,343 - MainThread - botocore.auth - DEBUG - CanonicalRequest:
POST
/

content-type:application/x-www-form-urlencoded; charset=utf-8
host:iam.amazonaws.com
x-amz-date:20190812T1936187%

content-type;host;x-amz-date

5£776d91EXAMPLE9b8cb5eb5d6d4a787a33ae41c8cd6eEXAMPLECa69080elelf

2019-08-12 12:36:18,344 - MainThread - botocore.auth - DEBUG - StringToSign:

AWS4-HMAC-SHA256

20190812T193618%Z

20190812 /us-east-1/iam/aws4_request

ab7e367eEXAMPLE2769f178e€a509978c£8bfa054874b3EXAMPLE8d043fab6écc9

2019-08-12 12:36:18,344 - MainThread - botocore.auth - DEBUG - Signature:

d85a0EXAMPLEb40164f2f539cdc76d4£294fe822EXAMPLE18adlddf58ala3ce?

2019-08-12 12:36:18,344 - MainThread - botocore.endpoint - DEBUG - Sending http request:
<AWSPreparedRequest stream_output=False, method=POST, url=https://iam.amazonaws.com/,
headers={'Content-Type': b'application/x-www-form-urlencoded; charset=utf-8',
'User-Agent': b'aws-cli/1.16.215 Python/3.7.3 Linux/4.14.133-113.105.amzn2.x86_64
botocore/1.12.205', 'X-Amz-Date': b'20190812T193618Z', 'Authorization': b'AWS4-HMAC-

SHA256 Credential=AKIA01234567890EXAMPLE-east-1/iam/aws4_request, SignedHeaders=content-

type;host;x-amz-date, Signature=d85a07692aceb401EXAMPLEalbl8adlddf58ala3ce7EXAMPLE',
'Content-Length': '36'}>

2019-08-12 12:36:18,344 - MainThread - urllib3.util.retry - DEBUG - Converted retries
value: False -> Retry(total=False, connect=None, read=None, redirect=0, status=None)

2019-08-12 12:36:18,344 - MainThread - urllib3.connectionpool - DEBUG - Starting new HTTPS
connection (1): iam.amazonaws.com:443

2019-08-12 12:36:18,664 — MainThread - urllib3.connectionpool - DEBUG - https://

jiam.amazonaws.com: 443 "POST / HTTP/1.1" 200 570

2019-08-12 12:36:18,664 - MainThread - botocore.parsers - DEBUG - Response headers: {'x-

amzn-RequestId': '74cl11606-bd38-11e9-9c82-559dal0adb349', 'Content-Type': 'text/xml',
'Content-Length': '570', 'Date': 'Mon, 12 Aug 2019 19:36:18 GMT'}

2019-08-12 12:36:18,664 - MainThread - botocore.parsers - DEBUG - Response body:

b'<ListGroupsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">\n
<ListGroupsResult>\n <IsTruncated>false</IsTruncated>\n <Groups>\n

<member>\n <Path>/</Path>\n <GroupName>MyTestGroup</GroupName>

\n <Arn>arn:aws:iam::123456789012:group/MyTestGroup</Arn>\n
<GroupId>AGPA1234567890EXAMPLE</GroupId>\n <CreateDate>2019-08-12T19:34:042Z</

CreateDate>\n </member>\n </Groups>\n </ListGroupsResult>\n <ResponseMetadata>\n

<RequestId>74c11606-bd38-11e9-9c82-559da0adb349</RequestId>\n </ResponseMetadata>\n</

ListGroupsResponse>\n'

2019-08-12 12:36:18,665 - MainThread - botocore.hooks - DEBUG - Event needs-

retry.iam.ListGroups: calling handler <botocore.retryhandler.RetryHandler object at
0x7£fdf16e9a780>

2019-08-12 12:36:18,665 — MainThread - botocore.retryhandler - DEBUG - No retry needed.

2019-08-12 12:36:18,665 - MainThread - botocore.hooks - DEBUG - Event after-

call.iam.ListGroups: calling handler <function json_decode_policies at 0x7fdf189b1d90>

{

"Groups": [

{
"Path": "/",
"GroupName": "MyTestGroup",
"GroupId": "AGPA123456789012EXAMPLE",
"Arn": "arn:aws:iam::123456789012:group/MyTestGroup",
"CreateDate": "2019-08-12T19:34:04Z"
}

Back to top (p. 192)

196

AWS Command Line Interface User Guide for Version 2
Enable and review the AWS CLI command history logs

Enable and review the AWS CLI command history
logs

You can enable the AWS CLI command history logs using the c1i_history (p. 40) file setting. After
enabling this setting, the AWS CLI records the history of aws commands.

You can this list your history using the aws history list command, and use the resulting
command_ids in the aws history show command for details. For more information see aws history
in the AWS CLI reference guide.

When you include the --debug option, some of the details include:

 API calls made to botocore
 Status codes

o HTTP responses

« Headers

« Return codes

You can use this information to confirm paramater data and API calls are behaving in the way you expect,
and can then deduce at what step in the process your command is failing.

Back to top (p. 192)

Confirm that your AWS CLI is configured

Various errors can occur if your config and credentials files or your IAM user or roles are not
configured correctly. For more information on resolving errors with config and credentials files
or your IAM user or roles, see the section called “Access denied errors” (p. 201) and the section called
“Invalid credentials and key errors” (p. 201).

Back to top (p. 192)

Command not found errors

This error means that the operating system can't find the AWS CLI command. The installation might be
incomplete or requires updating.

Possible cause: You're trying to use an AWS CLI feature newer than your installed version, or have
incorrect formatting

Example error text:

$ aws s3 copy
usage: aws [options] <command> <subcommand> [<subcommand> ...] [parameters]
To see help text, you can run:

aws help
aws <command> help
aws <command> <subcommand> help
aws: error: argument subcommand: Invalid choice, valid choices are:

1s | website

197

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/history/index.html

AWS Command Line Interface User Guide for Version 2
Command not found errors

cp | mv

Various errors can occur if your command is formatted incorrectly or you are using an earlier version
from before the feature was released. For more information on resolving errors around these two
issues, see the section called “Check your AWS CLI command formatting” (p. 192) and the section
called “Confirm that you're running a recent version of the AWS CLI" (p. 193).

Back to top (p. 192)
Possible cause: The terminal needs to be restarted after installation

Example error text:

$ aws --version
command not found: aws

If the aws command cannot be found after first installing or updating the AWS CLI, you might need
to restart your terminal for it to recognize any PATH updates.

Back to top (p. 192)
Possible cause: The AWS CLI did not fully install

Example error text:

$ aws --version
command not found: aws

If the aws command cannot be found after first installing or updating the AWS CLlI, it might not have
been fully installed. Try reinstalling by following the steps for your platform in the section called
“Install/Update” (p. 6).

Back to top (p. 192)
Possible cause: The AWS CLI does not have permissions (Linux)

If the aws command cannot be found after first installing or updating the AWS CLI on Linux, it might
not have execute permissions for the folder it installed in. Run the following command with the
PATH to your AWS CLI installation,to provide chmod permissions to the AWS CLI:

$ sudo chmod -R 755 /usr/local/aws-cli/

Back to top (p. 192)
Possible cause: The operating system PATH was not updated during installation

Example error text:

$ aws --version
command not found: aws

You might need to add the aws executable to your operating system's PATH environment variable.
To add the AWS CLI to your PATH, use the following instructions for your operating system.

