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Abstract—Approximate computing has emerged as a new
paradigm for high-performance and energy-efficient designs of
circuits and systems. For the many approximate arithmetic circuits
proposed, it has become critical to understand a design or approxi-
mation technique for a specific application to improve performance
and energy efficiency with a minimal loss in accuracy. This
article aims to provide a comprehensive survey and a comparative
evaluation of recently developed approximate arithmetic circuits
under different design constraints. Specifically, approximate adders,
multipliers and dividers are synthesized and characterized under
optimizations for performance and area, respectively. The error
and circuit characteristics are then generalized for different classes
of designs. The applications of these circuits in image processing
and deep neural networks indicate that the circuits with lower
error rates or error biases perform better in simple computations
such as the sum of products, whereas more complex accumulative
computations that involve multiple matrix multiplications and
convolutions are vulnerable to single-sided errors that lead to a large
error bias in the computed result. Such complex computations are
more sensitive to errors in addition than those in multiplication, so a
larger approximation can be tolerated in multipliers than in adders.
The use of approximate arithmetic circuits can improve the quality
of image processing and deep learning in addition to the benefits
in performance and power consumption for these applications.

Index Terms—approximate computing, arithmetic circuits, adder-
s, multipliers, dividers, image processing, deep neural networks.

I. INTRODUCTION

With the increasing importance of big data processing and
artificial intelligence, an unprecedented challenge has arisen
due to the massive amounts of data and complex computa-
tions required in these applications. Energy-efficient and high-
performance general-purpose compute engines, as well as ap-
plication specific integrated circuits, are highly demanded to
facilitate the development of these new technologies. Meanwhile,
exact or high-precision computation is not always necessary.
Instead, some small errors can compensate each other or will
not have a significant effect in the computed results. Hence,
approximate computing (AC) has emerged as a new approach to
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energy-efficient design, as well as to increasing the performance
of a computing system, at a limited loss in accuracy [1].

A. Motivation

In the past few decades, the feature size of transistors has
decreased exponentially, as governed by Moore’s law [2], which
has resulted in a continuous improvement in the performance
and power efficiency of integrated circuits. However, at the
nanometer scale, the supply voltage cannot be further reduced,
which has led to a significant increase in power density. Thus,
a percentage of transistors in an integrated circuit must be
powered off to alleviate the thermal issues; the powered-off
transistors are called “dark silicon” [3]. A study has shown
that the area of “dark silicon” may reach up to more than
50% for an 8 nm technology [4]. This indicates an increasing
challenge to improve circuit performance and power efficiency
by using conventional technologies. New design methodologies
have been investigated to address this issue, including multicore
architectures, heterogeneous integration and AC [5].

AC is driven by the observation that many applications, such
as multimedia, recognition, classification, and machine learning,
can tolerate the occurrence of some errors. Due to the perceptual
limitations of humans, some errors do not impose noticeable
degradation in the output quality of image, audio and video
processing. Moreover, the external input data to a digital system
are usually noisy and quantized, so there is already a limit in
the precision or accuracy in representing useful information.
Probability-based computing such as stochastic computing per-
forms arithmetic functions on random binary bit streams using
simple logic gates [6], where trivial errors do not result in a
significantly different result. Lastly, many applications including
machine learning are based on iterative refinement. This process
can attenuate or compensate the effects of insignificant errors [7].
AC has thus become a potentially promising technique to benefit
a variety of error-tolerant applications.

B. Development History of Approximate Arithmetic Circuits

Since the 1960s, the Newton-Raphson algorithm has been
utilized for computing an approximate quotient to speed up
division [8], followed by many other functional iteration-based
algorithms such as Goldschmidt [9]. Multiple-precision dividers
can, therefore, be obtained by terminating the computing process
at different stages [10].

Also in the early 1960s, Mitchell proposed a logarithm-
based algorithm for multiplication and division [11]. Although
specific approximation techniques aimed at arithmetic circuits
were not significantly developed in the following few decades,
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some straightforward approximation (or rounding) techniques
have gradually been considered, for example, in truncation-based
multipliers to obtain an output with the same bit width as the
inputs. This type of multipliers is referred to as a fixed-width
multiplier. The approximation is obtained by accumulating some
most significant partial products, along with a correction constant
obtained by a statistical analysis as an approximation for the sum
of the least significant partial products [12], [13].

In 2004, the concept of approximation was applied to adders
and Booth multipliers in a superscalar processor to increase the
clock frequency of a microprocessor [14]. The approximate adder
is designed by observing that the effective carry chain of an
adder is much shorter than the full carry chain for most inputs.
On average, the longest carry chain in an n-bit addition is no
longer than the binary logarithm of n, or log(n), as discussed by
Burks, Goldstine and von Neumann [15]. Thus, a carry in an n-
bit adder is obtained from its previous k input bits rather than all
of the previous bits (so, k < n). Compared to an accurate adder,
the critical path of this approximate adder is significantly shorter.
The approximate adder was suggested for use in the generation of
the 3× multiplicand required in the radix-8 encoding algorithm
for a Booth multiplier.

Since around 2008, approximate adders and multipliers have
received significant attention, resulting in various designs; the
early ones include the almost correct adder (ACA) [16], the
error-tolerant adder [17], the lower-part-OR adder (LOA) [18],
the equal segmentation adder (ESA) [19], the approximate
mirror adder [20], the broken-array multiplier (BAM) [18], the
error tolerant multiplier (ETM) [21] and the underdesigned
multiplier (UDM) [22]. In addition, logic synthesis methods
have been developed to reduce the circuit area and power
dissipation for a given error constraint [23], [24]. Automated
processes have also been considered to generate approximate
adders and multipliers [25], [26]. Moreover, various computing
and memory architectures have been proposed to support AC
applications [27], [28]. Especially, a programming language can
support approximate data types for low-power computing [29].
Recent, approximate designs include those for dividers [30]–[33],
multiply-and-accumulate (MAC) units [34], squaring circuit-
s [35]–[38], square root circuits [39], and a coordinate rotation
digital computer (CORDIC) [40].

C. Applications of Approximate Computing

AC has been considered for many applications with error
resilience, such as image processing and machine learning, for
a higher performance and energy efficiency [41]–[48].

The approximation techniques at algorithm, architecture and
circuit levels have been synergistically applied in the design of an
energy-efficient programmable vector processor for recognition
and data mining [41]. This design achieves an energy reduc-
tion of 16.7%-56.5% compared to a conventional one without
any quality loss, and 50.0%-95.0% when the output quality is
insignificantly reduced.

As basic image processing applications, sharpening, smooth-
ing and multiplication have been used to assess the quality of
approximate adders and unsigned multipliers [49]–[51]. Image
compression algorithms have been considered for evaluating
approximate signed multipliers [43], [44].

Approximate adders and multipliers have been integrated in
deep learning accelerators for reducing delay and saving ener-
gy [42], [45]–[47], [52]. In [42], truncated 16-bit multipliers with
constant error compensation are used in lieu of 32-bit floating-
point multipliers in an accelerator for large-scale convolutional
neural networks (CNNs) and deep neural networks (DNNs). Up
to 83.6% and 86.4% reductions in area and power consumption
have respectively been achieved. Designs with various error and
circuit characteristics have also been exploited in reconfigurable
systems to enhance the reconfiguration flexibility. In [45], [46],
approximate adders and multipliers with various levels of accu-
racy are integrated in a coarse-grained reconfigurable array for
different configurations determined on-the-fly by the application
requirements. In this way, different performance and energy
improvements can be obtained by trading off various levels of
processing quality.

In the implementation of a state-of-the-art wireline transceiver,
an approximate multiplier is used for low-power digital signal
processing [48]. Compared to the accurate design, power is
reduced by 40% and the maximum performance is improved
by 25%.

D. Scope of This Article

Recent research on AC has spanned from algorithms to
circuits and programming languages [51], [53]–[56]. This article
aims to provide an overview of approximate arithmetic circuits,
various design methodologies, an evaluation and characterization
of approximate adders, multipliers and dividers with respect
to accuracy and circuit measurements. Three image processing
applications and a CNN are implemented to show the capability
and performance advantage of approximate arithmetic circuits.

Some preliminary results have been presented in [51], [57];
however, this article presents the following new, distinctive
contributions. Instead of undergoing a generic synthesis process,
approximate circuits are synthesized and optimized for delay and
area, respectively. The results can be used to guide the selection
of appropriate designs for an application specific requirement
(e.g., high performance or low power). In addition, hardware
efficiency and accuracy are jointly considered to show the
hardware improvements at the cost of a certain loss of accuracy.
Furthermore, a larger class of approximate adders, multipliers
and dividers including many recent designs are evaluated; in
particular, approximate dividers are extensively analyzed and
characterized in detail. Finally, image compression and a DNN
are implemented for assessing the quality of approximate adders
and signed multipliers to obtain insights into the application of
approximate arithmetic circuits in image processing and artificial
intelligence systems.

This article is organized as follows. Section II briefly re-
views the design methodologies and evaluation metrics. The
approximate adders, multipliers and dividers are then presented,
synthesized and comparatively evaluated in Sections III, IV and
V, respectively. Section VI presents the applications. Finally,
Section VII concludes this article and discusses current chal-
lenges and future prospects.
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II. BACKGROUND

A. Design Methodologies

An approximate arithmetic circuit can be obtained by using
the voltage overscaling (VOS) technique [58]–[60], redesigning
a logic circuit into an approximate one [51], and using a
simplification algorithm [11].

Using VOS, a lower supply voltage is provided to efficiently
reduce the power consumption of a circuit, without having
to change the circuit structure. However, a reduced voltage
increases the critical path delay, possibly resulting in timing
errors [58]. Thus, the output can be erroneous due to the
violated timing constraint. Moreover, the error characteristics of
such an approximate operation are nondeterministic, as affected
by parametric variations [61]. When the most significant bits
(MSBs) are affected, the output error can be large [62].

More commonly, an approximate design is derived from an ac-
curate circuit by modifying, removing, or adding some elements.
For instance, some transistors in a mirror adder are removed
to implement a low-power and high-speed full adder [20]. In
addition, an approximate circuit can be obtained by simplifying
the truth table or Karnaugh Map (K-Map) [22], [63]. This method
results in circuits with deterministic error characteristics. Due to
the same structure and design principles, however, the hardware
improvements are hardly significant especially when a high
accuracy is required.

Compared to addition and subtraction, multiplication, division
and square root computation are more complex. Therefore, their
functions can be converted to some simpler operations. Mitchel-
l’s binary logarithm-based algorithm enables the utilization of
adders and subtractors to implement multipliers and dividers,
respectively [11]. It is the origin of most current simplification
algorithms for approximate multiplier and divider design [30],
[64], in parallel with the functional iteration-based algorithms
for divider design [10]. By using algorithmic simplification, the
performance and energy efficiency of an arithmetic circuit can be
significantly improved because of the simplification in the basic
circuit structure. Nevertheless, the accuracy of such a design is
relatively low; many peripheral circuits are required to achieve
a high accuracy, which may limit the hardware efficiency.

