ASX Release

16 February 2021

Significant gold mineralisation confirmed in first ever drill results from the Sandy Creek Project, NE Victoria

- High-grade gold mineralisation has been identified at the Honeysuckle, Shamrock and O'Dell's prospects at Sandy Creek by the recently completed drilling program
- Significant intercepts include:
 - 5m @ 5.75 g/t Au from 18m in SRERAB32B at O'Dell's
 - Incl. 3m @ 8.8 g/t Au from 18m
 - o 5m @ 3.96 g/t Au from 2m in SRERAB37 at O'Dell's
 - Incl. 1m @ 15.5 g/t Au from 3m
 - o 9m @ 1.75 g/t Au from 31m in SRERAB06 at the Honeysuckle prospect
 - Incl. 1m @ 5.47 g/t Au from 39m
- This drilling represents the first holes ever to be assayed from this historic high-grade goldfield
- Gold mineralisation remains open and untested along strike and at depth at the Honeysuckle, Shamrock and O'Dell's prospects
- The full extent of the principal target, altered and gold-mineralised granite with bulk-ton potential, remains untested

Dart Mining NL (ASX:DTM) ("Dart Mining" or "the Company") is pleased to report encouraging assay results from RAB drilling of gold mineralisation at the Sandy Creek Project, Northeast Victoria. The drilling represents the first ever holes drilled through mineralised structures at the historic, high-grade Sandy Creek orogenic goldfield and has returned a number of high-grade gold results that confirm the potential of the prospect for hosting significant gold resources. An additional target at Sandy Creek was the broader zones of gold mineralisation hosted in altered granites, but this remains inadequately tested due to difficulties associated with penetrating old, unmapped underground workings and loss of sample return in areas of high ground water volumes. Further drilling is planned for Sandy Creek in 2021.

Drill Assay Results

A low impact RAB drill program has been completed at Sandy Creek, targeting six prospects (Honeysuckle, IXL East, IXL, Morning Star, Shamrock and O'Dell's), for a total of 1308m of drilling across 43 holes. From the prospects targeted, three prospects (Honeysuckle, Shamrock and O'Dell's) returned significant gold mineralisation and encouraging gold intersections (see Table 1 for significant intersections). Notably, the potential for roof-pendant granite hosted mineralisation in the Sandy Creek Goldfield remains untested.

ASX Code: DTM

Key Prospects / Commodities:

GOLDFIELDS

Buckland Rushworth Sandy Creek Granite Flat Dart Mt Elmo Saltpetre Zulu Upper Indi

LITHIUM / TIN / TANTALUM

Empress – Li-Sn-Ta Eskdale / Mitta – Li-Sn-Ta

PORPHYRY GOLD / COPPER / MOLYBDENUM

Empress – Au-Cu Stacey's – Au-Cu Copper Quarry – Cu+/- Au Gentle Annie – Cu Morgan Porphyry – Mo-Ag-Au Unicorn Porphyry – Mo-Cu-Ag

Investment Data:

Shares on issue: 99,945,476 Unlisted Options: 35,556,369 Performance Rights: 3,400,000

Substantial Shareholders:

Top 20 Holdings: 55.42 %

Board & Management:

Managing Director: James Chirnside
Non-Executive Director: Dr Denis Clarke
Non-Executive Director: Luke Robinson
Company Secretary: Julie Edwards

Dart Mining NL

ACN 119 904 880

Contact Details:

4 Bryant Street, Corryong VIC 3707 Australia

James Chirnside

Email: jchirnside@dartmining.com.au

Visit our webpage: www.dartmining.com.au

The program focused on a first-pass exploration drilling approach to identifying and eliminating gold mineralised targets in the Sandy Creek Goldfield through the application of a low impact exploration methodology. Drilling targeted mineralisation on six key prospects: Honeysuckle, IXL East, IXL, Morning Star, Shamrock and O'Dell's. Drilling and previous chip sampling indicate that strong gold mineralisation occurs at surface and remains open at depth and along strike at the Honeysuckle, Shamrock and O'Dell's prospects. This preliminary drilling program is the first drilling program to be completed in the Sandy Creek Goldfield.

Table 1: Significant intersections from recent Sandy Creek RAB drilling. Significant intervals are calculated using a 0.5 ppm Au lower cut-off, with no more than 1m of internal dilution. All intervals shown represent downhole thicknesses.

Hole ID	From (m)	To (m)	Interval (m)	Au (ppm)	Prospect	Comment
EMPRAB03	8	9	1	0.86	Honeysuckle	Hit water at 63m
EMPRAB04	44	45	1	1.91	Honeysuckle	Hit workings at 51m
EMPRAB05	23	24	1	0.51	Honeysuckle	Hit workings at 29m
EMPRAB06	31	40	9	1.75	Honeysuckle	Hit water at 40m; ended in mineralisation
including	39	40	1	5.47		
EMPRAB19	16	17	1	0.67	Shamrock	
EMPRAB22	9	10	1	1.1	Shamrock	Hit workings at 11m
EMPRAB23	19	20	1	3.56	Shamrock	Drilled to 39m
EMPRAB24	13	15	2	1.84	Shamrock	Drilled to 40m
EMPRAB27	10	13	3	0.66	Shamrock	Hit workings at 13m; Ended in mineralisation
EMPRAB28	17	19	2	0.57	Shamrock	Hit workings at 24m
EMPRAB32B	18	23	5	5.75	O'Dell's	Drilled to 40m
including	18	21	<i>3</i>	8.8		
EMPRAB35	27	30	3	3.66	O'Dell's	Drilled to 45m
EMPRAB37	2	7	5	3.96	O'Dell's	Hit workings at 24m
including	3	4	1	15.5		
	21	22	1	0.69		

Table 2: Number of holes and metres drilled by prospect in the recent Sandy Creek drilling program.

Prospect	No. Holes	Metres Drilled	Hole ID's
Honeysuckle	6	219	SRERAB01-06
IXL East	3	128	SRERAB07-08, SRERAB13
IXL	4	169	SRERAB09-12
Morning Star	4	85	SRERAB14-17
Shamrock	12	291	SRERAB18-28
O'Dell's	14	416	SRERAB29-39B
Total	43	1308	

Discussion of Results

The Honeysuckle, I.X.L East, I.X.L, Morning Star, Shamrock and O'Dell's mines were identified as the principal exploration drilling targets through field mapping, rock chip and soil sampling by Dart Mining geologists (Dart ASX July 2020). Much of the current drill program was designed to confirm that surface sampling of hydrothermally altered and mineralised granite and structures extended to depth and it has now been successfully demonstrated that this is indeed the case on three of six prospects drilled. Drilling was complicated by steep terrain, an abundance of largely unmapped underground workings, a highwater table and unseasonable snow. Although numerous holes failed to penetrate their target adequately, the program has successfully indicated that significant gold mineralisation that remains open at depth and along strike is present at the O'Dell's, Shamrock and Honeysuckle prospects.

O'Dell's Prospect

Rig placement on the existing pad site at O'Dell's was somewhat restricted by open stopes, however enabled a good preliminary assessment of the prospect. Drilling results support surface chip sampling, demonstrating that O'Dell's is a very promising prospect with at least two closely spaced lines of mineralisation (Figure 1). Additional drilling north of the O'Dell's open stope is required to test additional lines of mineralisation, with drilling beyond 60m depth necessary to test the roof pendant mineralisation model for this site. Several encouraging intercepts were recovered from the prospect, including 5m @ 5.75 g/t Au (inc. 3m @ 8.8 g/t), 3m @ 2.69 g/t Au, and 5m @ 3.96 g/t Au (inc. 1m @ 15.5 g/t Au).

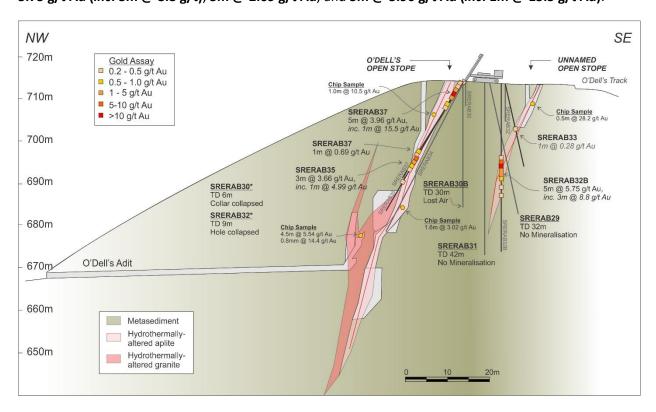


Figure 1: Cross-section showing drilling intercepts across the O'Dell's Prospect with preliminary geological interpretation. Chip sample grades reported in <u>Dart ASX July 2020</u>.

Honeysuckle Prospect

The Honeysuckle Prospect is ideally situated across a level section of Williams Track. Preliminary results from this first-pass drilling campaign indicates that mineralisation lies in footwall of the north-trending structure, with intercepts from SRERAB06 which terminated in mineralisation returning assays of 4m @ 2.0 g/t Au, and 3m @ 2.5 g/t Au (including 1m @ 5.57 g/t Au), producing a composite 9m @ 1.75 g/t Au (with 1m of internal dilution and a cut-off grade of 0.5 g/t Au) (Figure 2). Cuttings indicate that mineralisation is hosted by a high proportion of sulphide (pyrite and arsenopyrite) within potassic-altered granite.

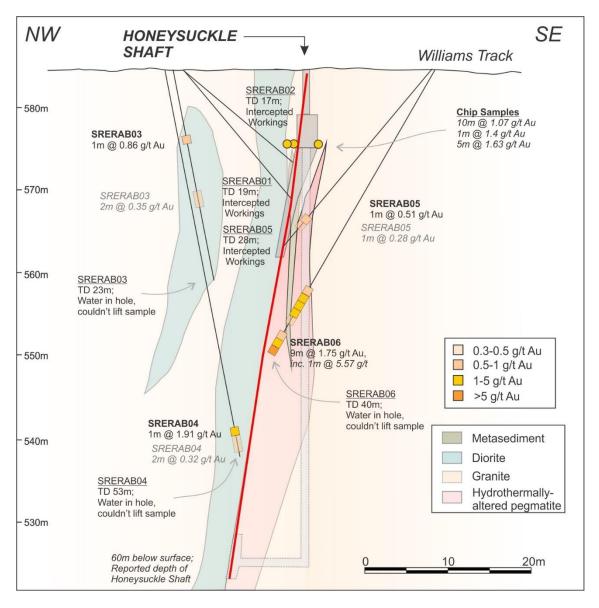


Figure 2: Cross-section showing drilling intercepts across the Honeysuckle Prospect with preliminary geological interpretation. Chip samples reported in <u>Dart ASX July 2020</u>.

Shamrock Prospect

Drilling conditions were difficult on the Shamrock site, with steep track access and an abundance of underground workings, resulting premature termination of several holes. Short, low-grade intercepts were recovered from the northeast side of the Shamrock workings, but the targeted altered granite mineralisation apparent in the lower level workings was not reached. Abundant and considerable lengths of altered granite have been demonstrated in chip samples from the Shamrock workings, with wall samples along the lower level giving a composite grade of 4.0 g/t over 20m (Dart ASX July 2020). Further drilling is required to test the mineralisation model for this target. Low grade, although encouraging drill intercepts recovered from the Shamrock Prospect include 1m @ 3.56 g/t Au, 2m @ 1.84 g/t Au, 1m @ 1.1 g/t Au, 3m @ 0.66 g/t Au, 2m @ 0.57 g/t Au, and 1m @ 0.67 g/t Au.

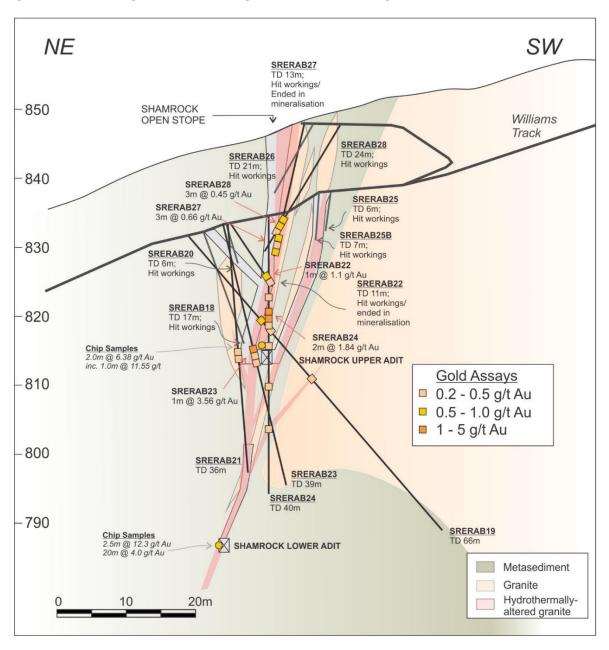


Figure 3: Cross-section showing drilling intercepts across the Shamrock Prospect with preliminary geological interpretation. Chip samples reported in <u>Dart ASX July 2020</u>.