Linux and macOS

1. Find your shell's profile script in your user directory. If you're not sure which shell you have,
run echo $SHELL.

198

https://en.wikipedia.org/wiki/Chmod

AWS Command Line Interface User Guide for Version 2
The "aws --version" command returns
a different version than you installed

$ 1s -a ~
.bash_logout .bash profile .bashrc Desktop Documents Downloads

e Bash- .bash_profile, .profile, or .bash_login
e Zsh - .zshrc
e Tcsh - .teshre, .cshre, or .1login

2. Add an export command to your profile script. The following command adds your local bin
to the current PATH variable.

export PATH=/usr/local/bin:$PATH

3. Reload the updated profile into your current session.

$ source ~/.bash_profile

Windows

1. Ina Windows Command Prompt, use the where command with the /R path parameter to
find the aws file location. The results return all folders containing aws.

C:\> where /R c:\ aws
c:\Program Files\Amazon\AWSCLIV2\aws.exe

By default, the AWS CLI version 2 is located in:

c:\Program Files\Amazon\AWSCLIV2\aws.exe

Press the Windows key and enter environment variables.
From the list of suggestions, choose Edit environment variables for your account.
Choose PATH, and then choose Edit.

Add the path you found in the first step into the Variable value field, for example, c:
\Program Files\Amazon\AWSCLIV2\aws.exe.

Choose OK twice to apply the new settings.
7. Close any running command prompts and reopen the command prompt window.

iAW

o

Back to top (p. 192)

The "aws --version" command returns a
different version than you installed

Your terminal might be returning a different PATH for the AWS CLI than you expect.
Possible cause: The terminal needs to be restarted after installing

If the aws command shows the wrong version, you might need to restart your terminal for it to
recognize any PATH updates.

Back to top (p. 192)

199

AWS Command Line Interface User Guide for Version 2
The "aws --version" command returns
a version after uninstalling the AWS CLI

Possible cause: You have multiple versions of the AWS CLI

If you updated the AWS CLI and used a different install method than your pre-existing installation,
it might cause multiple versions to be installed. For example, if on Linux or macOS you used pip for
your current install, but tried to update using the . pkg install file, this could cause some conflicts
especially with your PATH pointing to the old version.

To resolve this, uninstall all versions of the AWS CLI (p. 200) and perform a clean install.

After uninstalling all versions, follow instructions appropriate for your operating system to install
your desired version of the AWS CLI version 1 or AWS CLI version 2.

Note

If this is happening after you installed the AWS CLI version 2 with a pre-existing install
of AWS CLI version 1, follow the migration instructions in the section called “Migration
instructions” (p. 211).

Back to top (p. 192)

The "aws --version" command returns a version
after uninstalling the AWS CLI

This often occurs when there is still an AWS CLI installed somewhere on your system.
Possible cause: The terminal needs to be restarted after uninstalling

If the aws --version command still works, you might need to restart your terminal for it to
recognize any terminal updates.

Back to top (p. 192)
Possible cause: You have multiple versions of the AWS CLI on your system, or didn't use the same
uninstall method that you used to originally install the AWS CLI

The AWS CLI might not uninstall correctly if you uninstalled the AWS CLI using a different method
than you used to install it, or if you installed multiple versions. For example, if you used pip for your
current install, you must use pip to uninstall it. To resolve this, uninstall AWS CLI using the same
method that you used to install it.

1. Follow the instructions appropriate for your operating system and your original installation
method to uninstall the AWS CLI version 1T and AWS CLI version 2.

2. Close all terminals you have open.

3. Open your preferred terminal, enter in the following command and confirm that no version is
returned.

$ aws --version
command not found: aws

If you still have a version listed in the output, the AWS CLI was most likely installed using a
different method or there are multiple versions. If you don't know which method you installed
the AWS CLI, follow the instructions for each uninstall method for the AWS CLI version 1 and
AWS CLI version 2 appropriate to your operating system until no version output is received.

Note

If you used a package manager to install the AWS CLI (pip, apt, brew, etc.), you
must use the same package manager to uninstall it. Be sure to follow the instructions
provided by the package manager on how to uninstall all versions of a package.

200

https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/uninstall.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/uninstall.html

AWS Command Line Interface User Guide for Version 2
Access denied errors

Back to top (p. 192)

Access denied errors

Possible cause: The AWS CLI program file doesn't have "run" permission

On Linux or macOS, make sure that the aws program has run permissions for the calling user.
Typically, the permissions are set to 755.

To add run permission for your user, run the following command, substituting ~/. local/bin/aws
with the path to the program on your computer.

$ chmod +x ~/.local/bin/aws

Back to top (p. 192)
Possible cause: Your IAM identity doesn't have permission to perform the operation

Example error text:

$ aws s3 1s
An error occurred (AcessDenied) when calling the ListBuckets operation: Access denied.

When you run a AWS CLI command, AWS operations are performed on your behalf, using credentials
that associate you with an 1AM user or role. The policies attached to that IAM user or role must grant
you permission to call the API actions that correspond to the commands that you run with the AWS
CLL.

Most commands call a single action with a name that matches the command name. However,
custom commands like aws s3 sync call multiple APIs. You can see which APIs a command calls by
using the --debug option.

If you are sure that the user or role has the proper permissions assigned by policy, make sure
that your AWS CLI command is using the credentials you expect. See the next section about
credentials (p. 201) to verify that the credentials the AWS CLI is using are the ones that you expect.

For information about assigning permissions to IAM users and roles, see Overview of Access
Management: Permissions and Policies in the IAM User Guide.

Back to top (p. 192)

Invalid credentials and key errors

Example error text:

$ aws s3 1ls

An error occurred (InvalidAccessKeyId) when calling the ListBuckets operation: The AWS
Access Key Id

you provided does not exist in our records.

$ aws s3 1s

An error occurred (InvalidClientTokenId) when calling the ListBuckets operation: The
security token

included in the request is invalid.

201

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html

AWS Command Line Interface User Guide for Version 2
Signature does not match errors

Possible cause: The AWS CLI is reading incorrect credentials or from an unexpected location

The AWS CLI might be reading credentials from a different location than you expect, or your key pair
information is incorrect. You can run aws configure list to confirm which credentials are used.

The following example shows how to check the credentials used for the default profile.

$ aws configure list

Name Value Type Location
profile <not set> None None
access_key kkkkkkkkxkx*kx***XYVA shared-credentials-file
secret_key kkkkkkkkxkxkx***ZAGY shared-credentials-file
region us-west-2 config-file ~/.aws/config

The following example shows how to check the credentials of a named profile.

$ aws configure list --profile saanvi

Name Value Type Location
profile saanvi manual --profile
access_key *kkkkkkkkkkkkkk* shared-credentials-file
secret_key *kkkkkkkkkkkkkk* shared-credentials-file
region us-west-2 config-file ~/.aws/config

To confirm your key pair details, check your config and credentials files. For more information
on config and credentials files, see the section called “Configuration and credential file
settings” (p. 36). For more information on key pairs, see the section called “Access key ID and secret
access key” (p. 33).

Back to top (p. 192)
Possible cause: Your computer's clock is out of sync

If you are using valid credentials, your clock might be out of sync. On Linux or macOS, run date to
check the time.

