Assembly Language

CDA3103
Lecture 5

Outline

* Introduction to assembly languages

e MIPS instruction set architecture

* MIPS basic instructions
e Arithmetic instructions
e Data transfer instructions
e Control instructions
* Logical operations

 MIPS instruction format
* Encoding/decoding assembly code

What You Will Learn

* How programs are translated into the machine
language
* And how the hardware executes them

* The hardware/software interface
* How hardware designers improve performance
 What is parallel processing

Chapter 1 — Computer
Abstractions and
Technology — 3

Below Your Program

* Application software
* Written in high-level language

e System software

e Compiler: translates HLL code to
machine code

* Operating System: service code
e Handling input/output
* Managing memory and storage
e Scheduling tasks & sharing resources

e Hardware
* Processor, memory, |/O controllers

Chapter 1 — Computer Abstractions and
Technology — 4

Instructions

* Instruction Set Architecture (ISA)

* An abstract interface between the hardware and software
that encompasses all the information necessary to write a
correct machine program

* The set of instructions that a particular CPU implements
* Hardware resources: registers, memory, 1/0, ...

* The set of instructions / primitive operations that a CPU may
execute is a major component of ISA

* Basic job of a CPU: execute instructions

* Different CPUs implement different sets of instructions, e.g: Intel
80x86 (Pentium 4), IBM/Motorola PowerPC (Macintosh), MIPS,
Intel 1A64, ...

* Assembly language is a textual version of these instructions

MIPS Architecture

* We will study the MIPS architecture in
some detail in this class

* MIPS —semiconductor company that built
one of the first commercial RISC architectures

* Why MIPS? _(ﬁ.‘a

1“_‘._-|1-ﬂn" II'-.
 MIPS is simple, elegant and similar to other '
architectures developed since the 1980's

* MIPS widely used in embedded apps d

* Almost 100 million MIPS processors
manufactured in 2002

* Used by NEC, Nintendo, Cisco, Silicon Graphics,
Sony, ...

=

Most HP Laserjet
warkgroup printers are
driven by MIPS-based™

G4-bil processors.,

Levels of Program Code

* High-level language
* Level of abstraction closer to
problem domain
* Provides for productivity and
portability
* Assembly language

* Textual representation of
instructions

* Hardware representation
e Binary digits (bits)
* Encoded instructions and data

Chapter 1 — Computer
Abstractions and
Technology — 7

High-level
language
program

(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)
{int temp;
temp = v[k];
vik] = v[k+1];
vlk+1l] = temp;
}

swap:

muli $2, $5.,4
add $2, $4,%$2
Tw $15, 0(%$2)
Tw $16, 4(%$2)
SW $16, 0(%2)
SW $15, 4(%2)
jr $31

A

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000

10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Assembly Language

* Assembly language vs. higher-level language

* Few, simple types of data
* Does not specify variable type
» Simple control flow: goto/jump
* Assembly language programming is more difficult and error-
prone, it is machine-specific; it is longer
* Assembly language vs. machine language
e Symbolic representation

* When assembly programming is needed
» Speed and size (eg. embedded computer)

* Time-critical parts of a program
* Specialized instructions

MIPS Arithmetic

* All instructions have 3 operands
* One destination, two operands

* Operand order is fixed (destination first)

* Example:
C code: a =Db + c
MIPS code: add a,b,c
C code: a =>b + c + d;
MIPS code: add a, b, c

add a, a, d

* Design principle: Hardware implementation is simplified via regularity
* Operands must be registers in MIPS

* Register set of a machine is a limited number of special locations built
directly into the hardware

Assembly Variables: Registers

* Unlike HLL, assembly cannot use variables
* Why not? Keep hardware simple

* Different operand locations for different architectures
 Stack, register, memory or a mix of them
* Every architecture design after 1980 uses a load-store
register architecture: ALU operands are all registers;
memory can only be accessed with load/store
* Advantages of load-store register architectures
* Registers are faster than memory
* Registers are more efficient for a compiler to use

* Drawback: the no. of registers is predetermined

* Assembly code must be very carefully put together to
efficiently use registers

MIPS Registers

* 32 registers in MIPS
* Why 327 Design principle: Smaller is faster
* Registers are numbered from O to 31

* Each register can be referred to by number or name

e Number references: S0, $1, .. $30, $31

* By convention, each register also has a name to make it
easier to code
e St0 - S$t7 fortemporary variables ($8- $15)
e Sra forreturn address

* Each MIPS register is 32 bits wide
* Groups of 32 bits called a word in MIPS

MIPS Arithmetic with Registers

* MIPS Example

C code: a =Db + c
MIPS code: add Ssl,Ss2,S5s3
C code: a =b + c + d;
MIPS code: add Stl,Ss2,Ss3

add $sl1,35tl,Ss4

e $Ss0-S$s7 conventionally are used for registers that
correspond to variables in C/Java programs ($S16-523)

