S
22 Sun

An Archived Oracle Technical Paper
March 2005

Automating Centralized File Integrity Checks in
the Solaris 10 Operating System

Important note: this paper was originally published before the acquisition of Sun
Microsystems by Oracle in 2010. The original paper is enclosed and distributed as-
is. It refers to products that are no longer sold and references technologies that have
since been re-named.

ORACLE
An Archived Oracle Technical Paper

/ mumﬁ,
c:";‘b

i
Ll

Automating Centralized File
Integrity Checksin the
Solaris™ 10 Operating System

Glenn Brunette, Client Solutions
un BluePrints™ OnLine—March 2005
A Qun BluePrints™ Cookbook

D Sun

microsystems

http://ww. sun. com bl ueprints

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95045 U.SA.
650 960-1300

Part No. 819-2259-10
Revision 1.0, 2/18/05
Edition: March 2005

Automating Centralized File
Integrity Checks in the Solaris™ 10
Operating System

This Sun BluePrints™ Cookbook describes how to centralize and automate the
collection of file integrity information using the following Solaris™ Operating
System (Solaris OS) features:

= Secure Shell

= Role-based Access Control (RBAC)

= Process Privileges

= Basic Audit and Reporting Tool (BART)

Each of these features can be quickly and easily integrated to centralize and

automate the process of collecting file fingerprints across a network of Solaris 10
systems.

Note — While Solaris Secure Shell and RBAC have been in the Solaris OS for some
time, Process Privileges (discussed under the banner of Process Rights Management)

and BART are new to the Solaris 10 OS.

About BART

This section provides and overview of the new Basic Audit and Reporting Tool
(BART), including concepts you need to understand before proceeding with the
steps to automate file integrity checking.

BART provides a quick and easy way to collect information on filesystem objects and
their attributes so that, at a later time, you can determine whether there have been
any changes. BART can help you detect accidental or malicious changes to files
within an operating system due to either a security incident or change management
incident.

BART is able to collect such information as an object’s UID, GID, permissions, access
control lists, modification time, size, and type. In addition, for files, BART generates
an MDS5 fingerprint from the contents of the file. For a full list of the attributes that
can be collected, see the bart rules(4) manual page.

BART has two primary modes of operation: create and compare.

Create Mode

When run in create mode, BART collects filesystem object information from a
system. You can control the scope of collection on a system, including the entire
system, under a specified root directory, or just a subset of files. You can even define
a more granular policy using a rules file that can be customized to meet your
organization's requirements.

When you use BART in create mode, it can read its rules file from either standard
input or from a regular file—for a listing of file types supported by BART, see

bart _mani f est (4) . As BART processes individual filesystem objects, it records its
results in a manifest file. This manifest is directed to standard output by default,
although you can easily redirect the output to a file or to another process. BART’s
ability to read rules from standard input and produce a manifest on standard output
are important for the automation of file integrity checking.

2 Automating Centralized |File Antegrity Checkssin the Solaris™ 10 Operating System=s March-2005

Compare Mode

To use BART in compare mode, you need two BART manifests and, optionally, a
rules file.

The first (and original) manifest, called the contro/ manifest, is used as your
baseline.

The second manifest, called the fest manifest, is then compared against the control
(in accordance with a set of rules, if supplied).

If a rules file is specified, then BART will use the rules it contains to determine
how to make the various comparisons. One of the benefits of a rules file is that
you can use it to define rules to help eliminate any false alarms in your reports,
thereby allowing you to better focus your efforts on the remaining alarms.

Why Automate BART?

For customers with both large and small Solaris deployments, there is a growing
need to manage cost and complexity. The goal of this BluePrints Cookbook is to
highlight how the collection of filesystem information using BART can be securely
automated across any number of systems (with any number of Solaris Containers).

BART automation has several benefits:

Through the use of a centralized collection authority, you can collect BART
manifests across a network of Solaris 10 systems using strong authentication, least
privilege, and encryption over the wire.

