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ABSTRACT 

 

The potential applications such as satellite communication systems, critical military 

communications, radar warning systems and direction finding systems demand for high 

gain, uniform unidirectional radiation pattern and wideband antenna ranging from 3.1 

GHz to 10.6 GHz. An Archimedean spiral antenna is the most potential candidate in the 

above mentioned applications as the antenna meets most of the above requirements. 

However, the practical implementation of spiral antenna is challenged by its 

bidirectional patterns, relatively low gain and the need for balanced feeding structures. A 

moveable ground plane is proposed as the backing technique of the spiral antenna by 

placing it at quarter wavelength behind spiral arms. Despite, the effects of the ground 

plane on the antenna’s wideband properties, to enable the realization of a conformal 

antenna without the loss of the antenna’s broadband characteristics, a radian sphere 

theory is proposed for bandwidth improvement. Microstrip to parallel strip line balun is 

proposed as the feeding structure of the spiral antenna. This balun has very large 

bandwidth ranging from 2 GHz to 14 GHz. However, the separation of the ground plane 

and the spiral arms at quarter wavelength at lower frequencies deteriorate the radiation 

patterns at middle and higher frequencies. In order to improve the patterns, frequency 

selective structure is proposed to embed in the cavity of the spiral antenna. The 

optimized frequency selective surface  improves the radiation pattern while maintaining 

the other parameters such as the gain, bandwidth and axial ratio. All the proposed 

designs are fabricated and measured. Both simulated and measured results have shown 

good agreements. Finally, the results show that the proposed Archimedean spiral 

antenna is the most suitable candidate for above mentioned applications because good 

circularly polarized unidirectional radiation patterns and high gain of 8 dB to 11.2 dB 

with bandwidth of more than 140% is obtained.  



 

 

ABSTRAK 

 

Aplikasi berpotensi seperti sistem komunikasi satelit, komunikasi tentera kritikal, sistem 

amaran radar dan sistem mencari arah mempunyai permintaan untuk keuntungan tinggi, 

corak sinaran satu arah seragam dan jalur lebar antena daripada 3.1 GHz kepada 10.6 

GHz. Antena lingkaran Archimedes adalah calon yang paling berpotensi untuk 

memenuhi sebahagian besar daripada keperluan aplikasi tersebut.Walau bagaimanapun, 

pelaksanaan prototaip antena lingkaran sangat mencabar disebabkan oleh corak dwiarah, 

agak keuntungan yang rendah dan keperluan teknik pengujaan yang seimbang. Satah 

pembunian bergerak dicadangkan sebagai teknik sokongan antena lingkaran dengan 

meletakkannya pada jarak suku daripada panjang gelombang di belakang 

lingkaran.Kesan penggunaan satah pembumian terhadap ciri-ciri jalur lebar adalah untuk 

membolehkan antenna komformal direalisasikan tanpa kehilangan ciri-ciri jalur lebar 

itu,teori sfera radian adalah dicadangkan untuk peningkatan jalur lebar. Mikrojalur ke 

balun talian jalur selari dicadangkan sebagai teknik pengujaan antena lingkaran. Balun 

ini mempunyai lebar jalur yang sangat besar di antara 2 GHz hingga 14 GHz. Walau 

bagaimanapun, pemisahan satah pembumian dan lengan antena lingkaran pada panjang 

gelombang suku pada frekuensi rendah memberi kesan buruk pada corak sinaran pada 

frekuensi pertengahan dan tinggi.Untuk meningkatkan corak sinaran, struktur frekuensi 

terpilih dicadangkan untuk menanamkan rongga di dalam antena lingkaran. Nilai 

optimum struktur frequensi terpilih memperbaiki corak sinaran sambil mengekalkan 

parameter lain seperti keuntungan, jalur lebar dan nisbah paksi. Semua reka bentuk yang 

dicadangkan menjalani proses fabrikasi dan pengukuran. Kedua-dua keputusan simulasi 

dan pengukuran menunjukkan persamaan yang baik. Akhirnya, keputusan menunjukkan 

antena lingkaran Archimedes yang dicadangkan itu adalah calon yang paling sesuai 

untuk aplikasi yang dinyatakan di atas kerana baik keliling polarisasi corak sinaran satu 

arah dan keuntungan tinggi 8 dB kepada 11.2 dB dengan lebar jalur lebih daripada 140% 

diperolehi. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 Wide band is a transmission technology in which information is transmitted over 

large operating bandwidth. Such technology has been utilized for decades mostly for 

military related systems because more information and applications can be carried 

through the radio frequency channels with a high data rate and accuracy [1]. Wideband 

applications are numerous including ground penetrating radar systems, military 

communications, satellite communications, direction finding systems, vehicular radar 

systems and wireless communications [2].  In order to make the transmission and 

reception of an wide band system over the frequency range of 3.1 GHz to10.6 GHz; it is 

required to have a high gain antenna, with good impedance matching and VSWR less 

than 2 throughout the entire band [2-3]. Therefore, Archimedean spiral antenna is good 

candidate to be used in wideband applications since it has met the above mentioned 

requirements. Archimedean spiral antenna has received huge interest over the last two 

decades due to its wide impedance bandwidth, high efficiency, nearly unidirectional 
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radiation pattern, low profile, stable impedance characteristic and circular polarization 

over the last two decades [4].  