Morning Star Prospect

Underground workings were much more extensive on the Morning Star prospect than indicated by historic mining reports, with drilling indicating the presence of drives directed to the east, west, and south from the main shaft at 12-25m below surface (Figure 4). All four holes drilled (SRERAB14-SRERAB17) were drilled from different positions at different orientations and all encountered workings. Aside from 1m @ 0.49 g/t Au in SRERAB17, no mineralisation was encountered in any of the drill holes on the Morning Star Prospect prior to their premature termination (Figure 4).

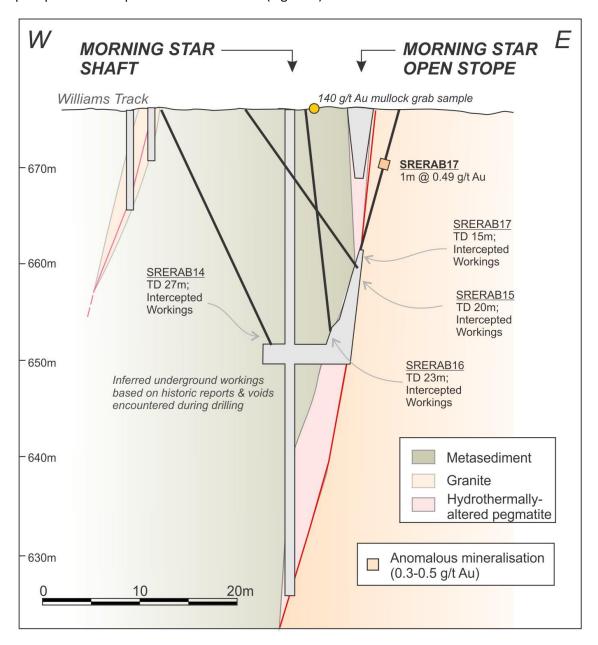


Figure 4: Cross-section showing drilling intercepts across the Morning Star Prospect. Mullock grab sample reported in <u>Dart ASX July 2020</u>. Location of subsurface shaft workings inferred from contemporary reports and voids intersected during drilling.

IXL & IXL East Prospects

The IXL East drive intercepts a considerable thickness of sheared, sericite-altered metasediments hosting stringers of altered granite and fine arsenopyrite, providing consistent gold values from chip sampling and generating a composite intercept of **14m @ 1.46 g/t Au** (true width; <u>Dart ASX July 2020</u>). Drilling suggests that this mineralisation either does not continue at depth, or that the orientation of the structure deviates in the subsurface (Figure 5). Due to topographic constraints and restrictions of working under a low impact work plan, holes were collared a significant distance away from the surface sampling sites, but drill holes were oriented such that they should intercept the mineralisation trend. No mineralised intercepts were recovered from either the IXL or IXL East prospects (Figure 5).

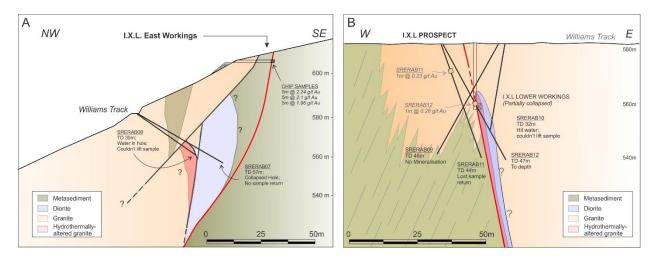


Figure 5: A) Cross-section showing drill holes SRERAB07 and SRERAB08 across the I.X.L East prospect with preliminary geological interpretation. Chip samples noted are reported in <u>Dart ASX July 2020</u>. B) Cross-section drill holes SRERAB09-SRERAB12 across the IXL Prospect. No mineralised intercepts were recovered from either the IXL or IXL East prospect.

Future Exploration

Follow-up drilling will employ either Reverse Circulation (RC) or diamond drilling techniques across the Honeysuckle, Shamrock and O'Dell's prospects to chase the structure with the intent of identifying the grade and character of mineralisation at depth. Emphasis will also be placed on testing the roof pendant model at depth, particularly on prospects where mineralised targets have been identified. Surface workings sampled on the O'Dell's Prospect indicate the potential for a strike extent of at least 130m toward the northeast, which would require minimal impact to test, with strong indications of three lines of mineralised structures.

Summary of Previous Exploration

The O'Dell's mine was noted as having average head grades of 400–570 g/t Au (Dunn, 1888), and was reopened in 1979–1996, generating some renewed interest in exploration of the Sandy Creek Goldfield. Around the end of production from O'Dell's mine in 1996, grades up to 43.5 g/t and 89.4 g/t remained in wall rock, and a representative ore sample assayed at 27 g/t (Wilson, 1996). Three short diamond drill holes were drilled across the O'Dell's Prospect in 2007 by Goldsearch Ltd., but all holes were terminated before intersecting mineralisation and were never assayed or fully logged (Hellewell, 2007).

Recent rock chip sampling by Dart Mining geologists across workings and mineralised structures in the Sandy Creek Goldfield has identified three gold mineralisation styles (<u>Dart ASX July 2020</u>). These include narrow-vein quartz/free gold, disseminated sulphide Au and As (± Sb, Pb) with rare free gold in altered granite, and Au (± Ag) mineralisation in sheared pegmatites. Of these mineralisation styles, disseminated sulphide-hosted gold is the dominant style, often in occurrence with a narrow-vein, heavily mineralised core which has been played out in most instances by historic mining activity. A 140 g/t Au mullock grab sample from the Morning Star and a 0.5m chip sample at 28.2 g/t at O'Dell's is testament of these narrow-vein quartz grades (<u>Dart ASX July 2020</u>). Dart Mining favours an orogenic, epizonal mineralisation model for primary gold mineralisation at Sandy Creek based on geochemical and structural relationships.

Chip sampling from the O'Dell's prospect identified altered granite which returned assay of **0.8m** @ **14.4** g/t; Fall grab @ **15** g/t; **4.5m** @ **5.4** g/t; **1.5m** @ **3.64** g/t Au. The primary stopes of the O'Dell's mine had focused on narrow vein quartz and sericite-scorodite altered aplite, with samples returning **1.0m** @ **12.65** g/t, **1.5m** @ **3.02** g/t, **1.1m** @ **2.88** g/t and **0.5** m @ **28.2** g/t Au (Dart ASX July 2020).

Considerable lengths of altered granite are apparent in the Shamrock workings, with wall samples in the lower level giving a **composite grade of 4.0 g/t over 20m**. However, with few cross-cuts, it is uncertain how far mineralisation penetrates beyond the structure. A **2.5m sample at 12.65 g/t Au** indicates that mineralisation extends at least 2+ m into the wall rock (Dart ASX July 2020).

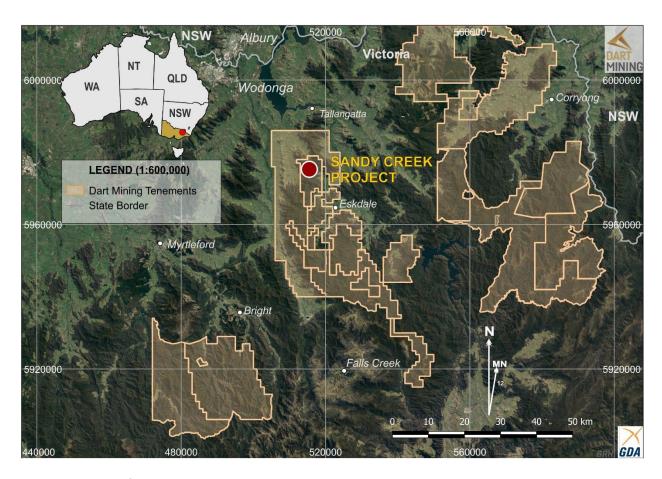


Figure 5: Location of the Sandy Creek Project in Northeast Victoria.

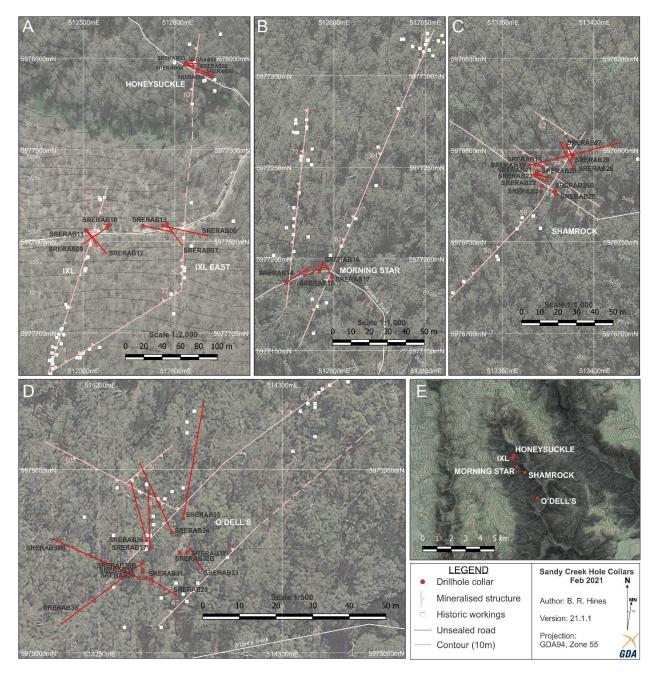


Figure 6: Location of hole collars SRERAB01-SRERAB39B in the Sandy Creek drilling program. A) Honeysuckle, IXL and IXL East prospects. B) Morning Star Prospect. C) Shamrock Prospect. D) O'Dell's Prospect. E) Relative positions of the Sandy Creek prospects.

For more information contact:

James Chirnside

Managing Director
jchirnside@dartmining.com.au

Peter Taylor Investor Relations peter@nwrcommunications.com.au 0412 036 231

About Dart Mining

Dart Mining (ASX: DTM) floated on the ASX in May of 2007 with the aim of evaluating and developing several historic goldfields, as well as substantiating a new porphyry province in North East Victoria. The area is prospective for precious, base, and strategic metals. These include Lithium, Gold, Silver, Copper, Molybdenum, Zinc, Tungsten, Tin, Tantalum, and a host of other important minerals. Dart Mining has built a strategically placed gold exploration footprint in the Central and North East regions of Victoria, where historic surface and alluvial gold mining indicates the existence of potentially significant gold endowment.

Additional JORC Information

Further details relating to the information on the Sandy Creek gold project can be found in Dart Mining's ASX announcements:

1st September 2020: "Drilling of Gold Mineralisation Commencing"

3rd July 2020: "Sandy Creek and Tallandoon Goldfields"

Additional information on Dart Mining's other recent and current drilling operations can be found in:

7th December 2020: "Northeast Drilling Program Complete"

16th November 2020: "Drilling Commencement, Historic Rushworth Goldfield"

9th November 2020: "Commencement of Drilling Copper-Gold Mineralisation at Granite Flat"

5th November 2020: "Rushworth Historic High-Grade Goldfield"

30th **October 2020:** "Report for the quarter ended 30th September 2020"

27th October 2020: "Orogenic Gold and Porphyry Prospectivity, Mitta Mitta, NE Victoria"

19th October 2020: "Drill Results Reveal High-Grade Gold"

References

Dunn, E. J. (1888). Report on Sandy Creek, Parish of Bogong. Geological Survey of Victoria. 5p.

Hellewell, H. (2007). *Annual Technical Report, EL4812, Sandy Creek*. 8th April 2008, Version 3. Goldsearch Ltd. Filed with Geological Survey of Victoria.

Lanzer, L. A. (1988). Sandy Creek Final Report EL1463-1. Tallangalook Pty. Ltd. & Ghana Gold Pty. Ltd. Report BCA 88-11. Filed with Geological Survey of Victoria. 5p.

