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Abstract—Techniques for automated code repair have the po-
tential for greatly aiding in the development of secure and correct
code. There are currently a few major difficulties confronting
the development and deployment of tools for automated repair;
we examine these and briefly explore possible solutions. To give
a flavor of what automated repair might look like, we discuss in
detail three types of proposed automated repair: (1) repairing
inequality comparisons involving integer overflow to behave the
same as if unlimited-bitwidth integers were used, (2) inserting
memory bounds checks where needed, using dynamic analysis to
infer tightest correct bounds, (3) inserting missing authorization
checks in a client-server application based on an inferred access
control policy.

I. INTRODUCTION

Static analysis has been increasingly used in real-world
settings to find potential bugs. However, static analyzers
typically issue many false alarms, and it is a burden to
thoroughly review each finding. In recent years, researchers
have been developing techniques for not only detecting certain
classes of bugs but also automatically repairing them. We
claim that automated repair is the way forward for developing
code free of common security weaknesses. In particular, we
claim that (1) many security bugs follow common patterns, (2)
by recognizing such a pattern, it is often possible to make a
reasonable guess of the developer’s intention, i.e., the desired
specification, and (3) it is often possible to automatically repair
the code to satisfy this inferred specification.

To give an example, a C programmer who writes
“malloc(n * sizeof(t))” likely intended for malloc to try
to allocate enough memory to hold n objects of type t. This
code can be repaired to check for integer overflow, and if it
occurs, to behave the same as if malloc returns NULL.

Sometimes it might not be possible to unambiguously infer
the desired behavior. For example, an analysis might find that
a program might write past the end of a buffer. In this case, an
automated repair might be to insert a bounds check and abort
execution if it fails. This isn’t a full repair (from a correctness
standpoint), but it does fix the security vulnerability.

In fact, many types of automated repairs consist of inserting
a check for an error condition. A difficulty in such cases is
how to handle the error when it occurs. The simplest thing
to do is just call abort(), but such a repair is likely not to
be accepted by the developer as is. A more desirable course
of action would be to try to identify other error-handling code
that can be re-used or adapted. For example, if a function f

fails to check whether a pointer returned from malloc is NULL
before dereferencing it, an automated repair tool might look
to see if any ‘nearby’ code (e.g., a callee of f , or a sole caller
of f ) handles a malloc failure, and if so, to re-use this error-
handling code. Research in ‘self-healing’ software has also
explored the problem of how to handle errors unanticipated
by the developer [27], [26].

Some approaches to automated repair have used genetic al-
gorithms, notably GenProg [15], which uses dynamic analysis
on a user-provided test suite consisting of known-good test
cases and failing test cases. PACHIKA [5] likewise uses a
dynamic analysis on a test suite with good and bad cases. Such
techniques have shown promising experimental results, but the
accuracy is not guaranteed enough for a developer to blindly
accept such repairs without manually verifying. Recently an
automated repair for memory leaks has been developed based
on sound static analysis, providing a guarantee that the repair
doesn’t break any good traces [9]. Jin et al. developed an
automated repair, based mostly on static analysis, that targets
atomicity violations in concurrent programs [13]. A recent
survey of work in automated repair may be found in [17].

In section II, we discuss general difficulties faced by
automated repair of source code. In the remainder of the
paper, we discuss three types of often-encountered bugs and
propose techniques for automated repair of them. These bugs
concern (1) integer overflow, (2) memory bounds, and (3)
access control. We have a preliminary implementation of some
integer overflow repairs, though they have not been experimen-
tally evaluated. The proposals for memory bounds and access
control do not (yet) have corresponding implementations.

II. BENEFITS AND DIFFICULTIES IN REPAIR OF
SOURCE CODE VS OBJECT CODE

From a practical standpoint, perhaps the greatest difficulty
in developing an automated repair specifically at the source-
code level (as opposed to a source-to-binary compiler pass) is
the IR↔AST mapping problem. Most static analyses work best
and/or are far easier to write on an intermediate representation
(IR) such as LLVM’s IR, and often it is advantageous to
perform certain optimization passes such as converting to static
single assignment (SSA) form. However, the actual source-
to-source repair necessarily must be done at the level of the
abstract syntax tree (AST) or similar high-level representation
that has a direct correspondence to the original source code.



