Artificial Intelligence and
Machine Learning in Astronomy

Ofer Lahav (UCL)

»
. lI \_'
.

——u

et & Science & Technology '.{‘-,:},Qr C
@ Facilities Council

)

‘UCL CDT DIS




Introduction card

Ofer Lahav

Perren Professor of Astronomy

Co-Director, Center for Doctoral Training
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My research:

- Galaxy surveys: DES, DESI, LSST, ...
- Dark Matter, Dark Energy, Neutrino Cosmology
- Machine Learning for Astrophysics problems

My expertise is:

-Galaxy classification

-Photometric redshifts

-Galaxy and mass map reconstruction
-Parameter estimation

A problem I’m grappling with:
- Incorporating prior physics into algorithms

I've got my eyes on:
- Deep Learning
- Augmentation

| want to know more about:
-How to interpret what Deep Learning algorithms
are actually doing?



Artificial Neural Networks:
early days

NK’s 15t term PhD report (Jan 1993)

Ols early work related to ML (Feb 1995)
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Abstract

The quantitative morphological classification of galaxes s important for understanding
the origin of type frequency and correlations with environment. However, galaxy
morphological classification is still mainly done visually by dedicated individuals, in the
spirit of Hubble's original scheme and its modifications. The rapid increase in data on
galaxy images at low and high redshift calls for a re-examination of the classification
schemes and for automatic methods. Here are shown results from a systematic
comparison of the dispersion among human experts classifying a uniformily selected
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What is ‘Big Data’?

« Wikipedia’s definition: “data sets that are so large or
complex that TRADITIONAL data processing
applications are inadequate to deal with them”.

« Clearly, this is a ‘moving target'.

« "Big data is high volume, high velocity, and/or high
variety information assets that require new forms of
processing to enable enhanced decision making,
Insight discovery and process optimization.”
(Gartner)



Can we trust just the human

brain?
(can you see 12 black dots at once?)
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Machine Learning

classification gy scikit-learn
ki algorithm cheat-sheet

regression

clustering

WONG
dimensionality
reduction




Machine Learning Methods

Entire dataset
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On a Deep Learning Curve...

Deep Learning= Learning Hierarchical Rcfresenuﬁns

Why deep learning

Y LeCun

# Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature

Extractor
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Amount of data

|| Mid-Level | | High-Level L Trainable
Features | | Features | | Classifier

How do data science techniques scale with amount of data?

credit:Y. LeCun credit: A. Ng 9



Artificial Intelligence, Machine Learning, Deep
Learning: are they ‘explainable’ ?

Artificial Intelligence

P(BIA) P(A)
L P(B)

e

10



Astro papers on the arXiv with
‘Deep Learning’ in title
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Big Data in Astronomy

1 TeraB

40 GigaB

15 TeraB

850 GigaB

1 PetaB

~300 Million

~35 Million

~1 Billion

~1 Billion

~1 Billion

~$40M

~$70M

~$1.0B

~$1.5B

~$1.3B

~400

~600

~1000

~1500

~1000
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Galaxy surveys timeline

lenses
@ UCL

DESI had its first light in October 2019

LSST

Euclid
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SKA Big Data Challenge

Total raw data output:

157 terabytes

per second

4.9 zettabytes

per year

Ot
| \&

T

B5x

Enough to fill up the/datimatod

3 5 y 000 DVDS global internet

traffic in 2015
every second

[source: Cisco)

www.skatelescope.org
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Machine Learning in Astronomy

 Machine learning examples from Astronomy:

- Classification:

galaxy type, star/galaxy, Supernovae la,

strong gravitational lensing

- Photo-z

- Mass of the Local Group
- The search for Planet 9 and exo-planets
- Gravitational Waves & follow-ups

- Likelihood-free parameter estimation

< 1
. - .
)
convolution + max pooling
nonlinearity
ting

Deep Learning
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What accelerates the Universe?

Story
of the
Universe

At the beginning of time, space
exploded out of nothingnes:
to craate the expanding

universe we inhabit now. It took

billions of years for the story,
depicted here, to unfold.