Oppy, I. D., Cayley, R. A. & Caluzzi, J. (1995). The Geology and Prospectivity of the Tallangatta 1:250,000 sheet. *Victorian Initiative for Minerals and Petroleum Report 10*. Department of Agriculture, Energy and Minerals. 162p. ISBN 0-7306-7980-2

Wodonga & Towong Sentinel. (1888). Sandy Creek. Wodonga & Towong Sentinel, December 7, 1888.

Wilson, I. (1996). *Sandy Creek Project*. Exminco EL3574 Annual Report. Exminco Report No. 12. Filed with Geological Survey of Victoria. 21p.

Competent Person's Statement

The information in this report has been prepared and compiled by Dr. Ben Hines PhD, MSc, MAIG, who is a full-time Senior Geologist for Dart Mining, and verified by Mr Steven Groves BSc, MSc. a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Groves is the exploration manager for Dart Mining. Mr Groves has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Groves consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statement

Certain statements contained in this document constitute forward-looking statements. Forward-looking statements include, but are not limited to, Dart Mining's current expectations, estimates and projections about the industry in which Dart operates, and beliefs and assumptions regarding Dart's future performance. Such forward-looking statements are based on a number of estimates and assumptions made by the Company and its consultants in light of experience, current conditions and expectations of future developments which the Company believes are appropriate in the current circumstances. When used in this document, words such as; "anticipate", "could", "intends", "estimate", "potential", "plan", "seeks", "may", "should", and similar expressions are forward-looking statements. Although Dart believes that its expectations presented in these forward-looking statements are reasonable, such statements are subject to known and unknown risks, uncertainties and other factors, which may cause the actual results, achievements and performance of the Company to be materially different from the future results and achievements expressed or implied by such forward-looking statements. Investors are cautioned that forward-looking information is no guarantee of future performance and accordingly, investors are cautioned not to place undue reliance on these forward-looking statements.

APPENDIX 1

TENEMENT STATUS

All tenement applications continue to pass through the approvals process with the tenements remaining in good standing as of the 31st January 2021 (Table 1.1 – Figure 7).

Table 1.1. TENEMENT STATUS

Tenement Number	Name	Tenement Type	Area (km²) Unless specified	Interest	Location
MIN006619	Mt View ²	Mining License	224 Ha	100%	NE Victoria
EL5315	Mitta Mitta ⁴	Exploration Licence	172	100%	NE Victoria
EL006016	Rushworth ⁴	Exploration Licence	60	100%	Central Victoria
EL006277	Empress	Exploration Licence	165	100%	NE Victoria
EL006300	Eskdale ³	Exploration Licence	183	100%	NE Victoria
EL006486	Mt Creek	Exploration Licence	190	100%	NE Victoria
EL006861	Buckland	Exploration Licence	414	100%	NE Victoria
EL007007	Union	Exploration Licence	3	100%	Central Victoria
EL006994	Wangara	Exploration Licence	142	100%	Central Victoria
EL007008	Buckland West	Exploration Licence	344	100%	NE Victoria
EL006764	Cravensville	EL (Application)	170	100%	NE Victoria
EL006865	Dart	EL (Application)	567	100%	NE Victoria
EL006866	Cudgewa	EL (Application)	508	100%	NE Victoria
EL007099	Sandy Creek	EL (Application)	437	100%	NE Victoria
EL007170	Berringama	EL (Application)	27	100%	NE Victoria
EL007430	Buchan	EL (Application)	546	100%	Gippsland
EL007435	Goonerah	EL (Application)	587	100%	Gippsland
EL007425	Deddick	EL (Application)	341	100%	Gippsland
EL007428	Boebuck	EL (Application)	355	100%	NE Victoria
EL007426	Walwa	EL (Application)	499	100%	NE Victoria
RL006615	Fairley's ²	Retention License	340 Ha	100%	NE Victoria
RL006616	Unicorn ^{1&2}	Retention License	23,243 Ha	100%	NE Victoria

All tenements remain in good standing at 31st January 2020.

NOTE 1: Unicorn Project area subject to a 2% NSR Royalty Agreement with Osisko Gold Royalties Ltd dated 29 April 2013.

NOTE 2: Areas subject to a 1.5% Founders NSR Royalty Agreement.

NOTE 3: Areas are subject to a 1.0% NSR Royalty Agreement with Minvest Corporation Pty Ltd (See DTM ASX Release 1 June 2016).

NOTE 4: Areas are subject to a 0.75% Net Smelter Royalty on gold production, payable to Bruce William McLennan.

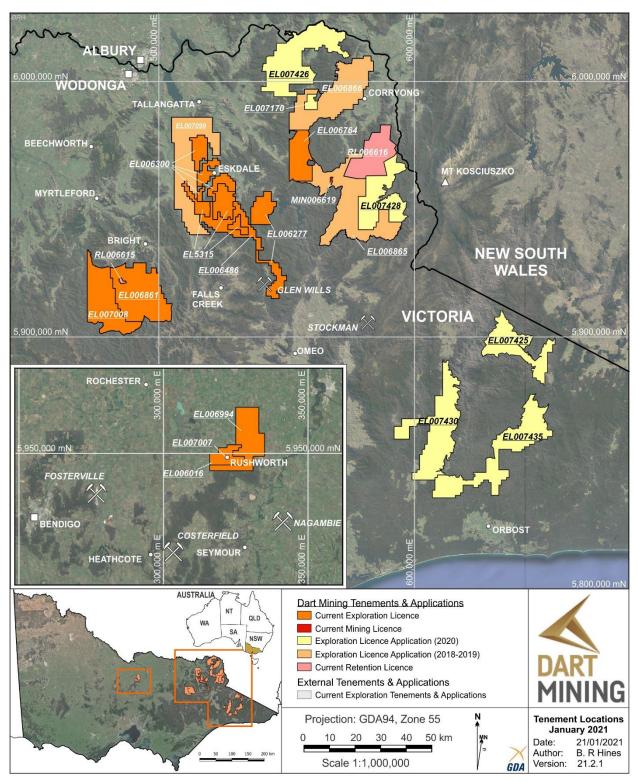


Figure 7. Location of Dart Mining's exploration properties in Northeastern Victoria.

APPENDIX 2 – RAB hole collar details

Hole ID	Azimuth (grid)	Inclination	Easting	Northing (MGA_55)	RL (m)	Depth (m)	Date Drilled (Collared)	Prospect
SRERAB01	92	-50	(MGA_55) 512613	5977994	587	19	23/09/2020	Honeysuckle
SRERAB02	110	-40	512613	5977993	587	17	23/09/2020	Honeysuckle
SRERAB03	123	-79	512612	5977995	587	23	24/09/2020	Honeysuckle
SRERAB04	93	-79 -79	512612	5977993	587	53	24/09/2020	Honeysuckle
SRERAB05	292	-50	512641	5977981	585	29	25/09/2020	Honeysuckle
SRERAB06	285	-60	512641	5977980	585	40	26/09/2020	Honeysuckle
SRERAB07	102	-30	512587	5977817	580	57	26/09/2020	IXL East
SRERAB08	144	-35	512591	5977819	580	35	27/09/2020	IXL East
SRERAB09	236	-40	512526	5977815	582	46	29/09/2020	IXL
SRERAB10	289	-80	512529	5977818	582	32	29/09/2020	IXL
SRERAB11	142	-65	512503	5977812	583	44	30/09/2020	IXL
SRERAB12	140	-45	512504	5977812	583	47	30/09/2020	IXL
SRERAB13	102	-35	512565	5977817	579	36	1/10/2020	IXL East
SRERAB14	57	-50	512774	5977187	676	27	2/10/2020	Morning Star
SRERAB15	68	-50	512784	5977191	677	20	2/10/2020	Morning Star
SRERAB16	23	-75	512792	5977193	677	23	2/10/2020	Morning Star
SRERAB17	332	-60	512799	5977190	677	15	3/10/2020	Morning Star
SRERAB18	100	-70	513368	5976792	833	17	9/10/2020	Shamrock
SRERAB19	76	-40	513365	5976792	832	66	10/10/2020	Shamrock
SRERAB20	93	-70	513369	5976788	834	6	11/10/2020	Shamrock
SRERAB21	120	-85	513369	5976788	834	36	11/10/2020	Shamrock
SRERAB22	113	-55	513368	5976786	835	11	11/10/2020	Shamrock
SRERAB23	100	-75	513368	5976787	835	39	12/10/2020	Shamrock
SRERAB24	360	90	513372	5976780	835	40	13/10/2020	Shamrock
SRERAB25	356	-70	513379	5976776	839	6	13/10/2020	Shamrock
SRERAB25B	336	-80	513378	5976777	838	7	13/10/2020	Shamrock
SRERAB26	332	-65	513389	5976796	848	21	14/10/2020	Shamrock
SRERAB27	332	-50	513388	5976797	848	13	14/10/2020	Shamrock
SRERAB28	332	-50	513389	5976790	848	24	14/10/2020	Shamrock
SRERAB29	122	-75	514264	5975020	828	32	16/10/2020	O'Dells
SRERAB30	127	-87	514262	5975022	828	6	16/10/2020	O'Dells
SRERAB30B	127	-88	514262	5975023	828	30	16/10/2020	O'Dells
SRERAB31	127	-88	514263	5975020	828	42	17/10/2020	O'Dells
SRERAB32	360	-90	514274	5975027	828	9	18/10/2020	O'Dells
SRERAB32B	360	-90	514272	5975027	828	40	18/10/2020	O'Dells
SRERAB33	150	-70	514275	5975028	828	21	18/10/2020	O'Dells
SRERAB34	335	-60	514270	5975033	828	42	19/10/2020	O'Dells
SRERAB35	10	-45	514273	5975037	828	45	19/10/2020	O'Dells
SRERAB36	345	-60	514263	5975031	828	34	20/10/2020	O'Dells
SRERAB37	358	-50	514264	5975029	828	24	20/10/2020	O'Dells
SRERAB38	233	-50	514262	5975025	828	44	21/10/2020	O'Dells
SRERAB39	294	-55	514262	5975022	827	2	21/10/2020	O'Dells
SRERAB39B	294	-55	514261	5975020	827	45	21/10/2020	O'Dells

APPENDIX 3 – Gold Assay Results

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB01	0	1	1	0.01
SRERAB01	1	2	1	0.02
SRERAB01	2	3	1	0.01
SRERAB01	3	4	1	<0.01
SRERAB01	4	5	1	0.01
SRERAB01	5	6	1	0.01
SRERAB01	6	7	1	0.01
SRERAB01	7	8	1	<0.01
SRERAB01	8	9	1	<0.01
SRERAB01	9	10	1	<0.01
SRERAB01	10	11	1	0.01
SRERAB01	11	12	1	<0.01
SRERAB01	12	13	1	<0.01
SRERAB01	13	14	1	<0.01
SRERAB01	14	15	1	0.01
SRERAB01	15	16	1	0.01
SRERAB01	16	17	1	<0.01
SRERAB01	17	18	1	<0.01
SRERAB01	18	19	1	<0.01
SRERAB02	0	1	1	0.01
SRERAB02	1	2	1	0.01
SRERAB02	2	3	1	<0.01
SRERAB02	3	4	1	<0.01
SRERAB02	4	5	1	<0.01
SRERAB02	5	6	1	<0.01
SRERAB02	6	7	1	<0.01
SRERAB02	7	8	1	<0.01
SRERAB02	8	9	1	<0.01
SRERAB02	9	10	1	<0.01
SRERAB02	10	11	1	0.01
SRERAB02	11	12	1	0.16
SRERAB02	12	13	1	0.04
SRERAB02	13	14	1	0.01
SRERAB02	14	15	1	<0.01
SRERAB02	15	16	1	<0.01
SRERAB02	16	17	1	<0.01
SRERAB03	0	1	1	<0.01
SRERAB03	1	2	1	<0.01
SRERAB03	2	3	1	0.01
SRERAB03	3	4	1	0.02
SRERAB03	4	5	1	0.01
SRERAB03	5	6	1	<0.01
SRERAB03	6	7	1	0.01
SRERAB03	7	8	1	<0.01