 

There are three different designs of spiral antennas. The first design of spiral 

antenna is by shaping it as a single arm spiral antenna, which is designed for some 

narrow-band applications. The second design is the two arm case, which is the minimum 

number of arms needed for single-mode broadband operation. The third design is the 

multi arm case, which is designed when two broadband modes are needed. This means, 

in order to achieve two broadband modes at least three arms are required. Therefore, in 

this research the second design which is the two arm case is discussed due to its 

advantages over the other two cases. It is because the two arm Archimedean spiral 

antenna has better axial ratio than the single arm Archimedean spiral antenna, which 

means the two arm case has better circular polarization compared to the single arm case.  

The two arm spiral antenna has a simple feed (e.g. Microstrip to parallel strip balun) and 

less complex geometry design compared to the multi arm spiral. It is because the multi 

arms spiral has complex geometry design and feeding systems such as a beam feeding 

network.  

 

In summary, several optimizations techniques are proposed in this study such as 

loading lower permittivity dielectric substrate, radian sphere concept, reducing mutual 

coupling, moveable ground plane and embedding frequency selective surface structure 

in the cavity of the spiral. Therefore, these five optimization techniques leads to the 

invention of a new design of two arm Archimedean spiral antenna backed by cavity with 

large bandwidth, high gain, unidirectional pattern with circular polarization and with 

higher efficiency.   

 

 

1.2 Problems Statement 

 

A common approach used to cover a large frequency range which encompasses 

many different communication systems is to employ a separate antenna for each system. 



3 

 

An advantage of this approach is that it meets the specific needs of each communication 

system. However, when a platform such as an airplane, ship or automobile requires the 

use of many communication systems, this approach has several problems such as space, 

payload, cost and electromagnetic compatibility/interference (EMC/EMI). Therefore, 

there is a significant interest in antennas which possess compact size, have multi-

functional characteristics, have large bandwidth (>20%) and have high gain.  

 

In the design of an antenna that meets the above requirements, there are several 

challenges that must be taken into account. First of all, the antenna must have sufficient 

bandwidth to facilitate the integration of multiple antennas into a single aperture. Since 

the applications of interest require bandwidths in excess of 10:1, this work focuses on 

wide-band antenna such as the Archimedean spiral antenna. Since the spiral antenna 

belongs to the class of frequency independent antennas, it is easily capable of bandwidth 

greater than 10:1 [5]. Such antennas are considered frequency independent because their 

pattern, impedance and other parameters vary little with frequency as compared to a 

multi-band antenna which can exhibit considerable variation. These characteristics make 

the spiral an ideal candidate for replacing a variety of antennas. Apart from the 

advantages of spiral antenna, there are disadvantages in spiral antenna, such as the spiral 

antenna has a low gain and bidirectional radiation pattern.  There are several techniques 

to get rid of the bidirectional radiation pattern, such as by using an absorber-filled 

cavity, a lossy cavity, and conducting ground plane. 

 

Therefore, in this project a technique is proposed to get rid of this problem, 

which is to construct a moveable ground plane, which maintains quarter wavelength 

spacing between the spiral and the ground plane in the vicinity of the active region of the 

spiral. However, by introducing this technique; antenna’s patterns at higher frequencies 

deteriorate. In order to improve the patterns and to minimize the splitting of the patterns 

at higher frequencies; a frequency selective surface structure is embedded between the 

spiral antenna and the ground plane. This new design can substantially enhances the 

radiation pattern properties of the antenna since the reflected field is in phase with that 

directly radiated by the antenna itself. In addition, by embedding the FSS structure in the 
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design minimizes the gain fluctuations caused by the ground plane. However, FSS 

structure together with the ground plane reduces the antenna’s bandwidth. One way to 

minimize the FSS reduction of the bandwidth is applying the radian sphere theory in 

order to make the antenna electrically larger and to obtain larger bandwidth.  

 

  As a result of the optimized techniques such as the ground plane (for 

unidirectional radiation pattern), radian sphere theory (for maintaining wideband 

bandwidth) and embedding FSS in the cavity of the spiral antenna (for better 

performance of radiation pattern), it is expected to come up with new spiral antenna 

prototype, which has enhanced unidirectional radiation pattern, wide bandwidth (at least 

100% of bandwidth of return loss better than -10dB) and high gain which enables the 

antenna to detect the enemy radar in a large range of distance compared to the present 

radar systems.  