$ date

If your system clock is not correct within a few minutes, use ntpd to sync it.

sudo service ntpd stop
sudo ntpdate time.nist.gov
sudo service ntpd start
ntpstat

® B W W

On Windows, use the date and time options in the Control Panel to configure your system clock.

Back to top (p. 192)

Signature does not match errors

Example error text:

$ aws s3 1ls
An error occurred (SignatureDoesNotMatch) when calling the ListBuckets operation: The
request signature we

202

AWS Command Line Interface User Guide for Version 2
SSL certificate errors

calculated does not match the signature you provided. Check your key and signing method.

When the AWS CLI runs a command, it sends an encrypted request to the AWS servers to perform the
appropriate AWS service operations. Your credentials (the access key and secret key) are involved in the
encryption and enable AWS to authenticate the person making the request. There are several things that
can interfere with the correct operation of this process, as follows.

Possible cause: Your clock is out of sync with the AWS servers

To help protect against replay attacks, the current time can be used during the encryption/
decryption process. If the time of the client and server disagree by more than the allowed amount,
the process can fail and the request is rejected. This can also happen when you run a command in a
virtual machine whose clock is out of sync with the host machine's clock. One possible cause is when
the virtual machine hibernates and takes some time after waking up to sync the clock with the host
machine.

On Linux or macQS, run date to check the time.

$ date

If your system clock is not correct within a few minutes, use ntpd to sync it.

sudo service ntpd stop
sudo ntpdate time.nist.gov
sudo service ntpd start
ntpstat

® B w W

On Windows, use the date and time options in the Control Panel to configure your system clock.

Back to top (p. 192)

Possible cause: Your operating system is mishandling AWS secret keys that contain certain special
characters

If your AWS secret key includes certain special characters, such as -, +, /, or %, some operating
system variants process the string improperly and cause the secret key string to be interpreted
incorrectly.

If you process your access keys and secret keys using other tools or scripts, such as tools that build
the credentials file on a new instance as part of its creation, those tools and scripts might have their
own handling of special characters that causes them to be transformed into something that AWS no
longer recognizes.

We suggest regenerating the secret key to get one that does not include the special character
causing issues.

Back to top (p. 192)

SSL certificate errors

Possible cause: The AWS CLI doesn't trust your proxy's certificate

Example error text:

$ aws s3 1s
[SSL: CERTIFICATE_ VERIFY_FAILED] certificate verify failed

203

https://wikipedia.org/wiki/Replay_attack

AWS Command Line Interface User Guide for Version 2
Additional resources

When you use a AWS CLI command, you receive an [SSL: CERTIFICATE VERIFY FAILED]
certificate verify failed error message. This is caused by the AWS CLI not trusting your
proxy's certificate due to factors such as your proxy's certificate being self-signed, with your
company set as the Certification Authority (CA). This prevents the AWS CLI from finding your
companies CA root certificate in the local CA registry.

To fix this, instruct the AWS CLI where to find your companies . pem file using the
ca_bundle (p. 39) configuration file setting, --ca-bundle (p. 60) command line option, or the
AWS_CA_BUNDLE (p. 56) environment variable.

Back to top (p. 192)
Possible cause: Your configuration isn't pointing to the correct CA root certificate location

Example error text:

$ aws s3 1s
SSL validation failed for regionname [Errno 2] No such file or directory

This is caused by your Certification Authority (CA) bundle file location being configured incorrectly
in the AWS CLI. To fix this, confirm where your companies . pen file is located and update the AWS
CLI configuration by using the ca_bundle (p. 39) configuration file setting, --ca-bundle (p. 60)
command line option, or the AWS_CA_BUNDLE (p. 56) environment variable.

Back to top (p. 192)

Additional resources

For additional help with your AWS CLI issues, visit the AWS CLI community on GitHub or the AWS re:Post
community.

Back to top (p. 192)

204

https://github.com/aws/aws-cli/issues
https://repost.aws/
https://repost.aws/

AWS Command Line Interface User Guide for Version 2
New features and changes

Migrating from AWS CLI version 1 to
version 2

New

This section contains instructions for updating the AWS CLI version 1 to AWS CLI version 2. You can also
learn about the differences between the versions. The AWS CLI version 2 includes new features and other
changes that might require you to update your scripts or commands for backwards compatibility.

Topics
« New features and changes in AWS CLI version 2 (p. 205)
o AWS CLI version 2 migration instructions (p. 211)

features and changes in AWS CLI version 2

This topic describes new features and changes in behavior between AWS CLI version 1 and AWS CLI
version 2. These changes might require you to update your scripts or commands to get the same
behavior in version 2 as you did in version 1.

Topics
o AWS CLI version 2 new features (p. 205)
« Breaking changes between AWS CLI version 1 and AWS CLI version 2 (p. 206)

AWS CLI version 2 new features

The AWS CLI version 2 is the most recent major version of the AWS CLI and supports all of the latest
features. Some features introduced in version 2 are not backported to version 1 and you must upgrade to
access those features. These features include the following:

Python interpreter not needed

The AWS CLI version 2 doesn't need a separate install of Python. It includes an embedded version.
Wizards (p. 135)

You can use a wizard with the AWS CLI version 2. The wizard guides you through constructing certain
commands.

AWS Single Sign-On (p. 49)

If your organization uses AWS Single Sign-On (AWS SSO), your users can sign in to Active Directory,
a built-in AWS SSO directory, or another IdP connected to AWS SSO. Then, they are mapped to an
AWS Identity and Access Management (IAM) role that allows you to run AWS CLI commands.

Auto-prompt (p. 104)

When enabled, the AWS CLI version 2 can prompt you for commands, parameters, and resources
when you run an aws command.

Docker (p. 25)

The official Docker image for the AWS CLI provides isolation, portability, and security that AWS
directly supports and maintains. This way, you can use the AWS CLI version 2 in a container-based
environment without having to manage the installation yourself.

205

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-idp.html

AWS Command Line Interface User Guide for Version 2
Breaking changes between AWS
CLI version 1 and AWS CLI version 2

Client-side pager (p. 116)
The AWS CLI version 2 provides the use of a client-side pager program for output. By default, this
feature is turned on and returns all output through your operating system'’s default pager program.

aws configure import (p. 38)

Import . csv credentials generated from the AWS Management Console. A . csv file is imported
with the profile name matching the IAM user name.

aws configure list-profiles

Lists the names of all profiles you have configured.
the section called “YAML stream output format” (p. 110)

The yaml and yaml-stream format takes advantage of the YAML format while providing more
responsive viewing of large datasets by streaming the data to you. You can start viewing and using
YAML data before the entire query downloads.

New high-level ddb commands for DynamoDB

The AWS CLI version 2 has the high-level Amazon DynamoDB commands ddb put and ddb
select. These commands provide a simplified interface for putting items in DynamoDB tables and
searching in a DynamoDB table or index.

aws logs tail

The AWS CLI version 2 has a custom aws logs tail command that tails the logs for an Amazon
CloudWatch Logs group. By default, the command returns logs from all associated CloudWatch Logs
streams during the past ten minutes.

Added metadata support for high-level s3 commands (p. 169)

The AWS CLI version 2 adds the --copy-props parameter to the high-level s3 commands. With
this parameter, you can configure additional metadata and tags for Amazon Simple Storage Service
(Amazon S3).

