
ARI-PREsys[®]-S Pressure reducing station for steam

- · Pressure reducing station ready for operation
- · self-acting or with electro-pneumatic control
- Pipe material: P235GH 1.4571/1.4541
- · Valve materials:

EN-JL1040 EN-JS1049 1.0619+N 1.4408 (only electro-pneumatic)

ARI-PREsys®-S

ARI-PREsys®-S Complete Pressure reducing station for steam · Pressure reducing station ready for operation · self-acting or (63)H 11 with electro-pneumatic control P235GH · Pipe material: ±0® 1.4571/1.4541 · Valve materials: EN-JL1040 EN-JS1049

1.0619+N

1.4408 (only electro-pneumatic)

ARI-PREsys® Duplex **Pressure reducing station**

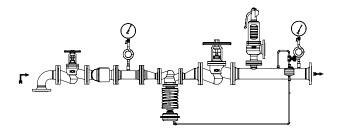
- · Pressure reducing station ready for operation
- · self-acting or with electro-pneumatic control
- P235GH · Pipe material:

EN-JL1040

EN-JS1049

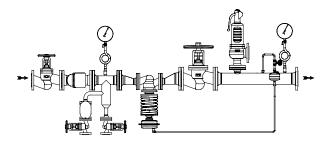
1.0619+N

- 1.4571/1.4541
- · Valve materials:

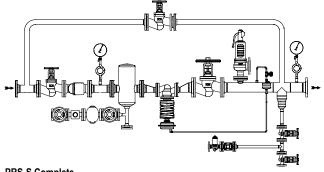

ARI-PREsys®-S Complete

ARI-PREsys® Duplex

Features:

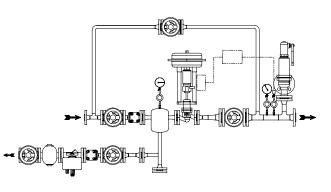

- · Compact design
- · Exact and easy adjustment
- · Maintenance-free design through stainless steel bellows
- · Process security through harmonized individual components
- · Pressure-secure subassembly
- · Dry and clean process steam optionally with separator (steam drier)
- · Emergency operation during maintenance through bypass line
- · Minimum-pressure side condensate drain possible
- · Optionally with wall or floor bracket
- Service through plant documentation

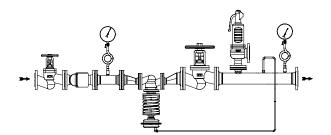
ARI-PREsys[®]-S for steam


PRS-S

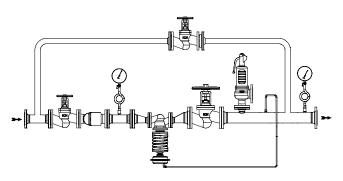
Pressure reducing station with connection to ascending pipeline (also as Duplex or with electro-pneumatic control)

PRS-S Plus


Pressure reducing station with P1-side condensate drain (also as Duplex or with electro-pneumatic control)


PRS-S Complete

Pressure reducing station with complete equipment (Bypass, steam drier, condensate drain P1- and P2-side) (also with electro-pneumatic control)

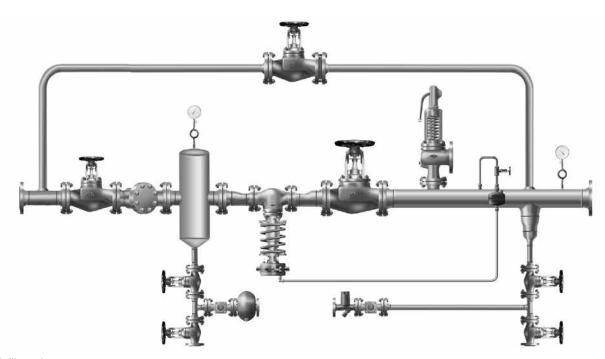


Electro-pneumatic control (with transmitter and PID-controller)

PRS-W / PRS-A Pressure reducing station in standard design (also as Duplex or with electro-pneumatic control)

PRS-W / PRS-A Complete Pressure reducing station with bypass, stop valves and safety valves with soft seal (also with electro-pneumatic control)

For dimensions and weights refer to specification sheet of the plan.