~Breanna Draxler

“a simple but strange universe”

____YOU ARE HERE

ACCELERATING EXPANSION

A little more than 5 billion years ago,
dark energy caused the universe

to expand increasingly fast

_. INFLATION
In less than 107" of a second after

the Big Bang, the universe burst open,
expanding faster than the speed of light
and flinging all the matter and energy in
the universe apart in all directions.

BIG BANG

The universe expanded violently from an
extremely hot and dense initial state some
437 billion years ago.

density (kg m—3)

1010

10720

10730

26.8% Dark
Matter

68.3% Dark
Energy

radiation matter

dark epergy drminatcsT

1
10 10? 10* 10® 10® 1010
age of universe (years)
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Einstein 1917 Lambda

Kosmologische Betrachtungen zur allgemeinen
Relativititstheorie.

Von A, Eissrax

|
l',- Wt wolillekannt, da¥ die Porssosselie Differentialigleichung

- P —t =
P — oy i~
e T ar s T
. P O ND——
P —
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Einstein (February 1917)

Modified Newtonian
Vip—Ap =

Modified GR
1
Guv - Aguv ( guvT)

In a static universe:

K 1
2 R

English translation: http://einsteinpapers.press.princeton.edu/vol6-trans/4337?ajax 17




Apparent star field .
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EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed
or Were Calcuilated o be,
but Nobody Nececd Worry.
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Standard candles:
Supernovae la

Brightness
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Probes of Dark Energy

Standard candles
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Clusters..s

-60°

DES SV mass map
(Chang et al. 2016)

cluster richness A
o o O
20 40 80 160

6:00h 6:30h

5:00h 5:30h

1.0%

0.5%

0.0%

-0.5%

-1.0%

matter density kg [compared to cosmic mean]

Standard rulers

Large-scale
structure

shear b
y-f=5% acmppe
i Gravity & Cosmalogy change the
I growth rate of mass structure
Cosmology changes geometric
distance factors
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The Bayesian approach

Bayesian inference for parameter estimation
Case study: CMB

P(Old, M) x P(d|©, M)P(OIM

)
* % (Y2
Sy T8 T s AR

Qrh=, Q%)

1§

e t.L.n\.T.‘..’.,h'). .
!Lh'l.‘..’\' —v{ Theory ]
Figure: CMB Bayesian inference pipeline.

Cf. Planck results 2018 Credit: Jason McEwen
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Open Questions on Dark Energy
DE equation of state:
Pressure/density = w(a) = w, + w,_ (1-a)

¢ |s there a fundamental reason for w=-1 (Lambda)?
¢+ |s it on the LHS or RHS of Einstein’s equation?
¢+ |s there a physical case for w<-1?
+ \What is the case for a time-dependent w(z) ?
¢ \When should we stop with w?
(note ‘precision’ vs ‘accuracy’, cf. curvature)
¢+ Does Anthropic reasoning make sense?

¢+ |s a higher level theory to be discovered,
connecting GR to Quantum Mechanics and
Thermodynamics? Will it take another 100 years ?

22
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JARK ENERGY
SURVEY

& The Dark Energy Survey

Multi-probe approach

Wide field: Cluster Counts,

Weak Lensing, Large Scale Structure
Time domain: Supernovae

Survey strategy
- 300 million galaxies with photometric redshifts
- 2500 SN la

Over 400 scientists based in 7 countries

6 seasons of observations completed -
758 nights in total

Over 250 DES papers on the arXiv

DES book

23



The DES book

The

Dark Energy
Survey

" The Story of a s
Cosmological Experiment .

The Dark Energy Survey

The Story of a Cosmological Experiment

This book is about the Dark Energy Survey, a cosmological experiment
designed to investigate the physical nature of dark energy by
measuring its effect on the expansion history of the universe and on
the growth of large-scale structure. The survey saw first light in 2012,
after a decade of planning, and completed observations in 2019.
The collaboration designed and built a 570-megapixel camera and
installed it on the four-metre Blanco telescope at the Cerro Tololo
Inter-American Observatory in the Chilean Andes. The survey data
yielded a three-dimensional map of over 300 million galaxies and a
catalogue of thousands of supernovae. Analysis of the early data has
confirmed remarkably accurately the model of cold dark matter and
a cosmological constant. The survey has also offered new insights
into galaxies, supernovae, stellar evolution, solar system objects and
the nature of gravitational wave events.