AWS_REGION (p. 58)

The AWS CLI version 2 has an AWS SDK-compatible environment variable called AWS_REGION.
This variable specifies the AWS Region to send requests to. It overrides the AWS_DEFAULT REGION
environment variable, which is only applicable in the AWS CLI.

Breaking changes between AWS CLI version 1 and
AWS CLI version 2

This sections describes all of the changes in behavior between AWS CLI version 1 and AWS CLI version
2. These changes might require you to update your scripts or commands to get the same behavior in
version 2 as you did in version 1.
Topics

« Environment variable added to set text file encoding (p. 207)

« Binary parameters are passed as base64-encoded strings by default (p. 207)

» Improved Amazon S3 handling of file properties and tags for multipart copies (p. 207)

« No automatic retrieval of http:// or https:// URLs for parameters (p. 208)

« Pager used for all output by default (p. 208)

o Timestamp output values are standardized to ISO 8601 format (p. 208)

206

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/configure/list-profiles.html
https://yaml.org
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ddb/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ddb/put.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ddb/select.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ddb/select.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/tail.html

AWS Command Line Interface User Guide for Version 2
Breaking changes between AWS
CLI version 1 and AWS CLI version 2

 Improved handling of CloudFormation deployments that result in no changes (p. 208)

« Changed default behavior for Regional Amazon S3 endpoint for us-east-1 Region (p. 209)
» Changed default behavior for Regional AWS STS endpoints (p. 209)

« ecr get-login removed and replaced with ecr get-login-password (p. 209)

« AWS CLlI version 2 support for plugins is changing (p. 209)

« Hidden alias support removed (p. 210)

« The api_versions configuration file setting is not supported (p. 211)

« AWS CLlI version 2 uses only Signature v4 to authenticate Amazon S3 requests (p. 211)

» AWS CLI version 2 is more consistent with paging parameters (p. 211)

o AWS CLI version 2 provides more consistent return codes across all commands (p. 211)

Environment variable added to set text file encoding

By default, text files for the section called “Binary/Blob (binary large object) " (p. 89) use the same
encoding as the installed locale. Because the AWS CLI version 2 uses an embedded version of Python, the
PYTHONUTFS8 and PYTHONIOENCODING environment variables are not supported. To set encoding for
text files to be different from the locale, use the AWS_CLI_FILE_ENCODING environment variable. The
following example sets the AWS CLI to open text files using UTF-8 on Windows.

AWS_CLI_FILE_ENCODING=UTF-8

For more information, see Environment variables to configure the AWS CLI (p. 55) .

Binary parameters are passed as base64-encoded strings by
default

In the AWS CLI, some commands required base64-encoded strings, while others required UTF-8-
encoded byte strings. In the AWS CLI version 1, passing data between two encoded string types often
required some intermediate processing. The AWS CLI version 2 makes handling binary parameters more
consistent, which helps pass values from one command to another more reliably.

By default, the AWS CLI version 2 passes all binary input and binary output parameters as the base64-
encoded string blobs (binary large object). For more information, see the section called “Binary/Blob
(binary large object) " (p. 89).

To revert to the AWS CLI version 1 behavior, use the c1i_binary format (p. 40) file configuration
orthe --cli-binary-format (p. 60) parameter.

Improved Amazon S3 handling of file properties and tags for
multipart copies

When you use the AWS CLI version 1 commands in the aws s3 namespace to copy a file from one S3
bucket location to another, and that operation uses multipart copy, no file properties from the source
object are copied to the destination object.

By default, the corresponding commands in the AWS CLI version 2 transfer all tags and some of the
properties from the source to the destination copy. Compared to the AWS CLI version 1, this can result
in more AWS API calls being made to the Amazon S3 endpoint. To change the default behavior for s3
commands in AWS CLI version 2, use the --copy-props parameter.

For more information, see the section called “File properties and tags in multipart copies” (p. 169).

207

https://wikipedia.org/wiki/Base64
https://docs.aws.amazon.com/AmazonS3/latest/dev/CopyingObjctsMPUapi.html

AWS Command Line Interface User Guide for Version 2
Breaking changes between AWS
CLI version 1 and AWS CLI version 2

No automatic retrieval of http:// or https:// URLs for
parameters

The AWS CLI version 2 does not perform a GET operation when a parameter value begins with http://
or https://, and does not use the returned content as the parameter value. As a result, the associated
command line option c1i_follow_urlparam is removed from the AWS CLI version 2.

If you need to retrieve a URL and pass the URL contents into a parameter value, we recommend that you
use curl or a similar tool to download the contents of the URL to a local file. Then, use the file://
syntax to read the contents of that file and use it as the parameter value.

For example, the following command no longer tries to retrieve the contents of the page found at
http://www.example.comand pass those contents as the parameter. Instead, it passes the literal text
string https://example.com as the parameter.

$ aws ssm put-parameter \
--value http://www.example.com \
--name prod.microservicel.db.secret \
--type String 2

If you need to retrieve and use the contents of a web URL as a parameter, you can do the following in
version 2.

$ curl https://my.example.com/mypolicyfile.json -o mypolicyfile.json
$ aws iam put-role-policy \

--policy-document file://./mypolicyfile.json \

--role-name MyRole \

--policy-name MyReadOnlyPolicy

In the preceding example, the —-o parameter tells curl to save the file in the current folder with the
same name as the source file. The second command retrieves the content of that downloaded file and
passes the content as the value of --policy-document.

Pager used for all output by default

By default, the AWS CLI version 2 returns all output through your operating system’s default pager
program. This program is the 1ess program on Linux or macOS, and the more program on Windows.
This can help you navigate a large amount of output from a service by displaying that output one page
at a time.

You can configure the AWS CLI version 2 to use a different paging program or none at all. For more
information, see the section called “Client-side pager” (p. 116).

Timestamp output values are standardized to ISO 8601 format

By default, the AWS CLI version 2 returns all timestamp response values in the ISO 8601 format. In AWS
CLI version 1, commands returned timestamp values in whatever format was returned by the HTTP API
response, which could vary from service to service.

To see timestamps in the format returned by the HTTP API response, use the wire value in your config
file. For more information, see c1i_timestamp_ format (p. 41).

Improved handling of CloudFormation deployments that result
in no changes

By default in the AWS CLI version 1, if you deploy a AWS CloudFormation template that results in no
changes, the AWS CLI returns a failed error code. This causes problems if you don't consider that to be an

208

https://ss64.com/bash/less.html
https://docs.microsoft.com/windows-server/administration/windows-commands/more
https://wikipedia.org/wiki/ISO_8601

AWS Command Line Interface User Guide for Version 2
Breaking changes between AWS
CLI version 1 and AWS CLI version 2

error and you want your script to continue. You can work around this in the AWS CLI version 1 by adding
the flag --no-fail-on-empty-changeset, which returns 0.

Since this is a common use case, the AWS CLI version 2 defaults to returning a successful exit code of 0
when there is no change caused by a deployment and the operation returns an empty changeset.

To revert to the original behavior, add the flag --fail-on-empty-changeset.

Changed default behavior for Regional Amazon S3 endpoint for
us—-east-1 Region

When you configure theAWS CLI version 1 to use the us-east-1 Region, the AWS CLI uses the global
s3.amazonaws . com endpoint that is physically hosted in the us-east-1 Region. The AWS CLI version
2 uses the true Regional endpoint s3.us-east-1.amazonaws.com when that Region is specified. To
force the AWS CLI version 2 to use the global endpoint, you can set the Region for a command to aws-
global.