Practically, several approximation techniques are often simul-
taneously utilized in a hybrid approximate circuit [65].

B. Evaluation Metrics

Both error characteristics and circuit measurements need to be
considered for approximate circuits.

1) Error Characteristics: Various design metrics and analyt-
ical approaches are useful for the evaluation of approximate
arithmetic circuits [49], [66]–[73]. Monte Carlo simulation is
widely employed to acquire data for analysis. The following
metrics have been used to assess the error characteristics.

Two basic error metrics are the error rate (ER) and error
distance (ED). The ER indicates the probability that an erroneous
result is produced. The ED shows the arithmetic difference
between the approximate and accurate results. Given the ap-
proximate and accurate results M′ and M, respectively, the ED
is calculated by ED = |M′−M|. Additionally, the relative error
distance (RED) shows the relative difference with respect to
the accurate result, given by RED =

∣∣ED
M

∣∣. ED and RED reveal

two important features of an approximate design. For two input
combinations leading to the same ED, the one that produces a
smaller accurate result, M, would result in a larger RED. As
the average values of all obtained EDs and REDs, the mean
error distance (MED) and mean relative error distance (MRED)
are often used to assess the accuracy of an approximate design.
They are given by

MED =
N

∑
i=1

EDi ·P(EDi), (1)

and

MRED =
N

∑
i=1

REDi ·P(REDi), (2)

where N is the total number of considered input combinations
for a circuit, and EDi and REDi are the ED and RED for the
ith input combination, respectively. P(EDi) and P(REDi) are
the probabilities that EDi and REDi occur, which are also the
probability of the ith input combination. The NMED is defined
as the normalization of MED by the maximum output of the
accurate design, useful in comparing the error magnitudes of
approximate designs of different sizes.

The mean squared error (MSE) and root-mean-square error
(RMSE) are also widely used to measure the arithmetic error
magnitude. They are computed by

MSE =
N

∑
i=1

ED2
i ·P(EDi), (3)

and
RMSE =

√
MSE. (4)

In addition, the error bias is given by the average error that is
the mean value of all possible errors (M′−M). The normalized
average error is commonly considered as the average error
divided by the maximum output of the accurate design.

Last but not the least, the worst-case error of an approximate
circuit reflects the largest ED possible. Generally, it is normalized
by the maximum accurate result.

2) Circuit Measurements: The basic circuit metrics include
the critical path delay, power dissipation and area. Some com-
pound metrics include the power-delay product (PDP), area-
delay product (ADP), and energy-delay product (EDP).

Electronic design automation (EDA) tools are indispensable
for circuit implementation and measurement. In general, the
circuit is measured based on different process technologies and
component libraries, e.g., the 45 nm open source NanGate [74],
the 45 nm predictive technology model (PTM) [75], 28 nm
CMOS, and 15 nm FinFET models. The configurations for
the supply voltage, temperature and optimization options also
affect the simulation results. For a fair comparison, the same
configurations should be used for different designs.

Conventionally, high performance and power efficiency are
respectively pursued as independent design considerations. For
instance, to cope with aging-induced timing errors, approximate
adders and multipliers are developed for a high speed [76].
High-performance arithmetic circuits are also preferred in real-
time machine learning systems [77]. For mobile and embedded
devices, however, power-efficiency is key to the extended use of
a limited battery life.
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In this article, approximate circuits are evaluated for maximiz-
ing performance (through delay) or minimizing power (through
area). Specifically, approximate designs are implemented in
hardware description languages (HDLs) and synthesized using
the Synopsys Design Compiler (DC, 2011.09 release) in ST’s
28 nm CMOS technology, with a supply voltage of 1.0 V
at a temperature of 25◦C. To compare speed and power, the
approximate circuits are synthesized under different constraints.
The critical path delay of a design is set to the smallest value
without incurring a timing violation for the delay-optimized
synthesis, whereas the area is minimized for the area-optimized
synthesis. The DesignWare library and “ultra compile” are used
in the synthesis for optimization. The critical path delay and
area are reported by the Synopsys DC. Power dissipation is
measured by the PrimeTime-PX tool with 10 million random
input combinations. As widely used EDA tools in industry and
academia, Synopsys DC and PrimeTime-PX provide estimations
of timing, area and power dissipation with a prediction error of
less than 10% compared with physical implementations [78].

3) Comprehensive Measurements: To provide an overall eval-
uation of an approximate circuit, both error and circuit character-
istics must be considered. Several figures of merit (FOMs) have
been developed by combining some error and circuit metrics in
an analytical form [79], [80]. However, these FOMs are heuristic-
based and lead to different comparison results. In this work,
therefore, the delay, power and PDP of approximate circuits
are directly compared with respect to their ERs, NMEDs and
MREDs.

III. APPROXIMATE ADDERS

A. Preliminaries

An adder performs the addition of two binary numbers and
is one of the fundamental arithmetic circuits in a computer.
Two basic designs are the ripple-carry adder (RCA) and the
carry lookahead adder (CLA). An n-bit RCA consists of n full
adders (FAs) connected in series, each of which generates a
sum (si) and a carry-out (ci+1) by implementing si = ai⊕bi⊕ci
and ci+1 = aibi + aici + bici, where ai and bi are the ith least
significant bits (LSBs) of the two inputs, ci is the carry-in,
i = 0,1, · · · ,n− 1. In an n-bit RCA, the carry of each FA
propagates to the next FA, thus the delay and circuit size increase
proportionally with n, denoted by O(n). An n-bit CLA consists
of n units in parallel; each unit produces the signals of a generate
(gi = aibi), a propagate (pi = ai⊕bi) and a sum, where the former
two signals are used for generating the lookahead carries. In a
CLA, the carry is computed by ci+1 = gi + pici = gi + pi(gi−1 +
pi−1ci−1) = · · · = ∑

i
j=0 g j ∏

i
k= j+1 pk + c0 ∏

i
k=0 pk. The delay of

a CLA is approximately logarithmic in n, or O(log(n)), which
is significantly shorter than the delay of an RCA. However, a
CLA requires a larger circuit area (in O(n log(n))), so it incurs
a higher power dissipation.

For an adder with a width equal to or larger than 32 bits, the
simple carry lookahead structure of CLA is not very efficient
due to the large fan-in and fan-out of the constituent gates
that lower the speed and increase the circuit area and power
consumption. Thus, multiple levels of lookahead structures have
been proposed to construct a large-width adder, which is usually
referred to as a parallel-prefix adder. The parallel-prefix adders
exploit the fact that the carry signals in a CLA can be generated

...

sk+1

Carry and sum generator

ak

bk

Carry and sum generator

b0

a0

b1

a1...
...

ak+1

bk+1

...

...bn−1

an−1

Carry and sum generator

...

sn−1

...
s0

...

sk s1...

Fig. 1. An approximate speculative adder.

by grouping gi and pi in various ways. By varying the group
size and the connection pattern, many parallel-prefix adders
have been designed to improve the speed or reduce the circuit
area, including the Kogge-Stone adder [81], the Ladner-Fischer
adder [82], the Ling adder [83], the Brent-Kung adder [84], and
the Han-Carlson adder [85]. Another type of adders uses addition
blocks of variable sizes, including the carry-select adder [86], the
carry-skip adder [87], the conditional-sum adder [88], and the
carry-increment adder [89]. The architectures and characteristics
of these adders are discussed in [90].

B. Review

Conventional design methodology to accelerate an adder of-
ten comes with a cost in circuit area and power dissipation.
However, approximate adders trade off accuracy for an overall
improvement in hardware efficiency. Based on the approximation
schemes to reduce the critical path and hardware complexity,
approximate adders are classified into four categories.

1) Speculative adders: As an early scheme, a speculative
design leverages the fact that the effective carry chain of an
n-bit adder is much shorter than n in most cases [14]. Thus, an
n-bit speculative adder uses the previous k bits (k < n) to predict
the carry for computing each sum bit, as shown in Fig. 1. In this
way, the critical path delay is reduced to O(log(k)) (for a parallel
implementation such as a CLA, the same below). Compared to
the design in [14], the hardware overhead is reduced in the almost
correct adder (ACA) by sharing some components among the
sub-carry generators [16].

2) Segmented adders: A segmented adder is implemented
by several parallel sub-adder blocks with an independent carry-
in [17], [19], [91], [92]. Hence, the carry propagation chain is
truncated into shorter segments. Fig. 2 shows a basic structure for
many segmented adders. As the simplest design, an n-bit equal
segmentation adder (ESA) uses

⌈ n
k

⌉
k-bit sub-adders without

any carry-in [19]. Different from ACA, the input bits used for
carry computation do not overlap in ESA; thus, for a same k, its
hardware cost is significantly lower than ACA.

In an n-bit accuracy-configurable approximate adder (ACAA),⌈ n
k −1

⌉
2k-bit sub-adders are utilized to add 2k consecutive

bits without carry inputs and k bits are overlapped between
two neighboring sub-adders [91]. The accuracy of ACAA can
be configured at runtime by changing the bit width of the
sub-adders. The generic accuracy configurable adder (GeAr)
generalizes the structure of ACAA by varying the number of
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... ...-bit Adderh

am−1,h−1:0bm−1,h−1:0

sm−1,h−1:0

Cm−1 -bit Adderh

ai,h−1:0bi,h−1:0

si,h−1:0

-bit Adderh

a0,h−1:0b0,h−1:0

s0,h−1:0

C0Ci

Fig. 2. The basic structure of a segmented adder. ai,h−1:0 and
bi,h−1:0 are the h-bit inputs for the segment i. The inputs can be
overlapped between neighboring segments.

overlapped bits used for carry prediction [93], while the quality-
area optimal low-latency approximate adder (QuAd) further
utilizes sub-adders of variable width [94].

An n-bit error-tolerant adder type II (ETAII) consists of
⌈ n

k

⌉
k-bit carry generators that are connected in parallel with the k-
bit sum generators [17]. For the same k, ETAII utilizes a carry
generator to predict the carry for the next sum generator, so it
is more accurate than ESA and ACA. However, the circuit of
ETAII is more complex than that of ESA, and its delay is larger
due to the longer 2k-bit critical path. For a fixed k, ETAII uses
the same carry propagation path as ACAA for each sum, so they
share the same error characteristics.

The dithering adder uses a more significant (accurate) sub-
adder and a less significant sub-adder with upper and lower
bounding modules [68]. An additional control signal is used as
the carry-in of the more significant (accurate) sub-adder, which
is also used to select the sum output of the less significant sub-
adder. To reduce the error due to the ignored carry inputs, an
error control and compensation method is developed to trade off
computing efficiency for an improved accuracy of a segmented
adder in [92].