The rules and manifest files never need to be stored on the system (or Container)
being evaluated—they can all be managed and protected on a central authority.

Similarly, the comparison process can be performed in relative isolation because
the comparison need not be done on the host being evaluated.

This approach offers a significant security benefit over other file integrity
methods in use today, where artifacts of the collection or comparison process
must exist on the system being evaluated.

Why Automate BART? 3

Steps to Automate File Integrity
Checking

This section describes the steps to automate file integrity checking. As a matter of
convention, these instructions refer to the two systems in this example as c/ient and
manager.

= The client system is the one being examined by BART.

= The manager is the system on which all of the BART rules and manifests are
stored, and from which all connections to the c/ient are made.

Step 1. Create a New User Account

The first step is to create a new user on c/ient whose only purpose is to collect
filesystem information and create BART manifests.

Note — The following example focuses on a single client system, but this same type
of approach could be applied for a network of systems, for which this account could
be created—either locally on each system, or in a networked naming service (such as
LDAP).

To create a new user, enter the following commands.

nkdir -p /export/home

useradd -d /export/hone/bartadm-m -s /bin/pfsh bartadm
64 bl ocks

passwd - N bartadm

passwd: password information changed for bartadm

In this example, note that:

= The bartadm account is created as a non-login account. This means that, while
this account does not have a Unix login password, it is otherwise able to access
the system, either by using other authentication mechanisms, or through the use
of delayed execution mechanisms such as cron(IM). This is required because the
default behavior of useradd(l) is to create an account that is locked.

= This account was created with a profile shell (/bin/pfsh). This was done to allow
commands executed by this user to be evaluated by the Solaris Role-based Access
Control (RBAC) facility to determine whether the command will run with altered
privileges.

4 Automating Centralized Fijle Antegrity 'Checks(in the Solaris™¢10 OpetatingSystem=s IMarch-2005

Step 2: Create a Secure Shell Key-Pair

After the new user account has been created on c/ient, you next create a Secure Shell
key-pair that will be used to access the account. Remember that, because bartadm is
a non-login account, the only way to access it over the network is to use public key
authentication with Secure Shell.

Note — This does not need to be done on the system where you created the user. In
fact, we recommend that you generate the key on manager so that you will not need
to transfer the private key over any network.

Warning — This recommendation is based on a default Solaris 10 OS installation.
If other authentication mechanisms are enabled by default, however, there might be
other ways in which the bartadm user can be accessed across the network. We
recommend that you verify your /etc/pam.conf settings to be certain.

To create a Secure Shell key-pair, enter the following commands.
$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/export/hone/bartadni.ssh/id_dsa):
Ent er passphrase (enpty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /export/home/bartadni.ssh/id_dsa.
Your public key has been saved in /export/hone/bartadni.ssh/id_dsa. pub.
The key fingerprint is:
42:ca: d7:fa:ab: 1c: f8: c0: 5b: 2c: 7b: 56: 28: 85: dc: 65 bart adm@manager

Step 3: Copy the Secure Shell Key-Pair

After the new Secure Shell key-pair has been created, you copy it (/d_dsa.pub) from
manager to client. When copying, be sure to rename the file /id_dsa.pub to
authorized_keys if the file does not already exist. If the authorized_keys file exists
on client, then simply append the contents of /d_dsa.pubto the authorized_keysfile.
Once copied, you should have something similar to the following examples.