Application

The pressure reducing station is a fully-mounted unit. The pressure reducer used here is a directly controlled proportional controller without auxiliary power for reducing a higher input pressure to a lower minimum pressure.

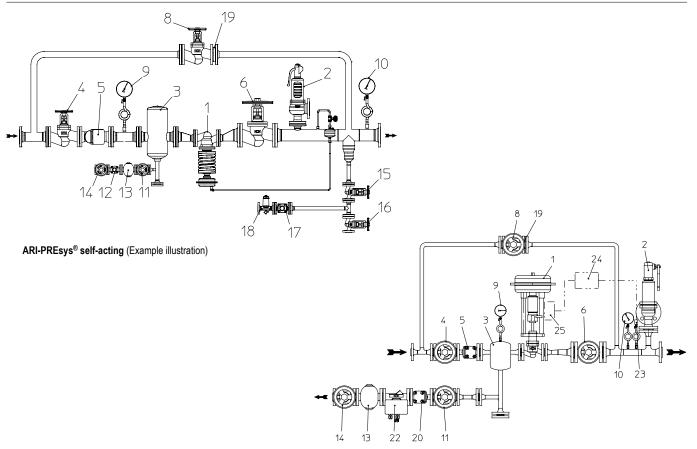
The pressure reducer used here is solely for reducing pressure, which is why stop valves are installed for the connection of the minimum pressure side over a longer period. To guarantee a longer service life for the station a strainer and, optionally, a steam drier, are provided on the input pressure side. The minimum pressure side is fitted with a safety valve adjusted to the station.

The input and minimum pressure are read off directly at the pressure gauge supplied.

A desired bypass pipe guarantees emergency operations even without a pressure reducer.

Example illustration (also with electro-pneumatic control)

Evaluation of the pressure reducing station in accordance with PED 2014/68/EU (Fluid Group 2)


The evaluation of an installation (assembly of pressure vessels) is aligned to the correspondingly highest category of an installation component Art.10 Paragraph 2. Fittings with a safety function are not taken into account in the evaluation.

If all the individual components of a subassembly fall under Art. 3.3 (sound engineering practice), the installation may not display a CE mark in accordance with the PED. Declaration of conformity/manufacturer's declaration: See the last page in the current operating instructions for the above-mentioned EC Directives. Operating instructions can be ordered on request by phone (+49 52 07) 994-0 or fax (+49 52 07) 994-158 or 159.

