
Chapter 5

Arena Basics

The working simulation tool for the models in this book is Arena. Arena is a
simulation environment consisting of module templates, built around SIMAN language
constructs and other facilities, and augmented by a visual front end. This chapter
provides an overview of Arena basics at an introductory level. For more detail, refer
to Kelton et al. (2004). Because it may be hard to distinguish between Arena terms and
generic terms, we shall always italicize any technical Arena terms throughout the book.
Furthermore, we will adopt the notational convention that all characters in SIMAN
constructs are always uppercase, while only the first character in Arena constructs is
capitalized, and both are italicized.

SIMAN consists of two classes of objects: blocks and elements. More specifically,
blocks are basic logic constructs that represent operations; for example, a SEIZE block
models the seizing of a service facility by a transaction (referred to in Arena as “entity”),
while a RELEASE block releases the facility for use by other transactions. Elements
are objects that represent facilities, such as RESOURCES and QUEUES, or other
components, such as DSTATS and TALLIES, used for statistics collection.

Arena's fundamental modeling components, called modules, are selected from
template panels, such as Basic Process, Advanced Process, and Advanced Transfer,1

and placed on a canvas in the course of model construction. A module is a high-level
construct, composed of SIMAN blocks and/or elements. For example, a Processmodule
models the processing of an entity, and internally consists of such blocks as ASSIGN,
QUEUE, SEIZE, DELAY, and RELEASE. Arena also supports other modules, such as
Statistic, Variable, and Output among many others. Frequently used Arena constructs
(built-in variables and modules) are succinctly described in Appendix A.

Arena implements a programming paradigm that combines visual and textual
programming. A typical Arena session involves the following activities:

1. Selecting module/block icons from a template panel, and placing them on a
graphical model canvas (by drag and drop).

1 Earlier versions of Arena have other panels, such as Blocks, Elements, Common, and Support. Later
versions of Arena preserve these legacy panels in a template panel directory called OldArena Templates, and
allow users to use them as necessary.

Simulation Modeling and Analysis with Arena

Copyright 2007 by Academic Press, Inc. All rights of reproduction in any form reserved. 65



2. Connecting modules graphically to indicate physical flow paths of transactions
and/or logical flow paths of control.

3. Parameterization of modules or elements using a text editor.
4. Writing code fragments in modules using a text editor. Arena code is case-

insensitive; that is, upper and lower case letters are interchangeable.

Arena has a graphical user interface (GUI) built around the SIMAN language. In
fact, simulation models can be built using SIMAN constructs from the Blocks and
Elements template panels alone, since Arena modules are just subprograms written in
SIMAN. Still, Arena is far more convenient than SIMAN, because it provides many
handy features, such as high-level modules for model building, statistics definition and
collection, animation of simulation runs (histories), and output report generation. Model
building tends to be particularly intuitive, since many modules represent actual sub-
systems in the conceptual model or the real-life system under study. Complex models
usually require both Arena modules and SIMAN blocks.

All in all, Arena provides a module-oriented simulation environment to model
practically any scenario involving the flow of transactions through a set of processes.
Furthermore, while the modeler constructs a model interactively in both graphical and
textual modes, Arena is busy in the background transcribing the whole model into SIMAN.
Since Arena generates correct SIMAN code and checks the model for syntactic errors
(graphical and textual), a large amount of initial debugging takes place automatically.

5.1 ARENA HOME SCREEN

An Arena home screen is shown in Figure 5.1.
The reader is encouraged to browse the Arena home screen, and examine the objects

to be mentioned in the sequel.

Project 
Bar

Animate 
Transfer 
Toolbar

Title Bar Run Interaction ToolbarIntegration Toolbar

Model Window Canvas
Flowchart View

Model Window Canvas 
Spreadsheet View

Standard 
Toolbar

Animate 
Toolbar

Menu Bar

Draw Toolbar

Debug
Bar

Status 
Bar

Figure 5.1 The Arena home screen.

66 Arena Basics



The Arena home screen has a Title bar with the model name at its top. Below the Title
bar is the Arena Menu bar, which consists of a set of general menus and Arena-specific
menus. Below the Menu bar is a set of Arena toolbars that can be displayed and hidden
by clicking the right mouse button on the background area of a specific toolbar. These
toolbars consist of buttons that support model building and running; note that some
toolbar buttons conveniently duplicate the functionality of certain menu options in
the Menu bar.

The bulk of the home screen is allocated to a model window canvas consisting of a
flowchart view and spreadsheet view. The user spawns modules and other objects, drags
them into the flowchart view canvas, and progressively builds a model from component
modules selected from the Project bar (on the left) with the aid of support functions.
Selecting a module in the flowchart view pops up a spreadsheet view (below the
flowchart view) that summarizes all module information and permits editing of the
associated data.

In addition to the Project bar, the user can also pop up (or hide) two additional bars
below the model window canvas. The Debug bar permits the user to track the evolution
of simulation runs, while the Status bar (below it) displays instructions and feedback
messages concerning user actions.

The Menu bar and the set of key Arena toolbars are described next. Consult
the online help for complete descriptions of all Arena bars (menu bars, toolbars, and
so on).

5.1.1 MENU BAR

The Arena Menu bar consists of a number of general menus—File, Edit, View,
Window, and Help—which support quite generic functionality. It also has the following
set of Arena-specific menus:

� The Tools menu provides access to simulation related tools and Arena parameters.
� The Arrange menu supports flowcharting and drawing operations.
� The Object menu supports module connections and submodel creation.
� The Run menu provides simulation run control. Its Setup. . . option opens a form that
permits the user to enter information, such as project parameters (name, analyst, date,
etc.), as well as replication parameters (length, warm-up period, etc.). It also has
options that provide VCR-type functionality to run simulation replications and run
control options to monitor entity motion, variable assignments, and so on.

5.1.2 PROJECT BAR

The Project bar lets the user access Arena template panels, where Arena modules,
SIMAN blocks, and various other objects cohabit. Template panels can be attached to
the Project bar by clicking the Attach button on the Standard toolbar. More specifically,
when the Attach button is clicked, a dialog box pops up on the screen and shows the
so-called .tpo files corresponding to each template panel. Choosing a .tpo file will attach
its template panel to the Project bar. The Arena template panels available to users are
as follows:

Arena Basics 67



� The Basic Process template panel consists of a set of basic modules, such as Create,
Dispose, Process, Decide, Batch, Separate, Assign, and Record.

� The Advanced Process template panel provides additional basic modules as well as
more advanced ones, such as Pickup, Dropoff, and Match.

� The Advanced Transfer template panel consists of modules that support entity transfers
in the model. These may be ordinary transfers or transfers using material-handling
equipment.

� The Reports template panel supports report generation related to various components in
a model, such as entities, resources, queues, and so on.

� The Blocks template panel contains the entire set of SIMAN blocks.
� The Elements template panel contains elements needed to declare model resources,
queues, variables, attributes, and some statistics collection.

In addition to the Arena template panels above, the following Arena template panels
from earlier versions are also supported:

� The Common template panel contains Arena modules such as Arrive, Server, Depart,
Inspect, and so on, as well as element modules such as Stats, Variables, Expressions,
and Simulate.

� The Support template panel contains a subset of frequently used SIMAN blocks.

The models we present in this book will mostly utilize modules from template panels
of Arena 10.0 and later versions.

5.1.3 STANDARD TOOLBAR

The Arena Standard toolbar contains buttons that support model building. An
important button in this bar is the Connect button, which supports visual programming.
This button is used to connect Arena modules as well as SIMAN blocks, and the
resulting diagram describes the flow of logical control. The Time Patterns Editor feature
consists of three buttons that allow the modeler to schedule the availability of resources
and their service rate. The Standard toolbar also provides VCR-style buttons to run an
Arena model in interrupt mode to trace its evolution. More details on this VCR-like
functionality are discussed in Section 6.3.1.

5.1.4 DRAW AND VIEW BARS

The Draw toolbar supports static drawing and coloring of Arena models. In a similar
vein, the View toolbar (not shown in Figure 5.1) assists the user in viewing a model.
Its buttons include Zoom In, Zoom Out, View All, and View Previous. These functions
make it convenient to view large models at various levels of detail.