Steps to Autonate-File Integrity Checking 5

On manager

pwd

/ export/ home/ bartadni . ssh

#1s -1

total 6

STW- - - - - 1 bartadm ot her 736 Sep 30 23:03 id_dsa
STWr--1-- 1 bartadm ot her 600 Sep 30 23:03 id_dsa. pub

On client

pwd

/ export/ hore/ bartadni . ssh

#1s -1

total 6

STWr--T-- 1 bartadm ot her 600 Cct 1 09:14 authorized_keys

Step 4: Configure Secure Shell

Next, on client, you must configure Secure Shell to run only a specific command
when this public key is used. When this public key is used (which is, by default, the
only remote access method), then the bartadm user will be able to run only the
command that you specify. A remote user accessing the bartadm account will not be
able to run any other commands. To do this, you use the Secure Shell command
directive. For more information, see the “authorized keys File Format” section of
ssha(IM).

To configure the Secure Shell to run the command, edit the authorized keys, adding
the following prefix to the existing public key:

command="/usr/bin/bart create -r -"

Making this change causes BART to be run in create mode, taking a rules file from
standard input, which allows you to specify different BART rules files (as needed)
without having to change the configuration of client.

The result will look something like the following example (with a different public
key):

conmand="/usr/bin/bart create -r -" ssh-dss AAAAB3NzaClkc3MAAACBAJ6zG8SJt QVi/ Et
Qugykt NssLVof LmJepqsh712+D1ACOTWRWZW SHAhE423U3Acf Y99u9ZxsdJ0sEpqgnnv XnKay ni7pMyk
NxMCPoPcnf 4mAl cx91 Qkpot Ai ChCQ+My 51 FD4i WANXj gh6Kwl ecEaABcpg2x5nhaX8Bsx0XURQO f +j A
AAAFQCD6dOAMLIunv Ue CWNpXoB6t Ly LewAAAl AXyalUPi j NFI j ynmsJ0gj QXyCgl | 8/t ORHy2vr | oH7v
gh9RIOYNRWSZZj yRvLI KTd4KFI f cj T43W VW Ka/ A7| 14DGnt 0 TS+dRh4MohJXdUj YM/V+O0Dc 1j 8V2

6 Automating Centralized |File Integrity Checks(in the Solaris™ 10 Operating System=s March-2005

p+JWbbH qDxa+z AuFEskoWNPnBr TnbLNzam PnQ7ZaqWs bWie PQAAAI EAngl CaM uFYW vDHeak 79Fm
xHJj RLgmvRW PPt kV\BXDuF8wn8l j / +gl WAY6/ VIVt bf gt eZLweot dM2wdf XNgRO WAvvl yl Cdv29i A
Dxs Sl PGSr j Xkbk NGQXVMHTgPOnf bDhnt pnMboccl 2R+J8dpDT59zW/7+egNZOTTV8GNnmimg=
gnb@ranager

Step 5: Create an RBAC Rights Profile

Next, you will create an RBAC rights profile on c/ient that will allow the bartadm
user to run BART with sufficient privileges to collect files across the filesystem. This
is important to prevent the bartadm command from running as the root account.

Note — Remember that, to successfully access this account, you will also need
possession of the bartadm private key (which should be stored on the protected,
centralized authority) as well as the passphrase to unlock the private key. Further,
once you successfully access the account, you will be able to run only the bart
command, as configured above, with the privileges that are described below. Each of
these controls serves to reinforce the security of the overall solution.

To create an RBAC rights profile that will be associated with BART and assigned to
the bartadm user, you need to add the following lines to the /etc/security/prof _attr
and setc/security/exec_attr files:

Note — When entering the following commands, be sure to omit the line breaks,
which are included here for readability only.

grep ""File Integrity:" /etc/security/prof_attr
File Integrity:::File Integrity Managenent:

grep ""File Integrity:" /etc/security/exec_attr

File Integrity:solaris:crmd:::/usr/bin/bart:privs=file_dac_read, file_dac_search

The File Integrity rights profile grants the file_dac _read and file_dac_search
privileges. These privileges are needed so that the bartadm user can search
directories and read files that normally would not be permitted due to discretionary
access controls (Unix permissions, ACLs, and so on) as implemented in the Solaris
operating system. A description of these two privileges can be found using the
ppriv(l) command, as shown in the following example.