				Intermediate values for max. permissible operational pressures can be determined by linear interpolation of the given temperature / pressure chart.							
I 1092-1/-2	-10°C up to 50°C	100°C	150°C	200°C	250°C	300°C	350°C				
EN-JL1040, P235GH	16	(bar)	16	14,9	13,9	12,4	11,2	9,6	-		
EN-JS1049, P235GH, P250GH	16	(bar)	16	14,9	13,9	12,4	11,4	10,3	9,6		
EN-JS1049, P235GH, P250GH	25	(bar)	25	23,3	21,7	19,4	17,8	16,1	15		
1.0619+N, P235GH, P250GH	16	(bar)	16	14,9	13,9	12,4	11,4	10,3	9,6		
1.0619+N, P235GH, P250GH	25	(bar)	25	23,3	21,7	19,4	17,8	16,1	15		
1.0619+N, P235GH, P250GH	40	(bar)	40	37,3	34,7	30,2	28,4	25,8	24		
1.4408, 1.4571, 1.4541	40	(bar)	40	39,6	36,3	33,7	31,8	29,7	28,5		
E 	EN-JL1040, P235GH EN-JS1049, P235GH, P250GH EN-JS1049, P235GH, P250GH 1.0619+N, P235GH, P250GH 1.0619+N, P235GH, P250GH 1.0619+N, P235GH, P250GH	EN-JL1040, P235GH 16 EN-JS1049, P235GH, P250GH 16 EN-JS1049, P235GH, P250GH 25 1.0619+N, P235GH, P250GH 16 1.0619+N, P235GH, P250GH 25 1.0619+N, P235GH, P250GH 25 1.0619+N, P235GH, P250GH 25	EN-JL 1040, P235GH 16 (bar) EN-JS1049, P235GH, P250GH 16 (bar) EN-JS1049, P235GH, P250GH 25 (bar) 1.0619+N, P235GH, P250GH 16 (bar) 1.0619+N, P235GH, P250GH 25 (bar) 1.0619+N, P235GH, P250GH 25 (bar) 1.0619+N, P235GH, P250GH 25 (bar) 1.0619+N, P235GH, P250GH 40 (bar)	EN-JL1040, P235GH 16 (bar) 16 EN-JS1049, P235GH, P250GH 16 (bar) 16 EN-JS1049, P235GH, P250GH 25 (bar) 25 1.0619+N, P235GH, P250GH 16 (bar) 16 1.0619+N, P235GH, P250GH 16 (bar) 16 1.0619+N, P235GH, P250GH 25 (bar) 25 1.0619+N, P235GH, P250GH 25 (bar) 25 1.0619+N, P235GH, P250GH 40 (bar) 40	EN-JL1040, P235GH 16 (bar) 16 14,9 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 EN-JS1049, P235GH, P250GH 25 (bar) 25 23,3 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 1.0619+N, P235GH, P250GH 40 (bar) 40 37,3	EN-JL1040, P235GH 16 (bar) 16 14,9 13,9 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 EN-JS1049, P235GH, P250GH 25 (bar) 25 23,3 21,7 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 13,9 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 1.0619+N, P235GH, P250GH 40 (bar) 40 37,3 34,7	EN-JL1040, P235GH 16 (bar) 16 14,9 13,9 12,4 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 EN-JS1049, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 1.0619+N, P235GH, P250GH 25 (bar) 16 14,9 13,9 12,4 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 1.0619+N, P235GH, P250GH 40 (bar) 40 37,3 34,7 30,2	EN-JL1040, P235GH 16 (bar) 16 14,9 13,9 12,4 11,2 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,2 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,4 EN-JS1049, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 17,8 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,4 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,4 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 17,8 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 17,8 1.0619+N, P235GH, P250GH 40 (bar) 40 37,3 34,7 30,2 28,4	EN-JL1040, P235GH 16 (bar) 16 14,9 13,9 12,4 11,2 9,6 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,2 9,6 EN-JS1049, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,4 10,3 EN-JS1049, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 17,8 16,1 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,4 10,3 1.0619+N, P235GH, P250GH 16 (bar) 16 14,9 13,9 12,4 11,4 10,3 1.0619+N, P235GH, P250GH 25 (bar) 25 23,3 21,7 19,4 17,8 16,1 1.0619+N, P235GH, P250GH 25 (bar) 40 37,3 34,7 30,2 28,4 25,8		

Observe regulations

Information / restrictions in technical rules must be observed!

ARI-PREsys® with electro-pneumatic control (Example illustration)