C, Java Variables vs. Registers

 In C (and most high level languages), variables
declared first and given a type

 Example: int fahr, celsius;
chara, b, ¢, d, e;

e Each variable can ONLY represent a value of the type it
was declared as (cannot mix and match int and char
variables)

* In assembly language, the registers have no type;
operation determines how register contents are
treated

MIPS Instructions

e Syntax of instructions:
op dest, srcl, src2
e Op: operation by name
* Dest: operand getting result (“destination”)
e Srcl: 1st operand for operation (“sourcel”)
* Src2: 2nd operand for operation (“source2”)

e Each line of assembly code contains at most 1
instruction

* Hash (#) is used for MIPS comments

* Anything from hash mark to end of line is a comment and will
be ignored

* Every line of your comments must start with a #

Addition/Subtraction Example

* How to do the following C statement?
a =»b +c + d - e;

* Break into multiple instructions
e add $t0, S$sl, $s2 #temp = b + cC
e add $t0, S$t0, $s3 #temp = temp + d
e sub $s0, S$St0, S$s4 #a = temp - e

* Notice

e A séilngle line of C code may break up into several lines of MIPS
code

* May need to use temporary registers (St0 - $t9) for
intermediate results

* Everything after the hash mark on each line is ignored
(comments)

Constant or Immediate Operands

* Immediates are numerical constants

* They appear often in code, so there are special instructions
for them

e Design principle: Make the common case fast

* Add Immediate:
* Ccode:f=g+10
e MIPS code: addi $s0,Ss1,10
* MIPS registers Ss0, Ss1 are associated with C variables f, g

e Syntax similar to add instruction, except that last argument
is @ number instead of a register

e How about subtraction? subi?

Constant or Immediate Operands

e There is NO subtract immediate instruction in
MIPS: Why?

* ISA design principle: limit types of operations that can
be done to minimum

* If an operation can be decomposed into a simpler
operation, do not include it

e addi ..., -X =subi ..., X =>so no subi

* Example
e Ccode: f=g-10
* MIPS code: addi $s0,5s1,-10

* MIPS registers Ss0,5Ss1 are associated with C variables f, g

Register Zero

* One particular immediate, the number zero (0),
appears very often in code

* So we define register zero (SO or Szero) to always
have the value O

e Often used to move values or set constant values
e f=g (in C-language)
e add Ss0, Ss1, Szero (in MIPS)
* MIPS registers Ss0, Ss1 are associated with C variablesf, g
 Szero defined in hardware
* Instruction add Szero,Szero,$s0 will not do anything!

Recap

* In MIPS assembly language:
* Registers replace C variables
e One instruction (simple operation) per line
e Simpler is better
* Smaller is faster

* There are no types in MIPS
* Types are associated with the instructions

* New instructions:
e add, addi, sub

* New registers:
e Cvariables: SsO - Ss7
e Temporary variables: StO - $t9
e Zero: Szero

Anatomy of a Computer

‘ Registers are in the datapath of the
processor; program data are in

Personal Computer memory, we must transfer them to the

processor to operate on them, and then
transfer back to memory when done

Computer
Processor Memory Devices
[Cont_rol | [Input]
(brain’) Store (to)
Datapath\ 1
L~ ——
[Registers’r/ Load (from) [Output]

These are “data transfer” instructions...

Memory Organization

* Viewed as a large, single-dimension array

* A memory address is an index into the array

* "Byte addressing" means that the index points to a byte
of memory

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

o O A W N B O

8 bits of data

Memory Organization

* Bytes are nice, but most data items use larger "words"
* For MIPS, a word is 32 bits or 4 bytes

(0 | 32 bits of data

4 | 32 bits of data

8 | 32 bits of data

12 | 32 bits of data

* MIPS register holds 32 bits of data

« 23?2 pytes with byte addresses from 0 to 232-1
» 230 words with byte addresses 0, 4, 8, ... 232-4

* Words are aligned: they must start at addresses that
are multiples of 4

Specify Memory Addresses

 To transfer data, we need to specify:

 Register: specify this by number (S0 - $31) or symbolic name
(Ss0,..., StO, ...)

 Memory address: supply a pointer/index to the byte-addressed
one-dimensional array

e Often, we want to be able to offset from a pointer: e.g. element A[2],
date.month

* The general format for a memory address offset(base
register) specifying
* A register containing a pointer to memory
* A numerical offset (in bytes)

. Thle desired memory address is the sum of these two
values

« Example: 8(5t0) specifies memory[St0+8] (byte)

Data Transfer Instructions

 MIPS has two basic data transfer instructions for
accessing memory

1w $t0,4 ($s3) #load word from memory
sw $t0,8($s3) #store word to memory

* Load instruction syntax: lw regl, offset(reg2)

e Operator name: lw (meaning Load Word, so 32 bits or one
word are loaded at a time)

* Regl: register that will receive the transferred data
e Offset: a numerical offset in bytes

* Reg2: register containing pointer to memory, called base
register

Load Word Example

* Example: Iw $t0,12(Ss0)

* This instruction will take the pointer in SsO, add 12 bytes
to it, and then load the value from the memory pointed
to by this calculated sum into register $tO