_	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB03	8	9	1	0.86
SRERAB03	9	10	1	0.03
SRERAB03	11	12	1	0.03
SRERAB03	12	13	1	0.01
SRERAB03	13	14	1	0.01
SRERAB03	14	15	1	0.43
SRERAB03	15	16	1	0.26
SRERAB03	16	17	1	0.02
SRERAB03	17	18	1	0.01
SRERAB03	18	19	1	0.01
SRERAB03	19	20	1	<0.01
SRERAB03	20	21	1	0.01
SRERAB03	21	22	1	0.03
SRERAB03	22	23	1	0.05
SRERAB04	0	1	1	0.01
SRERAB04	1	2	1	0.02
SRERAB04	2	3	1	0.01
SRERAB04	3	4	1	0.01
SRERAB04	4	5	1	0.01
SRERAB04	5	6	1	0.01
SRERAB04	6	7	1	<0.01
SRERAB04	7	8	1	<0.01
SRERAB04	8	9	1	0.01
SRERAB04	9	10	1	<0.01
SRERAB04	10	11	1	0.02
SRERAB04	11	12	1	0.01
SRERAB04	12	13	1	0.01
SRERAB04	13	14	1	0.02
SRERAB04	14	15	1	<0.01
SRERAB04	15	16	1	<0.01
SRERAB04	16	17	1	<0.01
SRERAB04	17	18	1	<0.01
SRERAB04	18	19	1	0.01
SRERAB04	19	20	1	<0.01
SRERAB04	20	21	1	0.01
SRERAB04	21	22	1	0.01
SRERAB04	22	23 24	1	<0.01
SRERAB04 SRERAB04	23	25	1	0.01 <0.01
SRERAB04	25	26	1	0.01
SRERAB04	26	27	1	<0.01
SRERAB04	27	28	1	0.01
SRERAB04	28	29	1	0.04
SRERAB04			1	
SKEKABU4	29	30	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB04	30	31	1	<0.01
SRERAB04	31	32	1	<0.01
SRERAB04	32	33	1	<0.01
SRERAB04	33	34	1	<0.01
SRERAB04	34	35	1	<0.01
SRERAB04	35	36	1	<0.01
SRERAB04	36	37	1	<0.01
SRERAB04	37	38	1	0.03
SRERAB04	38	39	1	0.03
SRERAB04	39	40	1	0.01
SRERAB04	40	41	1	0.01
SRERAB04	41	42	1	0.07
SRERAB04	42	43	1	0.02
SRERAB04	43	44	1	0.1
SRERAB04	44	45	1	1.91
SRERAB04	45	46	1	0.42
SRERAB04	46	47	1	0.22
SRERAB04	47	48	1	0.04
SRERAB04	48	49	1	0.04
SRERAB04	49	50	1	0.02
SRERAB04	50	51	1	0.01
SRERAB04	51	52	1	0.04
SRERAB04	52	53	1	0.16
SRERAB05	0	1	1	<0.01
SRERAB05	1	2	1	<0.01
SRERAB05	2	3	1	<0.01
SRERAB05	3	4	1	0.01
SRERAB05	4	5	1	<0.01
SRERAB05	5	6	1	<0.01
SRERAB05	6	7	1	0.01
SRERAB05	7	8	1	<0.01
SRERAB05	8	9	1	<0.01
SRERAB05	9	10	1	<0.01
SRERAB05	10	11	1	<0.01
SRERAB05	11	12	1	0.01
SRERAB05	12	13	1	<0.01
SRERAB05	13	14	1	0.01
SRERAB05	14	15	1	<0.01
SRERAB05	15	16	1	<0.01
SRERAB05	16	17	1	<0.01
SRERAB05	17	18	1	<0.01
SRERAB05	18	19	1	<0.01
SRERAB05	19	20	1	<0.01
SRERAB05	20	21	1	0.03

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB05	21	22	1	<0.01
SRERAB05	22	23	1	<0.01
SRERAB05	23	24	1	0.51
SRERAB05	24	25	1	0.28
SRERAB05	25	26	1	0.03
SRERAB05	26	27	1	0.01
SRERAB05	27	28	1	<0.01
SRERAB06	0	1	1	
SRERAB06	1	2	1	<0.01
SRERAB06	2	3	1	<0.01
SRERAB06	3	4	1	<0.01
SRERAB06	4	5	1	<0.01
SRERAB06	5	6	1	<0.01
SRERAB06	6	7	1	<0.01
SRERAB06	7	8	1	<0.01
SRERAB06	8	9	1	<0.01
SRERAB06	9	10	1	<0.01
SRERAB06	10	11	1	<0.01
SRERAB06	11	12	1	<0.01
SRERAB06	12	13	1	0.02
SRERAB06	13	14	1	<0.01
SRERAB06	14	15	1	<0.01
SRERAB06	15	16	1	<0.01
SRERAB06	16	17	1	<0.01
SRERAB06	17	18	1	<0.01
SRERAB06	18	19	1	<0.01
SRERAB06	19	20	1	<0.01
SRERAB06	20	21	1	<0.01
SRERAB06	21	22	1	<0.01
SRERAB06	22	23	1	<0.01
SRERAB06	23	24	1	<0.01
SRERAB06	24	25	1	<0.01
SRERAB06	25	26	1	0.01
SRERAB06	26	27	1	<0.01
SRERAB06	27	28	1	0.03
SRERAB06	28	29	1	0.01
SRERAB06	29	30	1	0.01
SRERAB06	30	31	1	<0.01
SRERAB06	31	32	1	0.62
SRERAB06	32	33	1	1.33
SRERAB06	33	34	1	3.87
SRERAB06	34	35	1	2.28
SRERAB06	35	36	1	0.38
SRERAB06	36	37	1	0.13

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB06	37	38	1	0.71
SRERAB06	38	39	1	1.03
SRERAB06	39	40	1	5.47
SRERAB07	0	1	1	0.01
SRERAB07	1	2	1	0.09
SRERAB07	2	3	1	0.04
SRERAB07	3	4	1	0.04
SRERAB07	4	5	1	0.01
SRERAB07	5	6	1	<0.01
SRERAB07	6	7	1	0.03
SRERAB07	7	8	1	0.03
SRERAB07	8	9	1	0.01
SRERAB07	9	10	1	0.01
SRERAB07	10	11	1	0.06
SRERAB07	11	12	1	0.01
SRERAB07	12	13	1	<0.01
SRERAB07	13	14	1	<0.01
SRERAB07	14	15	1	0.01
SRERAB07	15	16	1	<0.01
SRERAB07	16	17	1	<0.01
SRERAB07	17	18	1	<0.01
SRERAB07	18	19	1	<0.01
SRERAB07	19	20	1	<0.01
SRERAB07	20	21	1	0.01
SRERAB07	21	22	1	<0.01
SRERAB07	22	23	1	<0.01
SRERAB07	23	24	1	<0.01
SRERAB07	24	25	1	<0.01
SRERAB07	25	26	1	<0.01
SRERAB07	26	27	1	0.02
SRERAB07	27	28	1	<0.01
SRERAB07	28	29	1	<0.01
SRERAB07	29	30	1	<0.01
SRERAB07	30	31	1	<0.01
SRERAB07	31	32	1	<0.01
SRERAB07	32	33	1	<0.01
SRERAB07	33	34	1	<0.01
SRERAB07	34	35	1	0.01
SRERAB07	35	36	1	<0.01
SRERAB07	36	37	1	<0.01
SRERAB07	37	38	1	<0.01
SRERAB07	38	39	1	<0.01
SRERAB07	39	40	1	<0.01
SRERAB07	40	41	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB07	41	42	1	<0.01
SRERAB07	42	43	1	<0.01
SRERAB07	43	44	1	<0.01
SRERAB07	44	45	1	<0.01
SRERAB07	45	46	1	<0.01
SRERAB07	46	47	1	<0.01
SRERAB07	47	48	1	<0.01
SRERAB07	48	49	1	<0.01
SRERAB07	49	50	1	0.05
SRERAB07	50	51	1	0.01
SRERAB07	51	52	1	<0.01
SRERAB07	52	53	1	<0.01
SRERAB07	53	54	1	<0.01
SRERAB07	54	55	1	<0.01
SRERAB07	55	56	1	<0.01
SRERAB07	56	57	1	<0.01
SRERAB08	0	1	1	<0.01
SRERAB08	1	2	1	<0.01
SRERAB08	2	3	1	0.01
SRERAB08	3	4	1	<0.01
SRERAB08	4	5	1	<0.01
SRERAB08	5	6	1	<0.01
SRERAB08	6	7	1	<0.01
SRERAB08	7	8	1	<0.01
SRERAB08	8	9	1	<0.01
SRERAB08	9	10	1	<0.01
SRERAB08	10	11	1	<0.01
SRERAB08	11	12	1	<0.01
SRERAB08	12	13	1	<0.01
SRERAB08	13	14	1	<0.01
SRERAB08	14	15	1	<0.01
SRERAB08	15	16	1	<0.01
SRERAB08	16	17	1	0.02
SRERAB08	17	18	1	<0.01
SRERAB08	18	19	1	<0.01
SRERAB08	19	20	1	<0.01
SRERAB08	20	21	1	<0.01
SRERAB08	21	22	1	<0.01
SRERAB08	22	23	1	0.01
SRERAB08	23	24	1	0.01
SRERAB08	24	25	1	0.01
SRERAB08	25	26	1	0.01
SRERAB08	26	27	1	0.01
SRERAB08	27	28	1	0.05