				laterial			
Pos.	Designation	PN16 - 12.PRS		PN16 - 32.PRS PN40 - 35.PRS	PN16 - 52.PRS ¹⁾ PN40 - 55.PRS ¹⁾		
1	Pressure reducing valve ARI-PREDU, DN15-100	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	??		
1	Control valve ARI-STEVI, DN15-100	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
2	Safety valve ARI-SAFE	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
3	Steam drier or water pocket	P265GH, 1.0425 / P235GH, 1	1.0345		X6CrNiMoTi17-12-2, 1.4571		
4	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
5	ARI-Y strainer with fine screen	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
6	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
7	Water seal pot	P265GH, 1.0425					
8	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
9	Pressure gauge+valve+siphon (upstream press. P1)	St					
10	Pressure gauge+valve+siphon (downstream press. P2)	St	-				
11	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
12	Double window sight glass	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
13	Ball float steam trap ARI-CONA SC	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	X6CrNiTi18-10, 1.4541		
14	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
15	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
16	Stop valve ARI-FABA-Plus	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
17	Double window sight glass	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
18	Steam trap ARI-CONA B / M	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	X6CrNiTi18-10, 1.4541		
19	Orifice disc	P265GH, 1.0425			X6CrNiMoTi17-12-2, 1.4571		
20	Strainer	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408		
22	Monitoring system for steam traps CONA-control	P250GH, 1.0460	·		X6CrNiTi18-10, 1.4541		
23	Transmitter						
24	Pressure controller (PID)						
25	Electronic positioner						
	Pipes / flanges	P235GH, 1.0345 / P250GH, 1	1.0460		X6CrNiMoTi17-12-2, 1.4571 / X6CrNiTi18-10, 1.4541		

Pressure reducing valve

DN		15	20)	25	32	40	50	65	80	100
Kvs values	(m ³ /h)	3,2	5		8	12,5	20	32	50	80	125
Downstream pressure ranges	(bar-ü)	0,2 - 0,0	6	(),5 - 1,2	0,8 - 2,	5	2 - 5	4,5 - 10)	8 - 16
Actuator DMA	(cm ²)	400			250	160		80		40	
max. permissible pressure	(bar)	1,6			2,5	6		10		20	

Design with control valves: refer to data sheet STEVI440/441 and STEVI470/471.

Designs

					Туре			
Code	Design	PRS-S	PRS-S Plus	PRS-S complete	PRS-W	PRS-W complete	PRS-A	PRS-A complete
В	Bypass pipe	0	0	X	0	X	0	X
С	Condensate drain P2 side	0	0	X				
D	Steam drier insert	0		X				
E	Stop valve and safety valve with soft seal ¹⁾				0	x	0	x
F	Inlet pipe bend	Х	0	0	0	0	0	0
G	Water pocket (simple steam trap)	0	X					
н	Wall bracket	0	0	0	0	0	0	0
J	Floor bracket	0	0	0	0	0	0	0
К	Double isolation ²⁾	0	0	0	0	0	0	0
Т	Duplex (double design)	0	0		0		0	
						X = sta	andard design / O	= special design

= standard design / **O** = special design

1)

	Soft seal PRS-W:	Soft seal PRS-A:
E	Stop valves PTFE plug Safety valve EPDM plug PREDU actuator EPDM rolling diaphragm	Stop valves PTFE plug Safety valve EPDM plug PREDU actuator EPDM rolling diaphragm

²⁾ z.B.

к	Special design for inlet and outlet:
---	--------------------------------------

Information on pressure protection

Possible fluctuations in the input-side steam output and an additonal bypass operation make it advantageous to spread the overpressure protection. For this purpose a safety valve for normal operations is provided directly downstream from the pressure reducer with another safety valve directly downstream from the last stop valve (for bypass operations).

In principle, the max. possible mass flow must be included to determine the safety valve. Normal operations are to be regarded as ideal operations and do not govern size of the safety valve.

The following operating conditions are to be avoided:

- Maximum mass flow of the total system applied, because, e.g., all the other consumers close.
- The pressure in the inlet area increases until it reaches the set pressure on the safety valve installed in the inlet area. The greater pressure difference this cases (upstream pressure to downstream pressure) leads to different operating conditions and possibly to a greater mass flow.
- Simultaneous opening of the bypass and main pipes.

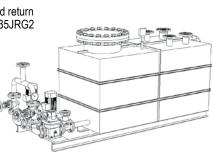
Please take this into account for your enquiry or order and let us know which operating conditions can occur!