The trouble then is that, once we have found a spot in the
IR that needs to be repaired, existing tools provide no way to
map it back to the AST. Furthermore, it is not just a matter
of engineering effort: some useful optimization passes destroy
the ability to provide an unambiguous mapping from the IR
back to the AST. Further research and tool development in
this area would be beneficial to automated repair.

The use of macros in C provides an additional obstacle
on top of the IR↔AST mapping program. The newest
development version of the ROSE compiler framework [24]
has some support to modifying source code while preserving
macros. Templates in C++ are another, perhaps more vexing,
source of difficulty.

The need to avoid breaking good traces of program is yet
another difficulty facing automated repair. If there is even
a 1% chance that a ‘repair’ will break a program in some
hard-to-detect way, developers will be hesitant to apply it
without manually investigating its correctness. For this reason,
automated repair operating on object code must be extremely
conservative, whereas if a source-to-source tool is only 95%
confident of a repair, it can tentatively make the repair and
flag it for human review.

Despite all the troubles associated with source-to-source
repair, it provides significant advantages over repairing the
IR as a compile-time pass. Automated repair often involves
guesswork, so the ability of developers to audit or improve the
repairs is often essential. Another point is that static analysis
is often fickle; if repair is done at compile time, minor modifi-
cations to program source code can unpredictably change what
the tranformation does. In certain highly-regulated industries,
use of automatic repair on object code is not legally certified
for safety-critical systems, but a tool can still suggest changes
(at the source-code level) for an engineer to independently
evaluate.

III. INTEGER OVERFLOW

In this section, we describe an approach for automating
detecting and repairing integer overflow1 in C that leads to
memory violations. In particular, we consider two situations
where integer overflow can lead to a memory violation:

1) Memory allocation, such as malloc(n), where the
calculation of n can overflow, resulting in a too-small al-
location and subsequent out-of-bounds memory access.

2) Integer overflow involving indices or bounds of an array.
(We only consider arithmetic where both operands are
of integer type; pointer arithmetic is outside the scope
of this work.)

Let us use the term “memory-related integer overflow” to
describe an integer overflow in either of the two above cases.
Subsection III-A describes in detail how we detect memory-
related integer overflow.

1We use the term “integer overflow” to describe an arithmetic operation (ad-
dition, subtraction, multiplication, or division) using n-bit modular arithmetic
that produces a different answer than would be produced using normal (non-
modular) arithmetic. Some authors use a narrower definition and distinguish
between overflow and underflow; we do not make this distinction.

Our key assumption (inferred specification) is that memory-
related integer overflow is undesired and that comparisons
potentially involving memory-related integer overflow (e.g.,
“offset + count < buffer_size”) should instead behave
the same as if unlimited-bitwidth integers were used. For
memory allocation (which internally compares the amount of
memory requested to the amount of address space unallo-
cated), this means that, if the program requests an amount
too big to be represented as a size_t, the allocation should
fail (as opposed to allocating the requested amount modulo
2n, where n is the width of size_t in bits).

If an overflowed value is used to index into an array (or
equivalently, if it is added to a pointer which is then derefer-
enced), we are unable to fully infer the desired behavior. For
software that isn’t safety-critical, our proposed repair tool can
be instructed to simply check for overflow and call abort() if
it is detected. Alternatively, it can insert a check for overflow
and leave it up to the user to write the error-handling code.

Integer overflows that are unrelated to memory are not
necessarily undesired. For example, many cryptographic and
hashing functions are designed to employ modular arithmetic.
Consequently, we ignore integer overflow that is unrelated to
memory access/allocation.

We have several strategies for repairing overflows that reach
comparison operators:

1) Promote the operands to a higher bitwidth. Some
compilers support a __int128_t type. This is the
preferred strategy if it fully repairs the overflow and
meets the portability requirements of the codebase.

2) For unsigned addition and subtraction, a standard idiom
can be used to check for overflow. For example, given
unsigned integers x and y, the expression (x + y < x)

is true iff x + y overflows. Then “x + y < foo” can
be repaired as “x + y < foo && x + y < x”. This
solution is used if portability is required with compilers
that lack a 128-bit integer type.