 

 

1.3 Research Contribution 

 

Throughout this research work several major contributions have been achieved for 

Archimedean spiral antenna performance. In this section a summary of these major 

contributions are presented:  

 

1. A prototype of wideband Archimedean spiral antenna has been designed with 

enhanced performance based on Radian sphere theory.  

2. Universal design of spiral antenna has been used which leads to the elimination 

of multiple antennas configurations on wideband systems.  

3. A tapered microstrip to parallel strip lines balun is proposed with new tapered 

design based on mathematical formulation is proposed as a feeding technique for 

wideband antennas.  

4. Comprehensive study is carried out for different structures of frequency selective 

surface in order to improve the antenna’s performance. 
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5. Band stop frequency selective surface design based numerical synthesis is 

developed.  

 

 

1.4 Objectives of Study 

 

This project has the following objectives:  

 

i. To design wideband Archimedean spiral antenna on a moveable ground plane 

placed at a quarter wavelengths for selected design frequencies in order to 

achieve high gain antenna with circularly polarized unidirectional radiation 

pattern.   

ii. To design and embed frequency selective surface structure in the Archimedean 

spiral antenna cavity in order to improve antenna’s radiation pattern 

performance. 

 

 

1.5 Scope of Study 

 

This project focuses on the performance investigations of Archimedean spiral 

antenna based on radian sphere theory, FSS structures and microstrip to parallel strip 

balun within wideband frequency range (3.1-10.6GHz). The effects of the dielectric 

materials (free space εr=1, Rogers RT 5870 εr=2.33, FR-4 εr= 4.3 and Rogers RO3030 

εr=10.2) and moveable ground plane placed at quarter wavelengths for selected design 

frequencies including 2GHz, 3.1GHz, 5GHz, 6.85GHz and 10.6GHz on the performance 

of the spiral antenna are investigated, in order to achieve a bandwidth of 100% at the 

return loss of the antenna; which below -10dB, high gain of up to 10dB and 

unidirectional radiation pattern with circular polarization using discrete port as the 
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feeding of the antenna. Wideband balun such as microstrip to parallel strip lines balun 

over the frequency range of 2 GHz to 14 GHz as the feeding network of the antenna is 

designed. Square loop of FSS structures with reduced periodicity are designed. 

Commercially available computer model of CST microwave studio 2012 has been used 

for simulation and investigations for the performance of spiral antenna, balun and FSS 

structures. In order to validate the theoretical analysis, the antenna, FSS and balun 

structures are fabricated on dielectric substrate; Rogers RT 5870 with permittivity of 

εr=2.33 and thickness of 1.57mm. Finally, the measurements of the required 

characteristics such as S11, S21 and gain are carried out using vector network analyzer.  

 

 

1.6 Dissertation Overview 

 

 This thesis is divided into 7 main chapters and a reference section. Chapter I 

discusses about the introduction, problem statement, objectives and scope of the project. 

In Chapter II, literature review of Archimedean spiral antenna, wideband balun and FSS 

are discussed. For Chapter III, the methodology of the project, mathematical formulation 

of the spiral antenna, balun and FSS are discussed. Similarly, the numerical analysis of 

the active region of the two arm Archimedean spiral antenna is documented. In addition, 

the fabrication and measurement processes of the spiral antenna, balun and FSS are 

elaborated. In Chapter IV, the results of spiral antenna on a moveable ground plane 

based on discrete port and balun feedings are analyzed. Likewise, the results of the 

optimization techniques of the spiral antenna such as Radian sphere theory, reducing 

mutual coupling, loading lower permittivity substrate, analysis of the active region are 

also documented. While the analysis of the balun, integration of spiral antenna with 

balun and comparison of the measurement and simulation results of spiral antenna on a 

moveable ground plane are highlighted in Chapter V. The simulation results of FSS for 

different shapes and dielectric substrate, the embedding of FSS in the cavity of spiral 

antenna, the optimized results of the FSS and its combination with spiral antenna, the 

comparison results of the simulation and numerical analysis of FSS and the 

measurement and simulation of spiral antenna embedded with FSS are analyzed in 
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Chapter VI. Chapter VII discusses about the conclusion and recommendation of the 

future work, while the last section highlights the references of this dissertation.  



 

 

 

 

CHAPTER II 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

This chapter elaborates spiral antenna as frequency independent antennas, some 

of the previous works related to spiral antenna, backing techniques of spiral antenna, 

feeding technique of spiral antenna and Frequency selective surface structures. 