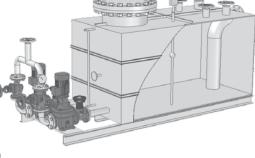
System code:

System code:									
Туре	PRS-S (steam), PR	RS-W (water), F	PRS-A (air)						
Standard design (see page 2)	PRS-S, PRS-S Plu PRS-W, PRS-W co PRS-A, PRS-A con	mplete	[®] -S complete						
Material (valves)		! (PN16, EN-JL1040) / 22 (PN16, EN-JS1049) / 23 (PN25, EN-JS1049) ! (PN16, 1.0619+N) / 35 (PN40, 1.0619+N) / 52 (PN16, 1.4408) / 55 (PN40, 1.4408)							
Material (pipes)	P235GH (St35.8) /	235GH (St35.8) / 1.4571 / 1.4541							
Special design	Code B to T (see p	ode B to T (see page 5)							
Flange connection	PN16, PN25, PN40	2N16, PN25, PN40							
Order example::									
Type 22.PRS-S, Code B, C, H saturated steam 6 - 2	 Pressure reducing station with Pipe bend for connection to an ascending pipe Pipe system PN16, accessories material EN-JS1049 Medium saturated steam 2000 kg/h with special design bypass pipe Supply pressure 6 bar minimum pressure 2 bar Discharge condensate drain (P2 side) Additional wall bracket 								
Please indicate when ordering:									
1. ARI-PREsys®		Туре							
		e.g. Type 22.l valves made	PRS-S with Code B, C, JH (pressur of EN-JS1049, pipe made of P2350	e reducing station at ascending pipe, PN1 GH, bypass pipe, steam traps -P2, wall bra	6, ucket)				
2. Medium				(Fluid group 2 in accordance with PED	2014/68/EU)				
3. Upstream pressure P1			(bar ü)	Upstream pressure PS1 max. (e.g. set pressure of the safety valve in		bar ü) em)			
4. Downstream pressure P2			(bar ü)	Downstream pressure PS1 max (e.g. for determining the safety valve)	(b	bar ü)			
5. Temperature			(°C)						
6. Required output (see note on page 5)			□ (kg/h) □ (KW)	max. possible output (e.g. Boiler output))	□ (kg/h) □ (KW)				
7. Dimensions of installation location (if known)		(clearance to	(m) / (m) / wall, ceiling height, room dimensior	_ (m) is))					
8. Design deviating from standard			(Code B to T, s	see page 5)					
9. Materials		Pipes:		□ P235GH (St35.8) □ 1.4571 / 1.4541					
		Valves:		□ EN-JL1040 (GG-25) □ EN-JS1049 (GGG-40.3) □ 1.0619+N (GS-C25N) □ 1.4408					
10. Control device		D PREDU		 STEVI (electro-pneumatic control Transmitter Pressure controller (PID) 	()				
11. Desired final inspections or appro	vals								

Technology for the Future. GERMAN QUALITY VALVES

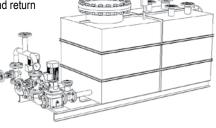
ARI-Armaturen Albert Richter GmbH & Co. KG, D-33756 Schloß Holte-Stukenbrock, Tel. +49 52 07 / 994-0, Telefax +49 52 07 / 994-158 or 159 Internet: http://www.ari-armaturen.com E-mail: info.vertrieb@ari-armaturen.com




ARI-Condensate recovery and return station Volume: 150-2000 liter

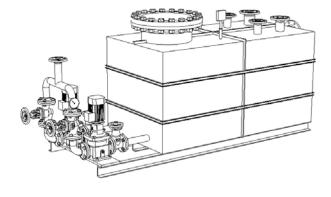
ARI-CORsys[®]-St Condensate recovery and return station Standard design