5.1.5 ANIMATE AND ANIMATE TRANSFER BARS

The Animate toolbar is used for animation (dynamic visualization) of Arena
model objects during simulation runs. Animated objects include the simulation clock,
queues, monitoring windows for variables, dynamic plots, and histogram functions. The

68 Arena Basics



Animate Transfer toolbar is used to animate entity transfer activities, including materials
handling (see Section 13.2 for more details).

5.1.6 RUN INTERACTION BAR

The Run Interaction toolbar supports run control functions to monitor simulation
runs, such as access to SIMAN code and model debugging facilities. It also supports
model visualization, such as the Animate Connectors button that switches on and off
entity traffic animation over module connections. Because of this toolbar's fundamental
role in model testing, it will be revisited in Chapter 6.

5.1.7 INTEGRATION BAR

The Integration toolbar supports data transfer (import and export) to other applica-
tions. It also permits Visual Basic programming and design. A primer on Visual Basic
for Arena may be found in Appendix B.

5.1.8 DEBUG BAR

TheDebug toolbar supports debugging of Arena models by monitoring and controlling
the execution of a simulation run. It consists of two subwindows. The left subwindow can
be used in command mode to set breakpoints, assign variable values, observe watched
variables, and trace entity flows among modules. The right subwindow has tabs for
viewing future SIMAN events in the model, displaying attributes of the current active
entity, and watching user-defined Arena expressions. For more information, see Chapter 6.

5.2 EXAMPLE: A SIMPLE WORKSTATION

We now proceed to illustrate the basic features of Arena through a simple example.
Consider a single workstation consisting of a machine with an infinite buffer in front of
it. Jobs arrive randomly and wait in the buffer while the machine is busy. Eventually
they are processed by the machine and leave the system. Job interarrival times are
exponentially distributed with a mean of 30 minutes, while job processing times are
exponentially distributed with a mean of 24 minutes. This system is known in queueing
theory as the M/M/1 queue (Kleinrock 1975).

The steady-state behavior of this system has been well studied, and analytical
formulas have been derived for its main performance measures, such as distribution
of the number of jobs in the system and average waiting time in the buffer (see ibid.)
This example will compare the simulation statistics to their theoretical counterparts to
gauge the accuracy of simulation results. Specifically, we shall estimate by an Arena
simulation the average job delay in the buffer, the average number of jobs in the buffer,
and machine utilization.

Simulating the above workstation calls for the following actions:

1. Jobs are created, one at a time, according to the prescribed interarrival distribu-
tion. Arriving jobs are dispatched to the workstation.

Arena Basics 69



2. If the machine is busy processing another job, then the arriving job is queued in
the buffer.

3. When a job advances to the head of the buffer, it seizes the machine for
processing once it becomes available, and holds it for a time period sampled
from the prescribed processing-time distribution.

4. On process completion, the job departs the machine and is removed from the
system (but not before its contribution to the statistics of the requisite perform-
ance measures are computed).

A simple approach to modeling the workstation under study is depicted in Figure 5.2.

In this model, jobs (Arena entities) are created by the Create module Create 1. Jobs
then proceed to be processed in the Process module Process 1, after which they enter
the Dispose module, Dispose 1, for removal from the model. The graphic shaped like an
elongated T (called a T-bar) above the module Process 1 represents space for waiting
jobs (here, the workstation's buffer). The interarrival specification of the Create module
is shown in the dialog box of Figure 5.3.

The dialog box contains information on job interarrival time (Time Between Arrivals
section), batch size (Entities per Arrival field), maximal number of job arrivals (Max
Arrivals field), time of first job creation (First Creation field), and so on. The Type
pull-down menu in the Time Between Arrivals section offers the following options:

� Random (exponential interarrival times with mean given in the Value field)
� Schedule (allows the user to create arrival schedules using the Schedule module from
the Basic Process template panel)

Figure 5.3 Dialog box for a Create module.

Figure 5.2 A simple Arena model of an M/M/1 queue.

70 Arena Basics



� Constant (specifies fixed interarrival times)
� Expression (any type of interarrival time pattern specified by an Arena expression,
including Arena distributions)

The job processing mechanism (including priorities) is specified in the Process
module, whose dialog box is shown in Figure 5.4.

The Action field option, selected from the pull-down menu, is Seize Delay Release,
which stands for a sequence of SEIZE, DELAY, and RELEASE SIMAN blocks. SEIZE
and RELEASE blocks are used to model contention for a resource possessing a capacity
(e.g., machines). When resource capacity is exhausted, the entities contending for the
resource must wait until the resource is released. Thus the SEIZE block operates like a
gate between entities and a resource. When the requisite quantity of resource becomes
available, the gate opens and lets an entity seize the resource; otherwise, the gate bars
the entity from seizing the resource until the requisite quantity becomes available. Note
that the resource quantity seized should be an integer; otherwise Arena truncates it.

The processing (holding) time of a resource (Machine in our case) by an entity is
specified via the DELAY block within the Process module. For instance, the dialog box
of Figure 5.4 specifies that one unit of resource Machine be seized and held for
an exponentially distributed time with a mean of 24 minutes. If multiple resources
need to be seized simultaneously, all requisite resources are listed, and the holding time
clock is started only after all requisite resources listed become available. When at least
one of the listed resources is not available, arriving entities wait in a FIFO (First In First
Out) queue, ordered further by priorities (specified in the Priority field of the dialog
box). This discipline is called FIFO within priority classes, because higher-priority
entities precede lower-priority ones, but arrivals within a given priority class are ordered
FIFO.

Figure 5.4 Dialog box for a Process module.

Arena Basics 71



The Add button in a Process module (see Figure 5.4) is used to specify resources and
the resource quantities to be seized by an incoming entity. To this end, the Add button
pops up a Resources dialog box as shown in Figure 5.5.

Note, however, that the capacity of resources introduced in a Resources dialog box is
specified elsewhere, namely, in the Resource module spreadsheet (Figure 5.6).

This spreadsheet is accessible in the Basic Process template of the Project bar, and
is used to specify all resource capacities of an Arena model. The default capacity of
resources is 1. More details on the Resource module spreadsheet are deferred to
examples in the sequel.

The Dispose module implements an entity “sunset” mechanism, by simply discard-
ing entities that enter it. As such, the Dispose module serves as a system “sink,” thereby
counteracting the Createmodule, which serves as a system “source.” Note carefully that
in the absence of properly placed Dispose modules, the number of entities created in the
course of a simulation run can grow without bound, eventually exhausting available
computer memory (or a prescribed limit) and terminating the run (very likely crashing
the simulation program). A Dispose module is not necessary, however, when a fixed or
bounded number of entities are created and circulate in the system indefinitely.

Whenever an Arena model is saved, the model is placed in a file with a .doe
extension (e.g., mymodel.doe). Furthermore, whenever a model, such as mymodel.doe,
is checked using the Check Model option in the Run menu or any run option in it, Arena
automatically creates a number of files for internal use, including mymodel.p (program
file), mymodel.mdb (Access database file), mymodel.err (errors file), mymodel.opw
(model components file), and mymodel.out (SIMAN output report file). As these are
internal Arena files, the modeler should not attempt to modify them.

Figure 5.6 Resource module spreadsheet for specifying resource capacities.

Figure 5.5 Resources dialog box for specifying a resource.

72 Arena Basics



Run control functionality is provided by the Run pull-down menu (see Figure 5.1).
Selecting the Setup. . . option opens the Run Setup dialog box, which consists of
multiple tabs, each with its own dialog box. In particular, the Replication Parameters
tab permits the specification of the number of replications, replication length, and the
warm-up period. (A warm-up period is a simulation of an initial interval, designed to
“warm up” the system to a more representative state; this will be discussed in greater
detail in Chapter 9 when we discuss output analysis.) In this example, the model will be
simulated for 10,000 hours, with all other fields in the Run Setup dialog box retaining
their default values.

The end result of a simulation run is a set of requisite statistics, such as mean waiting
times, buffer size probabilities, and so on. These will be referred to as run results. Arena
provides a considerable number of default statistics in a report, automatically generated
at the end of a simulation run. Additional statistics can be obtained by adding statistics-
collection modules to the model, such as Record (Basic Process template panel) and
Statistic (Advanced Process template panel). However, when using SIMAN (the
Support template panel in the Old Arena Templates folder), the user has to include
additional blocks and elements in the model in order to affect statistics collection.
The simpler statistics-collection facilities in Arena are one of the advantages of Arena
over SIMAN. Subsequent chapters will provide additional information on statistics
collection.