Ofer Lahav
A project of this scale required the long-term commitment of hundreds
of scientists from institutions all over the world. The chapters in the
first three sections of the book were either written by these scientists
or based on interviews with them. These chapters explain, for a non-
specialist reader, the science analysis involved. They also describe
how the project was conceived, and chronicle some of the many and
diverse challenges involved in advancing our understanding of the i E_ditors
universe. The final section is trans-disciplinary, including inputs from 3

a philosopher, an anthropologist, visual artists and a poet. Scientific

collaborations are human endeavours and the book aims to convey s

a sense of the wider context within which science comes about. %,

Lucy Calder
Julian Mayers

Josh Frieman

ASAING Ablsu3 yieq ey |

This book is addressed to scientists, decision makers, social Laha\r;.
scientists and engineers, as well as to anyone with an interest in Calder

contemporary cosmology and astrophysics. Mayers
Frieman

Cover photo: Reidar Hahn, Fermilab.

World Scientific
www.worldscientific.
00247 he




207 DES SN la
(+122 other SN |a)

DES collaboration, 1811.02374
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~ 3x2pt statistic: DES Year 1 (1300 sq deg) results
from galaxy clustering (650K LRGs)
and weak lensing (26M source galaxies)

from DES+Planck+BAO+SNiIla
=-1.00 g 05004

. = /79\@
- L] F
note ~ 20 nuisance parameters: = — T T
0.96 |- : —
C ’ Planck (No Lensing)
E DES Y1 + Planck (No Lensing)
Parameter Prior CG
Cosmology
g I flat (0.1, 0.9) v 0.88 | —
A, flat (5 =< 10 '7,5 < 107") o
Tis flat (0.87, 1.07)
@ flat (0.03. 0.07) Q5
h flat (0.55. 0.91) c
Quh? flat(5 < 10~ 1,10 %) o p—
w l].ul (—2,—0.33) C 0.80 —
Lens Galaxy Bias
bi(i = 1,5) flat (0.8, 3.0)
Intrinsic Alignment
Aja(z) = Ara [(l -} :)/1.62]'”'\ 5
Ara flat (—5.5)
A flat (—5,5) — 072 _
Lens photo-= shift (red sequence) ) e
Az Gauss (0.001, 0.008) LJ l I ] I
Az Gauss (0.002, 0.007) 0.24 0.30 0.36 0.42 0.48
AzP Gauss (0.001, 0.007) 0
Az Gauss (0.003,0.01) m
Az Gauss (0.0,0.01)
Source photo-= shift .
Az} Gauss (—0.001.0.016) tt d t
Az2 Gauss (—0.019,0.013) ma er enSI y
AzZ Gauss (+0.009,0.011)
Azt Gauss (—0.018,0.022)
Shear calibration 6
Mimracarmrarion (5. =1,4) Gauss (0.012, 0.023) e - . <
T s (0.0, 5,030 arXiv:1708.01530 (and follow up multi-probe; extens10ns2)




H, Tension

flat — ACDM

ith MIRAS

5.80
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78 80
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Will LCDM survive?

(1) Will the tension in

(a) Hy (ladder vs CMB) ~4 sigma

(b) Sg-Omega,, (WL vs CMB) ~2 sigma

go away after more ‘bread and butter’ work?

(1) If the tension remains/grows, would it lead
to new Physics or a departure from LCDM?