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB08	28	29	1	0.01
SRERAB08	29	30	1	0.01
SRERAB08	30	31	1	0.02
SRERAB08	31	32	1	0.02
SRERAB08	32	33	1	0.01
SRERAB08	33	34	1	0.01
SRERAB08	34	35	1	0.02
SRERAB09	0	1	1	0.01
SRERAB09	1	2	1	0.02
SRERAB09	2	3	1	0.01
SRERAB09	3	4	1	0.01
SRERAB09	4	5	1	0.02
SRERAB09	5	6	1	0.02
SRERAB09	6	7	1	0.01
SRERAB09	7	8	1	0.01
SRERAB09	8	9	1	0.01
SRERAB09	9	10	1	<0.01
SRERAB09	10	11	1	0.01
SRERAB09	11	12	1	<0.01
SRERAB09	12	13	1	0.05
SRERAB09	13	14	1	0.03
SRERAB09	14	15	1	0.01
SRERAB09	15	16	1	<0.01
SRERAB09	16	17	1	0.01
SRERAB09	17	18	1	<0.01
SRERAB09	18	19	1	0.01
SRERAB09	19	20	1	<0.01
SRERAB09	20	21	1	<0.01
SRERAB09	21	22	1	<0.01
SRERAB09	22	23	1	<0.01
SRERAB09	23	24	1	<0.01
SRERAB09	24	25	1	<0.01
SRERAB09	25	26	1	<0.01
SRERAB09	26	27	1	<0.01
SRERAB09	27	28	1	<0.01
SRERAB09	28	29	1	<0.01
SRERAB09	29	30	1	<0.01
SRERAB09	30	31	1	<0.01
SRERAB09	31	32	1	0.07
SRERAB09	32	33	1	0.13
SRERAB09	33	34	1	0.04
SRERAB09	34	35	1	<0.01
SRERAB09	35	36	1	0.01
SRERAB09	36	37	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB09	37	38	1	<0.01
SRERAB09	38	39	1	<0.01
SRERAB09	39	40	1	<0.01
SRERAB09	40	41	1	<0.01
SRERAB09	41	42	1	<0.01
SRERAB09	42	43	1	<0.01
SRERAB09	43	44	1	0.01
SRERAB09	44	45	1	<0.01
SRERAB09	45	46	1	0.01
SRERAB10	0	1	1	<0.01
SRERAB10	1	2	1	<0.01
SRERAB10	2	3	1	<0.01
SRERAB10	3	4	1	< 0.01
SRERAB10	4	5	1	< 0.01
SRERAB10	5	6	1	< 0.01
SRERAB10	6	7	1	<0.01
SRERAB10	7	8	1	<0.01
SRERAB10	8	9	1	< 0.01
SRERAB10	9	10	1	<0.01
SRERAB10	10	11	1	<0.01
SRERAB10	11	12	1	<0.01
SRERAB10	12	13	1	<0.01
SRERAB10	13	14	1	<0.01
SRERAB10	14	15	1	<0.01
SRERAB10	15	16	1	<0.01
SRERAB10	16	17	1	0.01
SRERAB10	17	18	1	<0.01
SRERAB10	18	19	1	<0.01
SRERAB10	19	20	1	<0.01
SRERAB10	20	21	1	0.01
SRERAB10	21	22	1	<0.01
SRERAB10	22	23	1	<0.01
SRERAB10	23	24	1	<0.01
SRERAB10	24	25	1	<0.01
SRERAB10	25	26	1	<0.01
SRERAB10	26	27	1	<0.01
SRERAB10	27	28	1	<0.01
SRERAB10	28	29	1	<0.01
SRERAB10	29	30	1	0.03
SRERAB10	30	31	1	0.02
SRERAB10	31	32	1	0.01
SRERAB11	0	1	1	<0.01
SRERAB11	1	2	1	<0.01
SRERAB11	2	3	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB11	3	4	1	0.01
SRERAB11	4	5	1	0.01
SRERAB11	5	6	1	0.02
SRERAB11	6	7	1	0.02
SRERAB11	7	8	1	0.02
SRERAB11	8	9	1	0.02
SRERAB11	9	10	1	0.01
SRERAB11	10	11	1	<0.01
SRERAB11	11	12	1	0.01
SRERAB11	12	13	1	0.23
SRERAB11	13	14	1	0.12
SRERAB11	14	15	1	0.01
SRERAB11	15	16	1	0.01
SRERAB11	16	17	1	0.01
SRERAB11	17	18	1	0.05
SRERAB11	18	19	1	0.12
SRERAB11	19	20	1	0.01
SRERAB11	20	21	1	0.01
SRERAB11	21	22	1	<0.01
SRERAB11	22	23	1	<0.01
SRERAB11	23	24	1	<0.01
SRERAB11	24	25	1	<0.01
SRERAB11	25	26	1	<0.01
SRERAB11	26	27	1	<0.01
SRERAB11	27	28	1	<0.01
SRERAB11	28	29	1	<0.01
SRERAB11	29	30	1	<0.01
SRERAB11	30	31	1	<0.01
SRERAB11	31	32	1	<0.01
SRERAB11	32	33	1	<0.01
SRERAB11	33	34	1	<0.01
SRERAB11	34	35	1	0.02
SRERAB11	35	36	1	<0.01
SRERAB11	36	37	1	<0.01
SRERAB11	37	38	1	<0.01
SRERAB11	38	39	1	0.06
SRERAB11	39	40	1	<0.01
SRERAB11	40	41	1	<0.01
SRERAB11	41	42	1	<0.01
SRERAB11	42	43	1	<0.01
SRERAB11	43	44	1	<0.01
SRERAB12	0	1	1	0.01
SRERAB12	1	2	1	<0.01
SRERAB12	2	3	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB12	3	4	1	0.01
SRERAB12	4	5	1	0.02
SRERAB12	5	6	1	0.01
SRERAB12	6	7	1	0.05
SRERAB12	7	8	1	0.04
SRERAB12	8	9	1	0.03
SRERAB12	9	10	1	0.04
SRERAB12	10	11	1	0.02
SRERAB12	11	12	1	0.03
SRERAB12	12	13	1	0.01
SRERAB12	13	14	1	0.03
SRERAB12	14	15	1	0.01
SRERAB12	15	16	1	0.01
SRERAB12	16	17	1	0.12
SRERAB12	17	18	1	0.07
SRERAB12	18	19	1	0.03
SRERAB12	19	20	1	0.28
SRERAB12	20	21	1	0.07
SRERAB12	21	22	1	0.03
SRERAB12	22	23	1	<0.01
SRERAB12	23	24	1	<0.01
SRERAB12	24	25	1	0.01
SRERAB12	25	26	1	0.01
SRERAB12	26	27	1	0.01
SRERAB12	27	28	1	0.01
SRERAB12	28	29	1	<0.01
SRERAB12	29	30	1	0.01
SRERAB12	30	31	1	<0.01
SRERAB12	31	32	1	<0.01
SRERAB12	32	33	1	<0.01
SRERAB12	33	34	1	<0.01
SRERAB12	34	35	1	<0.01
SRERAB12	35	36	1	<0.01
SRERAB12	36	37	1	<0.01
SRERAB12	37	38	1	<0.01
SRERAB12	38	39	1	<0.01
SRERAB12	39	40	1	<0.01
SRERAB12	40	41	1	<0.01
SRERAB12	41	42	1	<0.01
SRERAB12	42	43	1	<0.01
SRERAB12	43	44	1	<0.01
SRERAB12	44	45	1	<0.01
SRERAB12	45	46	1	0.02
SRERAB12	46	47	1	0.04

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB12	47	48	1	0.01
SRERAB13	0	1	1	<0.01
SRERAB13	1	2	1	<0.01
SRERAB13	2	3	1	<0.01
SRERAB13	3	4	1	<0.01
SRERAB13	4	5	1	<0.01
SRERAB13	5	6	1	<0.01
SRERAB13	6	7	1	<0.01
SRERAB13	7	8	1	<0.01
SRERAB13	8	9	1	0.01
SRERAB13	9	10	1	<0.01
SRERAB13	10	11	1	<0.01
SRERAB13	11	12	1	0.01
SRERAB13	12	13	1	0.01
SRERAB13	13	14	1	<0.01
SRERAB13	14	15	1	<0.01
SRERAB13	15	16	1	<0.01
SRERAB13	16	17	1	<0.01
SRERAB13	17	18	1	<0.01
SRERAB13	18	19	1	<0.01
SRERAB13	19	20	1	<0.01
SRERAB13	20	21	1	<0.01
SRERAB13	21	22	1	<0.01
SRERAB13	22	23	1	<0.01
SRERAB13	23	24	1	<0.01
SRERAB13	24	25	1	<0.01
SRERAB13	25	26	1	<0.01
SRERAB13	26	27	1	<0.01
SRERAB13	27	28	1	<0.01
SRERAB13	28	29	1	<0.01
SRERAB13	29	30	1	<0.01
SRERAB13	30	31	1	<0.01
SRERAB13	31	32	1	0.01
SRERAB13	32	33	1	<0.01
SRERAB13	33	34	1	<0.01
SRERAB13	34	35	1	<0.01
SRERAB13	35	36	1	<0.01
SRERAB14	0	1	1	0.01
SRERAB14	1	2	1	<0.01
SRERAB14	2	3	1	<0.01
SRERAB14	3	4	1	<0.01
SRERAB14	4	5	1	<0.01
SRERAB14	5	6	1	<0.01
SRERAB14	6	7	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB14	7	8	1	<0.01
SRERAB14	8	9	1	<0.01
SRERAB14	9	10	1	<0.01
SRERAB14	10	11	1	0.03
SRERAB14	11	12	1	0.02
SRERAB14	12	13	1	<0.01
SRERAB14	13	14	1	0.01
SRERAB14	14	15	1	<0.01
SRERAB14	15	16	1	<0.01
SRERAB14	16	17	1	<0.01
SRERAB14	17	18	1	0.01
SRERAB14	18	19	1	0.02
SRERAB14	19	20	1	<0.01
SRERAB14	20	21	1	<0.01
SRERAB14	21	22	1	<0.01
SRERAB14	22	23	1	<0.01
SRERAB14	23	24	1	<0.01
SRERAB14	24	25	1	<0.01
SRERAB14	25	26	1	<0.01
SRERAB14	26	27	1	<0.01
SRERAB15	0	1	1	0.04
SRERAB15	1	2	1	0.01
SRERAB15	2	3	1	<0.01
SRERAB15	3	4	1	<0.01
SRERAB15	4	5	1	<0.01
SRERAB15	5	6	1	<0.01
SRERAB15	6	7	1	0.01
SRERAB15	7	8	1	<0.01
SRERAB15	8	9	1	0.01
SRERAB15	9	10	1	0.02
SRERAB15	10	11	1	<0.01
SRERAB15	11	12	1	0.01
SRERAB15	12	13	1	0.01
SRERAB15	13	14	1	<0.01
SRERAB15	14	15	1	<0.01
SRERAB15	15	16	1	0.05
SRERAB15	16	17	1	0.04
SRERAB15	17	18	1	0.05
SRERAB15	18	19	1	0.02
SRERAB15	19	20	1	0.04
SRERAB16	0	1	1	0.01
SRERAB16	1	2	1	<0.01
SRERAB16	2	3	1	<0.01
SRERAB16	3	4	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB16	4	5	1	<0.01
SRERAB16	5	6	1	<0.01
SRERAB16	6	7	1	<0.01
SRERAB16	7	8	1	<0.01
SRERAB16	8	9	1	<0.01
SRERAB16	9	10	1	<0.01
SRERAB16	10	11	1	0.01
SRERAB16	11	12	1	0.01
SRERAB16	12	13	1	<0.01
SRERAB16	13	14	1	<0.01
SRERAB16	14	15	1	<0.01
SRERAB16	15	16	1	0.02
SRERAB16	16	17	1	0.12
SRERAB16	17	18	1	0.01
SRERAB16	18	19	1	0.02
SRERAB16	19	20	1	0.04
SRERAB16	20	21	1	0.04
SRERAB16	21	22	1	0.02
SRERAB16	22	23	1	0.02
SRERAB17	0	1	1	0.06
SRERAB17	1	2	1	0.02
SRERAB17	2	3	1	0.03
SRERAB17	3	4	1	0.01
SRERAB17	4	5	1	0.49
SRERAB17	5	6	1	0.02
SRERAB17	6	7	1	0.01
SRERAB17	7	8	1	<0.01
SRERAB17	8	9	1	0.01
SRERAB17	9	10	1	0.01
SRERAB17	10	11	1	0.01
SRERAB17	11	12	1	0.01
SRERAB17	12	13	1	0.04
SRERAB17	13	14	1	0.06
SRERAB17	14	15	1	0.11
SRERAB18	0	1	1	0.05
SRERAB18	1	2	1	0.08
SRERAB18	2	3	1	0.06
SRERAB18	3	4	1	0.02
SRERAB18	4	5	1	0.02
SRERAB18	5	6	1	0.03
SRERAB18	6	7	1	0.01
SRERAB18	7	8	1	<0.01
SRERAB18	8	9	1	<0.01
SRERAB18	9	10	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB18	10	11	1	<0.01
SRERAB18	11	12	1	0.01
SRERAB18	12	13	1	<0.01
SRERAB18	13	14	1	<0.01
SRERAB18	14	15	1	<0.01
SRERAB18	15	16	1	<0.01
SRERAB18	16	17	1	<0.01
SRERAB19	0	1	1	0.03
SRERAB19	1	2	1	0.02
SRERAB19	2	3	1	0.01
SRERAB19	3	4	1	0.01
SRERAB19	4	5	1	0.01
SRERAB19	5	6	1	<0.01
SRERAB19	6	7	1	<0.01
SRERAB19	7	8	1	0.01
SRERAB19	8	9	1	<0.01
SRERAB19	9	10	1	<0.01
SRERAB19	10	11	1	<0.01
SRERAB19	11	12	1	<0.01
SRERAB19	12	13	1	<0.01
SRERAB19	13	14	1	<0.01
SRERAB19	14	15	1	<0.01
SRERAB19	15	16	1	0.06
SRERAB19	16	17	1	0.67
SRERAB19	17	18	1	0.14
SRERAB19	18	19	1	0.35
SRERAB19	19	20	1	0.08
SRERAB19	20	21	1	0.02
SRERAB19	21	22	1	0.03
SRERAB19	22	23	1	0.01
SRERAB19	23	24	1	0.03
SRERAB19	24	25	1	0.02
SRERAB19	25	26	1	0.04
SRERAB19	26	27	1	0.02
SRERAB19	27	28	1	0.01
SRERAB19	28	29	1	0.01
SRERAB19	29	30	1	0.01
SRERAB19	30	31	1	0.02
SRERAB19	31	32	1	0.18
SRERAB19	32	33	1	0.02
SRERAB19	33	34	1	0.01
SRERAB19	34	35	1	0.07
SRERAB19	35	36	1	0.07
SRERAB19	36	37	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB19	37	38	1	0.01
SRERAB19	38	39	1	0.01
SRERAB19	39	40	1	0.01
SRERAB19	40	41	1	0.03
SRERAB19	41	42	1	0.01
SRERAB19	42	43	1	0.01
SRERAB19	43	44	1	0.09
SRERAB19	44	45	1	0.01
SRERAB19	45	46	1	0.01
SRERAB19	46	47	1	0.01
SRERAB19	47	48	1	0.01
SRERAB19	48	49	1	0.01
SRERAB19	49	50	1	0.01
SRERAB19	50	51	1	0.02
SRERAB19	51	52	1	0.01
SRERAB19	52	53	1	0.01
SRERAB19	53	54	1	0.02
SRERAB19	54	55	1	0.02
SRERAB19	55	56	1	0.01
SRERAB19	56	57	1	0.02
SRERAB19	57	58	1	0.01
SRERAB19	58	59	1	0.01
SRERAB19	59	60	1	0.01
SRERAB19	60	61	1	0.02
SRERAB19	61	62	1	0.01
SRERAB19	62	63	1	0.01
SRERAB19	63	64	1	0.01
SRERAB19	64	65	1	0.01
SRERAB19	65	66	1	0.01
SRERAB20	0	1	1	0.03
SRERAB20	1	2	1	0.03
SRERAB20	2	3	1	0.02
SRERAB20	3	4	1	0.03
SRERAB20	4	5	1	0.01
SRERAB20	5	6	1	0.01
SRERAB21	0	1	1	0.13
SRERAB21	1	2	1	0.02
SRERAB21	2	3	1	0.02
SRERAB21	3	4	1	0.06
SRERAB21	4	5	1	<0.01
SRERAB21	5	6	1	0.01
SRERAB21	6	7	1	0.01
SRERAB21	7	8	1	0.01
SRERAB21	8	9	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB21	9	10	1	0.01
SRERAB21	10	11	1	0.01
SRERAB21	11	12	1	0.01
SRERAB21	12	13	1	0.02
SRERAB21	13	14	1	0.01
SRERAB21	14	15	1	0.18
SRERAB21	15	16	1	0.18
SRERAB21	16	17	1	0.12
SRERAB21	17	18	1	0.02
SRERAB21	18	19	1	0.02
SRERAB21	19	20	1	0.01
SRERAB21	20	21	1	0.01
SRERAB21	21	22	1	0.02
SRERAB21	22	23	1	0.01
SRERAB21	23	24	1	<0.01
SRERAB21	24	25	1	<0.01
SRERAB21	25	26	1	<0.01
SRERAB21	26	27	1	<0.01
SRERAB21	27	28	1	0.01
SRERAB21	28	29	1	<0.01
SRERAB21	29	30	1	0.02
SRERAB21	30	31	1	0.02
SRERAB21	31	32	1	<0.01
SRERAB21	32	33	1	<0.01
SRERAB21	33	34	1	<0.01
SRERAB21	34	35	1	<0.01
SRERAB21	35	36	1	0.01
SRERAB22	0	1	1	0.06
SRERAB22	1	2	1	0.01
SRERAB22	2	3	1	0.01
SRERAB22	3	4	1	0.01
SRERAB22	4	5	1	<0.01
SRERAB22	5	6	1	0.01
SRERAB22	6	7	1	0.01
SRERAB22	7	8	1	0.01
SRERAB22	8	9	1	0.12
SRERAB22	9	10	1	1.1
SRERAB22	10	11	1	0.42
SRERAB23	0	1	1	0.04
SRERAB23	1	2	1	0.01
SRERAB23	2	3	1	0.01
SRERAB23	3	4	1	<0.01
SRERAB23	4	5	1	<0.01
SRERAB23	5	6	1	0.01