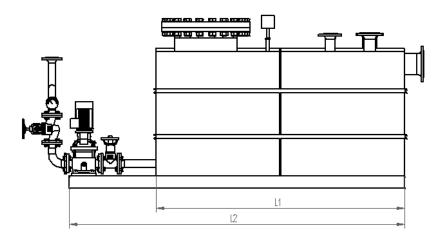
- Ready for operation condensate recovery and return station with zinc coated receiver made of S235JRG2 (St37)
- Pump made of EN-JL1030 / 1.4301
- Valves optionally made of:

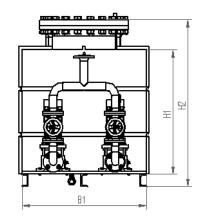

EN-JL1040 EN-JS1049 1.0619+N

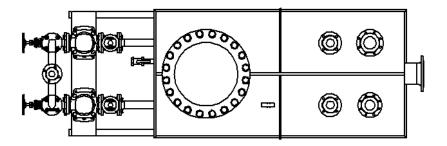
ARI-CORsys[®]-SSt Condensate recovery and return station Standard design made of stainless steel

- Ready for operation condensate recovery and return station with receiver made of 1.4541
- Pump made of 1.4401
- Valves optionally made of:
 1.4408

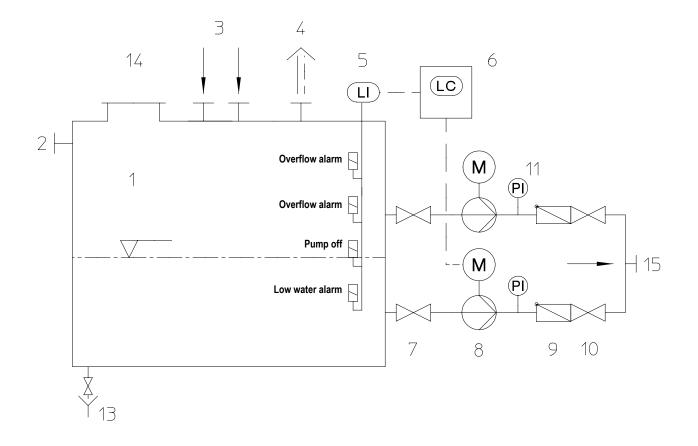

Features:


- Process security through harmonized individual components
- Protection against running dry and high water
- Redundant pump protection (two pumps)
- Fixed liquid levels
- High-quality corrosion protection through stainless steel possible
- Supplied ready for installation
- Service through plant documentation
- Low-NPSH-Pumps


ARI-CORsys® Condensate recovery and return station


ARI-CORsys®-St Standard design

ARI-CORsys®-SSt Standard design made of stainless steel

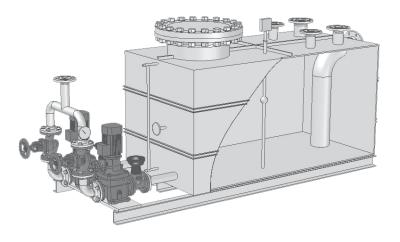


(Example version)

Dimension and weights

Tun	Volume	L1	L2	H1	H2	B1	Weight
Тур	(Ltr.)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)

Dee	Description	Material						
Pos.	Description	PN16 - 12.CRS	PN16 - 22.CRS	PN16 - 32.CRS	PN16 - 52.CRS			
1	Receiver	S235JRG2, 1.0038 / P250G	H, 1.0460		X5CrNi18-10, 1.4301			
2	Overflow (to the outside)							
3	Condensate feed (the number of receiver connections varies in accordance with the size of the receiver)	P235TR2, 1.0255 / P250GH	P235TR2, 1.0255 / P250GH, 1.0460					
4	Vapour pipe connection (vent to the outside)							
5	Level measuring	Sst / Polymer	Sst / Polymer					
6	Liquid level controller	Al / Polymer-Gehäuse						
7	Stop valve, Suction side (ARI EURO-WEDI)	EN-JL1040, EN-GJL-250	EN-JL1040, EN-GJL-250					
8	Low-NPSH-pump	EN-JL1030, EN-GJL-200 / X5CrNi18-10, 1.4301	EN-JS1050, EN-GJS-500 X5CrNi18-10, 1.4301	-7 /	X5CrNiMo17-12-2, 1.4401			
9/10	Stop valve, Pressure side ARI-STOBU with non-return function (LK+F)	EN-JL1040, EN-GJL-250	EN-JS1049, EN-GJS-400-18U-LT	GP240GH+N, 1.0619+N	GX5CrNiMo19-11-2, 1.4408			
11	Pressure gauge, complete	St / SSt						
13	Drain to the outside	St / SSt						
14	Inspection opening							
15	Outlet	P235TR2, 1.0255 / P250GH, 1.0460 X6CrNiTi18-10,						
	Pipes / flanges]						