Wideband wireless communications offers a drastically distinctive approach to wireless 

communications contrasted with traditional narrow band systems. Wideband has 

provoked a surge of investment in antenna design by furnishing new challenges and 

opportunities for antenna architects. The primary challenge in wideband antenna design 

is accomplishing the wide bandwidth while maintaining high gain, high radiation 

efficiency and good axial ratio over a very wide frequency range. Archimedean spiral 

antenna is a good candidate for wideband applications since it is a broadband and 

frequency independent antenna that has high efficiency, wide bandwidth and circular 

polarization. Unidirectional Archimedean spiral antenna is designed by placing the 

antenna on a ground plane. The ground plane reflects back the backward radiation from 
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the spiral plane; and then by adding it with the radiation from the spiral plane into free 

space in phase [5]. The use of ground plane deteriorates the bandwidth, axial ratio and 

the radiation pattern at higher frequencies. Then the use of the radian sphere theory and 

frequency selective surface structures are required to potentially improve the 

performance of the spiral antenna. 

 

 

2.2 Spiral Antenna as a Frequency Independent Antenna 

 

In 1954, although discouraged by many experts, E. M. Turner wound a long-wire 

dipole into a spiral form and connected its terminals to a two-wire feed line [6-11].At 

that time, the largest antenna bandwidths were on the order of one octave, but the results 

obtained with the first spiral experiment were so encouraging that an immediate research 

effort was launched. Octave bandwidth implies that the higher frequency (fH) of 

operation is double the lower frequency (fL), for example, an antenna that works from 

2GHz to 4GHz has one octave bandwidth [6]. At the present time, wideband frequency 

independent antennas are irreplaceable components of many communication platforms, 

various electronic warfare, military communication, satellite communication, direction-

finding systems and atmosphere, ground and space exploration stations [5]. In this work, 

the term wideband indicates on the frequency bandwidth (Bf) either in ratio (Bf=fH/fL) or 

fractional bandwidth (Bf in percentage is Bf= (fH-fL)/fC) and fC=fH+fL/2). Frequency 

independent (FI) antenna is a type of antenna in which its pattern, bandwidth, gain and 

other characteristics vary insignificantly with frequency [5]. Spiral antenna is good 

example for FI antennas and its bandwidth can reach up to 40:1 for both the input 

impedance and the radiation pattern [12].  

 

Spiral antennas are classified into several types; square spiral, star spiral, 

Archimedean spiral and equiangular spiral. The square spiral antenna has the same 

advantages as circular Archimedean spiral antenna at the lower frequencies. But the 

square spiral geometry seems to be less frequency independent at higher frequencies 

[13]. A star spiral provides as much size reduction as the square spiral and it allows 
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tighter array packing that the square spiral does not allow [13]. However, one of the 

major disadvantages of the star spiral antenna is its dispersive behavior [13]. 

Equiangular spiral antennas have similar characteristics of the Archimedean spiral 

antenna but their design is more complex compared to circular Archimedean spiral 

antennas. Therefore, in this project, circular Archimedean spiral antenna is chosen due to 

its wide bandwidth, frequency independent characteristics and simple design compared 

to the other types of spiral antennas. Figure 2.1 illustrates examples of the wideband 

frequency independent spiral antennas. 

 

 

 

                    (a)                                               (b)                                            (c) 

Figure 2.1:  Examples of two arm Spiral Antenna: (a) Archimedean Spiral, (b) 

Equiangular Spiral and (c) Square Spiral [13]. 

 

 

2.3 Characteristics of Antenna  

 

     There are important antenna parameters which are return loss, radiation pattern, gain 

and polarization. All of the aforementioned antenna parameters are necessary to fully 

characterize an antenna and determine whether an antenna is optimized for its 

applications. 
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2.3.1 Return Loss 

 

     Return loss is the reflection of signal power resulting from the insertion of a device 

in an antenna structure or a transmission line. Return loss measurements include the 

characterization of the Voltage Standing Wave Ratio (VSWR). Increasing return loss 

corresponds to lower VSWR. According to the wideband requirement; return loss is a 

measure of how well the antenna is matched and a match is good if the return loss is 

more less than -10dB [14]. Minimum return loss is also desirable and results in a lower 

insertion loss. Insertion loss is the loss of signal power resulting from the insertion of a 

device in that structure. Return loss indicates the bandwidth for which the antenna 

sufficiently works along its entire frequency range. Figure 2.2 shows the return loss of 

wideband antenna and the working bandwidth of the antenna is the region between 1 

and 2.  

 

 

 

Figure 2.2: The return loss of Wideband antenna [14] 
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2.3.2 Radiation pattern 

 

One of the most common descriptors of an antenna is its radiation pattern. 

Radiation pattern can easily indicate an application for which an antenna will be used. 