3) For unsigned integers, if the result of an overflow-
ing operation is only used in subsequent addition or
multiplication (not subtraction or division), then the
quantity is monotonically non-decreasing in subsequent
arithmetic (except for multiplication by zero). Thus,
unlimited-bitwidth arithmetic can be emulated by using
saturation arithmetic, i.e., replacing an overflowed value
with the greatest representable value (SIZE_MAX for type
size_t). If the declared types of variables are smaller
than size_t, they are changed to size_t.2

As an example of the saturation-arithmetic strategy, the code
in Figure 2 is repaired in Figure 3 using the convenience
function umul defined in Figure 1. One complication is
comparison of an overflowed value to the greatest repre-
sentable value (SIZE_MAX). For example, in Figure 2, if the
value of the function parameter max_img_size is SIZE_MAX

and the computation of size overflows, then the expression

2We ignore the complication that may arise if the value is later compared
to a value of type __int128_t or if size_t is smaller than uintmax_t.



static inline size_t umul(size_t x, size_t y) {
size_t ret; bool flag;
flag = __builtin_mul_overflow(x, y, &ret);
if (flag) {ret = SIZE_MAX;}
return ret;

}

Fig. 1. Convenience function umul for saturating multiplication. The function
__builtin_mul_overflow(x,y,p) does the multiplication x*y and stores
the result in p. It returns true if overflow occurred, and false otherwise.
This builtin function is available in gcc and clang.

size = hdr.width * hdr.height * hdr.bytes_per_pixel;
if (max_img_size != 0 && size > max_img_size) {

return ERR_TOO_BIG;
}
bitmap = malloc(size);

Fig. 2. Code with possible integer overflow.

size = umul(umul(hdr.width, hdr.height),
hdr.bytes_per_pixel);

if (max_img_size != 0 && size > max_img_size) {
return ERR_TOO_BIG;

}
bitmap = malloc(size);

Fig. 3. Repaired to emulate unlimited-bitwidth arithmetic. The only change is
to replace occurrences of the “*” operator with function calls to umul. Note
that malloc(size) internally compares the value of size to the largest
available contiguous chunk of virtual memory, so if the value of size is
SIZE_MAX, then malloc will behave as desired (return NULL and set errno
to ENOMEM).

size > max_img_size should evaluate to true according
to the semantics of normal (non-modular) arithmetic, but it
doesn’t in our repaired code. However, since this situation
would require a more complex and less readable patch for
dubious benefit, we do not do so.

Of the above strategies, all but the first (promoting the
operands to a higher bitwidth) damage the readability of the
code. Better compiler support for dealing with overflows
would be needed to avoid this.

A. Detection of Undesired Overflows

We want to transform arithmetic with potential overflow
only if it involves a variable that is associated with memory
access or memory allocation; we say that these variables are
sensitive. To determine which variables are sensitive, we
use a flow-insensitive backward taint analysis on single static
assignment (SSA) form:

1) Mark a variable as sensitive if it is added to or subtracted
from a pointer or used as an array index.

2) Mark a variable as sensitive if it is compared with a
sensitive variable for equality (“=”), inequality (“<”,
“≤”, “≥”, “>”), or disequality (“ 6=”).

3) For a statement of the form “v1 := v2 ? v3”, where “?”
denotes an arithmetic operation (“+”, “-”, “*”, “/”), if

any of v1, v2, or v3 are sensitive, then mark all of them
as sensitive.

4) For an assignment of the form “v1 := v2” or a phi node
of the form “v1 = Φ(v2, ..., vn)”, if any of the vi
variables are sensitive, then mark them all as sensitive.

5) Mark a variable as sensitive if it is used as an argument
to a function and the corresponding formal parameter
in the function definition is sensitive. For a system
library function (e.g., malloc, mmap), consider the
corresponding formal parameter to be sensitive if it has
been manually designated as such.

The above analysis is similar to type inference. However,
note that sensitivity is not propagated via memory loads and
stores; e.g., the code “*p = x; y = *p; z = arr[y];” does
not cause x to be marked as sensitive. To handle such cases,
we require an optimization pass to transform the assignment
“y = *p” to “y = x” before conducting the taint analysis.
For this purpose, we can use the ‘merging memory loads’
transformation described in Section 5.4.2 of [32].