Information / restrictions in the technical rules must be observed!

Permissible operating temperature 95 °C, receiver pressure atmospheric, pump pressure side max. pressure load, see delivery head diagram.

Application

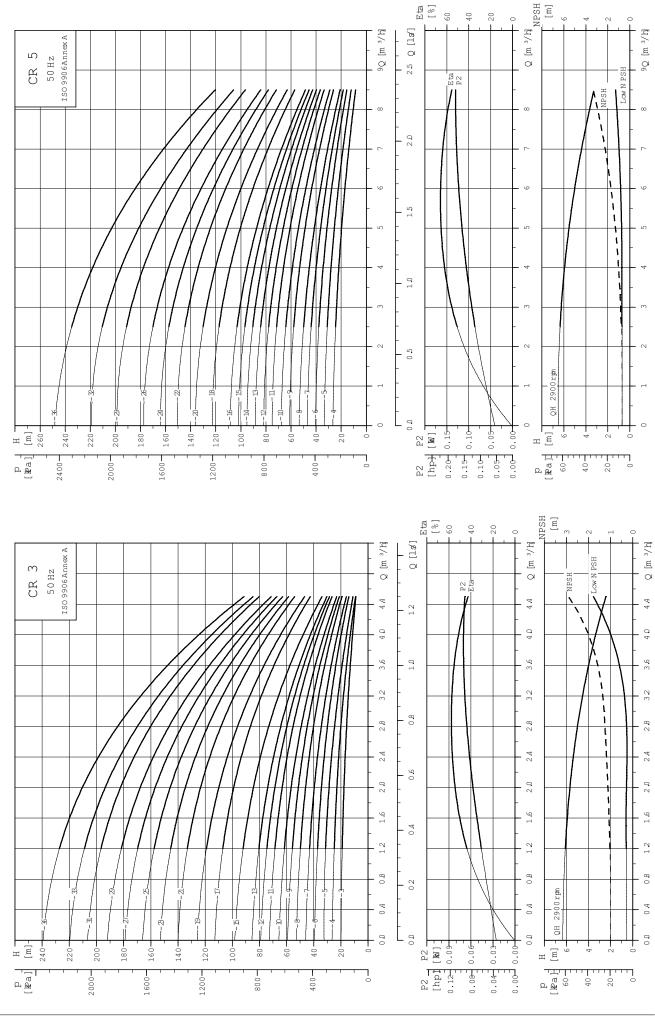
The ARI condensate recovery and return station is used in steam systems and serves to return the accruing condensate for reuse. The condensate pumps that are used remove the condensate from the receiver and transport it back to the boiler installation.

The station is a compact installation premounted on a base frame and consists of high-quality individual components. An On/Off water level control with a safety switch for dry unning and high water protection guarantees safe operations. The pump's output is controlled in dependence on the level in the receiver. Recirculation protection is ensured through the installation of check valves. The strainers that are fitted provide additional security.