The run results of a single replication of the workstation model from Figure 5.2 are
displayed in Figures 5.7 and 5.8.

Figure 5.7 displays the Resources section, which includes resource utilization.
The last three columns correspond to the half-width of the confidence interval (see
Section 3.10), minimum observation, and maximum observation, respectively, of the
corresponding statistics. The (insufficient) notation indicates that the number of obser-
vations is insufficient for adequate statistical confidence. Observe that the Number Busy
item refers to the number of busy units of a resource, while the Number Scheduled item
refers to resource capacity. The Instantaneous Utilization item pertains to utilization per

Figure 5.7 Resource statistics from a single replication of the simple workstation model.

Arena Basics 73



resource unit, namely, Number Busy divided by the Number Scheduled. We point out
that in the long run, individual resource utilizations approach this number.

Figure 5.8 displays the Queues section, which consists of customer-oriented statistics
(customer averages), such as mean waiting times in queues, as well as queue-oriented
statistics, such as time averages of queue sizes (occupancies). Additional sections in
an output report include Frequencies (probability estimates) and User Specified (any
customized statistics). For more details on Arena statistics collection and output
reporting, see Sections 5.4 and 5.5.

An examination of the run results (replication statistics) displayed in Figures 5.7
and 5.8 reveals that the machine utilization is about 81%. The average waiting time
in the machine buffer is about 107 minutes, with a 95% confidence interval of
107.09�16.42523 minutes, and a maximum of 807.06 minutes. The average number
of jobs in the buffer is 3.57 jobs, with the maximal buffer length observed being 35 jobs.

Figure 5.7 can be used for preliminary verification of the workstation model. For
example, we can use the classical formula r ¼ l=m (Kleinrock 1975) of machine
utilization to verify that the observed server utilization, r, is indeed the ratio of
the job arrival rate (l ¼ 1=30) and the machine-processing rate (m ¼ 1=24). Indeed,
this ratio is 0.8, which is in close agreement with the run result, 0.8097. Note that this
relation holds only approximately, due to the inherent variation in sampling simulation
statistics. Other verification methods will be covered in some detail in Chapter 8.

5.3 ARENA DATA STORAGE OBJECTS

An important part of the model building process is assignment and storage of data
supplied by the user (input parameters) or generated by the model during a simulation
run (output observations). To this end, Arena provides three types of data storage
objects: variables, expressions, and attributes. Variables and expressions can be intro-
duced and initialized via the Variable and Expression spreadsheet modules, accessible
from the Basic Process template and Advanced Process template, respectively, in the
Project bar.

Figure 5.8 Queue statistics from a single replication of the simple workstation model.

74 Arena Basics



5.3.1 VARIABLES

Variables are user-defined global data storage objects used to store and modify state
information at run initialization or in the course of a run. Such (global) variables are
visible everywhere in the model; namely, they can be accessed, examined, and modified
from every component of the model. In an Arena program, variables are typically
examined in Decide modules and modified in Assign modules. Unlike user-defined
variables, certain predefined Arena (system) variables are read-only (i.e., they may only
be examined to decide on a course of action or to collect statistics), and cannot
be assigned a new value by the user; the system is solely responsible for changing
these values. For instance, the variable NQ(Machine_Q) stores the current value of the
number of entities in the queue called Machine_Q. Similarly, the variable NR(Machine)
stores the number of busy units of the resource called Machine. Other important Arena
variables are TNOW, which stores the simulation run's current time (simulation clock),
and TFIN, which stores the simulation completion time. A list of all Arena variables
may be found in the Arena Variables Guide or in the Arena Help facility (see Section
6.6). Recall that a selected partial list appears in Appendix A.

5.3.2 EXPRESSIONS

Expressions can be viewed as specialized variables that store the value of an associ-
ated formula (expression). They are used as convenient shorthand to compute mathemat-
ical expressions that may recur in multiple parts of the model. Whenever an expression
name is encountered in the model, it is promptly evaluated at that point in simulation
time, and the computed value is substituted for the expression name. Variables of any
kind (user defined or system defined) as well as attributes may be used in expressions.

5.3.3 ATTRIBUTES

Attributes are data storage objects associated with entities. Unlike variables, which are
global, attributes are local to entities in the sense that each instance of an entity has its
own copy of attributes. For example, a customer's arrival time can be stored in a customer
attribute to allow the computation of individual waiting times. When arrivals consist
of multiple types of customer, the type of an arrival can also be stored in a customer
entity’s attribute to allow separate statistics collection for each customer type.

5.4 ARENA OUTPUT STATISTICS COLLECTION

As mentioned before, the end product of a simulation is a set of statistics that estimate
performance measures of the system under study. Recall that such statistics can be
classified into the two standard categories of time averages and customer averages
(see, e.g., Section 2.3). More specifically, time averages are obtained by dividing the
area under the performance function (e.g., number in the system, periods of busy and
idle states, etc.) by the elapsed simulation time. Customer average statistics are averages
of customer-related performance values (e.g., customer waiting times in queues).

Arena Basics 75



Arena provides two basic mechanisms for collecting simulation output statistics: one
via the Statistic module, and the other via the Record module. Time average statistics
are collected in Arena via the Statistic module, while customer-average statistics must
be collected via a Record module, and (optionally) specified in the Statistic module.
Arena statistics collection mechanisms are described next in some detail.

5.4.1 STATISTICS COLLECTION VIA THE STATISTIC MODULE

Detailed statistics collection in Arena is typically specified in the Statistic module
located in the Advanced Process template panel. Selecting the Statistic module opens a
dialog box. The modeler can then define statistics as rows of information in the
spreadsheet view that lists all user-defined statistics. For each statistic, the modeler
specifies a name in the Name column, and selects the type of statistic from a drop-down
list in the Type column. The options are as follows:

Time-Persistent statistics are simply time average statistics in Arena terminology.
Typical Time-Persistent statistics are average queue lengths, server utilization,
and various probabilities. Any user-defined probability or time average of an
expression can be estimated using this option.

Tally statistics are customer averages, and have to be specified in a Record module
(see Section 5.4.2) in order to initiate statistics collection. However, it is advisable
to include the definition in the Statistic module as well, so that the entire set of
statistics can be viewed in the same spreadsheet for modeling convenience.

Counter statistics are used to keep track of counts, and like the Tally option, have to
be specified in a Record module (see Section 5.4.2) in order to initiate statistics
collection.

Output statistics are obtained by evaluating an expression at the end of a simulation
run. Expressions may involve Arena variables such as DAVG(S) (time average of
the Time-Persistent statistic S), TAVG(S) (the average of Tally statistic S), TFIN
(simulation completion time), NR(), NQ(), or any variable from the Arena Vari-
ables Guide.

Frequency statistics are used to produce frequency distributions of (random) expres-
sions, such as Arena variables or resource states. This mechanism allows users to
estimate steady-state probabilities of events, such as queue occupancy or resource
states.

Note that all statistics defined in the Statistic module are reported automatically in
the User Specified section of the Arena output report (see Section 5.5). Furthermore,
Queue and Resource Time-Persistent statistics will be automatically computed and
need not be defined in the Statistic module.

5.4.2 STATISTICS COLLECTION VIA THE RECORD MODULE

As mentioned in Section 5.2, the Record module is used to collect various statistics.
Any statistics related to customer averages or customer observations, such as Tally and
Counter, have to be specified in a Record module. Figure 5.9 displays a dialog box for a
Record module, listing all types of statistics as options in the Type field.

76 Arena Basics



These options are as follows:

1. The Count option maintains a count with a prescribed increment (positive or
negative). The increment is quite general: it may be defined as any expression or
function andmay assume any real value. The corresponding counter is incremented
whenever an entity enters the Record module.

2. The Entity Statistics option provides information on entities, such as time and
costing/duration information.

3. The Time Interval option tallies the difference between the current time and the
time stored in a prescribed attribute of the entering entity.

4. The Time Between option tallies the time interval between consecutive entries of
entities in the Record module. These intervals correspond to interdeparture times
from the module, and the reciprocal of the mean interdeparture times is the
module’s throughput.

5. Finally, the Expression option tallies an expression whose value is recomputed
whenever an entity enters the Record module.