Generally, the critical paths of the segmented adders are
in O(log(k)) due to the carry-ignored segmentation. The cir-
cuit complexities are in O(n log(k)) for ESA and ETAII, in
O((n− k) log(k)) for ACAA, and in O

(( n−L
k +1

)
L log(L)

)
for

GeAr.
3) Approximate carry-select adders: The structure used in

the classic carry-select adder [86] is employed in [95]–[102]
to introduce approximation in the selection of the carry-in and
sum for each sub-adder. This type of adders is referred to as
an approximate carry-select adder with either sum or carry-
in selection, as shown in Figs. 3 and 4, respectively. An n-
bit approximate carry-select adder consists of m =

⌈ n
k

⌉
blocks

and uses several common signals. For the ith block, generate

gi, j = ai, jbi, j, propagate pi, j = ai, j ⊕ bi, j, and Pi =
k−1
∏
j=0

pi, j are

defined, where ai, j and bi, j are the jth LSBs of the inputs in block
i, where j = 0,1, · · · ,k−1. Pi = 1 indicates that all k propagate
signals in the ith block are logic “1”.

In the speculative carry selection adder (SCSA) [95] and the
consistent carry approximate adder (CCA) [99], a sum is selected
from adder0 (with carry-in “0”) and adder1 (with carry-in “1”)
by using a multiplexer. In SCSA, the carry-out of adder0 in the
(i−1)th block is connected to the Seli signal of the multiplexer
in the ith block (see Fig. 3). SCSA, ETAII and ACAA achieve
the same accuracy for the same value of k due to the identical
carry predict function. In CCA, the Seli of the multiplexer is
determined by the propagate signals in the current and previous
blocks. The carry prediction of CCA depends not only on its
LSBs, but also on the more significant bits.

In Fig. 4, each block consists of a carry generator and a sum

...

block(i − 1)th

adder0

ai−1,k−1:0bi−1,k−1:0

si−1,k−1:0

0

adder1

0
1 1

blocki
th

adder0

ai,k−1:0bi,k−1:0

si,k−1:0

0

adder1

0
1 1 ...

Seli+1 Seli Seli−1

adder0

ai+1,k−1:0bi+1,k−1:0

si+1,k−1:0

0

adder1

0
1 1

block(i + 1)th

Fig. 3. The approximate carry-select adder with sum selection.
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...
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Sum
Generator

0 1

Ci,out

Ci+1,in
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Carry
Generator

ai-1,k-1:0bi-1,k-1:0

si-1,k-1:0
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Sum
Generator

Ci-1,out

Ci,in

Seli-1

...
0 1

Ci,spec Ci-1,specCi+1,spec

Fig. 4. The approximate carry-select adder with carry-in selec-
tion.

generator. The approximate carry skip adder (CSA) [96], the gen-
erate signals-exploited carry speculation adder (GCSA) [100],
and the block-based carry speculative approximate adder (BC-
SA) [103] use different selection schemes for the carry-in of a
carry generator. In CSA, the carry-in of the (i+ 1)th block is
determined by the propagate signals of the ith block: it is the
carry-out of the (i−1)th sub-carry generator when all propagate
signals are true (Pi = 1); otherwise it is the carry-out of the
ith sub-carry generator. The generate signals are used in GCSA
for the carry speculation; the carry-in for the (i+1)th block is
selected by its own propagate signals rather than its previous
block. The carry-in is the most significant generate signal gi,k−1
of the ith block if Pi = 1, or else it is the carry-out of the ith

carry generator. The carry-in of the (i+1)th block in BCSA is
selected between the most significant generate signal gi,k−1 and
the carry-out of the ith block, that is, Ci+1,in = SiCi,out +Sigi,k−1,
where Si = ai+1,0 +bi+1,0 +gi,k−1 [103]. An error detection and
recovery scheme is further proposed to partially compensate the
errors by modifying the LSB of the sum output in each block.

In the carry speculative adder (CSPA), each block contains
one sum generator, two internal carry generators with carry-
0 and carry-1, respectively, and a simple carry predictor [98].
The carry-out of the ith carry predictor selects a carry-in for the
(i+1)th sum generator. The carry predictor uses kl rather than
k input bits (kl < k), so it leads to a simpler circuit than SCSA
for the same block size k.

Some control signals are added to the gracefully-degrading
accuracy-configurable adder (GDA) to configure the accuracy
by selecting an accurate or approximate carry-in for each sub-
adder [97]. Thus, the delay of GDA varies with the carry
propagation path determined by the control signals.

In the carry cut-back adder (CCBA), the full carry propagation
is prevented by a multiplexer or an OR gate [102]. The carry-
in for a segment is determined by a cut signal from a carry
propagate block at a higher position, a carry speculated from
a short chain at a lower position, and the carry-out of the
previous segment. The delay and accuracy of CCBA depend on
the distance between the propagate block and the multiplexer or
OR gate.

The critical path delay of the approximate carry-select adders
can be given by O(log(k)), when the bit width of the input
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Fig. 5. An n-bit adder using approximate full adders (AFAs).

operands in each block is k. The circuit area varies with the
complexity of the carry prediction and selection schemes.

4) Approximate full adders: Another method for reducing the
critical path and power dissipation of an adder is to approximate
a full adder. The approximate full adder (AFA) is then used to
implement l LSBs in an n-bit adder (l < n), while the (n− l)
MSBs are computed by an accurate adder, as shown in Fig. 5.
In the lower-part-OR adder (LOA), an OR gate is used as a
simple AFA, and one AND gate is used to generate the carry-in
for the accurate adder [18].

Other AFA designs include the mirror adder [20], the approx-
imate XOR/XNOR-based full adders [104], the inexact adder
cells proposed in [105], and the approximate reverse carry
propagate full-adder [106] (specific for the RCA structure).
Additionally, emerging technologies such as magnetic tunnel
junctions have been considered for the design of AFAs for a
shorter delay, a smaller area and a lower power consumption
[107], [108]. Finally, a simply truncated adder (TruA) that works
with a lower precision is considered as a baseline design.

The critical path of this type of adders is typically in
O(log(n− l)) when there is no carry propagation for the AFAs.
LOA is selected as the reference design in the evaluation due
to its logic-level implementation while most other AFAs are
designed at the transistor level.

In addition to the above four categories, a library of 430
approximate 8-bit adders has been automatically generated by us-
ing Cartesian genetic programming (CGP) and a multi-objective
genetic algorithm [109]. Due to the restricted bit width of 8
bits, however, this group of designs is not considered in the
evaluation.

C. Evaluation

In this evaluation, we consider 16-bit approximate adders. In
the circuit implementations, all sub-adders in the designs are
implemented by CLAs for a high efficiency.

To obtain the error characteristics, the functions of the 16-bit
approximate adders are implemented in MATLAB and simulated
with 10 million uniformly distributed random input combina-
tions. The simulation results show similar trends in MRED and
NMED for the approximate adders [51], so only the MRED is
reported here. For circuit measurements, the 16-bit approximate
adders are implemented in HDLs and synthesized as described
in Section II-B2. The clock period used in the power estimation
is 1 ns.

Fig. 6 shows the delay comparison of approximate adders
with respect to MRED and ER (for delay-optimized synthesis),
while Fig. 7 shows the power comparison (for area-optimized
synthesis). The overall comparison in PDP and MRED is shown

TABLE I. Summary of approximate adders.

Adder
Error characteristics Circuit measurements

ER ED Performance
(delay-optimized)

Power
(area-optimized) PDP

ESA high high high low low
GeAr low high
CSA low low
CSPA high high
CCBA high low low low
LOA high low low low
TruA high low low

in Fig. 8 (for both delay- and area-optimized syntheses). A Pareto
front is delineated in each figure to show the designs with the
highest efficiency. As ETAII, ACAA and SCSA share the same
error characteristics for a certain k, only ETAII is shown in the
figures due to its lower hardware overhead.

As can be seen in Fig. 6, most approximate adders have very
close ERs between 0.5% to 35% except for GeAr (R4 P8) and
CSA (for k > 3) with ERs smaller than 0.5%, and CCBA, ESA,
LOA and TruA with very high ERs, although CCBA, LOA
and TruA can have relatively small MREDs. CSA can be very
accurate, whereas ESA, BCSA and CSPA show a low accuracy
with relatively large MREDs and ERs.

Performance/Power vs. accuracy: As also shown in Fig. 6,
LOA, CCBA and GeAr can be faster than the other designs for
a relatively small MRED, so they exhibit a balanced tradeoff
in performance and accuracy (in MRED). ESA and CSPA are
the fastest at a large MRED and ER. For a similar ER, some
configurations of CSA, GeAr and ETAII can be faster than others
(i.e., in the Pareto front). As shown in Fig. 7, CCBA, LOA and
TruA achieve the best power and accuracy tradeoffs (in terms
of MRED). GeAr, BCSA and CCBA are in the Pareto set for
power consumption and ER.

Energy vs. accuracy: To consider both error and circuit
characteristics, the MRED and PDP are selected as representative
metrics. As shown in Fig. 8, a similar trend is obtained for
both the delay- and area-optimized syntheses in the PDP and
MRED of the approximate adders. Overall, CCBA, LOA and
TruA achieve the best tradeoffs between accuracy (in MRED)
and energy (in PDP); however, they have the highest ERs.
Nevertheless, these approximate adders show a decent tradeoff in
error magnitude and hardware efficiency. In particular, they are
suitable for applications in which a high ER is not as detrimental
as a large error magnitude.

In summary, truncation is an effective approach to a hardware-
efficient design, albeit resulting in a high ER. On the other hand,
the carry select scheme can be very effective in highly accurate
designs such as the CSA. A speculative adder results in a very
high power dissipation and a large error magnitude (e.g., ACA).
The advantages and disadvantages of the approximate adders
with at least one prominent property are summarized in Table I.
In this table, ED stands for both MRED and NMED. As can be
seen, the ESA is very hardware-efficient for applications with
high error tolerance, whereas CSA is suited for applications that
require a high accuracy. When a high ER is not an issue, CCBA,
LOA and TruA are the most-efficient designs.

IV. APPROXIMATE MULTIPLIERS

A. Preliminaries

Typically, a combinational multiplier consists of three process-
ing stages, partial product (PP) generation, PP accumulation and
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a final carry propagate addition, as shown in Fig. 9. Let the two
input operands of an n×n unsigned multiplier be A = ∑

n−1
i=0 Ai2i

and B = ∑
n−1
i=0 Bi2i, where Ai and Bi are the ith least significant

bits of inputs A and B, respectively, and i starts from 0. A partial
product is often generated by an AND gate, i.e., PPi, j = A jBi. To
accumulate the PPs, three structures are widely used: the carry-
save adder array [110], the Wallace tree [111], and the Dadda
tree [112].