28



The first Black Hole Binary
detected by LIGO
GW150914

Inspiral Merger Ring-
down

S e see@
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Gravitational Waves:
The visible light from
the Kilonova fading away

Dark Energy Camera / CTIO
i-band
Time Relative to 2017 August 17

Credit: P. S. Cowperthwaite / E. Berger

+05 d ayS Harvard-Smithsonian Center for Astrophysics

Galaxy NGC 4993,

~40Mpc away %



The Hubble constant H, from
GW170817

+* Hubble Constant from GW standard siren:

Ho = v/d =70 ( *12 5) km/sec/Mpc
With these 68% CL, consistent with both

Planck and SNIa, which are in tension with each
other.

i N ,
i/ ;
W :
¥

: \

/ ,

- — - - | - | - - - — —— —

Abbott et al, Nature 2017
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Bayesian Marginalization
over smoothing scales =>

Cf. Abbott et al (2019)
Howlett & Davis (2019),
Mukherjee et al. (2019), ...

p(Ho) (km~! s Mpc)

The Impact of Peculiar Velocities on H

from Gravitational Wave Bright Sirens
Constantina Nicolaou, OL, et al. 1909.09609

GW 170817 in NGC4993
At distance of 40 Mpc,

Uncertainty of 200 km/sec
corresponds to 4km/sec/Mpc

H, = 68.6*140 5 . km/sec/Mpc

0.04 1 Proposed Model
(this work)
I Planck
0.03 s SHOES
0.02 -
0.01
0.00

40 60 80 100 120 140 160
Hp (km s~ Mpc™!)



DES galaxy distribution

H, from one Dark Siren
-+ 77k DES galaxies

MEASUREMENT OF THE HUBBLE CONSTANT FROM GW170814
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— DES GW170814
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P B Planck
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i E E
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0.002 5 :
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0.000 — . r . R
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Hy (km s~! Mpc™1)
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(1) Object Classification with ML
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Exo-planet space missions

Studying terrestrial
planets in orbits up Performing a chemical
to the habitable zone census of a large and

of Sun-like stars, diverse sample of
exoplanet hunting habitable zone of a First all-sky transit to-Neptune size and characterising

' exoplanets by analysing
h e F u t u re mission wide variety of stars survey satellite exoplanets these stars their atmospheres
!
[ ] " ' \J l
IS bright! , A { |

A targeted search for First step
Pioneering stellar terrestrial and larger characterisation
seismology and planets in or near the of known Earth-

AN

|Ground-| 1990

based

observatories

First discoveries of
exoplanets in the 1990s Webb
opened up the field of & Cosa &
exoplanet research. . WCosa @
New innovations and
discoveries continue

to this day o f ) 1 Q/&E: )\})

Dedicated exoplanet
missions
Launch (e (®)

Exoplanet-sensitive
missions

A= \“

T -

Revealing exoplanets
Probing the through its all-sky survey Detailed characterisation
composition of Studying exoplanet of the position, brightness of exoplanet atmospheres
exoplanet signatures in and motion of over one through transit studies
atmospheres infrared light billion stars and direct imaging




Machine Learning for detecting Exo-planets

00 Moo
haEAFE

7\

Planet

Yip, Waldmann et al. (2019)



Star/galaxy separation in DES

Galaxy nb counts for SVA1-SPTE with spread model cut

Square of 200 deg” centered at ra=74, dec=-55

- spread model (i band) new estimator+spread model
3 | — galaxies 8 — ogalaxies
~— slars §_ —— gtars
3 )
£ £
g g §
w i - -
o :
I I | 1 1 1 1 f  § 1 1 1
-003 -0.01 0.01 0.03 05 00 05 10 15
value of spread_model value of estimator

Soumagnac et al (1 306'5239



GALAXY Z@©O

* One Million galaxies classified by 100,000

neonle! |
Is the galaxy simply smooth and rounded, with no sign of a disk?

Smooth Features or disk Star or artifact

Nead heln? ﬂ

Lintott et al. 38



Galaxy zoo and machine learning

Parameters - N

|

B

¥ Ton J

GALAXY ZOO

Elliptical | Spiral | Star/Other
A ELLIPTICAL 91% 0.08% 0.5%
N SPIRAL 0.1% 93% 0.2%
N STAR/OTHER 0.3% 0.3% 96%

Banerji, OL et al. (0908.2033)  °°

Cf. OL. Naim et al. (1995)



Photometric redshift

* Probe strong
spectral features

(4000 break)

Flux

e Difference in flux
through filters as the
galaxy 1s redshifted.

