Chapter 6

Applications of
Definite Integrals



Chapter 6

In this chapter we will see some of the many additional applications of definite
integrals.

We will use the definite integral to define and find volumes, lengths of plane
curves, and areas of surfaces of revolution.

We will see how integrals are used to solve physical problems involving
the work done by a force, and how they give
the location of an object’s center of mass.

The integral arises in these and other applications in which we can approximate a
desired quantity by Riemann sums. The limit of those Riemann sums, which is the
quantity we seek, is given by a definite integral.



Section 6.1

Volumes Using
Cross-Sections



A cross-section of a solid S is the planar region
formed by intersecting S with a plane.

Cross-section S(x)
with area A(x)

We present three different methods for obtaining
the cross-sections appropriate to finding the
volume of a particular solid:

1.the method of slicing, L i
2.the disk method, py i
3.the washer method. L

FIGURE 6.1 A cross-section S(x) of the
solid S formed by intersecting S with a plane
P, perpendicular to the x-axis through the
point x in the interval [a, b].

Suppose that we want to find the volume of a solid S
like the one pictured in Figure 6.1.

At each point x in the interval [a, b] we form a cross-section S(x) by
intersecting S with a plane perpendicular to the x-axis through the point x,
which gives a planar region whose area is A(x).

We will show that if A is a continuous function of x, then the volume of the solid S is
the definite integral of A(x). This method of computing volumes is known as
the method of slicing.



Three different methods:
1.the method of slicing,
2.the disk method,

3.the washer method.



| | = height

Plane region whose Cylindrical solid based on region
area we know Volume = base area X height = Ah

FIGURE 6.2 The volume of a cylindrical solid is always defined to
be its base area times its height.

We need to extend the definition of a cylinder from the usual cylinders of classical
geometry (which have circular, square, or other regular bases) to
cylindrical solids that have more general bases.

If the cylindrical solid has a base whose area is A and its height is h,

then the volume of the cylindrical solid is ,
Volume = area X height = A - h.



FIGURE 6.3 A typical thin slab in the
solid S.

In the method of slicing, the base will be the cross-section of § that has area A(x), and the
height will correspond to the width Ax; of subintervals formed by partitioning the interval
[ a, b ] into finitely many subintervals | x;_, x; |.



Slicing by Parallel Planes

FIGURE 6.3 A typical thin slab in the

solid S. o
a= Xg = X<~ =2 x = b,

Volume of the kthslab = V, = A(x;) Ax;.
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The cylinder’s base
1s the region S(x;)
with area A(x;)
FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area A(x;) and height

Axp = xp — xXp—1.




Volume of the kthslab = V, = A(x;) Ax;.

V=DV, =D Ax) Ax.
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lim ) A(x) Ax, = / A(x) dx.

—00 =

DEFINITION The volume of a solid of integrable cross-sectional area 4(x)
from x = a to x = b is the integral of 4 from a to b,

This definition applies whenever A(x) is integrable,
and in particular when A(x) is continuous.



To apply this definition to calculate the volume of a solid using cross-sections
perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) to find the volume.




EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The
cross-section of the pyramid perpendicular to the altitude x m down from the vertex
is @ square x m on a side. Find the volume of the pyramid.

y

A

Solution
1. A sketch. We draw the pyramid with its altitude O ———
along the x-axis and its vertex at the origin and
include a typical cross-section (Figure 6.5). Note that
by positioning the pyramid in this way, we have
vertical cross-sections that are squares, whose areas
are easy to calculate.

2. A formula for A(x). The cross-section at x is a
square x meters on a side, so itsareais 4(y) = 42, 3

3. The limits of integration. The squares lie on the

planes fromx =0to x = 3. FIGURE 6.5 The cross-sections of the
i pyramid in Example 1 are squares.
4. Integrate to find the volume:

3 3 373
V =/ A(x) dx =/ xtdx = %—} = 9 m3,
0 0 0



EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes.
One plane is perpendicular to the axis of the cylinder. The second plane crosses the
first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

2V9 — x2

Solution We draw the wedge and sketch a typical
cross-section perpendicular to the x-axis (Figure 6.6).
A(x) = (height)(width) = (x)(2V9 — x2)

= N9 = .