Changed default behavior for Regional AWS STS endpoints

By default, the AWS CLI version 2 sends all AWS Security Token Service (AWS STS) API requests to the
Regional endpoint for the currently configured AWS Region.

By default, the AWS CLI version 1 sends AWS STS requests to the global AWS STS endpoint. You can
control this default behavior in version 1 by using the sts_regional_endpoints setting.

ecr get-loginremoved and replaced with ecr get-login-
password

The AWS CLI version 2 replaces the command aws ecr get-login with the aws ecr get-login-
password command that improves automated integration with container authentication.

The aws ecr get-login-password command reduces the risk of exposing your credentials in the
process list, shell history, or other log files. It also improves compatibility with the docker login
command for better automation.

The aws ecr get-login-password command is available in the AWS CLI version 1.17.10 and later,
and the AWS CLI version 2. The earlier aws ecr get-login command is still available in the AWS CLI
version 1 for backward compatibility.

With the aws ecr get-login-password command, you can replace the following code that retrieves
a password.

$ (aws ecr get-login --no-include-email)

To reduce the risk of exposing the password to the shell history or logs, use the following example
command instead. In this example, the password is piped directly to the docker login command,
where it is assigned to the password parameter by the --password-stdin option.

$ aws ecr get-login-password | docker login --username AWS --password-stdin MY-REGISTRY-URL

For more information, see aws ecr get-login-password inthe AWS CLI version 2 Reference Guide.

AWS CLI version 2 support for plugins is changing

Plugin support in the AWS CLI version 2 is completely provisional and is intended to help users migrate
from AWS CLI version 1 until a stable, updated plugin interface is released. There are no guarantees that

209

https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html#cli-config-sts_regional_endpoints
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html

AWS Command Line Interface User Guide for Version 2
Breaking changes between AWS
CLI version 1 and AWS CLI version 2

a particular plugin or even the AWS CLI plugin interface will be supported in future versions of the AWS
CLI version 2. If you rely on plugins, be sure to lock into a particular version of the AWS CLI and test the
functionality of your plugin when you do upgrade.

To enable plugin support, create a [plugins] section in your ~/.aws/config.

[plugins]
cli_legacy_plugin path = <path-to-plugins>/python3.7/site-packages
<plugin-name> = <plugin-module>

In the [plugins] section, define the c1i_legacy_plugin_path variable and set its value to the
Python site packages path where your plugin module is. Then, you can configure a plugin by providing
a name for the plugin (plugin-name) and the file name of the Python module (p1ugin-module) that
contains the source code for your plugin. The AWS CLI loads each plugin by importing its plugin-
module and calling its awscli_initialize function.

Hidden alias support removed

AWS CLI version 2 no longer supports the following hidden aliases that were supported in version 1.

In the following table, the first column displays the service, command, and parameter that work in all
versions, including the AWS CLI version 2. The second column displays the alias that no longer works in
the AWS CLI version 2.

Working service, command, and parameter Obsolete alias
cognito-identity create-identity-pool open-id-connect-provider- open-id-connect-provider-ar-ns
arns

storagegateway describe-tapes tape-arns tape-ar-ns
storagegateway.describe-tape-archives.tape-arns tape-ar-ns
storagegateway.describe-vtl-devices.vtl-device-arns vtl-device-ar-ns
storagegateway.describe-cached-iscsi-volumes.volume-arns volume-ar-ns
storagegateway.describe-stored-iscsi-volumes.volume-arns volume-ar-ns
route53domains.view-billing.start-time start
deploy.create-deployment-group.ec2-tag-set ec-2-tag-set
deploy.list-application-revisions.s3-bucket s-3-bucket

deploy.list-application-revisions.s3-key-prefix
deploy.update-deployment-group.ec2-tag-set
iam.enable-mfa-device.authentication-code1
iam.enable-mfa-device.authentication-code2
iam.resync-mfa-device.authentication-code1
iam.resync-mfa-device.authentication-code2
importexport.get-shipping-label.street

importexport.get-shipping-label.street2

s-3-key-prefix
ec-2-tag-set
authentication-code-1
authentication-code-2
authentication-code-1
authentication-code-2
street-1

street-2

210

AWS Command Line Interface User Guide for Version 2
Migration instructions

Working service, command, and parameter Obsolete alias
importexport.get-shipping-label.street3 street-3
lambda.publish-version.code-sha256 code-sha-256
lightsail.import-key-pair.public-key-base64 public-key-base-64
opsworks.register-volume.ec2-volume-id ec-2-volume-id

The api_versions configuration file setting is not supported

The AWS CLI version 2 doesn't support calling earlier versions of AWS service APIs by using the
api_versions configuration file setting. All AWS CLI commands now call the latest version of the
service APIs that are currently supported by the endpoint.

AWS CLI version 2 uses only Signature v4 to authenticate
Amazon S3 requests

The AWS CLI version 2 doesn't support earlier signature algorithms to cryptographically authenticate
service requests sent to Amazon S3 endpoints. This signing happens automatically with every Amazon
S3 request and only the Signature Version 4 Signing Process is supported. You can't configure the
signature version. All Amazon S3 bucket presigned URLs now use only SigV4 and have a maximum
expiration duration of one week.

AWS CLI version 2 is more consistent with paging parameters

In the AWS CLI version 1, if you specify pagination parameters on the command line, then automatic
pagination is turned off as expected. However, when you specify pagination parameters by using a file
with the ##c1li-input-json parameter, automatic pagination was not turned off, which could result in
unexpected output. The AWS CLI version 2 turns off automatic pagination regardless of how you provide
the parameters.

AWS CLI version 2 provides more consistent return codes across
all commands

The AWS CLI version 2 is more consistent across all commands and properly returns an appropriate
exit code compared to the AWS CLI version 1. We also added exit codes 252, 253, and 254. For more
information on exit codes, see the section called “Return Codes” (p. 134).

If you have a dependency on how the AWS CLI version 1 uses return code values, we recommend
checking the exit codes to make sure that you're getting the values you expect.

AWS CLI version 2 migration instructions

This topic provides instructions for migrating from AWS CLI version 1 to AWS CLI version 2.

AWS CLI versions 1 and 2 use the same aws command name. If you have both versions installed, your
computer uses the first one found in your search path. If you previously installed AWS CLI version 1, we
recommend that you do one of the following to use AWS CLI version 2:

o Recommended - Uninstall AWS CLI version 1 and use only AWS CLI version 2 (p. 212).

211

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS Command Line Interface User Guide for Version 2
Replacing version 1 with version 2

« To have both version installed (p. 212), use your operating system's ability to create a symbolic link
(symlink) or alias with a different name for one of the two aws commands.

For information on breaking changes between version 1 and version 2, see the section called “New

features and changes” (p. 205).

Replacing version 1 with version 2

Perform the following steps to replace AWS CLI version 1 with AWS CLI version 2.

To replace AWS CLI version 1 with AWS CLI version 2

1.

Prepare any existing scripts you have for the migration by confirming any breaking changes between
version 1 and version 2 in the section called “New features and changes” (p. 205).

Uninstall the AWS CLI version 1 by following the uninstall instructions for your operating system in
Installing, updating, and uninstalling the AWS CLI version 1.

Confirm that the AWS CLI is completely uninstalled by using the following command.