Fig. 10 shows a carry-save adder array for a 4× 4 unsigned
multiplier, where the carry and sum signals generated by the
adders in a row are passed on to the adders in the next row.
The carry signals propagate through the adders in a diagonal
direction. Hence, the critical path for an n× n multiplier is

approximately in O(n). Due to its regular layout, the array
structure in Fig. 10 requires mostly short wires and is easy to
scale to large arrays.

A Wallace tree utilizes FAs, half adders (HAs) and 4:2
compressors for a fast accumulation of the PPs, as shown in the
dotted box in Fig. 9 for a 4×4 unsigned multiplier. The adders
in each stage operate in parallel without carry propagation, and
the same operation repeats until two rows of the PPs are left. For
an n×n multiplier, about dlog1.5 (n/2)e stages are required in a
Wallace tree [110]. Therefore, the delay is in O(log(n)), which
is shorter than that of the array structure. The Dadda tree has a
similar structure as the Wallace tree, but it uses as few adders
as possible rather than reducing PPs as early as possible in a
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Fig. 6. Optimized delay vs. accuracy for the approximate 16-bit adders using different error metrics.
Note: The number of approximate or truncated LSBs for LOA and TruA ranges from 3 to 9, the sub-adder width of ESA is
from 8 down to 3, the number of bits used for carry speculation for ACA is from 8 down to 3 from left to right. The block
width for CSA is from 5 down to 3, and it is from 6 down to 3 for the other adders from left to right. In CSPA, the size of
the carry predictor is dk/2e. The global speculative carry for CCA is “0,” which leads to a more accurate result than using “1.”
For GeAr, the configurations from left to right are R4 P8, R6 P4, R4 P4, and R2 P4 (Rm Pk means k previous bits are used
for generating m bits of sum results). For CCBA, the configurations with the smallest PDPs are chosen for a similar MRED.
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Fig. 9. The basic arithmetic process of a 4×4 unsigned multi-
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Wallace tree. Compared to the array structure, a tree-based PP
accumulation is faster; however, a tree structure requires longer
and more complex wiring, which can result in a larger circuit
area [113].

Signed multiplication uses 2’s complement representation. The
input operands are given as A = −An−12n−1 + ∑

n−2
i=0 Ai2i and

B=−Bn−12n−1+∑
n−2
i=0 Bi2i. The Booth algorithm is then used to

recode the multiplier for generating PPs [114]. MacSorley mod-
ified the Booth algorithm to the radix-4 Booth algorithm [115],
which reduces the number of PPs by half. The radix-2r Booth
algorithm can be obtained by using the same principles of the
radix-4 scheme. In addition, the Baugh-Wooley algorithm [116]
and the modified Baugh-Wooley algorithm [117] can simplify
the signed multiplication by adding the 2’s complements of the
PP rows and preprocessing the constant additions. The modified
Baugh-Wooley algorithm is also widely used to eliminate the
sign extension in Booth multipliers [118].

To approximate an unsigned multiplier, five methodologies
have been considered: 1) approximation in generating the
PPs [22], 2) approximation (including truncation) in the PP
tree [18], [21], [119], [120], 3) using approximate adders [121],
counters [63] or compressors [79], [80], [122]–[126] in the PP
reduction, 4) using logarithmic approximation [11], [64], [127]–
[130], and 5) using an automated process such as a genetic
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B0 B0
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B2 B2B2B2
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Fig. 10. A 4× 4 unsigned multiplier using a carry-save adder
array.

programming method [109], [131]. For signed multiplication,
approximate Booth multipliers have been designed for its fast
operation on a reduced number of PPs.

Therefore, approximate multipliers are classified into five
unsigned categories and signed Booth multipliers.

B. Approximate Unsigned Multipliers

1) Approximation in generating partial products: As an early
design, the underdesigned multiplier (UDM) utilizes an approx-
imate 2× 2 multiplier to construct larger multipliers [22]. The
2× 2 multiplier approximates the product “1001” with “111”
when both the inputs are “11,” so saving one output bit and
simplifying the logic circuit. The ER of this 2×2 multiplier is
0.54 = 6.25% if each input bit is equally likely to be “0” or “1”.

2) Approximation in the partial product tree: A broken-array
multiplier (BAM) omits some carry-save adders in an array
multiplier in both the horizontal and vertical directions [18]. A
more straightforward approximation is to truncate some LSBs on
the input operands so that a smaller multiplier is sufficient for the
remaining MSBs. This truncated multiplier (TruM) is considered
as a baseline design for comparison. Different from BAM and
TruM, several consecutive rows of PPs that do not necessarily
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start from the LSB are ignored for the PP reduction in [132].
This design is referred to as a partial product perforation-based
multiplier (PPAM).

The error tolerant multiplier (ETM) consists of a multi-
plication section, a non-multiplication section, and a control
block [21]. The NOR gates-based control block determines: i)
if all k MSBs in at least one of the two n-bit input operands
are zeros, the multiplication section (using an accurate k× k
multiplier, where k < n) is activated to multiply the LSBs without
any approximation, and ii) otherwise, the accurate multiplier
is used to multiply the MSBs, while the non-multiplication
section is used to approximately process the LSBs. The static
segment multiplier (SSM) uses a similar partition scheme, but
the approximation section is omitted for not processing the
LSBs [133]. If the MSBs of one input are all zeros, its LSBs are
multiplied by either the MSBs or the LSBs of the other input
depending on whether MSBs are all zeros.

Similarly, an exact k× k sub-multiplier is used in the design
of an n× n dynamic range unbiased multiplier (DRUM) [120].
However, the k-bit inputs of the reduced-width multiplier are
dynamically selected starting from the leading “1”s or the most
significant “1”s in the two n-bit input operands. If the leading
“1” position is higher than k, the redundant LSBs are truncated
and the LSB of the k selected bits is set to “1”. Otherwise,
the leading “1” position is ignored, and the k LSBs of the
input operands are selected as the inputs of the sub-multiplier.
The final output is then obtained by using a barrel shifter
to restore the computed result. As the input bits are more
effectively processed, DRUM is more accurate than ETM and
SSM. Moreover, it produces unbiased errors, so it is suited for
accumulative operations. However, it uses a more complex circuit
for the dynamic selection of inputs.

An approximate Wallace tree multiplier (AWTM) utilizes a
bit-width aware approximate multiplication and a carry-in pre-
diction [119]. An n×n AWTM is implemented by four n/2×n/2
sub-multipliers, where the most significant sub-multiplier AHBH
is further divided into four n/4×n/4 sub-multipliers. By using
different numbers of approximate n/4× n/4 sub-multipliers in
AHBH , the AWTM is configured into four modes. The three less
significant n/2× n/2 sub-multipliers (AHBL, ALBH and ALBL)
are approximate.

3) Using approximate counters or compressors in the partial
product reduction: An inaccurate 4×4 Wallace multiplier uses
a 4:2 counter that approximates the output of the carry and
sum, “100,” with “10” when all four inputs are “1” [63]. For
uniformly distributed inputs, the probability of one bit being “1”
is 0.5, so the probability that a partial product is “1” is 0.25.
The error rate of the approximate 4:2 counter is, therefore, only
0.254 = 0.39%. Larger multipliers can be constructed using the
inaccurate counter-based 4× 4 multiplier (ICM, in general). In
the approximate counters in [134], the more significant output
bits are ignored for an efficient implementation of several signed
multipliers.

Two approximate designs that implement simplified functions
of 4:2 compressors are considered for Dadda multipliers [123].
To lower the error probability, the PPs are encoded by propagate
(i.e., PPi, j +PPj,i) and generate (i.e., PPi, j ·PPj,i) signals, which
enable the design of several approximate compressors with a
relatively low error probability [124]. Similarly, an approximate

4:2 compressor with encoded inputs is proposed for 4 × 4
multipliers, which is then used to construct larger multiplier-
s [125]. The dual-quality 4:2 compressors in [79] can switch
between exact and approximate operating modes using power
gating techniques. These compressors are then used in the PP
accumulation of a Dadda multiplier and the accuracy can be
dynamically configured. Using a 3-input majority gate, a FinFET-
based imprecise 4:2 compressor is designed for an approximate
8×8 Dadda multiplier with truncation in the PP array [80].

In the high-order compressor based multiplier (HOCM), each
column of PPs is accumulated by only one compressor [126].
An allocation algorithm is then developed to determine the use
of exact and approximate compressors at different stages of the
accumulation with the truncation of the lower half PPs.

In [121], a novel approximate adder uses two adjacent inputs
to generate a sum and an error bit for accumulating the PPs.
To alleviate the error due to the approximate adder, two error
recovery schemes are considered to use either OR gates to
accumulate the error bits in the so-called approximate multiplier
1 (AM1), or both OR gates and the approximate adders in the
approximate multiplier 2 (AM2). Moreover, TAM1 and TAM2
are obtained by truncating the lower half of the PPs in AM1 and
AM2, respectively [50], [135].

4) Using logarithmic approximation: Mitchell’s algorithm
leverages the logarithmic and anti-logarithmic approximations of
a binary number. It serves as the basis of logarithmic multipliers
(LMs) [11]. In this algorithm, the two unsigned binary input
operands A and B of a multiplier are expressed as

A = 2k1 (1+ x1) (5)

and
B = 2k2 (1+ x2) , (6)

where k1 and k2 indicate the leading “1” positions of A and B,
respectively; x1 and x2 are the fractional numbers that represent
the bits to the right of the leading “1”s normalized by 2k1 and
2k2 , respectively. The product of A and B is then given by

M = A×B = 2k1+k2 (1+ x1)(1+ x2) . (7)

Thus,

log2 M = k1 + k2 + log2 (1+ x1)+ log2 (1+ x2) . (8)

As 0 ≤ x1,x2 < 1, log2 (1+ x1) ≈ x1 and log2 (1+ x2) ≈ x2.
Hence, (8) is approximated by

log2 M ≈ k1 + k2 + x1 + x2. (9)

The multiplication is then completed by performing an an-
tilogarithmic approximation, i.e.,

M ≈

{
2k1+k2 (x1 + x2 +1) if x1 + x2 < 1
2k1+k2+1 (x1 + x2) if x1 + x2 ≥ 1

(10)

To improve the accuracy of an LM, the ALM-SOA uses a
truncated binary-logarithm converter and a set-one-adder (SOA)
for the addition [127]. The SOA simply sets the LSBs to constant
“1”s, and generates a carry-in for the MSBs using an AND gate.
Moreover, an improved algorithm using exact and approximate
adders (ILM-EA and ILM-AA) is proposed in [64], [128]. In
[129], the input operands between two consecutive powers of two
are partitioned into several segments. An error reduction factor is
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then analytically determined for each segment and compensated
to the result of the basic LM. A two-stage design that uses two
truncated LMs for error correction achieves a low and unbiased
average error [130].