Hole ID	From	То	Interval Sampled	Au
	(m)	(m)	(m)	(ppm)
SRERAB23	6	7	1	0.03
SRERAB23	7	8	1	0.04
SRERAB23	8	9	1	0.02
SRERAB23	9	10	1	0.02
SRERAB23	10	11	1	0.02
SRERAB23	11	12	1	0.01
SRERAB23	12	13	1	0.02
SRERAB23	13	14	1	0.03
SRERAB23	14	15	1	0.03
SRERAB23	15	16	1	0.01
SRERAB23	16	17	1	0.06
SRERAB23	17	18	1	0.09
SRERAB23	18	19	1	0.15
SRERAB23	19	20	1	3.56
SRERAB23	20	21	1	0.39
SRERAB23	21	22	1	0.32
SRERAB23	22	23	1	0.06
SRERAB23	23	24	1	0.04
SRERAB23	24	25	1	0.03
SRERAB23	25	26	1	0.02
SRERAB23	26	27	1	0.01
SRERAB23	27	28	1	0.01
SRERAB23	28	29	1	0.01
SRERAB23	29	30	1	<0.01
SRERAB23	30	31	1	0.02
SRERAB23	31	32	1	<0.01
SRERAB23	32	33	1	0.01
SRERAB23	33	34	1	0.02
SRERAB23	34	35	1	0.01
SRERAB23	35	36	1	0.01
SRERAB23	36	37	1	0.01
SRERAB23	37	38	1	0.01
SRERAB23	38	39	1	0.01
SRERAB24	0	1	1	0.1
SRERAB24	1	2	1	0.02
SRERAB24	2	3	1	0.02
SRERAB24	3	4	1	0.02
SRERAB24	4	5	1	0.01
SRERAB24	5	6	1	0.01
SRERAB24	6	7	1	0.01
SRERAB24	7	8	1	0.01
SRERAB24	8	9	1	0.01
SRERAB24	9	10	1	0.01
SRERAB24	10	11	1	0.01

	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB24	11	12	1	0.17
SRERAB24	12	13	1	0.14
SRERAB24	13	14	1	1.86
SRERAB24	14	15	1	1.81
SRERAB24	15	16	1	0.36
SRERAB24	16	17	1	0.08
SRERAB24	17	18	1	0.06
SRERAB24	18	19	1	0.48
SRERAB24	19	20	1	0.05
SRERAB24	20	21	1	0.07
SRERAB24	21	22	1	0.1
SRERAB24	22	23	1	0.03
SRERAB24	23	24	1	0.04
SRERAB24	24	25	1	0.26
SRERAB24	25	26	1	0.14
SRERAB24 SRERAB24	26	27		0.08
SRERAB24	27 28	28 29	1	0.08
SRERAB24	29	30	1	0.03
SRERAB24	30	31	1	0.05
SRERAB24	31	32	1	0.03
SRERAB24	32	33	1	0.02
SRERAB24	33	34	1	0.02
SRERAB24	34	35	1	0.02
SRERAB24	35	36	1	0.01
SRERAB24	36	37	1	0.03
SRERAB24	37	38	1	0.02
SRERAB24	38	39	1	0.04
SRERAB24	39	40	1	0.06
SRERAB25	0	1	1	0.03
SRERAB25	1	2	1	0.02
SRERAB25	2	3	1	0.02
SRERAB25	3	4	1	0.01
SRERAB25B	0	1	1	0.01
SRERAB25B	1	2	1	0.02
SRERAB25B	2	3	1	0.02
SRERAB25B	3	4	1	0.01
SRERAB25B	4	5	1	0.01
SRERAB25B	5	6	1	<0.01
SRERAB25B	6	7	1	<0.01
SRERAB25B	7	8	1	<0.01
SRERAB26	0	1	1	0.03
SRERAB26	1	2	1	0.03
SRERAB26	2	3	1	0.01

Hole ID	From	То	Interval	Au
поје ју	(m)	(m)	Sampled (m)	(ppm)
SRERAB26	3	4	1	<0.01
SRERAB26	4	5	1	0.01
SRERAB26	5	6	1	0.01
SRERAB26	6	7	1	0.01
SRERAB26	7	8	1	0.01
SRERAB26	8	9	1	0.01
SRERAB26	9	10	1	<0.01
SRERAB26	10	11	1	0.01
SRERAB26	11	12	1	0.02
SRERAB26	12	13	1	0.01
SRERAB26	13	14	1	0.03
SRERAB26	14	15	1	0.11
SRERAB26	15	16	1	0.05
SRERAB26	16	17	1	0.01
SRERAB26	17	18	1	0.01
SRERAB26	18	19	1	0.02
SRERAB26	19	20	1	<0.01
SRERAB26	20	21	1	0.02
SRERAB27	0	1	1	0.03
SRERAB27	1	2	1	0.02
SRERAB27	2	3	1	0.02
SRERAB27	3	4	1	0.01
SRERAB27	4	5	1	0.02
SRERAB27	5	6	1	0.01
SRERAB27	6	7	1	0.01
SRERAB27	7	8	1	0.01
SRERAB27	8	9	1	0.03
SRERAB27	9	10	1	0.09
SRERAB27	10	11	1	0.74
SRERAB27	11	12	1	0.34
SRERAB27	12	13	1	0.89
SRERAB28	0	1	1	0.05
SRERAB28	1	2	1	0.09
SRERAB28	2	3	1	0.02
SRERAB28	3	4	1	0.02
SRERAB28	4	5	1	0.03
SRERAB28	5	6	1	0.04
SRERAB28	6	7	1	0.12
SRERAB28	7	8	1	0.01
SRERAB28	8	9	1	<0.01
SRERAB28	9	10	1	0.01
SRERAB28	10	11	1	0.02
SRERAB28	11	12	1	0.02
SRERAB28	12	13	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB28	13	14	1	<0.01
SRERAB28	14	15	1	0.01
SRERAB28	15	16	1	0.01
SRERAB28	16	17	1	0.03
SRERAB28	17	18	1	0.64
SRERAB28	18	19	1	0.5
SRERAB28	19	20	1	0.2
SRERAB28	20	21	1	0.11
SRERAB28	21	22	1	0.12
SRERAB28	22	23	1	0.04
SRERAB28	23	24	1	0.03
SRERAB29	0	1	1	0.01
SRERAB29	1	2	1	0.01
SRERAB29	2	3	1	0.02
SRERAB29	3	4	1	0.02
SRERAB29	4	5	1	<0.01
SRERAB29	5	6	1	<0.01
SRERAB29	6	7	1	<0.01
SRERAB29	7	8	1	<0.01
SRERAB29	8	9	1	0.01
SRERAB29	9	10	1	<0.01
SRERAB29	10	11	1	<0.01
SRERAB29	11	12	1	<0.01
SRERAB29	12	13	1	<0.01
SRERAB29	13	14	1	<0.01
SRERAB29	14	15	1	<0.01
SRERAB29	15	16	1	<0.01
SRERAB29	16	17	1	0.02
SRERAB29	17	18	1	<0.01
SRERAB29	18	19	1	<0.01
SRERAB29	19	20	1	<0.01
SRERAB29	20	21	1	0.01
SRERAB29	21	22	1	<0.01
SRERAB29	22	23	1	<0.01
SRERAB29	23	24	1	<0.01
SRERAB29	24	25	1	<0.01
SRERAB29	25	26	1	<0.01
SRERAB29	26	27	1	<0.01
SRERAB29	27	28	1	<0.01
SRERAB29	28	29	1	<0.01
SRERAB29	29	30	1	<0.01
SRERAB29	30	31	1	<0.01
SRERAB29	31	32	1	<0.01
SRERAB30	0	1	1	0.01

Hole ID	From	То	Interval Sampled	Au
1101012	(m)	(m)	(m)	(ppm)
SRERAB30	1	2	1	0.01
SRERAB30	2	3	1	<0.01
SRERAB30	3	4	1	<0.01
SRERAB30	4	5	1	<0.01
SRERAB30	5	6	1	<0.01
SRERAB30B	0	1	1	<0.01
SRERAB30B	1	2	1	0.01
SRERAB30B	2	3	1	0.01
SRERAB30B	3	4	1	0.01
SRERAB30B	4	5	1	0.01
SRERAB30B	5	6	1	0.01
SRERAB30B	6	7	1	0.01
SRERAB30B	7	8	1	<0.01
SRERAB30B	8	9	1	0.01
SRERAB30B	9	10	1	<0.01
SRERAB31	0	1	1	0.01
SRERAB31	1	2	1	0.01
SRERAB31	2	3	1	0.01
SRERAB31	3	4	1	0.02
SRERAB31	4	5	1	<0.01
SRERAB31	5	6	1	0.02
SRERAB31	6	7	1	0.01
SRERAB31	7	8	1	0.01
SRERAB31	8	9	1	0.01
SRERAB31	9	10	1	<0.01
SRERAB31	10	11	1	<0.01
SRERAB31	11	12	1	<0.01
SRERAB31	12	13	1	<0.01
SRERAB31	13	14	1	<0.01
SRERAB31	14	15	1	<0.01
SRERAB31	15	16	1	<0.01
SRERAB31	16	17	1	<0.01
SRERAB31	17	18	1	<0.01
SRERAB31	18	19	1	0.01
SRERAB31	19	20	1	0.01
SRERAB31	20	21	1	0.01
SRERAB31	21	22	1	0.01
SRERAB31	22	23	1	0.01
SRERAB31	23	24	1	0.01
SRERAB31	24	25	1	0.03
SRERAB31	25	26	1	0.02
SRERAB31	26	27	1	0.02
SRERAB31	27	28	1	<0.01
SRERAB31	28	29	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB31	29	30	1	<0.01
SRERAB31	30	31	1	0.01
SRERAB31	31	32	1	<0.01
SRERAB31	32	33	1	<0.01
SRERAB31	33	34	1	<0.01
SRERAB31	34	35	1	<0.01
SRERAB31	35	36	1	<0.01
SRERAB31	36	37	1	<0.01
SRERAB31	37	38	1	<0.01
SRERAB31	38	39	1	<0.01
SRERAB31	39	40	1	<0.01
SRERAB31	40	41	1	<0.01
SRERAB32	0	1	1	0.11
SRERAB32	1	2	1	0.01
SRERAB32	2	3	1	0.01
SRERAB32	3	4	1	<0.01
SRERAB32	4	5	1	<0.01
SRERAB32	5	6	1	<0.01
SRERAB32	6	7	1	0.01
SRERAB32	7	8	1	0.01
SRERAB32	8	9	1	<0.01
SRERAB32B	0	1	1	0.1
SRERAB32B	1	2	1	0.02
SRERAB32B	2	3	1	0.03
SRERAB32B	3	4	1	0.02
SRERAB32B	4	5	1	0.02
SRERAB32B	5	6	1	0.02
SRERAB32B	6	7	1	0.01
SRERAB32B	7	8	1	0.02
SRERAB32B	8	9	1	0.01
SRERAB32B	9	10	1	0.02
SRERAB32B	10	11	1	0.01
SRERAB32B	11	12	1	0.01
SRERAB32B	12	13	1	0.01
SRERAB32B	13	14	1	0.01
SRERAB32B	14	15	1	0.03
SRERAB32B	15	16	1	0.01
SRERAB32B	16	17	1	0.01
SRERAB32B	17	18	1	0.2
SRERAB32B	18	19	1	6.96
SRERAB32B	19	20	1	15.75
SRERAB32B	20	21	1	3.7
SRERAB32B	21	22	1	1.69
SRERAB32B	22	23	1	0.65