$ aws --version

Complete one of the following based on the output:

« No version returned: You've successfully uninstalled the AWS CLI version 1 and can proceed to the
next step.

« Aversion is returned: You still have an install of the AWS CLI version 1. For troubleshooting steps,
see the section called “The "aws --version" command returns a version after uninstalling the
AWS CLI" (p. 200). Perform troubleshooting steps until no version output is received.

Install the AWS CLI version 2 by following the appropriate uninstall instructions for your operating

system in Installing or updating the latest version of the AWS CLI (p. 6).

Side-by-side install

To have both versions installed, use your operating system's ability to create a symbolic link (symlink) or
alias with a different name for one of the two aws commands.

1. Install the AWS CLI version 2 by following the appropriate install instructions for your operating
system in Installing or updating the latest version of the AWS CLI (p. 6).
2. Use your operating system's ability to create a symlink or alias with a different name for one of the

two aws commands, such as using aws2 for AWS CLI version 2. The following are symlink examples
for AWS CLI version 2. Replace the PATH with your install location.

Linux and macOS

You can use a symbolic link or alias on Linux and macOS.

$ alias aws2='PATH'

Windows command prompt

DOSKEY on Windows.

C:\> doskey aws2=PATH

212

https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-install.html
https://www.linux.com/tutorials/understanding-linux-links/
https://www.linux.com/tutorials/aliases-diy-shell-commands/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

AWS Command Line Interface User Guide for Version 2
Linux

Uninstalling the AWS CLI version 2

This topic describes how to uninstall the AWS Command Line Interface version 2 (AWS CLI version 2).

AWS CLI version 2 uninstallation instructions:

Linux

To uninstall the AWS CLI version 2, run the following commands.

1. Locate the symlink and install paths.

Use the which command to find the symlink. This shows the path you used with the --bin-dir
parameter.

$ which aws
/usr/local/bin/aws

Use the 1s command to find the directory that the symlink points to. This gives you the path you
used with the --install-dir parameter.

$ 1s -1 /usr/local/bin/aws
lrwxrwxrwx 1 ec2-user ec2-user 49 Oct 22 09:49 /usr/local/bin/aws -> /usr/local/aws-
cli/v2/current/bin/aws

2. Delete the two symlinks in the --bin-dir directory. If your user account has write permission to
these directories, you don't need to use sudo.

$ sudo rm /usr/local/bin/aws
$ sudo rm /usr/local/bin/aws_completer

3. Delete the --install-dir directory. If your user account has write permission to this directory,

you don't need to use sudo.

$ sudo rm -rf /usr/local/aws-cli

4. (Optional) Remove the shared AWS SDK and AWS CLI settings information in the . aws folder.

Warning

These configuration and credentials settings are shared across all AWS SDKs and the AWS
CLI. If you remove this folder, they cannot be accessed by any AWS SDKs that are still on
your system.

The default location of the . aws folder differs between platforms, by default the folder is located in
~/.aws/. If your user account has write permission to this directory, you don't need to use sudo.

$ sudo ¥rm ~/.aws/

macOS

To uninstall the AWS CLI version 2, run the following commands, substituting the paths you used to
install. The example commands use the default installation paths.

213

AWS Command Line Interface User Guide for Version 2
Windows

1. Find the folder that contains the symlinks to the main program and the completer.

$ which aws
/usr/local/bin/aws

2. Using that information, run the following command to find the installation folder that the symlinks
point to.

$ 1ls -1 /usr/local/bin/aws
lrwxrwxrwx 1 ec2-user ec2-user 49 Oct 22 09:49 /usr/local/bin/aws -> /usr/local/aws-
cli/aws

3. Delete the two symlinks in the first folder. If your user account already has write permission to these
folders, you don't need to use sudo.

$ sudo rm Jusr/local/bin/aws
$ sudo rm /usr/local/bin/aws_completer

4. Delete the main installation folder. Use sudo to gain write access to the /usr/local folder.

$ sudo ¥rm -rf /usr/local/aws-cli

5. (Optional) Remove the shared AWS SDK and AWS CLI settings information in the . aws folder.

Warning

These configuration and credentials settings are shared across all AWS SDKs and the AWS
CLL. If you remove this folder, they cannot be accessed by any AWS SDKs that are still on
your system.

The default location of the . aws folder differs between platforms, by default the folder is located in
~/.aws/. If your user account has write permission to this directory, you don't need to use sudo.

$ sudo ¥rm ~/.aws/

Windows

1. Open Programs and Features by doing one of the following:

« Open the Control Panel, and then choose Programs and Features.

e Open a command prompt, and then enter the following command.

C:\> appwiz.cpl

2. Select the entry named AWS Command Line Interface, and then choose Uninstall to launch the
uninstaller.

3. Confirm that you want to uninstall the AWS CLI.
(Optional) Remove the shared AWS SDK and AWS CLI settings information in the . aws folder.
Warning
These configuration and credentials settings are shared across all AWS SDKs and the AWS

CLL. If you remove this folder, they cannot be accessed by any AWS SDKs that are still on
your system.

The default location of the . aws folder differs between platforms, by default the folder is located in
%UserProfile%)\ .aws

214

AWS Command Line Interface User Guide for Version 2
Troubleshooting AWS CLI install and uninstall errors

$ rmdir %UserProfile%\.aws

Troubleshooting AWS CLI install and uninstall
errors

If you come across issues after installing or uninstalling the AWS CLI, see Troubleshooting errors (p. 192)
for troubleshooting steps. For the most relevant troubleshooting steps, see the section called “Command
not found errors” (p. 197), the section called “The "aws --version" command returns a different
version than you installed” (p. 199), and the section called “The "aws --version" command returns a
version after uninstalling the AWS CLI" (p. 200).

215

AWS Command Line Interface User Guide for Version 2

AWS CLI user guide document
history

The following table describes important additions to the AWS Command Line Interface User Guide,
beginning in January 2019. For notification about updates to this documentation, you can subscribe to

the RSS feed.

update-history-change

Updated the guide for migrating
from AWS CLI V1 to V2

Content for the AWS CLI V1 and
V2 are now separated into their
respective guides (p. 216)

Added AWS CLI alias information

Updated filter output
information

Added information for Wizards

Updated auto-prompt

Added Amazon S3 scripting
example

Added Amazon EC2 scripting
example

Added retries information

Server-side and client-side
pagination page

update-history-description

Expanded the breaking changes
guide to include migration
instructions to going from AWS
CLI version 1 to the AWS CLI
version 2. Includes updates to
the Troubleshooting page to
help with installation issues.

For clarity and ease, the AWS CLI
version 1 and AWS CLI version

2 content is now separated

into their own guides. For AWS
CLI version 1, see the AWS CLI
version 1 User Guide.

Added AWS CLI alias
information. Aliases are
shortcuts you can create in the
AWS Command Line Interface
(AWS CLI) to shorten commands
or scripts that you frequently
use.

Updated information for filters
and moved to their own page.

Added AWS CLI version 2 wizard
information.

Updated the AWS CLI version 2
auto-prompt information with
current features.

Added an Amazon S3 lifecycle
scripting example.

Added an Amazon EC2 instance
type scripting example.

Added a retries page for features
and behavior of retries in the
AWS CLI.