The rectangles run from x = 0 to x = 3, so we have

b 3
V=/A(.x)dx=/ 2xV9 — x? dx
a 0

Letu =9 — %",
du = —2x dx, integrate,
3 FIGURE 6.6 The wedge of Example 2,

sliced perpendicular to the x-axis. The
cross-sections are rectangles.
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EXAMPLE 3 Cavalieri's principle says that solids with equal altitudes and identical
cross-sectional areas at each height have the same volume (Figure 6.7). This
follows immediately from the definition of volume, because the cross-sectional

area function A(x) and the interval [a, b] are the same for both solids.

Same volume
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Three different methods:
1.the method of slicing,
2.the disk method,

3.the washer method.



Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a
planar region about an axis in its plane is called
a solid of revolution.

Solids of Revolutionig#% i i) 44

revolve vi.je#, 5 ¥

The cross-sectional area A(x) is the area of a
disk of radius R(x), where R(x) is the distance
from the axis of revolution to the planar
region‘'s boundary. The area is then

| disk: (24
A(x) = m(radius)’* = 7 [ R(x)]? circle: [ (146

Volume by Disks for Rotation About the x-Axis

b b
V=fA(x)dx=/ [ R(x) ]?* dx.

This method for calculating the volume of a solid of revolution is often called
the disk method because a cross-section is a circular disk of radius R(x).



EXAMPLE 4 The region between the curve y = \/.;, 0 =< x = 4, and the x-axis is
revolved about the x-axis to generate a solid. Find its volume.

b
1% =/ [ R(x)]% dx

i
>

(b)



EXAMPLE 5 The circle

9 2 2

X“t+y =a
1s rotated about the x-axis to generate a sphere. Find its volume.

A —(x9 Y)
Solution: The cross-sectional area at a

typical point x between -a and a is

R(x) = Va* — x* for

rotation around x-axis.

AR) = wy? = w(a? — ).

V=/A(.r)dx=f m(a® — x?) dx

™ Ax
e 4
- Bl o TP s 1 3 FIGURE 6.9 The sphere generated by rotating the circle
= W ax e T A 2 5 _ e
3 e 3 x“ + y° = a“ about the x-axis. The radius is

R(x) = y = Va? — x? (Example 5).



The axis of revolution in the next example is not the x-axis

EXAMPLE 6 Find the volume of the solid generated by revolving the region bounded
by y = \V/x and the linesy = 1,x = 4 aboutthe line y = 1.

Y
A
R(x) = Vx—1
y
A y=\/;
Rx)=Vx—1
| =LA
/fl Y
- :
f, I l } > X
0 1 X 4

(a) (b)

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6.
Integrate 7r(radius)” between appropriate limits.
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To find the volume of a solid generated by revolving a region between the y-axis and a
curve x = R(y), c = y = d, about the y-axis, we use the same method with x replaced by
v. In this case, the area of the circular cross-section 1is

A(y) = mr[radius |? = 7w [ R(y) |%,

=
> =

Volume by Disks for Rotation About the y-axis

d d
V= / A(y) dy = / 7[R(y)]* dy.




EXAMPLE 7 Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, 1 =< y = 4, about the y-axis.

4
V=/ w[R(y)]*dy
I
4 2
2
= 2
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EXAMPLE 8 Find the volume of the solid generated by revolving the region between
the parabola x = y? + 1 and the line x = 3 about the line x = 3.

Y R(y)=3—(y*+1) Y Ry)=2-y?
=2 —y? @%
V2t (3, V2) V2
y

> X
0 1 3 5 0
X = y2 +1
V2 (3,-V2) 32

(a) (b)

FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8.
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Three different methods:
1.the method of slicing,
2.the disk method,

3.the washer method.



Solids of Revolution: The Washer Method (IB441E T ) #[E, #)5

If the region we revolve to generate a solid does not border on or cross the axis of
revolution, then the solid has a hole in it (Figure 6.13). The cross-sections
perpendicular to the axis of revolution are washers (the purplish circular surface in

Figure 6.13) instead of disks. The dimensions of a typical washer are

y
(x, R(x))

Washer

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral

1 b A(x) dx leads to a slightly different formula.