	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB32B	23	24	1	0.13
SRERAB32B	24	25	1	0.17
SRERAB32B	25	26	1	0.1
SRERAB32B	26	27	1	0.33
SRERAB32B	27	28	1	0.11
SRERAB32B	28	29	1	0.05
SRERAB32B	29	30	1	0.08
SRERAB32B	30	31	1	0.11
SRERAB32B	31	32	1	0.04
SRERAB32B	32	33	1	0.04
SRERAB32B	33	34	1	0.05
SRERAB32B	34	35	1	0.04
SRERAB32B	35	36	1	0.05
SRERAB32B	36	37	1	0.04
SRERAB32B	37	38	1	0.05
SRERAB32B	38	39	1	0.04
SRERAB32B	39	40	1	0.05
SRERAB33	0	1	1	0.01
SRERAB33	1	2	1	<0.01
SRERAB33	2	3	1	0.01
SRERAB33	3	4	1	0.01
SRERAB33	4	5	1	0.02
SRERAB33	5	6	1	0.01
SRERAB33	6	7	1	0.01
SRERAB33	7	8	1	<0.01
SRERAB33	8	9	1	0.01
SRERAB33	9	10	1	0.01
SRERAB33	10	11	1	0.08
SRERAB33	11	12	1	0.28
SRERAB33	12	13	1	0.05
SRERAB33	13	14	1	0.03
SRERAB33	14	15	1	0.04
SRERAB33	15	16	1	0.02
SRERAB33	16	17	1	0.01
SRERAB33	17	18	1	0.01
SRERAB33	18	19	1	0.01
SRERAB33	19	20	1	0.01
SRERAB33	20	21	1	0.02
SRERAB34	0	1	1	0.19
SRERAB34	1	2	1	0.08
SRERAB34	2	3	1	0.04
SRERAB34	3	4	1	0.02
SRERAB34	4	5	1	0.01
SRERAB34	5	6	1	0.01

Hole ID	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB34	6	7	1	0.01
SRERAB34	7	8	1	0.01
SRERAB34	8	9	1	0.01
SRERAB34	9	10	1	0.01
SRERAB34	10	11	1	<0.01
SRERAB34	11	12	1	<0.01
SRERAB34	12	13	1	<0.01
SRERAB34	13	14	1	<0.01
SRERAB34	14	15	1	<0.01
SRERAB34	15	16	1	<0.01
SRERAB34	16	17	1	<0.01
SRERAB34	17	18	1	<0.01
SRERAB34	18	19	1	<0.01
SRERAB34	19	20	1	<0.01
SRERAB34	20	21	1	<0.01
SRERAB34	21	22	1	<0.01
SRERAB34	22	23	1	<0.01
SRERAB34	23	24	1	<0.01
SRERAB34	24	25	1	<0.01
SRERAB34	25	26	1	<0.01
SRERAB34	26	27	1	0.01
SRERAB34	27	28	1	0.13
SRERAB34	28	29	1	0.05
SRERAB34	29	30	1	0.01
SRERAB34	30	31	1	0.01
SRERAB34	31	32	1	<0.01
SRERAB34	32	33	1	<0.01
SRERAB34	33	34	1	<0.01
SRERAB34	34	35	1	<0.01
SRERAB34	35	36	1	<0.01
SRERAB34	36	37	1	<0.01
SRERAB34	37	38	1	<0.01
SRERAB34	38	39	1	<0.01
SRERAB34	39	40	1	0.01
SRERAB34	40	41	1	<0.01
SRERAB34	41	42	1	<0.01
SRERAB35	0	1	1	0.03
SRERAB35	1	2	1	0.01
SRERAB35	2	3	1	0.01
SRERAB35	3	4	1	0.01
SRERAB35	4	5	1	0.01
SRERAB35	5	6	1	<0.01
SRERAB35	6	7	1	<0.01
SRERAB35	7	8	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB35	8	9	1	0.01
SRERAB35	9	10	1	<0.01
SRERAB35	10	11	1	<0.01
SRERAB35	11	12	1	<0.01
SRERAB35	12	13	1	<0.01
SRERAB35	13	14	1	<0.01
SRERAB35	14	15	1	<0.01
SRERAB35	15	16	1	<0.01
SRERAB35	16	17	1	<0.01
SRERAB35	17	18	1	<0.01
SRERAB35	18	19	1	<0.01
SRERAB35	19	20	1	<0.01
SRERAB35	20	21	1	<0.01
SRERAB35	21	22	1	<0.01
SRERAB35	22	23	1	<0.01
SRERAB35	23	24	1	<0.01
SRERAB35	24	25	1	0.01
SRERAB35	25	26	1	<0.01
SRERAB35	26	27	1	0.09
SRERAB35	27	28	1	4.99
SRERAB35	28	29	1	2.33
SRERAB35	29	30	1	0.96
SRERAB35	30	31	1	0.32
SRERAB35	31	32	1	0.13
SRERAB35	32	33	1	0.05
SRERAB35	33	34	1	0.04
SRERAB35	34	35	1	0.02
SRERAB35	35	36	1	0.17
SRERAB35	36	37	1	0.01
SRERAB35	37	38	1	0.07
SRERAB35	38	39	1	<0.01
SRERAB35	39	40	1	0.02
SRERAB35	40	41	1	0.03
SRERAB35	41	42	1	0.01
SRERAB35	42	43	1	0.01
SRERAB35	43	44	1	0.03
SRERAB35	44	45	1	<0.01
SRERAB36	0	1	1	NSS
SRERAB36	1	2	1	0.24
SRERAB36	2	3	1	0.13
SRERAB36	3	4	1	0.09
SRERAB36	4	5	1	0.04
SRERAB36	5	6	1	0.02
SRERAB36	6	7	1	0.02

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB36	7	8	1	0.01
SRERAB36	8	9	1	<0.01
SRERAB36	9	10	1	0.01
SRERAB36	10	11	1	0.01
SRERAB36	11	12	1	0.02
SRERAB36	12	13	1	0.02
SRERAB36	13	14	1	0.01
SRERAB36	14	15	1	0.02
SRERAB36	15	16	1	0.01
SRERAB36	16	17	1	0.01
SRERAB36	17	18	1	0.02
SRERAB36	18	19	1	0.01
SRERAB36	19	20	1	0.01
SRERAB36	20	21	1	0.01
SRERAB36	21	22	1	<0.01
SRERAB36	22	23	1	0.02
SRERAB36	23	24	1	0.01
SRERAB36	24	25	1	0.01
SRERAB36	25	26	1	0.01
SRERAB36	26	27	1	<0.01
SRERAB36	27	28	1	0.01
SRERAB36	28	29	1	<0.01
SRERAB36	29	30	1	0.02
SRERAB36	30	31	1	0.02
SRERAB36	31	32	1	0.01
SRERAB36	32	33	1	0.01
SRERAB36	33	34	1	0.01
SRERAB37	0	1	1	0.16
SRERAB37	1	2	1	0.21
SRERAB37	2	3	1	2.2
SRERAB37	3	4	1	15.5
SRERAB37	4	5	1	1.14
SRERAB37	5	6	1	0.13
SRERAB37	6	7	1	0.84
SRERAB37	7	8	1	0.19
SRERAB37	8	9	1	0.04
SRERAB37	9	10	1	0.05
SRERAB37	10	11	1	0.05
SRERAB37	11	12	1	0.02
SRERAB37	12	13	1	0.11
SRERAB37	13	14	1	0.02
SRERAB37	14	15	1	0.03
SRERAB37	15	16	1	0.03
SRERAB37	16	17	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB37	17	18	1	0.1
SRERAB37	18	19	1	0.04
SRERAB37	19	20	1	0.06
SRERAB37	20	21	1	0.06
SRERAB37	21	22	1	0.69
SRERAB37	22	23	1	0.19
SRERAB37	23	24	1	0.11
SRERAB38	0	1	1	0.03
SRERAB38	1	2	1	0.02
SRERAB38	2	3	1	0.01
SRERAB38	3	4	1	0.02
SRERAB38	4	5	1	0.01
SRERAB38	5	6	1	0.01
SRERAB38	6	7	1	0.01
SRERAB38	7	8	1	0.01
SRERAB38	8	9	1	0.01
SRERAB38	9	10	1	0.01
SRERAB38	10	11	1	0.01
SRERAB38	11	12	1	0.01
SRERAB38	12	13	1	0.01
SRERAB38	13	14	1	0.01
SRERAB38	14	15	1	0.01
SRERAB38	15	16	1	0.01
SRERAB38	16	17	1	0.01
SRERAB38	17	18	1	0.01
SRERAB38	18	19	1	0.01
SRERAB38	19	20	1	0.01
SRERAB38	20	21	1	0.01
SRERAB38	21	22	1	0.01
SRERAB38	22	23	1	0.01
SRERAB38	23	24	1	0.01
SRERAB38	24	25	1	0.01
SRERAB38	25	26	1	0.02
SRERAB38	26	27	1	0.01
SRERAB38	27	28	1	0.01
SRERAB38	28	29	1	0.01
SRERAB38	29	30	1	0.01
SRERAB38	30	31	1	0.01
SRERAB38	31	32	1	0.01
SRERAB38	32	33	1	0.01
SRERAB38	33	34	1	0.01
SRERAB38	34	35	1	0.01
SRERAB38	35	36	1	0.01
SRERAB38	36	37	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB38	37	38	1	0.01
SRERAB38	38	39	1	0.01
SRERAB38	39	40	1	0.01
SRERAB38	40	41	1	<0.01
SRERAB38	41	42	1	<0.01
SRERAB38	42	43	1	0.01
SRERAB38	43	44	1	0.01
SRERAB38	0	1	1	0.04
SRERAB38	1	2	1	0.05
SRERAB38	2	3	1	0.05
SRERAB39B	0	1	1	0.02
SRERAB39B	1	2	1	0.03
SRERAB39B	2	3	1	0.03
SRERAB39B	3	4	1	0.02
SRERAB39B	4	5	1	0.02
SRERAB39B	5	6	1	0.01
SRERAB39B	6	7	1	0.02
SRERAB39B	7	8	1	0.02
SRERAB39B	8	9	1	0.01
SRERAB39B	9	10	1	<0.01
SRERAB39B	10	11	1	0.01
SRERAB39B	11	12	1	0.01
SRERAB39B	12	13	1	0.01
SRERAB39B	13	14	1	0.04
SRERAB39B	14	15	1	0.01
SRERAB39B	15	16	1	0.01
SRERAB39B	16	17	1	0.01
SRERAB39B	17	18	1	0.01
SRERAB39B	18	19	1	<0.01
SRERAB39B	19	20	1	<0.01
SRERAB39B	20	21	1	0.04
SRERAB39B	21	22	1	<0.01
SRERAB39B	22	23	1	<0.01
SRERAB39B	23	24	1	<0.01
SRERAB39B	24	25	1	<0.01
SRERAB39B	25	26	1	<0.01
SRERAB39B	26	27	1	<0.01
SRERAB39B	27	28	1	<0.01
SRERAB39B	28	29	1	<0.01
SRERAB39B	29	30	1	<0.01
SRERAB39B	30	31	1	0.01
SRERAB39B	31	32	1	<0.01
SRERAB39B	32	33	1	0.01
SRERAB39B	33	34	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB39B	34	35	1	<0.01
SRERAB39B	35	36	1	<0.01
SRERAB39B	36	37	1	<0.01
SRERAB39B	37	38	1	0.02
SRERAB39B	38	39	1	0.01
SRERAB39B	39	40	1	0.01
SRERAB39B	40	41	1	0.01
SRERAB39B	41	42	1	<0.01
SRERAB39B	42	43	1	<0.01
SRERAB39B	43	44	1	<0.01
SRERAB39B	44	45	1	0.03