5) Using an automated process: In [109], 471 8× 8 ap-
proximate unsigned multipliers are automatically generated by
using CGP and a multi-objective genetic algorithm. As CGP
can provide better implementations of a circuit than conventional
synthesis tools, it is used to denote a circuit using this design
method. An approximate circuit is generated by randomly re-
moving some connections of several accurate designs. A genetic
algorithm is then applied for design space exploration to obtain
the optimal approximate circuits with respect to MRED. These
8×8 multipliers are then used to construct 16×16 approximate
multipliers, referred to as CGPM1 to CGPM6 [131].

C. Evaluation of Approximate Unsigned Multipliers

The error and circuit characteristics of 16× 16 approximate
unsigned multipliers are obtained with the same experimental
setup as in the evaluation of approximate adders, except that the
clock period used in the power estimation is 4 ns.

As shown in [51], most of the approximate multipliers result in
large ERs close to 100%. However, ICM has a low ER of 5.45%
because only one approximate counter with an ER of 0.39% is
used in a 4×4 multiplier block. Some configurations of CGPM1,
CGPM2 and CGPM3 also show lower ERs than the other
designs. Additionally, the ER of UDM is 80.99%, lower than
most of the other designs. Hence, the accuracy is only compared
here in MRED and NMED. For circuit measurements, Fig. 11
shows the critical path delay of the multipliers synthesized
under delay-optimized constraints with respect to MRED and
NMED, while Fig. 12 shows the power consumption for area-
optimized synthesis. Based on the preliminary results in [57],
the designs with good tradeoffs are selected from each category
for comparison here. The array and Wallace architectures are
considered for TruM, which are denoted as TruMA and TruMW,
respectively.

Performance vs. accuracy: Fig. 11 shows that most approxi-
mate unsigned multipliers exhibit a similar performance trend vs.
both MRED and NMED except for ICM and DRUM. CGPM1 is
the most accurate design with very small values of MRED and
NMED, and a reasonable performance. As expected, the LMs
(ALM-SOA and ILM-AA) are good in performance, but poor
in accuracy. HOCM, TAM1, ILM-AA and ALM-SOA show the
best tradeoffs between performance and accuracy. PPAM can
have the shortest delay but largest error.

Power vs. accuracy: As shown in Fig. 12, LMs are very
power-efficient albeit with a very low accuracy, whereas CGPM1
is relatively power-hungry but with a high accuracy. At a medium
accuracy, BAM consistently consumes a low power, followed
by CGPM3. Some configurations of HOCM also show good
tradeoffs in power-efficiency and accuracy. HOCM (1StepTrunc)
shows the best tradeoff in power and accuracy.

Energy vs. accuracy: The PDPs of the unsigned multipliers
with respect to MRED are shown in Fig. 13. The overall trend
is slightly different between the delay-optimized (Fig. 13(a))
and area-optimized (Fig. 13(b)) synthesis results. As shown
in Fig. 13(a), the 1StepFull in HOCM, TAM1, CGPM1 and
CGPM3 exhibit the best energy-accuracy tradeoffs, located in

TABLE II. Summary of approximate unsigned multipliers.

Multiplier
Error characteristics Circuit measurements

MRED NMED Performance
(delay-optimized)

Power
(area-optimized) PDP

BAM low low low
HOCM high
TAM1 high low

CGPM1 low low high
ALM-SOA high high very high very low very low
ILM-AA high high very high low low
TruMA low low
TruMW high low low
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Fig. 14. The partial product (PP) partition for an 8× 8 fixed-
width modified Booth multiplier [136]. PPi, j is the jth PP in the
ith PP vector, PPi, j is the inverted PPi, j, and ni is the sign of the
ith encoded digit.

the center of the plot. In Fig. 13(b), CGPM3, HOCM, TAM1
and TruMA show slightly better tradeoffs than the other designs.
At a very low accuracy, ALM-SOA and PPAM are the most
hardware-efficient with the smallest PDP values.

In summary, truncation is effective in reducing the delay
and energy consumption of unsigned multipliers. An LM tends
to be hardware-efficient but with a rather low accuracy. The
automatically-generated multipliers can be highly accurate with
a reasonable hardware consumption. A brief summary of the
error and circuit characteristics is shown in Table II for the
approximate unsigned multiplier in the Pareto fronts.

D. Approximate Booth Multipliers

The modified (or radix-4) Booth algorithm is commonly used
in the design of approximate Booth multipliers [118], [136]–
[140]. Initially aimed at a fixed-width signed multiplier, a widely
used method is to truncate the lower half of the PPs to generate
an output with the same width as the input. This truncation saves
the circuits for PP accumulation, but it introduces a large error.
Hence, many error compensation schemes have been proposed
to increase accuracy [118], [136], [137], [139].

Inspired by the BAM, the broken Booth multiplier (BBM)
omits the adder cells to the right of a vertical line [138], whereas
directly truncating k LSBs of the input operands leads to a
truncated Booth multiplier (TBM-k). The TBM is considered
as a baseline design for comparing the Booth multipliers.

Generally, a fixed-width Booth multiplier is based on a parti-
tion of the PP array, as shown in Fig. 14. For an 8×8 fixed-width
modified Booth multiplier, the PP array is divided into two parts,
the higher half denoted as the main part (MP) and the lower
half truncation part (TP). The TP is further divided into TPmajor
and TPminor. The final product of a fixed-width multiplier is the
addition of the MP and the carry signals generated from the TP.

In [136], the carry signals include the exact carry from the
TPmajor and an approximate carry from the TPminor (Fig. 14).
The approximate carry is generated by the output of the modified
Booth encoders. This multiplier is referred to as BM04. Using
a similar partition scheme, BM11 relies on a simplified sorting
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network to generate the carries for error compensation [118].
This error compensation makes the errors symmetrical and cen-
tred around zero, which reduces the error bias and mean-squared
error. In BM15, the error due to truncation is compensated by
the outputs of the Booth encoders and the multiplicand [141].
In BM07, the number of PP columns in TPmajor is adaptively
variable to compensate for the quantization error in a fixed-
width multiplier [137]. Another design is based on a probabilistic
estimation-based bias [139], referred to as PEBM. In this design,
an error compensation formula is derived from a probability
analysis, where the number of PP columns in TPmajor varies
in accordance with the desired trade-off between hardware and
accuracy.

To reduce the additional delay due to the radix-8 Booth algo-
rithm, an approximate recoding adder is proposed for calculating
the triple multiplicands in [142]. A Wallace tree and a truncation
technique are then utilized for the PP accumulation. To be con-
sistent with the fixed-width Booth multipliers, the most efficient
approximate radix-8 Booth multiplier, ABM2 R15 (with the
truncation of 15 bits, resulting in a fixed-width multiplier), is
considered and denoted as ABM2.

To speedup the PP generation, two approximate radix-4 Booth
encoders are proposed by simplifying the K-Map to generate
k least significant PP columns for an n× n multiplier (k =
1,2, · · · ,2n) [140]. By changing the value of k, different tradeoffs
can be achieved between accuracy and hardware efficiency.
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Fig. 11. Optimized delay vs. accuracy for the approximate 16×16 unsigned multipliers using different error metrics.
Note: The number of truncated LSBs for TruMA and TruMW is from 2 to 8 from left to right, and from 11 to 22 for BAM. The number of
MSBs used for error compensation is from 16 to 10 for TAM1. The size of the accurate sub-multiplier is from 10 to 8 for SSM, and 10 to 6 for
DRUM. The configurations for HOCM are 1StepFull (with approximate compressors in the first accumulation stage), 1StepTrunc (1StepFull with
a truncation of LSBs), 2StepFull (with approximate compressors in both the first and second stages), 2StepTrunc (2StepFull with a truncation of
LSBs) from left to right. For CGPM1 and CGPM3, which respectively use one and three 8×8 approximate multipliers for constructing a 16×16
multiplier, the configurations with the smallest PDPs are shown for a specific MRED, selected from 500 configurations for each design.
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Fig. 12. Power consumption vs. accuracy in MRED and NMED for the area-optimized approximate 16×16 unsigned multipliers.
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Fig. 13. A comparison of power-delay product and MRED for the approximate 16×16 unsigned multipliers.

E. Evaluation of Approximate Booth Multipliers

In this evaluation, we consider 16×16 approximate (or fixed-
width) Booth multipliers for signed multiplication. The clock
period for the power estimation is 4 ns. Fig. 15 shows the
optimized delay with respect to NMED and MRED, while the
power is shown in Fig. 16 for area-optimized synthesis. Fig. 17
shows the tradeoff between PDP (for both delay- and area-
optimized syntheses) and MRED for the approximate Booth
multipliers.

Performance/Power vs. accuracy: As revealed in Figs. 15 and
16, most fixed-width Booth multipliers show similar NMEDs
except for BBM and BM15 with relatively large values. Com-
pared to the fixed-width Booth multipliers, TBM can have a
similar MRED and higher NMED, with a higher speed and power
dissipation. With a moderate accuracy, ABM2 is the fastest and

the most power-efficient. With a very high accuracy, BM07 is
the slowest design with a relatively high power consumption,
followed by BM11. PEBM shows a moderate speed and power
dissipation, with a relatively high accuracy.

Energy vs. accuracy: Fig. 17 shows that BM07, BM11 and
PEBM exhibit the best tradeoffs between accuracy and PDP.
ABM2 and BBM stand out too for power-optimized synthesis.
A summary of the error and circuit characteristics is shown in
Table III. Overall, BM07 and BM11 are relatively accurate but
slow. PEBM shows small values of NMED and PDP, as well as
a high speed. ABM2 is efficient in both power and performance
with a moderate accuracy.
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Fig. 15. Delay vs. accuracy for the approximate 16×16 Booth multipliers. The number of truncated LSBs for TBM is from 2 to
6 from left to right.
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Fig. 16. Power consumption vs. accuracy for the approximate 16×16 Booth multipliers.
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Fig. 17. A comparison of power-delay product and MRED for the approximate 16×16 Booth multipliers.

TABLE III. Summary of the approximate Booth multipliers.

Multiplier
Error characteristics Circuit measurements

MRED NMED Performance
(delay-optimized)

Power
(area-optimized) PDP

BM07 low low low
BM11 low low low
PEBM low high low
BBM high low low

ABM2 high low

V. APPROXIMATE DIVIDERS

A. Preliminaries

Although the divider is not as frequently used as adders
and multipliers, the system performance can be significantly
degraded if it is not appropriately implemented, whereas it
is hard to reduce the latency of dividers without significant
overhead in area [143]. A straightforward approach to divider
design is to follow the pencil-and-paper algorithm. In general,
the quotient of a division is computed by iteratively subtracting a

multiple of the divisor from the partial remainder that is initially
set to the dividend. In a restoring divider, the partial remainder
is corrected or reserved when the subtraction yields a negative
number, while it is not corrected in a nonrestoring divider [110].
Fig. 18 shows an 8/4 unsigned restoring array divider that uses a
multiplexer and the borrow signal in the subtractor cell to retain
the partial remainder. Generally, n2 subtractor cells are required
in a 2n/n array divider. The critical path is in O

(
n2
)

due to the
ripple borrow propagations among subtractor cells, whereas it is
in O(n) for an n×n array multiplier. Therefore, an array divider
is much slower than an array multiplier. However, the delay of
an array divider can be reduced by using carry-save reduction
and carry-lookahead principles, with an increased cost in area
and power consumption [144].