For example, cell phone use would necessitate a nearly omnidirectional radiation pattern 

as shown in Figure 2.3 (a), as the user’s location is unknown. Therefore, radiation power 

should be spread out uniformly around the user for optimal reception. However, for 

satellite or military applications, a highly directive antenna would be desired such that 

the majority of radiated power is directed to a specific, known location, hence 

unidirectional radiation pattern is shown in Figure 2.3 (b).  

 

According to the IEEE Standard Definitions of Terms for Antennas [14], an 

antenna radiation pattern (or antenna pattern) is defined as the variation of the power 

radiated by an antenna as a function of the direction away from the antenna. The main 

properties of the pattern are side lobes, back lobes and main lobes. In practice, it is 

impossible to eliminate antenna side lobes and back lobes completely. Antenna side and 

back lobes affect antenna system performance in several ways. The energy delivered to 

or received by side and back lobes is from a direction other than the intended region of 

coverage and is therefore wasted [14]. Main lobe is the radiation lobe containing the 

direction of the maximum radiation. The side lobe is a radiation lobe in any direction 

other than the intended lobe direction. It is usually adjacent to the main lobe and 

occupies the hemisphere in the direction of the main beam while the back lobe is in the 

opposite direction.  

 

 

 

 

 

 

 

 



13 

 

 

 

(a) 

 

 

 

(b) 

Figure 2.3 Radiation Patterns: (a) Omni-directional and (b) Unidirectional [14].  
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2.3.3 Gain 

 

Gain is the most widely used descriptor for antenna performance. The gain is 

defined as the ratio of power received by a directional antenna to power received by an 

isotropic antenna [14]. An isotropic antenna is a theoretical antenna radiating energy 

equally in all direction of space. The gain of an antenna must equal to its directivity if 

the antenna 100% efficient. The gain of an antenna is therefore less than the directivity 

due to the losses in the antenna. Gain which referred to an isotropic radiator is expressed 

as “dBi”. 

 

In addition, the gain of the proposed spiral antenna can be expressed in 

mathematical formulation in terms of the known radiated power per unit area on the bore 

sight of the antenna Prad  𝑟,𝜙, 𝜃,𝜔  and the power inserted into the spiral Pin. If the 

current and impedance at the feed point are denoted Iin and Zin, respectively, 𝜔 is the 

angular frequency of the radiated power, while 𝑟,𝜙  and 𝜃 are the spherical coordinates 

of the antenna, one may use Equations (2.1-2.4) to write the gain; G [14-15]: 

 

𝑍𝑖𝑛 = 𝜂𝑜 2                                                                                                                    (2.1) 

𝑃𝑖𝑛 =
 𝐼𝑖𝑛

2  𝑍𝑖𝑛
2 

2
                                                                                                            (2.2) 

Prad  𝑟,𝜙,𝜃,𝜔 =
 𝐸𝑟 𝑟 ,𝜙 ,𝜃=0,𝜔  

2

2𝜂𝑜
=

 𝜔𝜇𝑜𝜆 𝐼𝑖𝑛  
 

2

 8𝜋𝑟  2𝜂𝑜
                                                             (2.3) 

𝐺 = 4𝜋
𝑃𝑟𝑎𝑑

𝑃𝑖𝑛
=

𝜋𝜂𝑜  𝐼𝑖𝑛  
2

2 𝐼𝑖𝑛 𝑍𝑖𝑛  
2                                                                                                (2.4) 

 

 

2.3.4 Polarization 

 

Antenna polarization is a very important consideration when choosing and 

installing an antenna. Most communications systems use vertical, horizontal or circular 

polarization. Knowing the difference between polarizations and how to maximize their 

benefit is very important to the antenna user. The electric field or "E" plane determines 
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the polarization or orientation of the radio wave. In general, most antennas radiate either 

linear or circular polarization [14]. A linear polarized antenna radiates entirely in one 

plane containing the direction of propagation. An antenna is vertically polarized (linear) 

when its electric field is perpendicular to the Earth's surface and horizontally polarized 

(linear) when its electric field parallel to the Earth's surface as shown in Figure 2.4.  

 

 

 

Figure 2.4: Linear Polarization; V stands for Vertical Polarization while H is for 

Horizontal Polarization [14].  

 

In a circular polarized antenna, the plane of polarization rotates in a circle 

making one complete revolution during one period of the wave. If the rotation is 

clockwise looking in the direction of propagation, the sense is called right-hand-circular 

(RHC). If the rotation is counterclockwise, the sense is called left-hand-circular (LHC) 

[14]. A circular polarized wave radiates energy in both the horizontal and vertical planes 

and all planes in between. The difference between the maximum and the minimum 

peaks as the antenna is rotated through all angles, is called the axial ratio and is usually 

specified in decibels (dB). If the axial ratio is near 0 dB, the antenna is said to be circular 

polarized. However, still an axial ratio of less than 3dB can be accepted for circular 

polarization. Circular polarization is most often used on satellite communications, 

critical military communications, direction finding systems and GPS.  
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                                    (a)                                                               (b) 

Figure 2.5: Circular Polarization: (a) Left Hand Polarization and (b) Right Hand 

Polarization [14].  