Updated pagination information
and centralized on a single page.

update-history-date
May 13, 2022

November 2, 2021

March 11, 2021

February 1, 2021

November 20, 2020

November 10, 2020

October 15, 2020

October 15, 2020

September 17, 2020

August 17, 2020

216

https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html
https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html
https://docs.aws.amazon.com/cli/v1/userguide/
https://docs.aws.amazon.com/cli/v1/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-alias.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-filter.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-filter.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-wizard.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-prompting.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-lifecycle-example.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-lifecycle-example.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-instance-type-script.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-instance-type-script.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-retries.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-pagination.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-pagination.html

AWS Command Line Interface User Guide for Version 2

Updated s3 commands page

Updated installation information

Added information for text file
encoding on the AWS CLI version
2

Official Docker image for the
AWS CLI version 2 released

Added information regarding
client-side pagers for AWS CLI
version 2

AWS Command Line Interface
(AWS CLI) Version 2 is officially
released

macOS installer for AWS CLI
version 2 is now an Apple
Package installer .pkg file.

Added content for AWS CLI
version 2's improved default
handling of S3 and STS Regional
endpoints

Developer preview release for
AWS CLI version 2

Added support for AWS Single
Sign-On to AWS CLI named
profiles

Updated the high-level s3
commands page with new
examples and resources.

The install, update, and uninstall
information for Linux, macOS,
and Windows are updated.

By default, AWS CLI version 2
uses the same text file encoding
as the local. You can now use
environment variables to set text
file encoding.

The official support Docker
image for the AWS CLI version 2
is released for all Linux, macOS,
and Windows.

By default, AWS CLI version 2
uses the pager program less
for all client-side output.

The AWS CLI version 2 is
generally available and is the
recommended version for
customers to install.

The macOS installer for AWS CLI
version 2 has been updated from
a . zip file with a shell script to
full macOS Installer package.
This simplifies installation and
makes it compatible with the
newest macOS releases.

By default, AWS CLI version

2 now directs requests for

the Amazon S3 and AWS

STS services to the currently
configured Regional endpoint
instead of the global endpoint.

Announcing preview release
of AWS CLI version 2. Added
instructions about installing
version 2. Add Migration topic
to discuss differences between
versions 1 and 2.

AWS CLI version 2 adds support
for creating a named profile that
can directly login to an AWS
SSO user account and get AWS
temporary credentials for use in
subsequent AWS CLI commands.

July 30, 2020

May 19, 2020

May 14, 2020

March 31, 2020

February 19, 2020

February 10, 2020

February 3, 2020

January 13, 2020

November 7, 2019

November 7, 2019

217

https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html
https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html
https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-docker.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-docker.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-pagination.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-pagination.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-pagination.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-config-sts_regional_endpoints
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-config-sts_regional_endpoints
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-config-sts_regional_endpoints
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-config-sts_regional_endpoints
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

AWS Command Line Interface User Guide for Version 2

New MFA section

Update to "Using the CLI"
section

Update to "Installing the CLI"
section

Update to "Configuring the CLI"
section

Added a new section describing
how to access the CLI using
multi-factor authentication and
roles.

Major improvements and
additions to the usage
instructions and procedures.

Major improvements and
additions to the AWS CLI
installation instructions and
procedures.

Major improvements and
additions to the AWS CLI
configuration instructions and
procedures.

May 3, 2019

March 7, 2019

March 7, 2019

March 7, 2019

218

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html#cli-configure-role-mfa
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-using.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-using.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

	AWS Command Line Interface
	Table of Contents
	
	What is the AWS Command Line Interface?
	About AWS CLI version 2
	Maintenance and support for SDK major versions
	About Amazon Web Services
	Using the AWS CLI examples
	Additional documentation and resources
	AWS CLI documentation and resources
	Other AWS SDKs

	Getting started with the AWS CLI
	Prerequisites to use the AWS CLI version 2
	Step 1: Sign up to AWS
	Step 2: Create an IAM user account
	Step 3: Create an access key ID and secret access key
	Next steps

	Installing or updating the latest version of the AWS CLI
	AWS CLI installation instructions
	Linux
	Installation requirements
	Install or update the AWS CLI
	(Optional) Verifying the integrity of your downloaded zip file

	macOS
	Installation requirements
	Install or update the AWS CLI

	Windows
	Installation requirements
	Install or update the AWS CLI

	Troubleshooting AWS CLI install and uninstall errors
	Next steps

	Installing past releases of the AWS CLI version 2
	Linux
	Installation requirements
	Installation instructions
	(Optional) Verifying the integrity of your downloaded zip file

	macOS
	Installation requirements
	Installation instructions

	Windows
	Installation requirements
	Installation instructions

	Troubleshooting AWS CLI install and uninstall errors
	Next steps

	Using the official AWS CLI version 2 Docker image
	Prerequisites
	Run the official AWS CLI version 2 Docker image
	Notes on interfaces and backwards compatibility of Docker image
	Use specific versions and tags
	Update to the latest Docker image
	Share host files, credentials, environment variables, and configuration
	Example 1: Providing credentials and configuration
	Example 2: Downloading an Amazon S3 file to your host system
	Example 3: Using your AWS_PROFILE environment variable

	Shorten the Docker command

	Quick setup
	New configuration quick setup
	Using existing configuration and credentials files

	Configuring the AWS CLI
	Configuration basics
	Quick configuration with aws configure
	Access key ID and secret access key
	Creating a key pair
	Importing a key pair via .CSV file

	Region
	Output format
	Profiles
	Configuration settings and precedence

	Configuration and credential file settings
	Where are configuration settings stored?
	Set and view configuration settings
	Supported config file settings
	Global settings
	S3 Custom command settings

	Named profiles for the AWS CLI
	Creating named profiles
	Using named profiles

	Configuring the AWS CLI to use AWS Single Sign-On
	Configuring a named profile to use AWS SSO
	Automatic configuration
	Manual configuration

	Using an AWS SSO enabled named profile
	Signing in and getting temporary credentials
	Running a command with your AWS SSO enabled profile
	Signing out of your AWS SSO sessions

	Environment variables to configure the AWS CLI
	How to set environment variables
	AWS CLI supported environment variables

	Command line options
	How to use command line options
	AWS CLI supported global command line options
	Common uses of command line options

	Command completion
	How it works
	Configuring command completion on Linux or macOS
	Confirm the completer's folder is in your path
	Step 1: Locate the AWS completer
	Step 2: Identify your shell
	Step 3: Add the completer to your path

	Enable command completion
	Verify command completion

	Configuring command completion on Windows

	AWS CLI retries
	Available retry modes
	Legacy retry mode
	Standard retry mode
	Adaptive retry mode

	Configuring a retry mode
	Available configuration methods
	Defining a retry configuration in your environment variables
	Defining a retry configuration in your AWS configuration file

	Viewing logs of retry attempts

	Sourcing credentials with an external process
	Using credentials for Amazon EC2 instance metadata
	Prerequisites
	Configuring a profile for Amazon EC2 metadata

	Using an HTTP proxy
	Using the examples
	Authenticating to a proxy
	Using a proxy on Amazon EC2 instances

	Using an IAM role in the AWS CLI
	Prerequisites
	Overview of using IAM roles
	Configuring and using a role
	Using multi-factor authentication
	Cross-account roles and external ID
	Specifying a role session name for easier auditing
	Assume role with web identity
	Clearing cached credentials

	Using the AWS CLI
	Getting help with the AWS CLI
	The built-in AWS CLI help command
	AWS CLI reference guide
	API documentation
	Troubleshooting errors
	Additional help