. L e

4000 6000 8000 10000 12000
A (R)




CODE

HyperZ

BPZ
TPZ

/ZEBRA

LePhare

Photo-Z codes

METHOD

Template

Bayesian

Trees

Hybrid, Bayesian

Template

REFERENCE

Bolzonella et al. (2000)
Benitez (2000)

Carraso Kind & Brunner
(2013)

Feldmann et al. (2006)

Ilbert et al. (2006)
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Photo-z: DES SV data

i

)
A

Plhot

o

T Y

02 05 08 11 14

P

Sanchez et al. (2015)

Bonnett et al. (2015)
incl. new ANNz2,
Sadeh, Abdalla & OL (2016)
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End-to-end: the impact of different
PhZ codes on DES-SV WL

L4—j l T I I I
LA DES SV (skynet)

-—- ANNz2

—_ TPZ =l
--- BPZ w/ correction

1.2

1.0
60
0.8
0.6
| | | | | |
Vsl 0.1 0.2 0.3 04 0.5 0.6 0.7
2,

DES collaboration 2015



Finding Strong Lensing Arcs

with Machine Learning

HST image of cluster
SDSS J1038+4849

» Data Challenge
Metcalf et al

Astronomy & Astrophysics manuscript no. paper ©@ESO 2018
February 20, 2018

The Strong Gravitational Lens Finding Challenge
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~ ABSTRACT
s} Large scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders
— of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least
- te ing scientific results from them will require quantifying the efficiency and bias of
= o > objectives automated methods must be developed. Because gravitational lenses
A are rare objects reducing false positives will be particularly important. We present a description and results of an open
%< gravitational lens finding challenge. Participants were asked to classify 100,000 candidate objects as to whether they
= were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data

sets. A va

ety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM)
and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the
anticipated data flow. In ata, soveral mothods are able 16 identify upwards of half the lenscs aftcr applying some
thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without
making a single false-positive identification. This is significantly better than direct inspection by humans was able to
do. Having multi-band, ground based data is found to be better for this purpose than single-band space based data
with lower noise and higher resolution, suggesting that colours bring a erucial additional information. The most difficult
challenge for a lens finder is differentiating between rare irregular and ring-like face-on gala and true gravitational
Tenscs, The dégroc to which the officioncy and bincs of lens fnders can be quantificd Trsely dopends on the realiom of
the simulated data on which the finders are trained

Article number, page 1 of 22

44




CMU Deep LENS (Lanusse et al. 1703.02642)

 Mocks with arcs * Mocks without arcs

Expected in LSST: about one million strongly lensed galaxies out of an estimated 20
billion galaxies.
The approach: supervised CNN. Completeness of 90% can be achieved
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(i) Time Domain with ML
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My ~ Slog(H,/65)

Light-curve feature selection

DES SN002166, z-band

S0
-20F
40 ¢
-|° = - 3 ap -
a=-0.3 x 20F
-16} 4= 004 =
A=+03 W 10 -
T
+0. -9
-14F R dee12 d 0% 1
A A M " A a _10 A A o " A
0 20 40 60 80 100 56240 56260 56280 56300 56320 56340
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1) Template
fitting

MJD

2) General light curve
parameterisations

3) Wavelets
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Photometric Classification of
Supernovae
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arXiv: 1603.00882
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Feature extraction with Wavelet
+ 6 classifiers

1.0 r | ’ T e ——

b
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Q04 — KNN (0.912) |-
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2 0.2 — SVM (0.954) -
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False positive rate
Lochner et al. (2016)
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(i) Map reconstruction
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Mass mapping from DES WL

Improved dark matter peak detection with sparsity (GLIMPSE)

0.0250

GLIMPSE " N Y= Ak +n

(sparsity prior)

argmin [ly - Ade/|l; + A|al]; .
(04

0.0125

Sparsity prior (Starck et al. 2015)

0.0000 ¥

DEC

—0.0125

—0.0250

+90° +85° +80° +75° +70° +65° +60°

RA
. N. Jeffery et al.
Dark Matter Map with 3 Methods arXiv:1801.08945 51



DeepMass

Yy =Ak+n

- We seek to approximate the mean posteriors:

- Minimize:

{=7ol)= [« Py) b

1(8) = ||Fo(y) - kel

Approximate function as a

Convolutional Neural Network (CNN)

The unknown parameters are mainly convolution filters
Minimize J using 360k simulations (noisy gamma, clean kappa)
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Deep Learning mass
reconstruction (‘DeepMass’)

4 N. Jeffrey et al.

Kaiser-Squires Wiener filter DeepMass
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Flgure 2. Convergence x reconstruction from DES SV observational data with: KS, Wiener filtering, and DeepMass.
Truth {Target) Wiener filter DeepMass
t e x 3 H ! i
B IR R e R IR e e 002
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Figure 3. Example t-picora validation simulation (left) and the corresponding Wiener (centre) and DeepMass (right) reconstructions.

CNN (U-net) trained on 3.6x105 simulations ~ Jeffrey, Lanusse, OL, Starck
11% improvement in MSE wrt Wiener arXiv:1908.005543
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Cosmology from Weak Lensing
maps
with Deep Learning

Residual Layers
I

=i

Downsampling

Fluri et al. 1906.03156



Cosmology with Al/ML

Cosmology is going ‘industrial revolution’
In both spatial and time domains

Challenges:

Incomplete training sets and augmentation
Incorporating physics

Understanding Deep Learning
Benchmarking and up-scaling of algorithms

Great training of PhDs, beyond academia

Will DIS produce better knowledge?
(well, it depends in part on Nature...)
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Credits and Thanks
to collaborators and
PhD students

Ofer(@60, Windsor, 8-10 April 2019 56
“From Deep Learning to the Dark Universe”



Extra slides
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The search for Planet 9
(one of the 6 minor planets discovered by DES)

58

David Gerdes et al, DES TMO WG



H, from

‘7= _JCosmic Ladder vs. CMB

» Ladder: empirical, Hy is a direct
parameter, local universe, photometry
(crowding)

 CMB: Physics-based (Boltzmann eq),
but H, is one of N parameters, early
universe

« GW Standard Sirens: Physics Based
(GW) H, is direct, local universe ¥



(iv) Gravitational Dynamics with
ML
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Weighing the Local Group
in the presence of Dark Energy

a =-GM/r?2 + N3 r

* At present the Milky Way and Andromeda galaxies are

separated by r=784 kpc and are “falling” towards each
other at v=130 km/sec.

« Given the age of the universe t=13.8 Gyr and Dark

Energy fraction of 70% we find that the mass is (4.73 +-
1.03) x 10'? My,

* 13% more than in the absence of Dark Energy

Without A: Kahn & Waltjer (1959), Lynden-Bell (1981)
With Lambda: Binney & Tremaine (2008), Partridge, OL & Hoffman (2012) ©1



30k LG-like pairs in MultiDark
simulations

Classical TA | TA with v, | ’ TA with A !
1.5 - 1.5 - ; 1.5 '
i
\. s. \ \. f
= 1.0 = 1.0 ' =10} / /
N N ! |
S = =
:z 0.5 / / | := 0.5 := 0.5 |
- 2 -
0.0/ ' 0.0,/ 0.0}
00 02 04 06 08 1.0 1.2 00 02 04 06 08 1.0 1.2 00 02 04 06 08 1.0 1.2
log(M_,,./10% M ) log(M,,,./10" M ) log(M.,,./10¥ M )

McLeod, Libeskind, Hoffman & OL (arXiv:1606.02694)

62



LG mass with Machine Learning:

1.5

o
%)

log(M,,,,/10" M )

0.0 0.2 0.4 06 08 1.0 1.2

known 2-body gravity
+ unknown dynamics

TA with A
—— ANN with shear

—
o

0.0"\ \

log(M_,, /10" M1 )

e, 1 ov; " v,
YT 2H, \8r; ' Or;
My / 1012M@
Model (vdM. 2008) (vdM. 2012) (Sal. 2015)
+1.044.7 +0.743.9 +1.143.1
TA 5'8-0.9-3.0 4'7-0.6-2.4 3'8-0.9-2.0
0.341.5 +0.3414 +0.642.0
ANN 3'7fo.3-1.5 3'6-0.3-1.4 3'3-0.5-1.5
+1.141.6 408413 +1.341.7
ANN + Shear 6.1_“_1.8 4.9_0'8_1‘4 3.6_1‘1_1‘5
; +1.9 +1.3 +2.3
Bayesian 3'4-1.2 3'1-1.0 3'4-1.3
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Minimum Spanning Tree

Edge Length Degree

Number of edges

attached to each node.