The modulo operator (“ % ”) is intentionally excluded from
propagating sensitivity, because in many common situations
(e.g., implementation of a hash table), code that uses a value
of the form n % m to index into an array is safe and correct
even if the computation of n involved an arithmetic overflow.

To detect whether an arithmetic operation can potentially
overflow, we use KINT [32], a static analyzer. KINT creates
an abstraction of a function body using a simple memory
model and unrolling each loop once. Idioms for checking
for unsigned overflow (e.g., x + y < x) are recognized and
replaced with intrinsic functions. For each arithmetic expres-
sion in the abstraction, KINT asks whether an integer overflow
can happen. This question is formulated as an SMT problem
and solved using Boolector [1].

B. Implementation

We have a preliminary implementation of an integer over-
flow repair tool that replaces potentially overflowing opera-
tions with saturating arithmetic.

This tool executes in three phases: (1) A build phase,
(2) an analysis phase, and (3) a repair phase. The build
phase involves compiling the desired source files through a
proxy. This proxy collects information about each source
file into a shared database, then routes the source file to
an actual compiler (e.g., GCC). During this phase, a call
graph is constructed, recording function definitions and their
callees. The proxy is implemented with the ROSE compiler
infrastructure.

The analysis phase leverages the information gathered from
the previous phase to perform whole program analysis. For
example, a set of sensitive function sinks is computed during
this phase, using the call graph and a simple fixed-point algo-
rithm. We begin with a set of known sensitive sinks, including
malloc. We then search the call graph for functions that
invoke a sensitive-sink function, and whose formal parameters
influence the call. These functions are added to the set of
sensitive sinks. This process is repeated iteratively until no



change is observed in the set. KINT is also invoked at this
stage to identify potentially arithmetic overflows. The results
of this analysis are recorded into the same database as before.

The repair phase uses the results of the whole program
analysis to make modifications to the source files. For
each file, sensitive sinks are enumerated. Then, for each
sink, a backwards data flow analysis is used to find reach-
ing arithmetic operations. If any of these operations were
identified as potentially overflowing, then they are replaced
with saturating alternatives. Arithmetic operations tainted by
potentially overflowed values are also replaced. The repair
phase is implemented with the ROSE compiler infrastructure.

We are currently in the process of evaluating this tool on
real-world code bases, such as OpenSSL.

C. Related Work – Integer Overflow

IntPatch [33] and the AIR Integer Model [6] use source-
to-binary transformations as part of a compiler to fix integer
errors that could potentially lead to security vulnerabilities.
Coker and Munawar [3] introduce source-to-source transfor-
mations to address programs with integer errors. However,
their technique is not intended to be used fully automatically,
as it does not try to distinguish desired overflow from unde-
sired. Additionally, its sole repair for integer overflow is to
trap into a user-defined error-handler, instead of repairing the
program to emulate unlimited-bitwidth arithmetic. Logozzo
and Ball [16] introduce an automated repair for integer over-
flow in intermediate calculations, such as rewriting (a + b)/2

as a + (b - a)/2 in cases where a and b are of signed integer
type and are known to have non-negative values.

IV. MEMORY BOUNDS

In this section, we discuss an approach to automatically
infer and insert bounds checks in source code. Bounds checks
can help prevent invalid writes (which can corrupt memory)
and invalid reads (which can leak sensitive information, as in
the OpenSSL HeartBleed vulnerability (CVE-2014-0160)).

In C, it is sometimes difficult to determine what the proper
memory bounds for a pointer should be. For a pointer in
a region of memory returned by malloc (or by a custom
memory allocator), the bounds of the memory region are also
bounds on the pointer, but there might be better (tighter)
bounds. For example, a pointer to an element of an array
might be legitimately used to access the whole array, or might
be properly constrained to just the single element.