Outer radius: R(x) Inner radius: r(x)
Ax) = 7[R ]2 — w[r(x)]? = w([RXx)]? = [r(x)]?).

Volume by Washers for Rotation About the x-Axis

V:LbA(x)dx :/abﬂ'([R(x)]z — [r®)]?) dx.



Volume by Washers for Rotation About the x-Axis

V=/abA(x)dx =/ab7r([R(x)]2 — [r(x)]?) dx.

This method is called the washer method because a thin slab of the solid
resembles a circular washer with outer radius R(x) and inner radius r(x).




EXAMPLE 9 The region bounded by the curve y = x> + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Draw the region
QOuter radius: R(x) = —x + 3

Inner radius: rx) = x% + 1

Find the limits of integration
*+1=-x+3

.. . . @ Washer cross section
Limits of Integratlon Interval of by Outer radius: R(x) = —x + 3
=2 x=1 integration Inner radius: r(x) = x% + 1
’ (a) (b)

spanned by a line segment perpendicular to
the axis of revolution. (b) When the region
is revolved about the x-axis, the line
segment generates a washer.

! 1
/,ﬂ-((_x+3)2_(x2+1)2)dx =’?T/ (8 — 6x — x* — xY dx
B -2

b
V =/ ﬂ-( [R(x)}z - [r(x_)]z) (lx FIGURE 6.14 (a) The region in Example 9
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To find the volume of a solid formed by revolving a region about the y-axis, we use
the same procedure as in Example 9, but integrate with respect to y instead of x.

EXAMPLE 10

The region bounded by the parabola y = x? and the line y = 2x in

the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the

solid.

R(Y) = Vy,r(y) = y/2
d
v=[ (k] - 0 12)

X rm=3 3 Rp=Vy
R(y) = Vy
(2.4)
2 | |ro=3
g | —5
=
Eb il
[
E y=2xor
G .
g 2
o
= y=x20r
x=\/§
' > X
2 (b)

()
FIGURE 6.15 (a) The region being rotated

about the y-axis, the washer radii, and
limits of integration in Example 10.
(b) The washer swept out by the line
segment in part (a).



o/

P, Cross-section S(x)
with area A(x)
S . "‘ T \\

1.the method of slicing, Most General
2 .the disk method,
3.the washer method.



Homework



Volumes by Slicing

4.

15.

The solid lies between planes perpendicular to the x-axis at
x = —1 and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the

semicircle y = —V 1 — x? to the semicircle y = V1 — x%

Intersection of two half-cylinders Two half-cylinders of diam-
eter 2 meet at a right angle in the accompanying figure. Find the
volume of the solid region common to both half-cylinders. (Hint:
Consider slices parallel to the base of the solid.)




Volumes by the Disk Method

In Exercises 17-20, find the volume of the solid generated by revolving the
shaded region about the given axis.

20. About the x-axis

y
y = $In X COS X

b | =
-
>

0

SR

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 29-34 about the y-axis.

29. The region enclosed by x = \/g}-'zﬁ x=0, y=-1, y=1



Volumes by the Washer Method

Find the volumes of the solids generated by revolving the shaded
regions in Exercises 35 and 36 about the indicated axes.

35. The x-axis 3

y =\/cosx

/
> X

0 a
2

e

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 37—42 about the x-axis.

40. y=4—x* y=2=x



Volumes of Solids of Revolution

50. Find the volume of the solid generated by revolving the triangular
region bounded by the lines y = 2x, y = 0, and x = 1 about

a. the line x = 1. b. the line x = 2.

Theory and Applications
53. The volume of atorus The disk x> + y> = a2 is revolved about
the line x = b (b > a) to generate a solid shaped like a doughnut

and called a torus. Find its volume. (Hint: f_‘:\/az — y?dy =
ma*/2, since it is the area of a semicircle of radius a.)



57. Volume of a hemisphere Derive the formula V = (2/3)7R° for
the volume of a hemisphere of radius R by comparing its cross-
sections with the cross-sections of a solid right circular cylinder
of radius R and height R from which a solid right circular cone of
base radius R and height R has been removed, as suggested by the
accompanying figure.
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