Note that except for the Entity Statistics option, all the options above are implemented
in SIMAN via COUNT or TALLY blocks.

5.5 ARENA SIMULATION AND OUTPUT REPORTS

An Arena model run can be initiated and managed in two ways:

� Via the VCR-like buttons on the Arena Standard toolbar
� Via corresponding options in the Run pull-down menu bar

Refer to Section 6.3 for more details.
Standard Arena output reports provide summaries of simulation run statistics, as

requested by the modeler implicitly or explicitly. Accordingly, Arena output reports fall
into two categories:

Automatic reports. A number of Arena constructs, such as entities, queues, and
resources, will automatically generate reports of summary statistics at the end of

Figure 5.9 Types of statistics collected by the Record module.

Arena Basics 77



a simulation run. Those statistics are implicitly specified by the modeler simply
by dragging and dropping those modules into an Arena model, and no further
action is required of the user.

User-specified reports. Reports on additional statistics can be obtained by explicitly
specifying statistics collection via the Statistic module (Advanced Process
template panel) and the Record module (Basic Process template panel). Recall
that the Statistic module is specified in a spreadsheet view, while the Record
module must be placed in the appropriate location in the model.

To request a formatted report, the user opens the Reports panel in the Project bar to
display a list of report options that correspond to various types of statistics as follows:

� Entities reports automatically provide various entity counts.
� Frequencies reports provide time averages of expressions (including probabilities as
a special case). The expression must be specified in a Statistic module with the
Frequency option selected.

� Processes reports provide statistics associated with each Process module. These
include incoming and outgoing entity counts, average service times, and average
delays. Time-oriented statistics (e.g., delays) include the average, half-width of 95%
confidence intervals, and minimal and maximal observed values. The half-width value
is not displayed if the observations are correlated or if there are insufficient data (in
which case Arena prints (insufficient) in the corresponding field).

� Queues reports provide statistics for each queue in the model, such as average queue
delay and average queue size. Additional statistics include the half-width of the 95%
confidence interval, and minimal and maximal observed values.

� Resources reports provide statistics for each resource in the model, such as utilization,
average number of busy resource units, and number of times seized.

� User Specified reports are generated in response to explicit modeler requests for
statistics collection in the Statistic module or Record modules (see Section 5.4). These
include any Time-Persistent, Tally, Count, Frequency, and Output statistics.

Clicking on a report option in the Reports template panel of the Project bar prompts
Arena to format the corresponding report and display it in a window. The top of that
window contains VCR-like navigation buttons allowing the user to navigate report pages.
Any number of options may be selected (sequentially), and the resultant report generated
by Arena will consist of corresponding report sections. The Toggle Group Tree button at
the top of the report window pops up a Preview panel to aid in navigating report sections.

5.6 EXAMPLE: TWO PROCESSES IN SERIES

This section presents a two-stage manufacturing model with two processes in series.
Jobs arrive at an assembly workstation with exponentially distributed interarrival times
of mean 5 hours. We assume that the assembly process has all the raw materials
necessary to carry out the operation. The assembly time is uniformly distributed between
2 and 6 hours. After the process is completed, a quality control inspection is performed,
and past data reveal that 15% of the jobs fail any given inspection and go back to
the assembly operation for rework (jobs may end up going through multiple
reworks until they pass inspection). Jobs that pass inspection go to the next stage, which

78 Arena Basics



is a painting operation that takes 3 hours per job. We are interested in simulating the
system for 100,000 hours to obtain process utilizations, average number of reworks per
job, average job waiting times, and average job flow times (elapsed times experienced by
job entities). Figure 5.10 depicts the corresponding Arena model and a snapshot of its
state.

In this Arena model, entities represent jobs that are created by the Create module
Job Arrivals, and enter the Assign module Arrival Time, where their arrival time is
assigned to an attribute called ArrTime. Job entities then proceed to the Process module
Assembly, where they undergo assembly. Next, assembled job entities go through
inspection in the Decide module Quality Check, and those needing rework are routed
to the Assign module Number of Reworks to record the number of reworks per job, and
then back to module Assembly. Job entities that pass inspection proceed to be painted in
the Processmodule Painting, which completes the manufacturing operation. Completed
job entities go through Record modules Flow Time and Reworks per Job to collect
statistics of interest. Finally, job entities enter the Dispose module Completed, where
they are removed from the model.

The numbers at bottom right of the module icons display the number of entities that
departed from the module. The icons above the module Assembly represent jobs waiting
in the Assembly queue, called Assembly.Queue. The Variable window at bottom left of
the figure displays the number of the aforementioned jobs. Job icons and data displayed
on the module are dynamic, that is, they change as the simulation run unfolds in time. For
example, this snapshot indicates that at the time it was taken, 28 jobs were created, 20 jobs
were completed, 7 jobs were waiting to be assembled, and 1 job was being assembled.

We next proceed to explain the modules used in the model in more detail (note that
the default module names have been replaced here by more expressive names relevant
to the problem at hand).

The arrival time assignment is carried out in the Assign module Arrival Time, whose
dialog boxes are shown in Figure 5.11.

Figure 5.10 Arena model of two processes in series.

Arena Basics 79



Note that the bottom dialog box appears first on the screen, while clicking on an
item in its Assignments field pops up the top dialog box for entering a value for the
corresponding variable or attribute.

The module Assembly in Figure 5.10 is, in fact, a Process module that models the
assembly operation with the appropriate job assembly time specification. Recall that
the T-bar above the Process icon represents an animated Queue object for holding
entities waiting for an opportune condition (e.g., to seize a resource). Note that the T-bar
is displayed in a Process module only if the module contains a Seize option. The dialog
box of the module Assembly in Figure 5.10 is displayed in Figure 5.12.

A Decide module, called Quality Check, follows the assembly operation, represent-
ing a quality control check. The Decide dialog box is shown in Figure 5.13. This
module executes entity transfers, which may be probabilistic or based on the truth or
falsity of some logical condition. Our example assumes that transfer times between
processes are negligible, and therefore instantaneous. Here, we have a two-way
probabilistic branching that splits the incoming stream of job entities into two outgoing
streams:

With probability 0.85, an incoming job is deemed “good” (passed inspection), and
is forwarded to the Process module, called Painting.

With probability 0.15 an incoming job is deemed “bad” (failed inspection), and
is routed back to the Process module, called Assembly, for rework.

For convenience, the Type field provides separate options for simple two-way
branching, which is the most common, as well as general n-way branching, which
is more complex. In n-way branching, this module has multiple exits, exactly one

Figure 5.11 Dialog boxes for assigning an arrival time to a job entity’s attribute.

80 Arena Basics



of which is designated the else branch and serves for default exits of entities from the
module. More specifically, in probabilistic branching, a branch is taken with its
associated probability, and the else branch automatically complements the exit prob-
abilities, ensuring that they sum to 1. In conditional branching, the entity exits at the
first branch whose condition evaluates to true, and if all conditions are false, the entity
exits at the else branch.

Job entities that fail inspection enter the Assign module, called No of Reworks, where
the job attribute, called Total Reworks, is incremented by the expression Total Reworks
þ 1. The dialog box for this module is shown in Figure 5.14.

Job entities departing from the Painting module enter two Record modules called
Flow Time and Reworks per Job, to record their flow times and total number of reworks
per job, respectively. In our example, the flow time is the difference between the job

Figure 5.13 Dialog box of the Decide module Quality Check with a two-way probabilistic branching.

Figure 5.12 Dialog box of the Process module Assembly.

Arena Basics 81



departure time from the Painting module and the job’s arrival time at module Assembly.
Note that the job flow time includes any delays in queues as well as processing times.
The average flow time is a customer average (Time Interval statistic), computed
internally by a TALLY block, which can be verified by accessing the corresponding
.mod file. The dialog box of the Record module is shown in Figure 5.15.

In the next Record module, the expression consisting of the job entity’s attribute
Total Reworks is tallied in the Record module called Reworks per Job, as shown in the
dialog box of Figure 5.16.

Figure 5.14 Dialog box of the Assign module No of Reworks.

Figure 5.15 Dialog box of a Record module tallying job flow times.

Figure 5.16 Dialog box of the Record module tallying the number of reworks per job.

82 Arena Basics



Finally, job entities proceed to be disposed of in the Dispose module, called
Completed. A single replication of the model was run for 100,000 hours, and the results
are displayed in Figures 5.17, 5.18, and 5.19.