Similarly, in some cases, a pointer to a sub-object inside
a larger object should be constrained to the sub-object, as in
Figure 4. The best upper bound of acct->id is acct->id +

struct bank_acct {char id[8]; int balance;};
...
bank_acct* acct = malloc(sizeof(struct bank_acct));
strcpy(acct->id, "overflow...");

Fig. 4. Sub-object overflow (example adapted from [21])

struct list_head {
struct list_head *next;
struct list_head *prev;

};

struct task_struct {
long state;
pid_t pid;
list_head sibling;

};

Fig. 5. Linked-list struct in Linux kernel
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Fig. 6. Illustration of linked-list sub-object in Linux kernel

sizeof(char[8]), not acct->id + sizeof(bank_acct).
In other cases, a pointer to a sub-object is legimately used to
access the containing object. A prime example of this occurs
in the Linux kernel, where a linked-list header can occur inside
a larger struct, as illustrated in Figure 5 and Figure 6. Linux
has a macro list_entry for taking a pointer to this sub-object
and returning a pointer to the containing object.

For a reusable buffer only partially filled with valid data
(with the remainder of the buffer containing uninitialized or
stale data), the bounds for reading should not exceed the valid
portion, to avoid leakage of potentially sensitive information.
This problem can even happen in memory-safe languages such
as Java. For example, the Jetty web server (written in Java)
had a vulnerability that could leak passwords, authentication
tokens, and any other data contained in an HTTP request
(CVE-2015-2080).

We will use static analysis to propose candidate bounds.
Strategies to propose candidate bounds include:

1) Bounds of the region allocated by malloc (and custom
allocators).

2) Bounds computed from use of the pointer. E.g., analysis
of memory accesses within loops and limits of the loop.

3) Inference of function pre- and post-conditions.
E.g.: If there are many callsites of a function
foo(int n, char *p, ...), and in most of these
callsites, the bounds on p is the closed interval
[p, p+ n− 1], then propose that in the other callsites,
the same bounds should apply. The statistical method
described in Section 9 of [10] can be used to estimate
confidence in the inferred specifications and reject those
for which the confidence is too low.

4) Invariants for structs. E.g., suppose that we discover
that, in most of the program, one field of a struct supplies
the bounds of another field of the struct. Then we guess
that this is an invariant and violations of it are errors.

5) For reading from a re-usable buffer, propose that the



upper bound for reading is the most recently written
position of the buffer. (This addresses the HeartBleed
and Jetty vulnerabilities described above.) For greater
confidence in such a bound, we will use taint analysis
to determine if this bound also corresponds to a change
of the source of the data.

After using static analysis to propose candidate bounds, we
will use dynamic analysis to weed out too-strict candidate
bounds by seeing what memory is actually accessed on good
runs of the program:

1) We will instrument the program to record which, if any,
candidate bounds checks fail.

2) We will run the instrumented program to collect ‘good’
traces, i.e., traces on which the program exhibits desired
behavior. We will try to get as close to complete
coverage of the code as possible. To do this, we can
use test cases and/or run the program in a realistic test
environment. The instrumented program will write to a
log file to indicate which checks are violated, as well as
statistical data on checks that succeed.

3) Based on the log data from the above step, candidate
bounds will be divided into 3 categories:
• Strongly supported: Many traces where the bounds

check succeeded, with values distributed near the
bounds, and no failed checks.

• Likely incorrect: Some traces where the bounds
check failed, and no evidence that these are bad
traces.

• Indeterminate: Insufficient log data about the check.
For candidates bounds in the “indeterminate” category, we

will try to construct ‘malicious’ inputs that would violate the
inferred bounds, and ask the developer to confirm or reject the
candidate bounds.

If multiple candidate bounds are proposed for the same
pointer, all will be evaluated by the dynamic analysis.

Finally, we will do the repair: In source code locations
where the program does not already adequately check the
bounds of memory accesses, we will repair the program by
inserting code that checks the bounds and aborts if the check
fails. (Of course, where possible, we will avoid inserting a
bounds check inside an inner loop, and instead insert a single
check above the loop that aborts if and only if any iteration
of the loop would access memory out of bounds.)