	Command structure in the AWS CLI
	Command structure
	Examples

	Wait commands
	Examples

	Specifying parameter values for the AWS CLI
	Common AWS CLI parameter types
	String
	Timestamp
	List
	Boolean
	Integer
	Binary/Blob (binary large object)
	Map
	Document
	Valid values for document types

	Using quotation marks with strings in the AWS CLI
	Using quotation marks around strings that contain white spaces
	Using quotation marks inside strings

	Loading AWS CLI parameters from a file
	How to load parameters from a file
	Binary files

	AWS CLI skeletons and input files
	About AWS CLI skeletons and input files
	Generating a command skeleton

	Using shorthand syntax with the AWS CLI
	Structure parameters
	Using shorthand syntax with the AWS Command Line Interface

	Having the AWS CLI prompt you for commands
	How it works
	Auto-prompt features
	Auto-prompt modes
	Configure auto-prompt

	Controlling command output from the AWS CLI
	Setting the AWS CLI output format
	How to select the output format
	JSON output format
	YAML output format
	YAML stream output format
	Text output format
	Table output format

	Using AWS CLI pagination options
	Server-side pagination
	How to use the --no-paginate parameter
	How to use the --page-size parameter
	How to use the --max-items parameter
	How to use the --starting-token parameter

	Client-side pager
	How to use the cli_pager setting
	How to use the AWS_PAGER environment variable
	How to use the --no-cli-pager option
	How to use pager flags

	Filtering AWS CLI output
	Server-side filtering
	Client-side filtering
	Before you start
	Example output

	Identifiers
	Selecting from a list
	Filtering nested data
	Flattening results
	Filtering for specific values
	Piping expressions
	Filtering for multiple identifier values
	Adding labels to identifier values
	Functions
	Advanced --query examples

	Combining server-side and client-side filtering
	Additional resources

	Understanding return codes from the AWS CLI
	Using the AWS CLI wizards
	How it works

	Creating and using AWS CLI aliases
	Prerequisites
	Step 1: Creating the alias file
	Step 2: Creating an alias
	Creating a basic command alias
	Creating a bash scripting alias

	Step 3: Calling an alias
	Calling an alias using bash scripting variables

	Alias repository examples
	Resources

	Using the AWS CLI to work with AWS Services
	Using Amazon DynamoDB with the AWS CLI
	Prerequisites
	Creating and using DynamoDB tables
	Using DynamoDB Local
	Resources

	Using Amazon EC2 with the AWS CLI
	Creating, displaying, and deleting Amazon EC2 key pairs
	Prerequisites
	Create a key pair
	Display your key pair
	Delete your key pair
	References

	Creating, configuring, and deleting security groups for Amazon EC2
	Prerequisites
	Create a security group
	EC2-VPC
	EC2-Classic

	Add rules to your security group
	EC2-VPC
	EC2-Classic

	Delete your security group
	EC2-VPC
	EC2-Classic

	References

	Launching, listing, and terminating Amazon EC2 instances
	Prerequisites
	Launch your instance
	EC2-VPC
	EC2-Classic

	Add a block device to your instance
	Add a tag to your instance
	Connect to your instance
	List your instances
	Terminate your instance
	References

	Change an Amazon EC2 instance type using a bash script
	Before you start
	About this example
	Parameters
	Files
	References

	Using Amazon S3 Glacier with the AWS CLI
	Prerequisites
	Create an Amazon S3 Glacier vault
	Prepare a file for uploading
	Initiate a multipart upload and upload files
	Complete the upload
	Resources

	Using AWS Identity and Access Management from the AWS CLI
	Creating IAM users and groups
	Attaching an IAM managed policy to an IAM user
	Setting an initial password for an IAM user
	Create an access key for an IAM user

	Using Amazon S3 with the AWS CLI
	Using high-level (s3) commands with the AWS CLI
	Prerequisites
	Before you start
	Large object uploads
	File properties and tags in multipart copies

	Create a bucket
	s3 mb examples

	List buckets and objects
	s3 ls examples

	Delete buckets
	s3 rb examples

	Delete objects
	s3 rm examples

	Move objects
	s3 mv examples

	Copy objects
	s3 cp examples

	Sync objects
	s3 sync examples

	Frequently used options for s3 commands
	Resources

	Using API-Level (s3api) commands with the AWS CLI
	Prerequisites
	Apply a custom ACL
	Configure a logging policy
	Resources

	Amazon S3 bucket lifecycle operations scripting example
	Before you start
	About this example
	Files
	References

	Using Amazon SNS with the AWS CLI
	Create a topic
	Subscribe to a topic
	Publish to a topic
	Unsubscribe from a topic
	Delete a topic

	Using Amazon Simple Workflow Service with the AWS CLI
	List of Amazon SWF commands by category
	Commands related to activities
	Commands related to deciders
	Commands related to workflow executions
	Commands related to administration
	Activity management
	Workflow management
	Domain management
	Workflow execution management

	Visibility commands
	Activity visibility
	Workflow visibility
	Workflow execution visibility
	Domain visibility
	Task list visibility

	Working with Amazon SWF domains using the AWS CLI
	List your domains
	Get information about a domain
	Register a domain
	Deprecate a domain

	Security in the AWS Command Line Interface
	Data protection in the AWS CLI
	Data encryption
	Encryption at rest
	Encryption in transit

	Identity and Access Management for the AWS CLI
	Compliance validation for the AWS CLI
	Enforcing a minimum version of TLS

	Troubleshooting AWS CLI errors
	General troubleshooting to try first
	Check your AWS CLI command formatting
	Confirm that you're running a recent version of the AWS CLI
	Use the --debug option
	Enable and review the AWS CLI command history logs
	Confirm that your AWS CLI is configured

	Command not found errors
	The "aws --version" command returns a different version than you installed
	The "aws --version" command returns a version after uninstalling the AWS CLI
	Access denied errors
	Invalid credentials and key errors
	Signature does not match errors
	SSL certificate errors
	Additional resources

	Migrating from AWS CLI version 1 to version 2
	New features and changes in AWS CLI version 2
	AWS CLI version 2 new features
	Breaking changes between AWS CLI version 1 and AWS CLI version 2
	Environment variable added to set text file encoding
	Binary parameters are passed as base64-encoded strings by default
	Improved Amazon S3 handling of file properties and tags for multipart copies
	No automatic retrieval of http:// or https:// URLs for parameters
	Pager used for all output by default
	Timestamp output values are standardized to ISO 8601 format
	Improved handling of CloudFormation deployments that result in no changes
	Changed default behavior for Regional Amazon S3 endpoint for us-east-1 Region
	Changed default behavior for Regional AWS STS endpoints
	ecr get-login removed and replaced with ecr get-login-password
	AWS CLI version 2 support for plugins is changing
	Hidden alias support removed
	The api_versions configuration file setting is not supported
	AWS CLI version 2 uses only Signature v4 to authenticate Amazon S3 requests
	AWS CLI version 2 is more consistent with paging parameters
	AWS CLI version 2 provides more consistent return codes across all commands

	AWS CLI version 2 migration instructions
	Replacing version 1 with version 2
	Side-by-side install

	Uninstalling the AWS CLI version 2
	Linux
	macOS
	Windows
	Troubleshooting AWS CLI install and uninstall errors

	AWS CLI user guide document history