Figure 5.17 Resource statistics for the manufacturing model (two processes in series).

Figure 5.18 Queue statistics for the manufacturing model (two processes in series).

Figure 5.19 Flow time statistics for the manufacturing model (two processes in series).

Arena Basics 83



Figure 5.17 shows that the utilization estimates of the Assembler resource at the
Assembly module and the Painter resource at the Painting module are 0.94 and 0.59,
respectively. These estimates in Figure 5.17 correspond to a heavy traffic regime in the
former and a medium traffic regime in the latter. These result in long average buffer
delays and large average buffer occupancy in the assembly process, and in short average
buffer delays and low average buffer occupancy in the painting process as shown in
Figure 5.18. Finally, the Tally section of the User Specified output in Figure 5.19
displays not only averages, but also the corresponding 95% confidence interval half-
widths, as well as the minimal and maximal observations for the number of reworks and
flow time per job. Note that some jobs underwent as many as four reworks, while the
average number of reworks is just 0.18, indicating a low level of reworks. The average
flow time (49.5252 hours) is moderately longer than the sum of the average delays in
the Assembly and Painting queues (35.42 hours) and the sum of average processing
times there (7 hours), due to additional rework performed at module Assembly.

5.7 EXAMPLE: A HOSPITAL EMERGENCY ROOM

This section presents a more detailed model—in this case, of an emergency room in a
small hospital—to further illustrate the power of simulation modeling.

5.7.1 PROBLEM STATEMENT

The emergency room of a small hospital operates around the clock. It is staffed by
three receptionists at the reception office, and two doctors on the premises, assisted by
two nurses. However, one additional doctor is on call at all times; this doctor is
summoned when the patient workload up-crosses some threshold, and is dismissed
when the number of patients to be examined goes down to zero, possibly to be summoned
again later. Figure 5.20 depicts a diagram of patient sojourn in the emergency room
system, from arrival to discharge.

Patients arrive at the emergency room according to a Poisson process with mean
interarrival time of 10 minutes. An incoming patient is first checked into the emergency
room by a receptionist at the reception office. Check-in time is uniform between 6 and

Treatment
By Nurse

Check Out

Discharged
Patients

Arriving
Patients

Non
Critical

Critical

Check
In Triage

Treatment
By Doctor

Figure 5.20 Patient sojourn in a hospital emergency room system.

84 Arena Basics



12 minutes. Since critically ill patients get treatment priority over noncritical ones,
each patient first undergoes triage in the sense that a doctor determines the criticality
level of the incoming patient in FIFO order. The triage time distribution is triangular
with a minimum of 3 minutes, a maximum of 15 minutes, and a most likely value of 5
minutes. It has been observed that 40% of incoming patients arrive in critical condition,
and such patients proceed directly to an adjacent treatment room, where they wait FIFO
to be treated by a doctor. The treatment time of critical patients is uniform between
20 and 30 minutes. In contrast, patients deemed noncritical first wait to be called by a
nurse who walks them to a treatment room some distance away. The time spent to reach
the treatment room is uniform between 1 and 3 minutes and the treatment time by a
nurse is uniform between 3 and 10 minutes. Once treated by a nurse, a noncritical
patient waits FIFO for a doctor to approve the treatment, which takes a uniform time
between 5 to 10 minutes. Recall that the queueing discipline of all patients awaiting
doctor treatment is FIFO within their priority classes, that is, all patients wait FIFO for
an available doctor, but critical patients are given priority over noncritical ones.
Following treatment by a doctor, all patients are checked out FIFO at the reception
office, which takes a uniform time between 10 and 20 minutes, following which the
patients leave the emergency room.

The performance metrics of interest in this problem are as follows:

� Utilization of the emergency room staff by type (doctors, nurses, and receptionists)
� Distribution of the number of doctors present in the emergency room
� Average waiting time of incoming patients for triage
� Average patient sojourn time in the emergency room
� Average daily throughput (patients treated per day) of the emergency room

To estimate the requisite statistics, the hospital emergency room was simulated for a
period of 1 year.

5.7.2 ARENA MODEL

Having studied the problem statement, we now proceed to construct an Arena model
of the system under study. Figure 5.21 depicts an Arena model of the emergency room
system, where modules are labeled with their type to facilitate understanding.

The model is composed of two segments:

� Emergency room segment. This logic (top segment of Figure 5.21) keeps track of
model entities (patients in our case), whose specification can be viewed and edited in
the spreadsheet view of the Entity module from the Basic Process template panel.
In this part of the model logic, a patient is generated and then moves through the
emergency room processing, from admission to treatment to discharge.

� On-call doctor segment. This logic (bottom segment of Figure 5.21) controls the
periodic summoning and dismissal of the extra doctor on call. This is achieved by a
perpetually circulating single entity, called administrator in this model, which triggers
the summoning and dismissal of the on-call doctor.

In addition, input and output data logic is interspersed in the two segments
above. This logic consists of input/output modules (corresponding to variables,
resources, statistics, etc.) that set input variables, compute statistics, and generate

Arena Basics 85



summary reports. We assume that the emergency room is initially empty and the on-call
doctor is not present.

We next proceed to examine the Arena model logic of Figure 5.21 in some detail,
including the role of common modules from the Basic Process and Advanced Process
template panels.

5.7.3 EMERGENCY ROOM SEGMENT

Starting at top left and moving to the right in the emergency room segment, the first
module is the Create module, called Patient Arrivals, which generates incoming
patient entities. Figure 5.22 displays the dialog box for this module, showing that
patients arrive according to a Poisson process with exponential interarrival times of
mean 10 minutes.

An incoming patient entity then enters the Assign module, called Record Arrival
Time, where its arrival time is recorded in its ArrTime attribute. The value in this
attribute will be carried by the patient entity throughout its sojourn in the emergency
room system, and will be used later to compute its sojourn time (total time in the
system).

Figure 5.21 Arena model for the emergency room system.

86 Arena Basics



The patient entity then promptly attempts to check into the emergency room by entering
the Process module, called Reception, whose dialog box is depicted in Figure 5.23.

At this juncture, the patient entity waits in line (if any) to seize a receptionist for a
uniform check-in processing time between 6 and 12 minutes, after which the receptionist
is released and becomes available to other patient entities. Note that the Process module
uses the Seize Delay Release option in the Action field, since receptionists are modeled as

Figure 5.22 Dialog box of the Create module Patient Arrivals.

Figure 5.23 Dialog box of the Process module Reception.

Arena Basics 87



a resource, and the problem calls for computing expected waiting times and utilizations of
the check-in operation. Once check-in is completed, the patient entity proceeds to the
Process module, called Triage, to undergo a triage checkout by a doctor. Figure 5.24
shows that a patient entity waits for a doctor to become available, and then undergoes a
random triage time, drawn from the triangular distribution between 3 and 15 minutes,
with a most likely time of 5 minutes.

After the triage delay is completed, the triage doctor is released and the patient entity
proceeds to determine its level of criticality. To this end, it enters the Decide module,
called Critical?, whose dialog box is depicted in Figure 5.25.

In Figure 5.25, the 2-Way by Chance option specifies a two-way random branching
based on the result of a random experiment, and the Percent True field indicates that
40% of the time the result is true (so 60% of the time the result is false). Accordingly,
the corresponding branches emanating from the Decide module Critical? in Figure 5.21
are labeled true and false. Thus, a patient entity emerging from module Critical? takes
either the true branch or the false branch as follows:

� The true branch indicates that the patient is entity deemed critical. Such a patient entitywill
proceed to be treated by a doctor. Recall that this applies to 40% of the patients.

� The false branch indicates that the patient entity is deemed noncritical. Such a patient
entity will proceed to be treated by a nurse, and then will be inspected by a doctor, but
at a lower priority than any critical patient entity.

Figure 5.24 Dialog box of the Process module Triage.

88 Arena Basics



The criticality level of patient entities is indicated in their Criticality attribute: a value
of 1 codes for a critical patient, while a value of 0 codes for a noncritical patient.
Accordingly, critical patient entities exiting module Critical? proceed to the Assign
module, calledMark Critical, where their Criticality attribute is set to 1, as shown in the
dialog box of Figure 5.26.