This transformation can also be used to convert an existing
C codebase to Checked C, an extension of C being developed
by David Tarditi at Microsoft Research [31]. Checked C adds
syntax for indicating the bounds of pointers, enabling the
compiler to prevent out-of-bounds memory accesses. Unlike
earlier work such as Cyclone [12] and CCured [22], Checked
C is a strict superset of C (i.e., every valid C program is a valid
Checked C program), allowing incremental adoption. Working
in Checked C rather than ISO Standard C provides many of
the benefits of a safer language such as Java while retaining
the familiarity and other benefits of C. (However, Checked C
does not fully guarantee memory safety: errors such as use-

after-free and double-free are not covered.) In addition, static
analysis can often determine that bounds checks are always
satisfied, allowing dynamic checks to be omitted and guaran-
teeing correctness (not just absence of security vulnerabilities),
which is important to safety- and mission-critical software.

A. Related Work – Memory Bounds

Rugina and Rinard [23] developed a static analysis to infer
memory bounds. This analysis determines the bounds on what
the program is able to access. It can detect potential accesses
beyond the end of a malloc’d block, but it doesn’t consider
the complication that there might be better (tighter) bounds.

Dhurjati and Adve [7] developed a source-to-binary com-
piler pass that inserts bounds checks using fat pointers. It is
not binary-compatible with existing third-party libraries.

SoftBound [21] also uses a compiler pass to insert bounds
checks. It stores the bounds information in a separate region
of memory, allowing it to interface with existing libraries.
Typically SoftBound has a slowdown of 50%–60% [20].

Shaw, Doggett, and Hafiz [25] developed a source-to-source
intra-procedural transformation for adding bounds checks for
character arrays. This approach replaces raw char* pointers
with fat pointers (using a struct called “stralloc”). However,
this repair is only intra-procedural; only unaliased local vari-
ables (not global variables or pointers stored in heap-allocated
memory) can be converted to fat pointers, and furthermore fat
pointers are not passed across function boundaries.

Other work in this area includes [11], [28], [18], and [8].

V. ACCESS CONTROL

Let us consider a database-backed application that runs on
a central server and talks to remote clients (such as web
browsers, smartphone apps, etc.). Such an application has
authorization logic (typically written in a web application
language such as Ruby or PHP) that controls which users have
access to which items in the database. Ordinary testing of
the system may fail to reveal gaps in this server-side access-
control logic. A gap would be defined as a failure to prevent
a user from accessing data they are prohibited from accessing.
That is, gaps represent differences between the application’s
enforcement and the security policy. An attacker may be able
to exploit such gaps by creating a malicious client or even
simply by entering hand-crafted URLs into the web browser.
Our goal is to infer the intended access-control policy of the
server application and automatically repair deviations from it.
The vulnerability type addressed here appears on the OWASP
list of the top ten web vulnerabilities (2013-A7 “Missing
Function-Level Access Control”) and falls under CWE-285.

Our fundamental assumption is that the desired access-
control policy is expressed in the normal interaction between
the client and the server. In other words, we assume that the
desired access-control policy is to allow a given user to read
(or respectively write) a data item if and only if the user can
read (or resp. write) the data item using normal interactions
of the client.



Some requests from the client to the server may include
authenticating information such as a password or a login
token, which we will assume that an attacker cannot guess.

As a motivating example, let us consider a collaborative
document editing/viewing system, implemented as a web
application backed by an SQL database. Each document has
one or more authors, who are allowed to edit the document.
In addition, each document is associated with zero or more
teams, and each user is on zero or more teams. A user on a
team associated with a document has permission to view the
document (but not edit the document, unless the user is also
an author of the document). The database for this application
has the following schema:

1) Table Document has columns 〈doc_id, doc_title〉.
2) Table DocAuthor has columns 〈doc_id, user_id〉.
3) Table DocTeam has columns 〈doc_id, team_id〉.
4) Table UserTeam has columns 〈user_id, team_id〉.
5) Table User has columns 〈user_id, password〉.
We will use first-order logic to represent the database. For

example, we will write “Document(x, y)” to denote an atomic
proposition that evaluates to true iff there exists a row in
the Document table whose doc_id field is x and whose
doc_title field is y. As another example, the formula

∃team id . UserTeam(user id , team id) ∧
DocTeam(doc id , team id)

is true iff there exists a team id such that the UserTeam table
has a row 〈user id , team id〉 and the DocTeam table has a
row 〈doc id , team id〉. In terms of the business logic, this
means that user user id is on a team that has permission to
view document doc id .