APPENDIX 4

JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Rotary Air Blast (RAB) drilling was used to obtain 1 m bulk samples (~ 15 kg) which were collected in plastic bags and examined for lithological logging purposes. Samples off the cyclone were split via a riffle splitter and collected in a calico bag, which was removed every 1m to produce 1m composite samples (~ 1.5kg). The cyclone was cleaned out at the end of each hole and periodically during drilling. In interpreted mineralised or altered zones, 1m samples were submitted for analysis. In interpreted unmineralized zones, 2m sample composites were submitted. Samples submitted to ALS were whole sample crushed to 70% <2mm, riffle/rotary split off 1 kg, pulverise to >85% passing 75 microns, then assayed by ALS method AU-AA26 (50g sample aliquot by fire assay). Certified Reference Materials OREAS 235, OREAS 237 and OREAS 245 as well as CRM blank OREAS C27c were inserted every 10 samples as part of a QA/QC system.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 43 RAB drillholes were drilled by EDrill Pty Ltd limited over the strike extent of mineralised structures. Face sampling 90 mm RAB drilling Holes surveyed using a Eastman single shot camera for collar shots. Verified using clinometer and compass survey of rods. All-drill related data are referenced to the original ASX report by date published. All details appear in the original report.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Each 1m sample was weighed and results recorded to monitor sample recovery – a high average recovery was achieved in all holes. Experienced geologists ensured best drilling and sampling practices were maintained. Experienced drillers ensured best drilling and sampling practices were maintained, including pausing drilling between sample intervals to ensure all

Criteria	JORC Code explanation	Commentary
		sample is out of the system and regular cleaning of the sampling equipment. There was no observable relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Drill chips were geologically logged at 1m intervals for lithology (including quartz types and percentages), alteration and mineralisation, and drilling conditions Representative chips from each metre were collected in chip trays. Chip trays were photographed. 100% of the drilling was logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples were collected from a riffle splitter from the bulk sample bag after removal from the cyclone. Samples from all intervals were collected as 1m composite samples at the splitting stage at the drill site. 12.5% of the sample was split with the remainder collected in residue bags.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were submitted to ALS Chemex and analysed for gold using ALS Methods Method AU-AA26 (fire assay is considered a total extraction technique for gold). These techniques are appropriate and considered a total extraction technique for Au. Samples were whole sample crushed, pulverised and assayed by ALS method AU-AA26. Au standards OREAS 235, OREAS 237 and OREAS 245 as well as rhyodacite blanks (OREAS C27e) were included every 10 samples as part of the internal QA/QC system. All results are within expected confidence limits. A field duplicate sample was collected 10 samples and analysed within the same sample run. ALS conducted their own internal laboratory blanks, standards are reviewed per batch to monitor accuracy and precision.

Criteria JORC Code explanation Commentary Verification of The verification of significant intersections by either The laboratory supplies all assay data independent or alternative company personnel. as an export to a CSV file. The raw data sampling and is edited to separate all duplicates and The use of twinned holes. assavina CRM results into a QA/QC tab in the Documentation of primary data, data entry procedures, data CSV file and reviewed. verification, data storage (physical and electronic) protocols. Verification of significant intersections Discuss any adjustment to assay data. were made by alternative company personnel. No independent review of assay data has been carried out. Data were logged onto paper and transferred to a spreadsheet and checked. Electronic-only assay data is imported into a spreadsheet from the laboratory's electronic data. No holes were twinned at this early exploration stage. Below detection limit data is identified in Appendix 1 using a < character followed by the detection limit. Location of Accuracy and quality of surveys used to locate drill holes (collar The location of drill hole collars and and down-hole surveys), trenches, mine workings and other geological mapping used a Garmin data points locations used in Mineral Resource estimation. GPSMAP 62S GPS using the MGA94 Specification of the grid system used. Grid Datum (Zone 55) with Quality and adequacy of topographic control. topographic control taken from the GPS. Accuracy is variable but maintained <5m during the mapping process with constant visual quality assessment conducted. Hand held GPS is used to survey a control point and drill hole collar positions are then measured by tape and compass relative to the GPS control. The accuracy between holes is <2m but absolute accuracy is relative to the original GPS control point at <10m. Because of the high probability of RAB hole collapse, and the short length of holes, collar shots were used to survey hole orientation. All maps, plans and data are on an MGA datum and GDA94 zone 55 projection. Elevation is established from the GPS control point. Data spacing for reporting of Exploration Results. Drill sites were restricted to existing Data spacing tracks. It was not intended to establish Whether the data spacing and distribution is sufficient to and a drill spacing for resource estimation establish the degree of geological and grade continuity distribution although these holes may be used at a appropriate for the Mineral Resource and Ore Reserve later date. estimation procedure(s) and classifications applied. 1m assay composites were collected at Whether sample compositing has been applied. the splitter on the drill site. This sample interval is considered appropriate for the style of gold mineralisation tested. All drill related data are referenced to the original ASX report by date

Criteria	JORC Code explanation	Commentary
		published. All details appear in the original report.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was restricted to existing tracks. However, in all cases it was possible to drill at a high angle to the host structures (refer figures 1 to 5), and achieve a suitable orientation that cross cuts the mineralisation. True width intersections are provided in drill sections, there appears to be no relationship between drill orientation and mineralisation grades. Due to the steep grade of tracks and topography, hole orientation was limited or dictated by landscape physiology in some instances.
Sample security	The measures taken to ensure sample security.	 All samples submitted for analysis are placed in sealed poly-weave bags and delivered to a commercial transport company for delivery to the laboratory. Any evidence of sample damage or tampering is immediately reported by the laboratory to the company and a decision made as to the integrity of the sample and the remaining samples within the damaged / tampered bag/s.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 An internal review of procedures, operations, sampling techniques and analytical techniques was made by Dart Mining.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	All tenements remain in good standing as of 31st January 2020.		

Tenement Number	Name	Tenement Type	Area (km²) Unless specified	Interest	Location
MIN006619	Mt View 2	Mining License	224 Ha	100%	NE Victoria
EL5315	Mitta Mitta ⁴	Exploration Licence	172	100%	NE Victoria
EL006016	Rushworth ⁴	Exploration Licence	60	100%	Central Victoria
EL006277	Empress	Exploration Licence	165	100%	NE Victoria
EL006300	Eskdale ³	Exploration Licence	183	100%	NE Victoria
EL006486	Mt Creek	Exploration Licence	190	100%	NE Victoria
EL006861	Buckland	Exploration Licence	414	100%	NE Victoria
EL007007	Union	Exploration Licence	3	100%	Central Victoria
EL006994	Wangara	Exploration Licence	142	100%	Central Victoria
EL007008	Buckland West	Exploration Licence	344	100%	NE Victoria
EL006764	Cravensville	EL (Application)	170	100%	NE Victoria
EL006865	Dart	EL (Application)	567	100%	NE Victoria
EL006866	Cudgewa	EL (Application)	508	100%	NE Victoria
EL007099	Sandy Creek	EL (Application)	437	100%	NE Victoria
EL007170	Berringama	EL (Application)	27	100%	NE Victoria
EL007430	Buchan	EL (Application)	546	100%	Gippsland
EL007435	Goonerah	EL (Application)	587	100%	Gippsland
EL007425	Deddick	EL (Application)	341	100%	Gippsland
EL007428	Boebuck	EL (Application)	355	100%	NE Victoria
EL007426	Walwa	EL (Application)	499	100%	NE Victoria
RL006615	Fairley's ²	Retention License	340 Ha	100%	NE Victoria
RL006616	Unicorn ^{1&2}	Retention License	23,243 Ha	100%	NE Victoria
	-				

All tenements remain in good standing at 31st January 2020.

NOTE 1: Unicorn Project area subject to a 2% NSR Royalty Agreement with Osisko Gold Royalties Ltd dated 29 April 2013.

NOTE 2: Areas subject to a 1.5% Founders NSR Royalty Agreement.

NOTE 3: Areas are subject to a 1.0% NSR Royalty Agreement with Minvest Corporation Pty Ltd (See DTM ASX Release 1 June 2016).

NOTE 4: Areas are subject to a 0.75% Net Smelter Royalty on gold production, payable to Bruce William McLennan

Exploration done by other parties

 Acknowledgment and appraisal of exploration by other parties. The Sandy Creek goldfield has previously been explored to establish the remaining alluvial potential and limited effort to review reef style historic mines with surface and underground mapping and sampling carried out (EL873, BHP Minerals Ltd, 1980-1982; EL1463, Tallangalook Ltd, 1984-1988; EL3574, Exminco, 1993-1994; EL4039, Northern Copper Ltd, 1996-1997; EL4812, Goldsearch Ltd, 2004-2008; EL5241, Golden Deeps Ltd, 2009-2011). All previous exploration efforts have focused on narrow-vein quartz potential, with very little focus on alteration within the granite and minor structural analysis. Dart Mining is the first explorer to recognize the roof pendant style of mineralisation and assess the structural control on the distribution on mineralisation. Tallangalook Ltd and Goldsearch Ltd undertook some basic geological mapping of the Sandy Creek area. Tallangalook Ltd dug & sampled costeans across some workings. Goldsearch Ltd drilled 3 short diamond drill holes, but terminated all holes before hitting mineralisation.

Geology

- Deposit type, geological setting and style of mineralisation.
- The Sandy Creek Goldfield was a traditional narrow vein, high grade (free gold) reef style field with a minor alluvial gold footprint. Dart Mining recognized some gold mineralization is related to disseminated sulphides in altered granites along structurally-controlled intersections within a metasedimentary roof pendant above the Yabba Granite.

Drill hole Information

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- Appendix 1 provides all drill hole locations and hole orientation data in the body of the report.
- All down hole weighted average gold grade data quoted as significant intersections is provided down hole widths and calculated using a lower cut-off grade of 0.5g/t Au and no more than 1m of internal dilution.
- All drill-related data are referenced to the original ASX report by date published. All details appear in the original report.

- o dip and azimuth of the hole
- down hole length and interception depth
- o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
- All down hole weighted average gold grade data quoted as significant intersections is calculated using a lower cut-off grade of 0.5g/t Au and no more than 1m of internal dilution in each drill hole. Gold assay data is tabulated in Appendix A for all holes. The nominal sample length in potentially mineralised intervals is 1m with any 2m sample lengths in unmineralized sections requiring a length weighted average technique to be used for reporting intersections.

Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in the reporting of Exploration Results
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').
- The relationship between the drill hole and the geometry of the mineralised structures is clearly presented in a series of summary cross sections and drill plans. The angle between the drill hole and the mineralisation structure is variable with an interpretation of the relative geometry presented as cross sections down hole, down hole average grades are also presented on these drill sections and are representative of the current geological interpretation, this interpretation may change over time as more drilling information become available. Structural interpretation is constrained with surface geological mapping and down hole lithology logging.

Diagrams

- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
- A summary table showing the hole location and orientation for all drilling is presented in Table 1. Drill plans and cross sections are also presented for all holes to illustrate the relationship between drill holes and average grades from down hole intersections within the target structures.

Balanced reporting

- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
- Both summary (weighted average) grade intersections and full assay data is provided as cross sections and tabulated data referenced in the body of the report.

Other substantive exploration data

- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.
- Any other relevant information is discussed in the main body of the report.

Further work

- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
- Planned work is discussed in the body of the report and is dependent on future company direction.