Branch Length and Shape

Branches refer to edges connect

in chains (i.e. degree = 2).

The shape is equal to the total
length divided by the
distance between end points
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MST vs. 2pt statistic

Tlustris Galazies Adjusted Levy Flight Galazies
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MST: better accuracy and

precision
10°A, 0,
P(k) 4+ B(ky, ko, ks) .

P(k) + B(ki, ko, kg)+MST | —e—




DeepMass

We take a standard deep learning approach. We seek an
approximation Fg to the function that maps the pixelised
shear to the convergence map

k=TFoly) . (5)

where the parameters of the function ® are to be
learned (Goodfellow et al. 2016). We learn these parameters
by minimising a mean-square-error (MSE) cost function

J(©) = || Fo(y) - xwell3 (6)

evaluated on a set of training data which consists of pairs of
realistic shear and “truth” (noise-free) convergence maps. If
the training data “truth” maps are drawn from a prior distri-
bution P(k), and the corresponding noisy shear map is drawn
from the likelihood P(y|k), this MSE cost function corre-
sponds to Fg(y) being a mean' posterior estimate (Jaynes
2003), such that &£ is approximating:

E=Fal) = f x Plxly) de . (7)

We use a deep convolution neural network (CNN) to approx-
imate the function Fg, where the parameters ® are primar-
ily elements of learned filters in convolutional layers. CNNs
are particularly suited for two-dimensional image or one-
dimensional time series data with translation invariant fea-
tures in the underlying signal.

Jeffrey et al. (2019)
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UCL CDT
in Data Intensive Science
http://www.hep.ucl.ac.uk/cdt-dis/

‘UCL CDT DIS

GRAC@PR'V”AR B|B|C Qﬂ?ﬁ%ﬁfﬁf‘t’ﬂﬁ?\

Oz OCF ©:. BBl =\
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2017, 2018 & 2019 cohorts:
33 CDT PhD students at UCL
( > 200 students nation-wide in 8 CDTSs) 68



PhD work related to International projects
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PhD supervisors from
6 UCL Departments

] i /Depmmmt [ % k /Deparmmt {
0 C 0i

Particle Physics Astrophysics Statistical " || Computer

Dpt,of Physics and Astronomy , of Physcs and Astron : = :
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CDT-DIS 4yr Programme

Activities

Taught courses

Group project

Exams

PhD project assignment
Software (SW) Carpentry
CDT Summer School
Transferable Skills

Communication sKills,
Scientific writing, Media training

« MPhil to PhD transfer

« Placement assignment

« SW Carpentry (tutor)
Transferable Skills
Entrepreneurship,
Intellectual property,
Science in the economy

T Jea

Z JeaA

« Placement
» International training school
CDT Summer School (tutor)

Transferable Skills
Research planning, Proposal writing

¢ JeaA

« |[nternational conference
e PhD Award

Transferable Skills
Interview skills, Careers workshop

i JeaA



Industry Partners

Consultancy in Data Science

Retail Fashion

National institute for data science and artificial intelligence
News and Media

Enable cost-effective, quickly-delivered scientific instruments for users

Innovation in advanced detectors and advanced computing
Innovation in advanced computing

Finance and Banking

Supporting Industry through Data Science

IT Technology

IT Technology

Cyber Security and Mitigation

IT technology

Data and Modelling Services for Oil and Gas Industry
Analysis of Sensitive Data

Scientific Data for Industry

Consultancy in Data Science

Innovation in advanced detectors

Innovation in advanced computing

News and Media
Weather Modelling and Prediction Services
Mass transportation

Advanced Engineering Systems for Nuclear Fusion

+ Newton Fund for DIS with Jordan