In contrast, noncritical patient entities are automatically marked as such, since the
default value of the Criticality attribute is 0 (recall that this is the Arena convention for
all attributes). Such patient entities exiting module Critical? proceed to the Seize
module, called Waiting Room, whose dialog box is depicted in Figure 5.27.

In this module, noncritical patient entities wait FIFO in a queue, calledWaiting Room.
Queue, for a nurse until one becomes available. Once a nurse is seized, the patient entity
passes through two Delay modules in succession: module Move to Treatment Room
models the uniformly distributed time between 1 and 3 minutes that it takes the nurse to
walk a (noncritical) patient to a treatment room, while module Treatment by Nurse
models the uniformly distributed time between 3 and 10 minutes that it takes the nurse
to treat a patient. Figure 5.28 depicts the dialog boxes of these two Delay modules.

Having completed its treatment, the noncritical patient entity releases the nurse by
entering the Release module, called Release Nurse, whose dialog box is shown in
Figure 5.29.

At this point the paths of critical and noncritical patient entities converge, and all
patient entities, both critical and noncritical, attempt to enter the Seizemodule, calledWait
for Doctor. Note that an individual Seize module has the same functionality as the Seize

Figure 5.25 Dialog box of the Decide module Critical? for determining patient criticality.

Figure 5.26 Dialog box of the Assign module Mark Critical for marking critical patients.

Arena Basics 89



Figure 5.27 Dialog box of the Seize module Waiting Room.

Figure 5.28 Dialog boxes of the Delay modules Move to Treatment Room (left) and Treatment by Nurse
(right).

Figure 5.29 Dialog box of the Release module Release Nurse.

90 Arena Basics



option in a Processmodule, but with the added flexibility that the modeler can insert extra
logic between the Seize and Delay functionalities (this is impossible in a Process
module). The dialog box of the Wait for Doctor module is shown in Figure 5.30.

All patient entities wait in the queue, called Wait for Doctor.Queue to seize
an available doctor, with critical patient entities receiving priority in treatment over
noncritical ones. To this end, all patient entities queue up FIFO within priority classes,
that is, all critical patient entities precede all noncritical ones, but each patient category
is queued in the order of arrival. This is achieved by specifying the appropriate queueing
discipline in the Queue module, whose spreadsheet view is shown in Figure 5.31.

Each row in the spreadsheet specifies a queue in the Arena model, while columns
Type and Attribute Name specify jointly the queueing discipline. Observe that all rows,
except row 4, specify the ordinary FIFO discipline, while row 4 implicitly specifies
the FIFO within priority classes discipline. More specifically, patient entities in Wait
for Doctor.Queue queue up FIFO, but their queueing priority is determined by their
Criticality attribute (the higher the value of Criticality, the higher the priority).

Figure 5.31 Spreadsheet view of the Queue module specifying queueing disciplines.

Figure 5.30 Dialog box of the Seize module Wait for Doctor.

Arena Basics 91



Once a doctor becomes available, the patient entity at the head of the line seizes that
doctor and proceeds to the Delay module, called Treatment by Doctor, whose dialog
box is depicted in Figure 5.32.

Recall that the treatment duration of a patient depends on its level of criticality, namely,
on its Criticality attribute: for critical patients, the duration is uniform between 20 and
30 minutes, while for noncritical ones it is uniform between 5 and 10 minutes only.
This dependence is captured in the Delay Time field of Figure 5.32 by the expression

(Criticality ¼¼ 1)�UNIF(20, 30)þ (Criticality ¼¼ 0)�UNIF(5, 10):

Recall that (Criticality¼¼1) and (Criticality¼¼0) are logical expressions (predicates)
that return 1 or 0 according to logical value of the expression in parentheses, which
evaluates to true or false, respectively. Thus, for critical patients the expression above
reduces to UNIF(20,30), whereas for noncritical ones it reduces to UNIF(5,10), which
are the requisite distributions.

Following treatment by a doctor, all patient entities proceed to the Release module,
called Release Doctor, where the doctor administering the treatment is released to other
patients. Next, all patient entities are discharged from the emergency room. To this end,
they enter the Process module, called Check Out, whose dialog box is shown in Figure
5.33. The checkout procedure requires a patient to seize a receptionist for a uniform
time between 10 and 20 minutes, before releasing that receptionist.

Finally, patient entities enter two statistics-collecting Record modules, called Patient
Sojourn Time and Patient Departures, respectively, whose dialog boxes are depicted in
Figure 5.34.

The first Record module (left) tallies the total time that patient entities spend in the
emergency room, fromarrival todischarge (sojourn time)—ameasureofpatient satisfaction.
This statistic is specified in the Type field by the Time Interval option, and is computed as
Tnow—ArrTime, namely, the difference between the current time and the patient's arrival
time as recorded in its ArrTime attribute. The second Recordmodule (right) simply counts
the number of patient entities discharged from the emergency room—a measure of
emergency room productivity. This statistic is specified in the Type field by the Count
option, and is computed by incrementing a counter variable, calledPatient Departures (see
theCounterName field), whenever a patient entity enters thismodule.Note that themodeler
can access the current value of any counter via the Arena variable NC(counter_name).

Figure 5.32 Dialog box of the Delay module Treatment by Doctor.

92 Arena Basics



At long last, patient entities enter the Dispose module, called Leave Facility, after
which they are removed from the model.

5.7.4 ON-CALL DOCTOR SEGMENT

The logic of this segment is controlled by a single circulating entity, dubbed
administrator. The idea is to have the administrator modulate the number of doctors
in the emergency room, depending on the number of patients in triage. Recall that
emergency room doctors are a resource, so the administrator need only change this
resource capacity as prevailing conditions change in the triage operation.

Figure 5.34 Dialog boxes of the Record modules Patient Sojourn Time (left) and Patient Departures (right).

Figure 5.33 Dialog box of the Process module Check Out.

Arena Basics 93



First, a single administrator entity is created at time 0, as shown in the dialog box of
the Create module, called Dispatcher, in Figure 5.35.

Note that this module simply creates precisely one entity of type Administrator at
time 0. Consequently, the arrival stream specified by this module stops after the first
entity is created, and therefore the interarrival time specification in the Type and Value
fields is immaterial.

Since at this point the emergency room does not have the on-call doctor on duty, the
administrator next watches for the condition that triggers summoning of the on-call
doctor. To this end, the administrator enters the Hold module, called Hold Until Triage
Summons On-Call Doctor, whose dialog box is shown in Figure 5.36.

The administrator entity is held in this module (actually in a queue contained in this
module as indicated by the Queue Name field) until the number of patients in triage
exceeds three, signaling that the time has come to summon the on-call doctor. To watch for
this condition, the Scan for Condition option is selected in the Type field, and the condition
triggering the summoning of the on-call doctor is specified in the Condition field as

NQ (Triage:Queue) > 3,

where NQ(Triage.Queue) is the Arena variable that holds the current number of entities
in the queue. As soon as this condition becomes true, the administrator entity proceeds

Figure 5.35 Dialog box of the Create module Dispatcher.

Figure 5.36 Dialog box of the Hold module Hold Until Triage Summons On-Call Doctor.

94 Arena Basics



to perform the action of summoning the on-call doctor by entering the Alter module,
labeled Summon Extra Doctor, whose dialog box is shown in Figure 5.37.

Note that this module is called a block here, which is Arena's old term for module.
To provide backward compatibility with older versions, Arena maintains a set of old blocks,
which may be selected from the Blocks template panel, Alter included. The Alter block is
used to alter model parameters. In our model, the administrator entity entering this block
causes the Doctor resource pool to be incremented by 1, as evidenced by the expression in
theResources field above. This has the effect of increasing the available number of doctors in
the emergency room by 1 (note that doctors do not have individual identities in our model).

The administrator entity next watches for the condition that triggers dismissal of the
on-call doctor. To this end, it proceeds to the Hold module, called Hold Until Triage
Dismisses On-Call Doctor, whose dialog box is depicted in Figure 5.38.

Figure 5.37 Dialog box of the Alter block Summon Extra Doctor.

Figure 5.38 Dialog box of the Hold module Hold Until Triage Dismisses On-Call Doctor.

Arena Basics 95



In a vein similar to the summoning action, the administrator entity is held in this
module until the number of patient entities in triage drops to 0, signaling that the time
has come to dismiss the on-call doctor, as evidenced by the Condition field expression.