* SsO is called the base register
e 12 is called the offset

e Offset is generally used in accessing elements of array or
structure: base register points to beginning of array or
structure

Store Instruction

* Also want to store from register into memory

* sw: meaning Store Word, so 32 bits or one word are loaded at a
time)

e Store instruction syntax is identical to Load’s

Example: sw St0, 12(Ss0)

 This instruction will take the pointer in SsO, add 12 bytes to it,

and then store the value from register $tO into that memory
address

 Remember: “Store INTO memory”

Example

e C code: A[12] = h + A[8];
MIPS code:
lw St0, 32(Ss3) # base addr of array A in $s3
1 array element is 4-byte

add St0, Ss2, StO # h is associated with Ss2
sw St0, 48(Ss3) # offset=12*4=48

 Can refer to registers by name (e.g., Ss2, $t2) instead of
number

e Store word has destination last

* Remember arithmetic operands are registers, not
memory!
e Can’t write: add 48(Ss3), Ss2, 32(Ss3)

Pointers vs. Values

* Key concept: a register can hold any 32-bit value

* That value can be a signed int, an unsigned int, a pointer
(memory address), and so on

* |f you write add S$t2,5t1,5t0, then $t0 and St1 better
contain values

* |f you write lw $t2,0(St0), then StO better contains a
pointer

* Don’t mix these up!

Notes about Memory

e Pitfall: forgetting that sequential word addresses in
machines do not differ by 1

* To transfer a word, the sum of the base address and the
offset must be a multiple of 4 (to be word aligned)

0i 1 i2 i3 Last hex digit of address

Not 1,5, 9, or Dy,
Aligned 2,6, A, or E,
3,7, B, orF,

* What if more variables than registers?
e Compiler tries to keep most frequently used variable in registers
* Less common in memory: spilling

Outline

* Introduction to assembly language

e MIPS instruction set architecture

* MIPS basic instructions
e Arithmetic instructions: add, addi, sub
* Data transfer instructions: Iw, sw
e Control instructions
* Logical operations
 MIPS instruction format

* Encoding/decoding assembly code

Bitwise Operations

* Up until now, we’ve done arithmetic (add, sub,addi),
memory access (lw and sw), and branches and jumps

 All of these instructions view contents of register as a
single quantity (such as a signed or unsigned integer)

* New perspective: view register as 32 raw bits rather
than as a single 32-bit number

* We may want to access individual bits (or groups of bits)
rather than the whole

* Two new classes of instructions: logical & shift operations

Logical Operators

* Logical instruction syntax:
op dest, srcl, src2
* Op: operation name (and, or, nor)
* Dest: register that will receive value
e Srcl: first operand (register)

» Src2: second operand (register) orimmediate

e Accept exactly 2 inputs and produce 1 output

* Benefit: rigid syntax=> simpler hardware
* Why nor?

* nor St0, St1, St2 # St0 = not (St or St2)
* Immediate operands

e andi, ori:both expectthe third argument to be an
immediate

Uses for Logical Operators (1/3)

e Use AND to create a mask

* Anding a bit with O produces a 0 at the output while
anding a bit with 1 produces the original bit

* Example:
1011 011010100100 0011 1101 1001 1010
0000 0000 0000 00000000 1117111211112

0000 0000 0000 0000 000011011001 1010
Mask retaining the last 12 bits

Uses for Logical Operators (2/3)

* A bit pattern in conjunction with AND is called a
mask that can conceal some bits
* The previous example a mask is used to isolate the

rightmost 12 bits of the bit-string by masking out the
rest of the string (e.g. setting it to all Os)

 Concealed bits are set Os, while the rest bits are left
alone

* |In particular, if the first bit-string in the above example
were in $t0, then the following instruction would mask
it:

andi $t0,$t0,0xFFF

Uses for Logical Operators (3/3)

 Similarly effect of OR operation

* Oring a bit with 1 produces a 1 at the output while oring
a bit with O produces the original bit

e This can be used to force certain bits to 1s

* Example
e StO contains 0x12345678, then after this instruction:
ori $t0, $t0, OXFFFF

* StO contains 0x1234FFFF (e.g. the high-order 16 bits are
untouched, while the low-order 16 bits are forced to 1s)

Shift

* Move (shift) all the bits in a word to the left or right
by a number of bits

* Example: shift right by 8 bits
0001 00100011 01000101 011001111000

0000 0000 0001 0010 0011 0100 0101 0110
— Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

_— —

0011 0100 0101 0110 0111 1000 OO0O0 0000

Logical Shift Instructions

 Shift instruction syntax:
op dest, reg, amt
* Op: operation name
* Dest: register that will receive value
* Reg: register with the value to be shifted
 Amt: shift amount (constant < 32)

MIPS logical shift instructions:
* sll (shift left logical): shifts left and fills emptied bits with Os

* srl (shift right logical): shifts right and fills emptied bits with
Os

 MIPS also has arithmetic shift instructions that fills with the
sign bit