Steps to Autonate-File Integrity Checking 7

ppriv -1 -v file_dac_read file_dac_search
file_dac_read
Allows a process to read a file or directory whose perm ssion
bits or ACL do not allow the process read pernission.
file_dac_search
Al'l ows a process to search a directory whose perm ssion bits or
ACL do not allow the process search perm ssion.

Step 6: Assign the Profile to the bartadm User

Finally, you need to assign the new File Integrity rights profile to the bartadm user.

To assign the rights profile, use the following command:

usernod -P "File Integrity" bartadm

This command will add the following line to the /fetc/user_attr file:
grep "“bartadm" /etc/user_attr
bartadm :::type=normal ;profiles=File Integrity

Step 7: Optional Tasks

You have completed the basic steps to automate file integrity checking with BART.
However, you can perform optional tasks to enhance security, including:

= limiting access to the bartadm public key by hostname or IP address (for example
only allowing access from manager)

= restricting bartadm access to cron(1M) by adding the "bartadm" account to the
/etc/cron.d/cron. deny file

There might be other security controls that you will want to evaluate and
implement based on your individual security policies and requirements. Take care
to identify and understand any residual risk in your environment and act
accordingly.

8 Automating Centralized |File Antegrity'Checks(in the Solaris™¢10 OpetatingSystem=s IMarch-2005

Step 8: Verify the Setup

The final task is to verify that everything works as expected from the manager
system.

Create a Sample Rules File

To verify the setup, you first create a small and simple example BART rules file on
manager to verify that the functionality works. You will use this rules file as input to
BART on client passed over a Secure Shell channel that uses public-key
authentication to execute a specific command. The output of BART will be displayed
to standard output so you can redirect this to a file for later comparison.

Create the following sample BART rules file on manager.

/usr/sbin

CHECK al |

This example limits information collection to files under /usr/sbin. When used in
compare mode, all of the collected attributes are checked. Once your setup is

verified, you can develop more sophisticated policies based on your organization's
needs.

Run the Command to Verify

To verify the setup (from manager), enter the following command.
$ cat ./client.rules | ssh -T -1 bartadmclient
! Version 1.0
! Friday, Cctober 01, 2004 (10:46:56)

Format :

#fnane D size node acl dirntine uid gid
#fnane P size node acl ntine uid gid
#fnane S size node acl ntine uid gid

#fnane F size node acl ntine uid gid contents
#fnane L size node acl Inmtinme uid gid dest
#fnane B size node acl ntine uid gid devnode

#fnane C size node acl ntine uid gid devnode
/usr/sbin D 4608 40755 user::rwx, group::r-x, mask:r-x,other:r-x 415c6cld 0 2

/usr/shbin/6tod4rel ay F 9888 100555 user::r-x, group::r-x, mask:r-x,
other:r-x 414f3ef2 0 2 5dbc53336307f 5caf 965e4451abde647

Steps to Autonate-File Integrity Checking 9

/usr/sbin/acctadm F 28356 100555 user::r-x, group::r-Xx, mask:r-x,
other:r-x 414f3bb4 0 2 ece9d92d00b0c13ed2d56580e3856df 7

/usr/sbin/add_drv F 44244 100555 user::r-x, group::r-Xx, mask:r-x,
other:r-x 414f3cda 0 2 10f 542c2c228c2a0lef dc16bc543d96d6

/usr/sbin/allocate F 18764 104755 user::rwx, group::r-x, mask:r-x,
other:r-x 414f3e96 0 2 2e98bb2d02c4e87h875885df h3838932

/usr/sbin/arp F 9912 100555 user::r-x,group::r-x, mask:r-x,
other:r-x 414f3ef2 0 2 203a43e7labc9c3b9ba2alc38647b285

/usr/sbin/audit F 10140 100555 user::r-x,group::r-x, mask:r-x
other:r-x 414f3e85 0 2 26b6e6241c6a2laab5f clbebb816f 8f ¢

[... content edited for brevity...]