NQ (Triage:Queue) ¼¼ 0:

As soon as this condition becomes true, the administrator entity proceeds to perform the
action of dismissing the on-call doctor by entering the Alter module, labeled Dismiss
Extra Doctor, whose dialog box is shown in Figure 5.39.

Here the effect of the administrator entity is to reduce the capacity of the Doctor
resource by 1 (note that a resource capacity cannot be reduced to a negative value).

Finally, the administrator entity loops back to the Hold module, called Hold Until
Triage Summons On-Call Doctor, to start the next cycle of summoning/dismissing the
on-call doctor. Thereafter, the administrator entity will continue traversing this loop
indefinitely throughout a simulation run.

5.7.5 STATISTICS COLLECTION

In this model, statistics are collected using various methods as follows:

� Using Record modules
� Default collection of statistics by Arena
� Specifying statistics in the Statistic module

Statistics collection viaRecordmodules was described in Section 5.4. Default collection
of statistics is achieved in Queue and Resource spreadsheets by checking the last column
(e.g., see Figure 5.31), and this is the default Arena setting. Finally, we illustrate statistics
collection via the Statistic module, whose spreadsheet view is depicted in Figure 5.40.

Figure 5.39 Dialog box of the Alter block Dismiss Extra Doctor.

96 Arena Basics



This spreadsheet specifies collection of the distribution (histogram) of the number of
doctors in the emergency room and the daily facility throughput.

5.7.6 SIMULATION OUTPUT

Figures 5.41 through 5.43 display reports of the results of a simulation run of length
525,600 minutes (1 year of emergency room operation).

Figure 5.41 displays statistics of patient sojourn time and patient flow through the
emergency room. Here, the Tally section indicates that the tallied patient sojourn times,
from patient arrival to patient discharge, last on average some 108 minutes, and the
half-width of their 95% confidence interval is 2.3 minutes. However, the sojourn times
have considerable variability as indicated by the minimal and maximal observed
sojourn times. The Counter section records that the emergency room processed over
52,000 patients during its 1-year operation, while the Output section shows that the
daily throughput was about 144 patients per day.

Figure 5.40 Spreadsheet view of the Statistic module specifying frequency and output statistics.

Figure 5.41 Statistics of patient sojourn time and patient flow in the emergency room model.

Arena Basics 97



Figure 5.42 displays utilization statistics of human resources in the emergency room,
which consist of doctors, nurses, and receptionists. Recall that the numbers of nurses
and receptionists at the emergency room are fixed throughout the simulation horizon,
whereas the number of doctors is variable due to the periodic summoning and dismissal
of the doctor on call.

The Usage section in the Resources segment displays utilization-related statistics
of emergency room (human) resources, taking into account the fact that the number of
available resources (in this case doctors) may vary. These utilization statistics are
computed over the simulation horizon as follows:

� The Inst Util column computes the time averages of instantaneous utilization. The
instantaneous utilization of a resource is the fraction of busy resources to total available
resources at any given time. For example, the instantaneous utilization of doctors is
very high (95%), and would have been even higher had an on-call doctor not been
available.

� The Num Busy column computes the time average of the number of busy resources.
� The Num Sched column computes the time average of the number of available
resources.

� The Num Seized column computes the number of times a resource is seized.
� The Sched Util column computes the ratio of Num Busy to Num Sched.

Figure 5.42 Statistics of human resource utilization in the emergency room model.

98 Arena Basics



The Frequencies segment displays distribution-related statistics of the random process
of the number of busy doctors over time. These statistics are computed over the
simulation horizon as follows:

� The Distribution of Doctors column lists all values (states) that can be assumed by the
number of busy doctors.

� The Number Obs column tallies the observed frequency of each state listed.
� The Average Time column computes the average holding time in each state listed
(i.e., average time spent in a state).

� The Standard Percent column computes the ratio of time spent in a state to the total
simulation horizon and displays the ratio as a percentage. Note that these numbers
provide an estimate of the probability distribution of the number of busy doctors.

� The Restricted Percent column is similar to the Standard Percent column except that
some states may be excluded. Note that these numbers provide an estimate of the
conditional probability distribution of the number of busy doctors, given that some
states are excluded. Observe that in our case the two columns are identical since no
exclusion was specified (in the Statistic module spreadsheet).

An examination of the Frequencies table clearly shows that the emergency room
doctors are severely overworked! Indeed, this observation is consistent with the high
doctor utilization in the Usage section.

Figure 5.43 displays waiting line statistics in the emergency room in terms of
average waiting times and average number of patients in lines.

Figure 5.43 Waiting lines statistics in the emergency room model.

Arena Basics 99



These include two types of statistics:

� Patient waiting times at various stages of their sojourn in the emergency room.
� The on-call doctor’s state (on duty and off duty), which are computed from waiting
times of the administrator entity.

The Time section shows that the averages of waiting times in the reception queue
and the checkout queue are comparable and relatively significant at around 7 minutes.
Indeed the utilization of the receptionists is quite high at 80% (see Figure 5.42).
However, the corresponding averages of patients waiting in those lines, shown in the
Other section, are reasonable (under one person on average). In a similar vein, average
patient waiting times in the triage queue and for treatment by a doctor are high (17 minutes
and 25 minutes, respectively), and lead to higher average numbers of waiting patients in
those lines. This is an expected consequence of the fact that doctors are overworked.
By contrast, average waiting times for nurses in the waiting room is very low (less than
a minute), as is the average number of such patients (just 0.03). This fact is borne out
by the low utilization of nurses (26%) in Figure 5.42. Finally, the averages of times on
duty and off duty of the on-call doctor show that the former is about half the latter. Thus,
the on-call doctor is not heavily utilized.

5.8 SPECIFYING TIME-DEPENDENT PARAMETERS VIA
A SCHEDULE

Our examples have so far assumed that random phenomena (e.g., arrivals, services,
etc.) are modeled as variates from a fixed probability law that does not change in time,
so that the underlying process is stationary (see Section 3.9). However, it is quite
common in practice for the underlying probability law to vary in time, in which case the
process is nonstationary (time dependent). For example, researchers debate whether
recent indications of rising global temperatures are ordinary fluctuations of a stationary
temperature process or an indication of a change in the underlying probability law
corresponding to a nonstationary temperature process (global warming). On the other
hand, many types of arrival events (e.g., customer arrivals in stores, banks, or factories)
are known to be nonstationary. Typical examples include the “rush hour” phenomenon
(temporary heavy traffic) or the “ebb hour” phenomenon (temporary light traffic). Thus,
a bank operation may experience “rush hour” periods in the morning (customers
stopping by on their way to work) and at lunch time (customers using part of their
lunch time for banking), while mid-morning hours may become “ebb hour” periods.
This pattern may recur day after day, with some random fluctuations. A common special
case of nonstationarity is when the parameters of the underlying probability law change
in time. For example, the arrival rate of a Poisson process may change in the course of a
day, season, and so on, in accordance with “rush hour” or “ebb hour” phenomena. This
section discusses Arena facilities that permit the modeling of time-dependent para-
meters of random processes (e.g., arrivals, service, and resource capacities), by varying
such parameters over time via a schedule specification.

We first illustrate this facility by a time-dependent arrival specification. The Arena
Create module provides a Schedule option in its Time Between Arrivals section, but
only for exponential interarrival times, as depicted in Figure 5.44.

The Schedule Name field specifies that entity generation is governed by a Schedule
module called Schedule 1. The spreadsheet view of the Schedule 1 module is displayed
in Figure 5.45.

100 Arena Basics



The Arrival option is selected in the Type column to indicate that the schedule is
dedicated to an arrival process. The Format Type column declares whether the schedule
is specified by durations or by a calendar, and the Scale Factor column may be used to
scale all schedule magnitudes (the default is 1.0, meaning no scaling). Under the
Durations heading is a button labeled 24 rows, which specifies a time span consisting
of 24 consecutive time slots (intervals). Clicking this button pops up a dialog box,
depicted in Figure 5.46.

The graph of Figure 5.46 specifies the hourly arrival rates over a time span of 24
hours, depicted as bars over 24 time slots; these correspond to the 24 rows (or durations)
alluded to in Figure 5.45. More specifically, the horizontal axis is a time axis divided
into consecutive 1-hour time slots (intervals), while the vertical axis is a magnitude axis
for the associated arrival rates. Using mouse clicks at appropriate points within the bars
of the graph, the modeler can visually specify the requisite hourly arrival rates.