 

 

2.4 Basic Principles of Operation for Spiral Antenna   

 

The representation of the current distribution on the arms of the spiral permits to 

visualize the active region of the spiral radiator. The surface current densities on the 

spiral arms are retrieved from the near zone field distribution. Generally, the current 

distribution is analyzed as pulse excitation and harmonic excitation. But in this research, 

only harmonic excitation is considered. The current density distributions on the spiral at 

particular frequencies in steady-state are discussed in Chapter IV; section 4.3.1.The 

current distribution of the spiral antenna qualitatively demonstrates the concept of 

frequency dependent active region of where the radiation process is taking place on the 

Archimedean spiral [15].  

 

The radiating ring theory, also known as band theory is used to describe the 

theoretical principles behind the operation of spiral antennas [15]. The band theory is 

demonstrated on the simplest and most commonly used spiral antenna; a two-arm, planar 

spiral antenna operating in mode 1. As depicted in Figure 2.6 (a) the spiral is fed from its 

center at ports A and A’, ideally with equal amplitudes and a 180° phase difference.  
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                              (a)                                                 (b) 

Figure 2.6: Band theory: (a) Mode 1 excitation and (b) Phase of the traveling 

wave current [15]. 

 

When fed with a balun, the two spiral arms at the spiral center is a balanced 

current pair-one arm is 180
0
 out of phase with the other arm and the spiral will support 

propagation of the forward traveling wave. Mode 1 radiation will predominantly occur 

from a ring with approximately one guided wavelength (𝜆) circumference [16]. When 

excited to operate in this mode, spiral currents at points B and B’, which belong to 

neighboring arms, will be directed the same way, for example they will have the same 

phase value. The same is true for diametrically opposite points C and C’. The non-

radiated traveling wave currents will flow past this region, and if the size of the spiral 

permits, radiate in the next properly phased section. This will occur at a circumference 

equal to three wavelengths (mode 3 for a two-arm spiral) as shown in Figure 2.6 (b). If 

the spiral is not large enough, the currents will reach the end of the spiral arms where 

they are either absorbed or reflected back toward the spiral’s center. Note that if the size 

of the spiral is large enough, the in-phase current conditions will show up at odd 

wavelength circumferences of the spiral and higher order modes will radiate. This 

condition is known as overmoding [17]. Similarly, the phase of the traveling wave 

current is shown in Figure 2.6 (b), where two different shadings denote the instantaneous 

phases between 0–180° and 180–0°. The mode regions with currents directed the same 

way are clearly seen. 
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The mode 1 phase has a single rotation -2𝜋 in the full counterclockwise rotation 

of a spiral pattern; mode 2 has a –2(2𝜋) phase rotation, and so on [18]. The mode 

number of a spiral refers to the number of 2𝜋 (radians) or 360
0
 cycles that occur in the 

feed phasing when progressing through the arms CCW. Mode 1 phases in a two-arm 

spiral are 0
0
 or 180

0
 as shown in Figure 2.6 (a) and (b). The phase difference moving 

CCW between arms is found from the mode number m and the number of arms n.  

 

phase =
−2πm

n
or −

3600 m

n
                                                                                             (2.5) 

  

        The spiral radiates RHC polarization for m=1 using the notation of Equation (2.5) 

when it is fed at the center. An axially symmetrical antenna such as a spiral can radiate 

these modes when we phase the feeding of the ports to match the phase rotation of the 

mode [19-20]. Given a spiral with n arms, the modes that have significant radiation are a 

multiple of the number of arms when fed with a perfect beam former network as stated 

in the following equation: 

 

mradiated = m + kn     k = ⋯ ,−2,−1, 0, 1, 2,…                                                         (2.6) 

 

n-arm spiral suppresses n-1 modes between possible modes given that the spiral 

circumference is large enough to support a particular mode. For example, a six-arm 

spiral excited in mode 1 will radiate modes 1, 7, 13, …, -5, -11, … and when excited in 

mode 2 it will radiate modes 2, 8, 14, …, -4, -10, …, and so on. Good radiation pattern is 

achieved if the antenna radiates sufficient power in the lower-order modes since small 

amount of power is left for the higher-order mode radiation and that will lead to the 

antenna for better radiation patterns [21, 22]. 