Compare Manifest Files

After verification, save two copies to illustrate how to use the compare feature:
$cat ./client.rules | ssh -T -1 bartadmclient > ./client.manifest.1
$ cat ./client.rules | ssh -T -1 bartadmclient > ./client.manifest.2

$ bart conpare -r ./client.rules ./client.manifest.1 \
./client.manifest.2

$

You should get no comparison errors in this example, which indicates that your files
have not changed relative to the baseline—c/ient. manifest.1. In contrast, here is an
example in which the comparison detected two differences:

$ bart conmpare -r ./client.rules ./client.manifest.1 \
./client.manifest.2

/usr/ sbin/auditd:

acl control:user::r-x,group::r-x,mask:r-x,other:r-x test:user::r-x,group::r-
X, mask: r - x, ot her: rwx

contents control:28dd3a3af 2f cc103f 422993de5b162f 3
t est : 28893a3af 2f cc103f 422993de5b162f 3

In this case, the /usr/sbin/auditd program was modified (contents changed) and
had its access control list modified—adding write access to wor | d, which is certainly
a bad thing!

10 Automating Centralized File Integrity Checks'in the Solaris™ ™10 Operating [System) ¢+ March 2005

Conclusion

In this BluePrints Cookbook, we have described a method for centralizing and
automating file integrity checks across a network of Solaris 10 systems. This method
uses strong authentication, least privilege, and encryption over the wire to provide a
secure and scalable mechanism for the collection and transport of file fingerprints
from clients to a centralized authority. While providing strong security, this solution
is also flexible in that it allows an unlimited number of BART rules files to be used.
Rules files can be developed per system, per application, per data center, or based on
any other customer requirements.

In addition, the use of this mechanism does not require that the central authority
itself be a system. It can be implemented within a Solaris Container in the Solaris 10
OS to further offer greater security isolation. While this does not improve the
security of BART processing per se, it does offer greater protection for BART rules,
manifests, and related user-developed scripts. By using a Solaris Container as a
BART central authority, you can reap the security benefits that have been designed
into them, including spare-root configurations (read-only, loopback-mounted
filesystems), reduced process privilege sets, namespace isolation, resource
management and global-zone observability, and so on.

For example, you could have a Solaris Container that has no listening services and
that houses all of the rules and manifest files for an entire network of systems.

No other services running on that same system (perhaps other security monitoring
tools) could access the BART data. Further, by using Solaris Containers, you can
monitor all of your BART rules and manifests from the isolated global zone (using
BART, of course) to ensure that they have not been altered.

How you configure the BART management container is up to you, but one thing is
certain—by leveraging the Solaris 10 OS and, more specifically, Solaris Containers,
you will have the opportunity to build your BART central authority upon a very
strong security foundation.

Conclusion 11

References and Related Sources

Publications

= Dasan, Vasanthan; Noordergraaf, Alex, and Ordorica, Lou. “The Solaris
Fingerprint Database - A Security Tool for Solaris Operating Environment Files,”
Sun BluePrints OnLine, May 2001,

http://www.sun.com/solutions/blueprints/0501/Fingerprint.pdf

= Sun Microsystems, Inc. “Basic Audit and Reporting Tool,”
Sun Solaris 10 OS Product Documentation,

http://docs.sun.com/db/doc/816-4557/6maosrjds?a=view

= Sun Microsystems, Inc. “Roles, Rights Profiles and Privileges”,
Sun Solaris 10 OS Product Documentation,

http://docs.sun.com/app/docs/doc/816-4557/6maosrjfe?a=view

= Sun Microsystems, Inc. “Using Solaris Secure Shell”,
Sun Solaris 10 OS Product Documentation,