Note carefully that Arena selects the requisite arrival rate only when the most recent
arrival “shows up” in the model. This means that if no arrival fell within a given time
slot, then no arrivals would be generated with that slot's arrival rate! In other words, if
an interarrival interval wholly contains a slot, then no arrivals from such a slot will be
scheduled. This might create some modeling problems when the arrival rates vary
significantly from slot to slot.

The modeler may interpret the actual time at will, since the first time slot (labeled by
Day 1 00:00:00) is just a convention for the time origin. In our example, the first time
slot in Figure 5.45 actually corresponds to the time interval 8:00 A.M. to 9:00 A.M.—a
morning “rush hour” period with a high traffic rate. The hourly rate progressively ebbs
towards midday, and it then picks up gradually in the afternoon, reaching its peak in the
evening “rush hour” of 5:00 P.M. to 6:00 P.M. It then ebbs again during the night,
bottoming out at 12:00 A.M. Finally, it rises again towards the morning “rush hour” of
the next day (Day 2 00:00:00). This pattern of time-dependent arrival rates repeats on
each subsequent day.

Figure 5.44 Dialog box of a Create module with the Schedule option.

Figure 5.45 Spreadsheet view of the Schedule module Schedule 1.

Arena Basics 101



To customize the Schedule module, the modeler clicks the Options. . . button in
Figure 5.46 to pop up the dialog box displayed in Figure 5.47. Here, the X-axis section
has a Time slot duration field to specify the time unit (time slot width) on the
horizontal axis, and a Range field to specify the number of time slots in the graph.
The Calendar speed field is a user interface parameter that specifies the scrolling
speed of the graph (using the scrolling buttons below the title bar in Figure 5.46),
when the graph does not fit into its canvas. The Y-axis section has Maximum and

Figure 5.46 Dialog box for schedule Schedule 1 specifying time-dependent arrival rates.

Figure 5.47 Dialog box of the Options. . . field of schedule Schedule 1.

102 Arena Basics



Minimum field values for the vertical axis. The Snap Spacing field is a user interface
parameter to specify the granularity of arrival rates (on the vertical axis) via button
clicks as described above.

The replication length may precisely equal the time span of the graph in Figure 5.46,
but in the majority of cases it is either shorter or longer than the specified time span. If
the replication length is shorter, then the rest of the graph is simply ignored. Otherwise,
the information in the When at end of schedule section specifies how to assign arrival
rates beyond the time span of the schedule. Two options (radio buttons) are provided:

� The Repeat from beginning option simply cycles back and repeats the schedule from its
beginning for each time span. In our example, the schedule in Figure 5.46 is a daily
schedule, to be repeated for each simulated day.

� The Remain at capacity option provides a data field specifying a fixed arrival rate. The
replication will follow the schedule for its first time span. However, once the
simulation clock exceeds the time span, that fixed arrival rate will be in effect for
the rest of the replication.

In a similar vein, the user can schedule time-dependent resource capacities. To this
end, the user selects the Based on Schedule option in the spreadsheet view of the
Resource module, and then proceeds to specify a resource capacity schedule analo-
gously to the arrivals example above. What happens when resource capacity is de-
creased while the resource is in use? To handle such eventualities, Arena offers users
three options in the Schedule Rule column of the Resource spreadsheet view when the
Based on Schedule option is selected:

� The Ignore option starts the time duration of the schedule change immediately, but each
“excess” resource is removed only after it is released by the entity currently seizing it.

� The Wait option waits to start the time duration of the schedule change until the last
“excess” resource is released by the entity currently seizing it.

� The Preempt option starts the time duration of the schedule change immediately, but
“interrupts” processing by promptly releasing “excess” resources and returning the
seizing entities to their queues.

Incidentally, machine failures in Arena are implemented using these same options
(see Section 11.7). Finally, a schedule specification can be similarly used in Arena to
vary the value of any parameter over time by selecting the Other option in the Type
column of the spreadsheet view of the Schedule module.

EXERCISES

1. Press operation. The press department of an automobile manufacturing facility
runs two main operations, each with its own press machine: front-plate press
operation and rear-plate press operation. These operations can be performed in
any order, but both have to be performed for each arriving plate. Plates (jobs)
arrive randomly and their interarrival times are exponentially distributed with
mean 5 minutes. The service time in the front-plate press operation is distributed
iid Unif(1, 5) minutes, and in the rear-plate press operation it is distributed iid
Unif(2, 6) minutes. A plate joins the queue of the press operation with the least
number of plates waiting at that time (since there is no sequencing requirement),

Arena Basics 103



and on completion joins the queue of the other press operation after which it
departs from the system. Finally, the press department is a three-shift facility
running 24 hours a day.
a. Develop an Arena model of the press department, and simulate it for one year.
b. Estimate the following statistics:

� Average time arriving plates spend in the press department
� Utilization of the press machine in each operation
� Average queue delay at each operation
� Average time in the press department of those arriving plates that join
first the rear-plate press operation, and then proceed to the front-plate press
operation

2. Electrolytic forming process. An expensive custom-built product goes through
two stages of operation. The first stage is an electrolytic forming process, served
by two independently operating forming machines, where the product is built in a
chemical operation that must conform to precise specifications. The second stage
is a plating operation in which the product is silver plated. Customer orders arrive
with interarrival times distributed iid Tria(3, 7, 14) hours, and join a queue in
front of the forming process. The electrolytic forming processing time is distrib-
uted iid Unif(8, 12) hours. The silver-plating process also has a queue in front of
it. Plating time is distributed iid Unif(4, 8) hours. The variability in the processing
times is due to design variations of the incoming orders.

The two processes do not perform perfectly. In fact, 15% of the jobs that
emerge from the forming process and 12% of the jobs that emerge from the
plating process are defective and have to be reworked. All defective jobs are sent
to a single rework facility, where design modifications and corrections are
performed manually. However, plating reworks have a lower priority than
forming modifications. Plating rework times are distributed iid Unif(15, 24)
hours, while forming reworks are distributed iid Unif(10, 20) hours. Jobs
departing from the rework facility go back to the process they came from to redo
the operation found defective. Jobs that successfully complete the plating process
leave the facility. Note that a job may go back and forth between a process and the
rework operation any number of times.
a. Develop an Arena model of the electrolytic forming process, and simulate it

for 1 year (24 hours of continuous operation).
b. How busy are each of the two operations and the rework facility?
c. What are the expected delays in process queues and the rework facility?
d. What is the expected job flow time throughout the entire facility?
e. Suggest a change in the system to reduce (even slightly) the expected job flow

time. Run the modified model and compare the job flow statistics.
3. Supermarket cashier management. A supermarket is open 24/7 and operates in 3

shifts: first shift from 8:00 A.M. to 4:00 P.M., second shift from 4:00 P.M. to 12:00 A.M.,
and third shift from 12:00 A.M. to 8:00 A.M. Customers arrive according to a Poisson
process with shift-dependent arrival rates, and their shopping times (excluding
checkout) are iid but shift dependent. Consequently, the supermarket management
assigns variable numbers of cashiers per shift. The arrival, shopping, and cashier
parameters are displayed in the following table.

After shopping, customers queue up in a single line for checkout. Checkout times
of customers are iid, but shopping-time dependent as follows: a customer's checkout

104 Arena Basics



time is 2 minutes plus a random fraction of its shopping time, where the fraction is iid
triangular between 20% and 30%, with a most likely value of 25%. Finally, a customer
is assigned to the shift during which it departs from the supermarket (note that a
customer may arrive during one shift and depart during a subsequent one).

a. Develop an Arena model of the supermarket, and simulate it for 30 days.
b. Compute the average, variance, and squared coefficient of variation of

customer waiting times for a cashier (excluding checkout processing times).
c. What is the per-shift average sojourn time of customers in the supermarket?
d. What are the overall instant and scheduled cashier utilizations?

Shift Number Arrival Rate
(customers per minute)

Shopping Time Distribution
(minutes)

Number of Cashiers

1 16.8 Unif(5, 15) 2
2 24.0 Unif(15, 40) 4
3 0.7 Unif(1, 5) 1

Arena Basics 105