 

Although these characteristics and basic principles are good start for the 

designing a frequency-independent wideband antenna, employing these characteristics 

alone does not necessarily produce a wideband FI antenna design. Other antenna design 

considerations such as the dielectric loading, Radian sphere concept, mutual coupling, 
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moveable ground plane and embedding FSS in the spiral’s cavity, must be taken into 

account.  

 

 

2.5 Techniques for Performance Optimization of Spiral Antenna 

 

There are several techniques which can be used to optimize the performance of 

wideband spiral antenna such as the loading dielectric substrate, radian sphere concept, 

mutual coupling, moveable ground plane and embedding FSS (moveable ground plane 

and embedding FSS are discussed under backing techniques):   

 

 

2.5.1 Dielectric Loading Effects 

 

 A spiral is a fast wave antenna and the use of a high dielectric constant or thick 

dielectric can significantly alter its characteristics. Input resistance is reduced and the 

gain, axial ratio, and pattern purity in general are all degraded when compared with a 

free standing spiral. Dielectric loading slows the traveling wave thus reducing the 

aperture of the active mode. Additionally, the coupling between the neighboring arms is 

increased and the radiation through the active region is decreased. This means that the 

forward traveling wave, after passing the desired region, will have more energy and 

radiate in the higher order modes, contributing to the excessive far-field contamination 

[23]. Therefore, in order to improve antenna’s performance a lower permittivity and less 

thick substrate are chosen for this proposed antenna in this project. Effects of dielectric 

loading are best shown in Chapter IV, section 4.2. Studies show that when high 

permittivity dielectric substrate is used; the performance of the antenna deteriorates. 

This is due to the high permittivity substrate which assimilates more input power fed to 

the antenna and leads to the poor performance of the antenna [23].  
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2.5.2 The Radian Sphere Concept 

 

Antennas perform poor effective radiation which leads to a general poor 

performance of the antenna if the antenna’s dimensions are much less than one 

wavelength. This poor performance limits the antenna’s applications in practical aspects. 

The "radiansphere" is the boundary between the near field and the far field of a small 

antenna. An electrically small antenna is often defined using the concept of the radian 

sphere [24]. The radian sphere is a hypothetical sphere whose diameter 2r is equal to the 

largest linear dimension of the antenna that it encloses.When the electrical size of the 

radian sphere is less than λ (or r ≤ λ/2π), the antenna enclosed by the sphere is 

considered to be electrically small.These antennas exhibit low radiation resistance, high 

reactance, low efficiency and narrow bandwidth and  all of these parameters limit the 

performance of the antenna. These antennas are subject to limitations which are 

fundamentally about the same for a capacitor used as an electric dipole and an inductor 

(loop) used as a magnetic dipole, if they occupy equal volumes. Either type may have 

some advantages resulting from variations within this rule or from relative facility in 

coupling with the associated circuits [24].  

 

The radiation pattern and hence the directive gain of a small antenna remain the 

same for a smaller size, the radiation resistance decreases relative to the other resistance 

in the coupling circuit. The resulting reduction in coupling efficiency is one of the 

principal limitations of the smaller antenna. Another aspect of the same limitation relates 

to the frequency bandwidth of operation with fixed values of the circuit elements. A 

smaller antenna with the same reactance and radiation resistance must be more sharply 

tuned to deliver its available power. Therefore, the reduction of size imposes a 

fundamental limitation on the bandwidth. If the bandwidth so limited is insufficient, 

further damping must be added at the expense of coupling efficiency. The limitations 

verify the experience that larger antennas are generally more efficient, especially for 

wide band operation. By expressing the formulas in fundamental forms; the inherent 

similarity of the electric and magnetic radiators becomes apparent, as well as the minor 

differences resulting from the use of available materials and structures [24]. Therefore, 
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having known these limitations, a simple mathematical synthesis of the active region 

based on the radiansphere technique is developed, which leads to the design of 

electricaly large spiral antenna for wideband applications. 

 

 

2.5.3 Mutual Coupling 

 

Mutual coupling between adjacent arms of spiral antenna affects both the 

radiation patterns and the bandwidth [5]. The radiation from one driven arm induces 

currents on other nearby arm and scatters into the far field, which causes poor 

performance. Continuous and stable antenna characteristics across an wide bandwidth 

require a smooth transition from one active region to the next as frequency varies. This 

implies a strong coupling between adjacent structures. In the case of a spiral antenna, 

this requires sufficient arm spacing to the mutual coupling between the neighbor arms of 

the spiral antenna, which causes undesired fluctuations in gain, pattern, and return loss.  

 

 

2.6 Previous Works on the Spiral Antenna  

 

The application of the spiral antenna in satellite communication systems, radar 

detection, direction-finding and military communication systems causes it to appear 

in a wide variety of works. These are Rumsey’s work on frequency independence, 

Kaiser’s paper, Dyson’s1957thesis, and the paper on the same work [7, 18, 25 and 26]. 