To reduce the critical path, the Sweeney [145], Robertson
[146] and Tocher [147] (SRT) algorithm speculates a quotient bit
based on a few MSBs of the divisor and the partial remainder.
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Fig. 18. An 8/4 unsigned restoring array divider. A = ∑
7
i=0 ai2i

and B=∑
b
i=0 bi2i are the input dividend and divisor, respectively.

Q = ∑
3
i=0 qi2i and R = ∑

3
i=0 ri2i are the output quotient and

remainder, respectively. The OR gate is a simplified subtractor
with 0 as the subtrahend for dealing with overflow.

In an SRT divider, therefore, the bit width of the subtractors
is smaller than that in an array divider, thus resulting in a
faster operation. The performance can be further improved by
using a high-radix divider that generates several quotient bits
rather than one at each iteration [148]. The quotient in an
SRT division is usually in a redundant form, so an on-the-fly
conversion algorithm [149] is required to convert the quotient
into a non-redundant representation. Notably, the performance
of these dividers is improved by trading off circuit area and
power consumption.

Several iterative algorithms, including the Newton-
Raphson [10] and Goldschmidt [9] algorithms, have been
developed for large division using multiplication and addition.
The performance of this type of dividers are significantly
affected by the presumed initial parameter values.

Several approximate subtractor/adder cells have recently been
proposed for an array divider [31], [150]–[152]. Another type of
approximate dividers uses a reduced-width exact divider for large
division [39], [153], while several others are based on functional
approximation (e.g., using a logarithmic algorithm) [30], [33],
[154]–[156] and curve fitting [157].

B. Review
1) Approximation in subtractor/adder cells: In [31], three

approximate subtractors obtained by simplifying the circuit of
an exact cell are used for processing some LSBs in a vertical,
horizontal, square or triangle region in an array divider. This
design is referred to as an approximate unsigned non-restoring
divider (AXDnr). Compared to the AXDnrs, similarly-designed
approximate restoring dividers (AXDrs) show better tradeoffs
with slightly higher accuracy and lower power dissipation [150].

In [151], an approximate signed-digit adder is proposed for use
in high-radix dividers, together with replacement, truncation and
error compensation in an array structure. For an array divider,
a high-radix design can be faster but consumes more power
compared to a radix-2 design [152].

2) Using a reduced-width exact divider: A dynamic approxi-
mate divider (DAXD) selects the inputs and uses a reduced-width
restoring array divider [153], in a similar way to the design of
DRUM [120]. This selection scheme could lead to overflows that
cause a low accuracy in division. To implement a DAXD, two
leading-one detectors, two multiplexers, a reduced-width array
divider, a subtractor and a barrel shifter are needed.

Depending on the positions of the leading “1”s, an adaptively
approximate divider (AAXD) employs two pruning schemes to

determine the inputs for a reduced-width exact divider [39].
Different from the DAXD, zeros are appended to the LSBs for
selecting k input bits when the leading “1” is within the k LSBs.
In addition, an error correction unit is used to ensure a high
accuracy with a very low maximum error distance.

3) Approximate dividers based on functional approximation:
In the high-speed and energy-efficient approximate divider
(SEERAD) [154], the division is implemented by a simple
multiplication by rounding the divisor B to a form of 2K+L/D,
where K indicates the leading “1” position of B, and L and D
are constant integers estimated via an exhaustive simulation for
achieving the lowest mean relative error. For a division of A/B,
it is then sufficient to use a multiplier for computing AD, a barrel
shifter, and some lookup tables for storing L and D. Different
accuracy levels are obtained by varying D and L.

A binary logarithm-based functional approximation performs
division by computing the antilogarithm of the difference be-
tween the logarithmic values of the dividend A given by (5), and
divisor B given by (6). It leads to

log2 Q = log2 (A/B)≈ k1− k2 + x1− x2, (11)

where k1 and k2 specify the leading one positions of A and B
respectively, x1 = A/2k1 −1, and x2 = B/2k2 −1.

Using Mitchell’s algorithm, an approximate division can be
implemented by performing the antilogarithm of (11), i.e.,

Q≈

{
2k1−k2(x1− x2 +1) if x1− x2 ≥ 0
2k1−k2−1(x1− x2 +2) if x1− x2 < 0

. (12)

Error correction is considered in [33] to compensate an offset
to the computed quotient. Additionally, a number of LSBs
are truncated in the subtractors for implementing (12). These
techniques enable the design of approximate integer and floating-
point dividers with near-zero error bias, denoted as INZeD and
FaNZeD, respectively.

In a high-speed divider (HSD) [30], a piecewise linear ap-
proximation is utilized to implement the antilogarithm directly
on the two input operands, thus only lookup tables and multipli-
cations are required. Compared to a divider implemented using
Mitchell’s algorithm, the HSD is more accurate and faster with
a larger area.

An approximate hybrid divider (AXHD) is based on a restor-
ing array structure and logarithmic approximation [155]. In this
design, the p MSBs in a 2n/n divider is accurately implemented
as a restoring array divider, while the (2n− p) LSBs are approx-
imately processed using Mitchell’s algorithm as per (12).

In [156], the mantissa in floating-point division is approx-
imately computed by a subtractor; the approximation is then
tuned by using an error compensation lookup table (storing pre-
computed values) and a subtractor. This design is denoted as the
configurable approximate divider for energy efficiency (CADE)
as its accuracy varies with the size of the lookup table.

4) Curve fitting based approximate dividers: In the design
of a floating-point divider, the curved surfaces of the quotient
are partitioned into several square or triangular regions that
are linearly approximated by curve fitting [157]. The mantissa
division is then implemented by a comparison module, a lookup
table, shifters and adders. With a similar circuit structure to the
HSD, this approximate divider achieves a higher accuracy.



15

1 2 4 8 16 24

MRED (%)

0.4

0.6

0.8

1

1.2

1.6

2

D
el

ay
 (

ns
)

AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD
INZeD

(a) Delay (delay-optimized) vs. MRED

1 2 4 8 10 14 18 24

MRED (%)

40

60

80

100

120

140
160
180
200

Po
w

er
 (

uW
)

AXDr1 AXDr2
AXDr3 SEERAD
DAXD AAXD
INZeD

(b) Power (area-optimized) vs. MRED

Fig. 19. Optimized delay and power consumption vs. MRED for the approximate 16/8 unsigned integer dividers.
Note: The replacement depths of AXDr1, AXDr2 and AXDr3 are from 8 to 11 from left to right. The accuracy levels of SEERAD are from 4
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Fig. 20. A comparison of the power-delay product and MRED for the approximate 16/8 unsigned integer dividers.

C. Evaluation

In this evaluation, we consider approximate 16/8 unsigned
integer dividers, including AXDr, DAXD, AAXD, SEERAD
and INZeD. The high-radix and floating-point dividers are not
considered. Three designs of AXDr with the triangle replacement
(that shows the best tradeoff [150]) are selected for evaluation,
i.e., AXDr1, AXDr2 and AXDr3 using three different approx-
imate subtractors. For DAXD and AAXD, the reduced-width
exact dividers are implemented using an array structure. An
exhaustive simulation is performed for the error evaluation, i.e.,
all valid combinations in the range of [0,65535] and (0,255] that
do not cause overflow in an accurate 16/8 divider, are used as
the input dividends and divisors. The same tools, technologies
and configurations as for the evaluation of adders and multipliers
are applied here. The clock period for the power estimation is

set to 5 ns. As MRED and NMED show a similar pattern in
the simulation results, only MRED is plotted in Fig. 19(a) and
(b), respectively, against which the optimized delay and power
consumption for area-optimized synthesis are shown. Fig. 20
presents the comparison in PDP versus MRED for both delay-
and area-optimized syntheses.

Hardware vs. accuracy: As can be seen in Fig. 19, AXDr1
and AXDr3 can be very accurate with a moderate power con-
sumption, but quite slow, whereas DAXD is the least accurate in
general. For a medium-low MRED, AAXD and INZeD show the
highest performance and the lowest power consumption; thus,
they achieve the best accuracy-hardware tradeoff. This is also
evident in the PDP and MRED figure in Fig. 20. SEERAD is
the fastest at a low accuracy (Fig. 19) and with the lowest PDP
for delay-optimized synthesis (Fig. 20).
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TABLE IV. Summary of approximate 16/8 unsigned integer
divider designs.

Divider
Error characteristics Circuit measurements

MRED Performance
(delay-optimized)

Power
(area-optimized) PDP

AXDr1 low low high
AXDr3 low low high

SEERAD-1 high high low
AAXD low high low
INZeD high low low

In summary, AAXD is an efficient design for applications that
require a high accuracy and high performance. Although some
configurations of AXDr1 and AXDr3 are very accurate, they
are generally slow with high energy consumption. INZeD is the
most efficient design for a moderate accuracy. For an application
that can tolerate a high level of inaccuracies, SEERAD-1 is
suitable with a low hardware cost. A qualitative summary of
these features is shown in Table IV.

VI. APPLICATIONS

A. Image Processing

To assess the capabilities of the approximate designs, we
consider three image processing applications: image sharpening
using unsigned multipliers and adders, image compression us-
ing signed multipliers and adders, and change detection using
unsigned dividers.

1) Image sharpening: This technique enhances the edges in
an image to obtain a clearer view. An image with a pixel matrix
I is sharpened by using R(x,y) = 2I(x,y)−S(x,y) [158], where
R(x,y) is a resultant image pixel, and S(x,y) is obtained by a
convolution,

S(x,y) =
1

273

2

∑
m=−2

2

∑
n=−2

G(m+3,n+3)I(x−m,y−n), (13)

where G is a 5×5 convolution matrix given by

G =


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 . (14)

Equation (13) shows that 25 multiplications, 24 additions and
a division are required for computing S(x,y). In this simulation,
the inputs are normalized by the maximum numbers and scaled
to a number in 16-bit unsigned integer representation, so 16×16
approximate unsigned multipliers and 16-bit approximate adders
are used to implement the sum of products in (13). Note that the
32-bit products are rounded to 16 bits as inputs to the adders.
The division by 273 is implemented by a multiplication of a
constant input 1/273.