We will write “ClientKnows(table, column, key)” to de-
note an atomic proposition that is true iff the client
knows the secret corresponding to specified column of the
row in table whose primary key is key .3 For example,
ClientKnows(“User”, “password”, 42) means that the client
knows the password for the user whose user_id is 42.

We use an approach based on model checking [2] and
abstract interpretation [4]. We create an abstraction of the
client-server system. An abstract state of the client-server
system will consist of the following information:

1) Server session variables (e.g., $_SESSION in PHP).
2) Cookies (stored client-side)
3) Set of requests available in the client user interface.

Formally: State = Session × Cookie ×AvailReqs

Given a state s, we write “s.Session” to denote the Session
component of s, and likewise for Cookie and AvailReqs . It
may be noted that State doesn’t have components for either
the database or client authentication knowledge, even though
these are part of a concrete state of the system. This is
because our analysis is parameterized by these quantities;

3It may be noted that there is a potential namespace clash if a database
table is named “ClientKnows”. This can be resolved by, e.g., prefixing the
name of every database table with “DB.”.

we will symbolically analyze the system for all possible
configurations of the database and client knowledge, and the
three components of State will be expressed in terms of them.

The Session component of the state is represented as a
formula in first-order logic. Static analysis is used to determine
the set of session variables that are used by the application.4

This set is exactly the set of free variables allowed in Session .
For example, the following value for Session indicates that the
session variable user_id can be any user ID for which the
client knows the password, and that IsAdmin= 0, and leaves
all other session variables unconstrained:

ClientKnows(“User”, “password”, user id) ∧ IsAdmin=0

The special value undef is used to indicate that a variable
is not assigned any value. For example, an empty session
(no variables assigned a value) would be represented by the
formula

∧
v∈V (v = undef) where V is the set of all session

variables. The Cookie component is represented in the same
manner as the Session component.

The AvailReqs component is likewise represented as a
formula in first-order logic. Static analysis is used to determine
the set of parameter names that are used by the application.
HTTP POST requests have parameters that appear in the body
of the request in addition to parameters in the URL. We create
a free variable for each URL parameter; the name of the vari-
able is the name of the URL parameter prefixed with “url.”.
For POST parameters, we use the prefix “post.”. Finally,
the AvailReqs formula contains a free variable BaseURL that
contains the path portion of the URL. For example, the URL
“/edit-doc?doc_id=42” would be represented by:

BaseURL = “/edit-doc” ∧ url .doc id = 42 ∧∧
v∈(ReqVars\{url.doc id})

(
v = undef

)
where ReqVars is the set of all request parameters used
by the application (as determined by static analysis). Note
that the formula explicitly requires that all parameters other
than doc id be absent. Given a request r, we say “r is in
AvailReqs” iff r satisfies the formula AvailReqs (makes the
formula evaluate to true).

A transition from one state to another state encompasses the
client sending a request to the server and the server sending
back a response to the client. We define a transition relation
T such that T (s, r, s′) holds true if the system can make
a transition from state s to state s′ via request r. Earlier,
we spoke of “normal interaction” between the client and the
server. We now define this more precisely: A transition from
state s via a request r is considered a normal interaction iff
the request r is in s.AvailReqs .

Given a request r and state s, let db access(r, s) denote
the sensitive database accesses performed during the server-
side processing of r during a transition from s. An access is

4Variables whose names are created dynamically are not handled. If such
variables are used and are relevant to access control, they represent a source
of unsoundness for the proposed algorithm.



sensitive iff either it reads a field and sends the value to the
client or it modifies the database. (A read isn’t sensitive if the
value doesn’t get sent to the client.)

Static analysis is used to compute (an approximation of)
the transition relation T and db access . Both the server-side
code and the client-side code (e.g., JavaScript for a web app)
would need to be analyzed in general.

We use a formula in first-order logic to represent a set of
sensitive database operations. The formula has (at most) the
following free variables:
• op: the operation: select, update, insert, or delete.
• table: the name of the table being read or written.
• col : the column of the table being read or written.
• pri1, ..., prin: the components of the primary key for

the row of the database being read or written (ignored
for insert and delete operations). Table Document’s
primary key has a single component, doc_id. Table
DocTeam’s primary key has two, doc_id and team_id.