http://docs.sun.com/app/docs/doc/816-4557/6maosrjj8?a=view

= Sun Microsystems, Inc., “BART Manifest, Rules File and Reporting”,
Sun Solaris 10 OS Product Documentation,

http://docs.sun.com/app/docs/doc/816-4557/6maosrje9?a=view

Web Sites

= Glenn Brunette’s Solaris 10 OS Security Weblog:

http://blogs.sun.com/gbrunett?catname=Solaris%2010%20Security
= Brunette, Glenn. “Managing Solaris 10 Non-Login and Locked Accounts”,

http://blogs.sun.com/gbrunett/20040921#managing_non_login_and_locked

12 Automating Centralized File Integrity Checks'in the Solaris™ ™10 Operating [System) ¢+ March 2005

http://www.sun.com/solutions/blueprints/0501/Fingerprint.pdf
http://docs.sun.com/db/doc/816-4557/6maosrjds?a=view
http://docs.sun.com/app/docs/doc/816-4557/6maosrjfe?a=view
http://docs.sun.com/app/docs/doc/816-4557/6maosrjj8?a=view
http://docs.sun.com/app/docs/doc/816-4557/6maosrje9?a=view
http://blogs.sun.com/gbrunett?catname=Solaris%2010%20Security
http://blogs.sun.com/gbrunett/20040921#managing_non_login_and_locked

About the Author

Glenn Brunette is a Sun Distinguished Engineer with nearly 15 years experience in
information security. Glenn works in the Client Solutions division as the Chief
Security Architect for the Global Data Center Practice. In this role, Glenn is
responsible for global security strategy as well as improving the quality and security
of consulting solutions delivered to Sun's customers.

Glenn is the co-founder of the Solaris Security Toolkit software and a frequent
author and contributor to the Sun BluePrints program. Glenn works closely with
teams across Sun on the development of security strategy, products, services,
methodologies, best practices, training, certifications and tools.

Externally, Glenn is currently the Vice-Chair of the Enterprise Grid Alliance Security
Working Group and has served as Champion for the Common Configurations
Working Group of the National Cyber Security Partnership's Technical Standards
and Common Criteria Task Force. Glenn is also an active contributor to the Center
for Internet Security's Unix Benchmark team.

Glenn is a Certified Information Systems Security Professional (CISSP) and has been
trained in the National Security Agency's INFOSEC Assessment Methodology
(IAM).

Ordering Sun Documents

The SunDocs®™ program provides more than 250 manuals from Sun Microsystemes,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online

The docs. sun. comweb site enables you to access Sun technical documentation
online. You can browse the docs. sun. comarchive or search for a specific book title
or subject. The URL is htt p://docs. sun. comf

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site
at: htt p: // www. sun. coni bl ueprints/online. htm

About the Author 13

[*20. Header_2] Title of White Paper Here

An Archived Oracle Technical Paper

ORACLE

Automating Centralized File Integrity Checks in
the Solaris 10 Operating System
March 2005

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

@ ‘ Oracle is committed to developing practices and products that help protect the environment

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd. 1010

Hardware and Software, Engineered to Work Together

	819-2259.pdf
	Automating Centralized File Integrity Checks in the Solaris™ 10 Operating System
	About BART
	Create Mode
	Compare Mode

	Why Automate BART?
	Steps to Automate File Integrity Checking
	Step 1: Create a New User Account
	Step 2: Create a Secure Shell Key-Pair
	Step 3: Copy the Secure Shell Key-Pair
	On manager
	On client

	Step 4: Configure Secure Shell
	Step 5: Create an RBAC Rights Profile
	Step 6: Assign the Profile to the bartadm User
	Step 7: Optional Tasks
	Step 8: Verify the Setup
	Create a Sample Rules File
	Run the Command to Verify
	Compare Manifest Files

	Conclusion
	References and Related Sources
	Publications
	Web Sites

	About the Author
	Ordering Sun Documents
	Accessing Sun Documentation Online