Among the approximate adders and multipliers in each catego-
ry, one or two designs with the best accuracy and energy tradeoffs
are selected for this application. Hence, ACA, GeAr, ETAII,
CCBA, LOA and TruA are considered for addition; UDM, BAM,
DRUM, HOCM, TAM1, ICM, ALM-SOA, CGPM3 and TruMW
are selected for multiplication. The configurations that lead to
similar PDPs compared to other designs are considered for
designs with variable parameters.

Fig. 21 shows the PSNRs of the sharpened images, which are
infinite for the combinations of the accurate adder (AccuA) and
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Fig. 21. A PSNR comparison of image sharpening results.
Note: AccuA and AccuM denote the accurate adder and multiplier, respec-
tively. The numeric value in the name of each design indicates the parameter
value. The design 1StepTrunc is considered for HOCM; the configuration of
280 is selected for CGPM3.

accurate multiplier (AccuM), and AccuA and ICM. The input
image is a blurred “Lena” with 512×512 pixels. Because ICM
has a very low ER (5.45%), and the error does not or seldom
occur in this application, the ICM is as effective as AccuM for
image sharpening. For the same reason, the images sharpened by
using the UDM have very close PSNRs to the ones processed
by an accurate multiplier. These results illustrate the advantages
of designs with low ERs in certain applications.

Although DRUM-7 and DRUM-6 show larger values of M-
RED and NMED than the other designs, they lead to higher
PSNRs due to their unbiased errors. Also, HOCM results in
images with a higher quality than many other multipliers, when
used with a same adder. With a larger MRED and NMED,
ALM-SOA performs similarly to BAM-16 and TAM1-16, be-
cause BAM and TAM1 generate single-sided errors that can be
accumulated in the sum of products.

When an approximate adder (or multiplier) has a very low ac-
curacy (e.g., BAM-18, TruM-4, ACA-6, GeAr-R4P4 and ETAII-
4), increasing the accuracy of the collaborating multiplier (or
adder) does not improve the quality of the processed image. It
is worth noting that using some combinations of approximate
adders and multipliers can lead to a higher image quality than
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using solely an approximate adder or an approximate multiplier.
For example, the use of LOA-7 and BAM-16 results in an
image with a higher PSNR than BAM-16 and AccuA, and the
combination of CCBA-3 and DRUM-6 outperforms the duo of
CCBA-3 and AccuM.

The circuit designs for image sharpening are synthesized for
optimized area (the same for the other applications). The clock
period for the power estimation is 10 ns. In the simulation, the
CLA and Wallace multiplier are utilized for the AccuA and
AccuM, respectively. Fig. 22(a) shows that the implementations
using TAM1-16 are the fastest, followed by HOCM, whereas
the ones using DRUM-6 are the slowest, followed by ICM. The
delay values are not as consistent as the area results for different
adder and multiplier combinations because the syntheses are
optimized for area.

As shown in Fig. 22(b) and (c), using different adder designs
does not significantly affect the area or power dissipation when
a specific multiplier is used. Thus, the multiplier dominates the
area and power dissipation for this application. On the contrary,
the adder plays a more significant role on the critical path delay,
as shown in Fig. 22(a), because the 25 multipliers work in
parallel, whereas the 24 adders work in a tree structure, resulting
in a critical path of one multiplier and five adders. Among the
multipliers, ALM-SOA and TAM1-16 are very energy-efficient,
as shown in the PDP values in Fig. 22(d).

Fig. 23 shows the comparison of PDP reductions of different
implementations compared with the accurate design, in the
descending order of PSNRs larger than 30 dB. For an imple-
mentation that produces sharpened images with a PSNR higher
than 35 dB, ETAII-6 and HOCM lead to the most significant
saving in PDP (by about 50%). For a PSNR between 30 dB
and 35 dB, LOA-9 and ALM-SOA are the most efficient with

69% reduction in PDP. DRUM-6 achieves the largest reductions
in PDP for a high image quality (with a PSNR larger than 40
dB), whereas ALM-SOA is the most efficient for a relatively low
image quality (with a PSNR lower than 35 dB).

2) JPEG compression: Based on the discrete cosine transform
(DCT), JPEG is a widely used lossy compression algorithm for
digital images [159]. The image pixels in the spatial domain are
first converted into the frequency domain via a DCT. In the DCT,
the pixel matrix of an image in 16-bit 2’s complement is divided
into 8× 8 blocks. Each block B is converted to the frequency
domain by

D = TBT′, (15)

where T is an 8×8 DCT coefficient matrix given by

T(x,y) =


1√
8

if x = 0
1
2 cos

[
(2y+1)xπ

16

]
if x > 0

, (16)

where x = 0,1, · · · ,7 and y = 0,1, · · · ,7.
The high-frequency information is then discarded by the

quantization

C(x,y) = round
(

D(x,y)
Q(x,y)

)
, (17)

where Q is a quantization matrix of unsigned integers determined
by the required quality level. The quality level can be from 1 to
100, where 1 corresponds to the highest compression ratio and
thus the poorest image quality.

To reconstruct the image, the above operations are inverted by
de-quantization and inverse DCT (IDCT):

R(x,y) = C(x,y)×Q(x,y), (18)

and
I = T′RT. (19)
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Fig. 23. A comparison of PDPs in the descending order of PSNRs for various adder-multiplier implementations of image sharpening.
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Fig. 22. Circuit measurements of image sharpening.

In this simulation, the signed coefficients in matrix T are
scaled to 16-bit 2’s complement format, and the image pixels are
normalized by the maximum number followed by a subtraction
of 0.5 and scaled to 16-bit 2’s complement format. The signed
multiplications in the DCT and IDCT are implemented by
approximate Booth multipliers, including the 16× 16 designs
with good tradeoffs in accuracy and hardware, BM07, PEBM,
ABM2, BBM and TBM. The same 16-bit adder designs as in the
image sharpening are used. The quality level for the compression
is 50.

The qualities of the decompressed images using different
adder and multiplier combinations are shown in Fig. 24. As
can be seen, ACA, GeAr and ETAII are not suitable for this
application although they have very low ERs. Note that the errors
of these approximate adders are single-sided (or negative) due
to the dropping of some carry bits; thus, the error biases for
these types of adders are very large [51]. As a result, errors are
accumulated in the multiple matrix multiplications and cannot
be tolerated in DCT or IDCT. Similarly, BBM has a larger
error bias than the other approximate Booth multipliers due to
the truncation of the partial products. Thus, the use of BBM
also produces images with a low quality in most cases. Among
the approximate adders, LOA-3 performs the best, followed by
TruA-1, while for the approximate multipliers, BM07, PEBM,
and TBM-2 outperform the other designs when a same adder is
used.

It is worth to note that using some approximate Booth
multipliers along with some approximate adders, e.g., PEBM
and TruA-1, PEBM and TruA-2, generates a significantly higher
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Fig. 24. A comparison of JPEG compression and decompression
quality using different adder and multiplier designs.

quality than the other designs (even when an accurate multiplier
is used). Except for these special cases, the image quality in
PSNRs increases with the decrease in the MREDs of the utilized
approximate Booth multipliers.

Additionally, the results in Fig. 24 shows that a more complex
computation involving multiple matrix multiplications is more
sensitive to errors in addition than those in multiplication with
the same bit width. Thus, a larger approximation can be tolerated
in multiplication than in addition. The tolerable approximation
in addition is to a lesser extent in JPEG compression than in
image sharpening for an acceptable accuracy, e.g., LOA-3 is
required for JPEG compression while LOA-8 is sufficient for
image sharpening.

Fig. 25 shows the resulting PDP reductions of the DCT im-
plementations using different multiplier and adder combinations
compared with the accurate design. The clock period used for the
power estimation is 10 ns. The accurate DCT design utilizes a 16-
bit post-truncated fixed-width Booth multiplier and a 16-bit CLA.
As shown in Fig. 25, the combination of AccuA and PEBM
shows the best tradeoff in this implementation, achieving the
highest PDP reduction (about 20%) with a relatively high PSNR
(nearly 30 dB). Using an approximate adder with PEBM rather
significantly degrades the image quality. Among the approximate
Booth multipliers, PEBM, TBM-3 and ABM2 lead to higher
energy efficiency than the other designs for this application.

3) Change detection: The changes in two images can be
detected by finding the ratios between the corresponding pixels.
Thus, change detection can be used to assess the approximate
dividers. In each design, one configuration is selected to en-
sure that a similar PDP (e.g., AXDr1-11, AXDr2-11, AXDr3-
11, DAXD-8, AAXD-8, SEERAD-1 and INZeD-2), or MRED
(e.g., AXDr1-9, AXDr2-8, AXDr3-10, DAXD-12, AAXD-10,
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TABLE V. Change detection results using different dividers.
Accurate divider AXDr1-11 (28.82 dB) AXDr2-11 (18.09 dB) AXDr3-11 (33.72 dB) DAXD-8 (25.22 dB) AAXD-8 (34.95 dB) SEERAD-1 (22.08 dB) INZeD-2 (37.34)

AXDr1-9 (35.67 dB) AXDr2-8 (22.91 dB) AXDr3-10 (35.94 dB) DAXD-12 (23.56 dB) AAXD-10 (40.16 dB) SEERAD-4 (36.61 dB) INZeD-0 (33.79 dB)
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Fig. 25. A comparison of PDPs in the descending order of PSNRs
for DCT implementations using different adder and multiplier
designs.

SEERAD-4 and INZeD-0) occurs for the considered designs.
The 16/8 unsigned integer dividers are utilized to obtain the pixel
ratios. As shown in Table V, AXDr1-9, AXDr3-10, AXDr3-11,
AAXD-10, INZeD-0, INZeD-2 and SEERAD-4 perform similar-
ly well as an accurate divider, whereas AXDr2-11, DAXD-12,
DAXD-8 and SEERAD-1 produce results with a lower quality.
AXDr2-8 and AAXD-8 produce images that are acceptable for
a visual inspection. As the implementation of change detection
mainly consists of dividers, the circuit measurements are similar
to those for approximate dividers; thus, they are not shown here.
Fig. 20 shows that to achieve a result with a PSNR higher than 33
dB, INZeD-2 consumes the smallest energy followed by INZeD-
0 and AAXD-10.

B. Deep Neural Networks

Face detection and alignment are two common tasks in
machine learning. Using DNNs, the accuracy of face detection
and alignment have been significantly improved since the early
2010s. Due to the correlation of these two tasks, a multi-task
CNN (MTCNN) has been proposed for joint face detection and
alignment [160]. An accelerator specifically designed for this
MTCNN achieves a high energy efficiency and throughput [161].
In this MTCNN, three CNNs cascade as the proposal network
(P-Net), the refine network (R-Net) and the output network (O-
Net). The basic operation in a CNN is the convolution based on
multiplications and additions.