One of the first published attempts at analyzing the spiral was by Curtisin1959 [27]. 

In that work, the two-arm spiral was approximated by a series of connected thin-wire 

semicircles. The model showed good agreement with experimental results when the 

antennas were made in the same semi-circular shape. In 1961, Cheo, Rumsey, and 

Welch published an analytical work in which the spiral element was approximated 

with an “infinite arm” spiral [28]. In 1963, Sivan-Sussman showed experimentally that 

two-arm, four-arm, and six-arm spiral radiation patterns shown one of the 
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characteristics seen in the infinite spiral solution when fed in a similar way [29]. 

 

Some of the earliest purely experimental works on the spiral were by Bawer 

and Wolfe [30-31]. They consisted of papers in 1960 and 1961 that described the 

design of spiral antennas on printed circuit boards and the use of an absorbing can to 

create a unidirectional pattern. This appears to be the first work to propose the use of 

a dielectric backing material for the spiral. Prior works formed the spiral shape by 

cutting slots out of thick metal sheets. Bawer and Wolfe’s papers were criticized by 

Dyson for lumping the Archimedean spiral in with the equiangular spiral in [32]. 

However, from a design point of view the equiangular spiral does not appear  to share a 

great deal with the Archimedean spiral.  

 

The spiral has been a subject of a number of numerical works, but is often 

presented as verification for a numerical technique rather than the subject of the work 

itself. A very early computerized application of the Method of Moments by Mei in 

1964 [33] used the spiral as an example. Here the current on a thin-wire spiral was 

computed as an example of the utility of the method. Another example is an early 

application of the finite-difference time-domain (FDTD) method to antennas in 

1994 by Luebbers. He analyzed two spiral antennas over an absorbing can [34]. 

Modeling the spiral with an extremely small feed attached to a self- complementary 

bow-tie tends to show the predicted value for the impedance.   

 

In 2006, Fumeaux, Baumann, and Vahldieck published an analytical work in 

which the spiral element was backed by cavity and analyzed through Finite -

Volume Time Domain [35]. While not physical, the solution did show a current 

that dropped off rapidly, suggesting an active region for the antenna. The spiral 

sustains good performs such as a bandwidth 126% and unidirectional radiation pattern 

with circular polarization as shown in Table 2.1. However, antenna’s efficiency is low 

around 60% while gain fluctuates from -2dB to 6dB. The reason for this poor gain 

performance is due to the backing technique in which they used cavity filled with 

absorber material and this absorber leads to the spiral antenna with low gain and 
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efficiency performances. The design of this paper is illustrated in Figure 2.7.  

 

 

 

Figure 2.7: Spiral antenna on a cavity loaded with the honeycomb absorber [35]. 

 

The absorber-loaded cavity behind the spiral suppresses un-desired back 

radiation of the spiral. The cavity (around 22 mm) deep is filled with a honeycomb 

absorber with hexagonal cells arranged as shown in Figure 2.7. The honeycomb 

structure itself is coated with a resistive material. The resistivity is graded, with an 

increase toward the bottom of the cavity to maximize absorption. Obviously, the 

absorber lowers the efficiency of the antenna by about 40%. The same analysis goes to 

the work done by Nakano, Kikkawa, Iitsuka and Yamauchi in 2008 [36] and Guraliuc 

and Caso in 2012 [37]. Figure 2.8 shows the design of Nakano’s work and consists of an 

antenna and ring absorber material which is embedded between the spiral antenna and 

the ground plane cavity.   
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Figure 2.8: Archimedean Spiral Antenna with ring absorber material [36]. 

 

 

While directly addressed in this thesis, one active area of research regarding the 

spiral antenna is in making the antenna pattern unidirectional. This is typically 

achieved by attaching an absorbing can to the back of the antenna, but this reduced 

half of the energy inserted into the spiral and requires a significant amount of space. 

Because of this, a number of authors have proposed methods to reflect the radiation. 

This has generally been achieved by placing some type of planar reflector behind the 

spiral. In recent work by Nakano, two reflectors are described. In 2009, Nakano and 

Nogami presented spiral antenna backed by a conducting ground plane reflector [38], in 

which the gain and the efficiency performances is better compared their work in [36] as 

shown in Table 2.1, while the bandwidth is only about 108% and the reason of this 

lower bandwidth is the GP reflector without absorber. However, the work in this 

dissertation is contrast to previous researches that focused on either large bandwidth 

with lower gain and efficiency or narrow bandwidth with higher gain and efficiency. 

Because large bandwidths, high gain, high efficiency and uniform unidirectional 

radiation patterns through out of the entire bandwidth are obtained. In summary, 

comparison of the recently works of spiral antenna and with the proposed backing 

techniques are shown in Table 2.1.  
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