For example, the SQL query “select doc_id, doc_title

from Document where doc_id=42” corresponds to

op=“select” ∧ table=“Document” ∧
(col=“doc_title” ∨ col=“doc_id”) ∧ pri1=42

As another example, a database operation that allows the user
to update the title of all documents for which s/he is an author:

op = “update” ∧ table = “Document” ∧
col = “doc_title” ∧
∃user id . ∃doc id . pri1 = doc id ∧
DocAuthor(user id , doc id) ∧
ClientKnows(“User”, “password”, user id)

We write Reachk
UI(s) to denote the set of all states reachable

from s in at most k transitions (limited to transitions available
in the client UI):

Reach1
UI(s) =

{
s′
∣∣ ∃r. T (s, r, s′) ∧ r ∈ s.AvailReqs

}
Reachk

UI(s) =
⋃

s′∈Reachk−1
UI (s)

Reach1
UI(s

′) for k > 1

Let s0 denote the starting state of the system. Consider a
given transition bound k (say k = 10). We infer the intended
access control policy by taking the disjunction of the allowed
database operations for all requests available in the client UI
of all states reachable within the transition bound:

IntendedAccess =
∨

s∈Reachk
UI(s0)

r∈s.AvailReqs

db access(r, s)

We compute an attacker’s access similarly, except without the
restriction that the request be available in the client UI:5

AttackerAccess = ∃r.
∨

s∈Reachk
UI(s0)

db access(r, s)

5This can be improved by defining and using Reachk
atk for reachability via

any transition, instead of Reachk
UI, which is limited to transitions in the UI.

Also, the attacker should be allowed to choose arbitrary values for Cookie.

We then ask if the attacker access exceeds the intended access:

∃{op, table, col ,−→pri}. AttackerAccess ∧ ¬IntendedAccess

This can be answered by a first-order logic (FOL) solver such
as VAMPIRE [14]. If the answer is yes, then the solver returns
a request r that satisfies the formula. We then determine the
condition under which r is available in the client UI, and we
repair the codebase to add this condition as an authorization
for processing r.

One source of difficulty is database denormalization, where
the same underlying ground fact has multiple redundant rep-
resentations. If such ground facts are relevant to authorization
checks, then denormalization may cause false positives as well
as slowing down the analysis.

Related Work. RoleCast statically identifies potentially
sensitive operations such as database WRITEs that are un-
guarded by an authorization check [30]. In an experiment
of 11 real-world PHP and JSP web apps, RoleCast found
that 5 of the 11 apps had missing authorization checks that
allowed attackers to write to database fields. This work has
been extended to also suggest repairs [29]. However, this work
is coarse-grained: it cannot handle situations where access to
different fields in the database require different authorization
checks. It also doesn’t detect leakage of sensitive data
to unauthorized users. Unauthorized disclosure of sensitive
information is also a problem; [19] cites 9 such CVEs from
2010 to 2014 of well-known software packages and presents
a dynamic analysis and web proxy to mitigate this problem.

VI. CONCLUSION

Automated code repair has the potential to significantly
improve our ability to develop and maintain secure code by
removing the burdensome manual effort that has traditionally
been needed. A good problem suitable for automated repair is
one with a common pattern that allow us to be highly confident
in inferring what the specification of the program should be.
Techniques for inferring a specification vary widely, including
static analysis, dynamic analysis, and heavy-weight formal
methods. Figure 7 summarizes inferred specifications and
repairs discussed in this paper. Future reseach directions
include tackling the IR↔AST problem.

Inferred Spec Repair
Integer
overflow

Arithmetic for array
bounds or indices
should not overflow

Emulate unlimited
bitwidth arithmetic
where possible

Memory
bounds

Infer desired bounds
of memory

Insert missing bounds
check, call abort() if
the check fails

Access
control

Access-control policy
inferred from normal
interaction of client

Insert authorization
checks needed to
enforce inferred policy.

Fig. 7. Summary of Inferred Specifications and Repairs
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