To assess the viability of approximate circuits in DNNs, the
16× 16 approximate Booth multipliers and 16-bit adders are
integrated into the architecture of an MTCNN for face detection
and alignment, as shown in Fig. 26. Here, the convolutional
(CONV) layers account for the most computations. The max
pooling is used for all pooling layers. Two fully connected (FC)
layers to the end of the R-Net and P-Net are implemented
by vector multiplications. The approximate Booth multipliers
with good tradeoffs in accuracy and hardware, as those used in
the JPEG compression, are considered in this application. One
approximate adder with single-sided errors (i.e., ETAII), one with
a small error bias (i.e., LOA), and the truncated adder (TruA)
are selected for additions.

Fig. 27 shows some face detection (in the bottom row) and
face alignment (in the top row) results using different adders
and multipliers. For the face detection, a square is drawn to
show the detected area. To align a face, five landmarks are used
to mark the eyes, nose and mouth. Compared to the accurate
implementation using AccuM and AccuA, BM07 and ETAII-7
perform poorly in face detection and alignment, as indicated by
the squares and landmarks far away from the target positions,
whereas BM07 and LOA-4 result in a better quality.

To quantitatively assess the accuracy of the face detection, the
true positive rate (TPR) is measured for each implementation on
the FDDB dataset [162], as shown in Table VI. The TPRs in
Table VI show that the approximate Booth multipliers (except for
BBM), when working with LOA-3, LOA-4 and TruA-1, perform
well in face detection, resulting in close TPRs to the accurate
implementation. ETAII-7 leads to very small TPRs due to its
large error bias. Similarly, TruA-2 (except for the combination
with PEBM) and BBM (except for the combinations with LOA-
3 and LOA-4) result in relatively low TPRs. Interestingly,
ABM2 and TBM-4 working with the accurate adder result in
higher TPRs than the accurate design. Similar results have been
observed in [47].

In addition, the number of multiply-and-accumulates (MACs)
required to detect the faces in one image averaged over the
FDDB dataset is reported in Table VII as an indicator for energy
efficiency. Overall, ABM2 and LOA-3, AccuM and TruA-1,
BM07 and TruA-1, PEBM and TruA-1, and PEBM and TruA-
2, are effective combinations for face detection, which result
in high TPRs and require a smaller number of MACs (thus,
a higher energy efficiency) than the accurate implementation.
Hence, the energy efficiency of a DNN can be improved by
using approximate arithmetic circuits while achieving a similar
or even higher detection accuracy.

Finally, the normalized mean errors (NMEs) for the face align-
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Fig. 26. The architecture of the implemented MTCNN.

(a) AccuM & AccuA (b) BM07 & ETAII-7 (c) BM07 & LOA-4 (d) TBM-4 & TruA-1

Fig. 27. Some face detection (at bottom) and alignment (on top) results using different adders and multipliers.

TABLE VI. True positive rates of the face detection on FDDB
dataset (%). The values higher than 90% are highlighted in bold,
and the ones larger than that of the accurate design are in red.

Design AccuA ETAII-7 LOA-3 LOA-4 TruA-1 TruA-2

AccuM 91.26 54.07 90.21 89.96 90.27 72.13
BM07 90.79 66.58 89.77 89.75 90.99 84.70
PEBM 90.47 77.64 81.98 80.56 90.56 90.18
ABM2 91.34 46.47 90.10 90.25 88.40 57.57
BBM 83.77 23.03 89.07 89.17 61.52 10.25
TBM-3 91.04 53.97 90.68 90.56 90.31 71.55
TBM-4 91.34 52.33 90.79 90.91 90.01 71.49

TABLE VII. The number of MACs required to detect the faces
in one image averaged over the FDDB dataset (in billions). The
numbers smaller than that of the accurate design are in bold.

Design AccuA ETAII-7 LOA-3 LOA-4 TruA-1 TruA-2

AccuM 0.5817 0.6583 0.5893 0.5962 0.5802 0.5826
BM07 0.5882 0.6365 0.5822 0.5890 0.5740 0.5742
PEBM 0.5831 0.6336 0.5716 0.5780 0.5655 0.5675
ABM2 0.5907 0.7647 0.5794 0.5834 0.5629 0.5758
BBM 0.6046 0.6786 0.6048 0.6167 0.6086 0.6179
TBM-3 0.5867 0.6647 0.5929 0.6019 0.5861 0.5896
TBM-4 0.5915 0.6709 0.5969 0.6049 0.5906 0.5957

ment are obtained by comparing the coordinate values of the five
landmarks with their standard values for the AFLW dataset [163],
as shown in Table VIII. The combinations of designs that result
in small TPRs are omitted. It is interesting that the MTCNNs
using LOA-3 and LOA-4 consistently achieve smaller NMEs
than those using accurate adders. Although TruA-1 performs
well in face detection, it results in large NMEs in face alignment,
LOA-3 performs the best among the approximate adders. Among
the approximate multipliers, BM07 and PEBM are effective

TABLE VIII. Normalized mean errors for the face alignment on
AFLW dataset (%). The errors smaller than that of the accurate
design are highlighted in bold.

Design AccuA LOA-3 LOA-4 TruA-1

AccuM 5.379 3.145 3.520 9.920
BM07 4.393 3.063 3.624 8.699
PEBM 3.050 2.988 3.551 9.648
ABM2 5.743 3.204 3.570 10.49
TBM-3 5.718 3.171 3.667 10.25
TBM-4 5.761 3.241 3.667 10.41

designs producing smaller NMEs than the accurate design. Note
that the approximate adders and multipliers that result in low
accuracy in face detection and alignment (BBM, ETAII-7, TruA-
1 and TruA-2) share a same feature, single-sided errors. Similar
to the JPEG compression, the face detection and alignment are
more sensitive to errors in additions than in multiplications (with
the same bit width), so a deeper approximation can be tolerated
in approximate multipliers.

VII. CONCLUSIONS, CHALLENGES AND PROSPECTS

In this article, approximate arithmetic circuits are reviewed,
characterized and comparatively evaluated, using functional sim-
ulation, circuit synthesis optimized for performance and area, and
image processing and machine learning applications.

A. Characterization

Approximate Adders: Most of the approximate adders have
been designed for high performance and low error (in ER)
by reducing the critical path delay. Most speculative adders,
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segmented adders and carry-select adders show low ERs. Due to
the reduction of some carries, single-sided errors are prevalent
in these designs that result in large error biases, especially in
applications that require iterative or repetitive additions. Howev-
er, the designs using approximate full adders in the LSBs often
have high ERs, low MREDs and low power dissipation. With
a reduced precision, a truncated adder produces a biased error
with a high ER close to 100%, but it consumes a very low power.
Considering practically-effective error and circuit metrics such as
MRED and PDP, LOA, CCBA and the truncated adders achieve
the best accuracy-energy tradeoffs.

Approximate Multipliers: For unsigned designs, truncating part
of the partial products or some LSBs of the input operands is
an effective scheme to reduce circuit area, while preserving a
moderate and variable accuracy in terms of NMED and MRED,
depending on the number of bits truncated; examples include the
BAM, TAM1 and even, the truncated multipliers. Logarithmic
multipliers are relatively inaccurate, but they can be very efficient
in performance and power consumption. The truncated Wallace
multiplier, compressor-based HOCM and TAM1 are among the
designs with a high performance, while the truncated array
multiplier is more power efficient at a moderate accuracy. The
CGPMs can be very accurate with a moderate performance.
TAM1, HOCM and the logarithmic design ALM-SOA show
the best tradeoffs between energy and accuracy. For signed
multipliers, most fixed-width Booth multipliers provide a better
design tradeoff than the truncated Booth multipliers due to the
efficient error compensation.

Approximate Dividers: For the fewer divider designs, those
approximated in the subtractor/adder cells are slow, and their
accuracy varies with the approximate subtractor/adder design.
The dividers based on functional approximation are relatively
fast. Among the considered designs, the logarithmic INZeD and
input-adaptive AAXD provide balanced tradeoffs with both low
PDPs and MREDs.

The above observations are based on the investigation of 16-
bit designs, so the circuit and error characteristics may vary
for adders of different sizes, although some adders are based
on regular structures. Multipliers and dividers of different sizes
may exhibit more significantly different characteristics as some
designs are tailored and optimized for a specific bit-width; thus,
the performance may degrade even though the approximation
scheme is scalable.

In general, rather limited improvements in circuit measure-
ments are observed for the approximate arithmetic circuits sim-
plified from an accurate design. Many ad hoc designs under-
perform simply truncated circuits. A functional approximation
algorithm such as the binary logarithm can lead to designs with
significant savings in circuit area and power consumption, albeit
at the cost of a low accuracy. With the potential of breaking
away from the original (limiting) architecture, nevertheless, func-
tional approximation might be promising for hardware-efficient
approximate arithmetic circuits, though leaving the challenge of
enhancing its accuracy with low hardware overhead.

B. Applications

For image processing, the approximate adders, multipliers and
dividers with smaller error magnitudes (in MREDs) generally
produce results with a higher quality. For simple operations

such as the sum of products, the approximate multipliers with
lower ERs outperform those with higher ERs. Although with
very low ERs, the approximate adders with large error biases
(e.g., ACA, ETAII, TruA) do not work well for more complex
computations such as cascaded matrix multiplications. In an
accumulative operation, the approximate designs with low error
biases or double-sided errors consistently perform better than
those with single-sided errors.

The more complex computation that involves multiple matrix
multiplications is more vulnerable to errors in addition than those
in multiplication. In other words, a larger approximation can be
tolerated in multipliers than in adders to achieve a reasonably
accurate result. In such applications, the multiplier dominates the
area and power dissipation of the circuit, whereas more adders
are in the critical path, so the adder plays a more important role
on the delay.

By using approximate adders and multipliers, an MTCNN
can achieve a comparable face detection quality to the accurate
design. The accuracy of the face detection generally decreases
with the increase of the MREDs for the approximate multipliers,
so the MRED is an indicator of the quality of an approximate
multiplier. For this more complex application, the approximate
adders and multipliers with large error biases result in signifi-
cantly poor accuracy in face detection and alignment. Compared
to the accurate design, a smaller number of MACs is required for
face detection when some approximate designs are used in an
MTCNN. Hence, the use of approximate arithmetic circuits can
reduce the power consumption and improve the energy efficiency
of an MTCNN.

Interestingly, some combinations of approximate multipliers
and adders lead to higher accuracy than the accurate implemen-
tation, even though these circuits, by themselves, do not show
advantages over the others. Hence, it might be more effective
to design approximate arithmetic circuits from a system’s or
application’s perspective. A rigorous evaluation framework with
trustworthy error metrics would be imperative to ensure the
reliability and robustness of the system with respect to the effect
due to the propagation and statistical distributions of errors.
Approximate arithmetic circuits could also be integrated with
other approximate components in a system hierarchy, such as
memory and interconnects, for a more significant improvement
in hardware efficiency as well as processing quality.
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