Example version

PED 2014/68/EU, MD 98/37/EC, EMC 89/336/EEC, LVD 73/23/EEC

Evaluation in accordance with PED 2014/68/EU (Fluid Group 2)


The evaluation of an installation (assembly of pressure vessels) is aligned to the correspondingly highest category of an installation component 2. Art. 10 Paragraph 2. If all the individual components of a subassembly fall under Art. 3.3 (sound engineering practice), the installation may not display a CE mark in accordance with PED. If the subassembly falls to the maximum under Category I and under Article 1, Paragraph 3.6, the subassembly does not fall under the Pressure Equipment Directive. **Declaration of conformity/manufacturer's declaration:** See the last page in the current operating instructions for the above-mentioned EC Directives. **Operating instructions can be ordered by phone (+49 52 07) 994-0 or fax (+49 52 07) 994-158 or 159**.

Ausführungen

Code	Desim	Ту	ре
Code	Design	CRS-St	CRS-SSt
A	Without controller Receiver only with fittings and pumps	0	0
В	Level electrode + pump controller Completely wired with the switchgear cabinet	0	0
С	Inspection glass liquid level indicator + electromagnetic switch Completely wired with switchgear cabinet	0	0
D	Controller assembly kit Level electrode premounted and enclosed with pump controller	0	0
E	Controller assembly kit Inspection glass liquid level indicator + electromagnetic switch premounted	0	0
J	Receiver made of S235JRG2 (St37) zinc coated	X	
К	Receiver material 1.4301		X
L	Receiver material 1.4571		0
М	Receiver non insulated	Х	X
0	Receiver insulated via factory	0	0
Р	Receiver with insulation bracket	0	0
S	One Low NPSH pump (single)	0	0
т	Two Low NPSH pumps (twin)	X	Х

			ARI-CORsys [®] System-Code
Rece	iver volume	= 1/4 to 1/3 of the accruing con	densate volume
Pump	o output	= 2 to 3 times the accruing con	densate volume
Syste	em code:		
Туре		ARI-32.CRS-R (PN16 standard) ARI-52.CRS-R (PN16 stainless st	teel)
Туре	of pump	CR3 - 15 Low NPSH-Pumpe (see	diagram on page 6-7)
Spec	ial design	Code A to T (see page 4)	
Exam Cond	iple: ensate volume 2700 liter/h, Delivery hea	d 20 m, Receiver material stainless s	steel 1.4571, two pumps
Туре	52 - CRS-R 10 - T - L	Condensate recovery and return station	 Type 52-CRS-R 10 (receiver volume 1000 litres) Receiver made of material 1.4571 (Code G see page 4) Two pumps (Code T see page 4) Low NPSH pump CR5-5, 6.5 m³/h, 20 m delivery head (see page 6)
Pleas	e indicate when ordering:		
1.	ARI-CORsys [®]	Type z.B. Type 52 - CRS-R10 - T - L	
2.	Condensate volume	(m ³ /h)	
3.	Pump delivery head	(m)	
4.	Connection	Feed DN, number; Vaj Pressure side (outlet) PN16 DN_	pour pipe PN16 DN; Overflow PN16 DN;
5.	Receiver volume	(l)	
6.	Receiver shape	□ round lying	
7.	Pump design	see diagram, or	utput curve
8.	Length of vapour pipe	(m)	
9.	Power supply for pump	(V),	(Hz), protection class (standard IP54)
10.	Dimension of installation location (if known)	(m) / (m) /	(m) / (m)
11.	Design deviationg from standard	Code A to P (se	be page 4)
12.	Material	□ EN-J	IL1030/1.4301 (GG/stainless steel) IS1050/1.4301 (GGG/stainless steel) 01 (stainless steel)
		Valves EN-J EN-J 1.440	IL1040 IL1049

Diagram Low-NPSH CR5

[u

9 4 \sim

Eta [%]

40 20

Technik mit Zukunft. Deutsche qualitätsarmaturen

ARI-Armaturen Albert Richter GmbH & Co. KG, D-33756 Schloß Holte-Stukenbrock,

Tel. +49 (0)5207 / 994-0, Telefax +49 (0)5207 / 994-297 oder 298 Internet: http://www.ari-armaturen.com E-mail: info.vertrieb@ari-armaturen.com