
Appendix A
Computing Lyapunov Exponents for Time-Delay
Systems

A.1 Introduction

The hall mark property of a chaotic attractor, namely sensitive dependence on initial
condition, has been associated by the Lyapunov exponents to characterize the degree
of exponential divergence/convergence of trajectories arising from nearby initial
conditions. At first, we will describe briefly the concept of Lyapunov exponent and
the procedure for computing Lyapunov exponents of the flow of a dynamical system
described by n-dimensional ordinary differential equations (ODEs), which is then
extended to scalar delay differential equations (DDEs), which are essentially an
infinite-dimensional systems. An important step in computing Lyapunov exponents
of DDEs is that it is necessary to approximate the continuous evolution of an infinite-
dimensional system by a finite-dimensional (appreciably large) iterated mapping.
Then the Lyapunov exponents of the finite-dimensional map can be calculated by
computing simultaneously the reference trajectories from the original map and the
trajectories from their linearized equations of motion. Alternatively, it can also be
calculated by computing the evolution of infinitesimal volume element formed by a
set of infinitesimal separation vectors corresponding to the trajectories starting from
nearby initial conditions.

A.2 Lyapunov Exponents of an n-Dimensional Dynamical
System

Consider an n-dimensional dynamical system described by the system of first order
coupled ordinary differential equation [1–3]

Ẋ = F(X), (A.1)

where X(t) = (x1(t), x2(t), ..., xn(t)). We consider two trajectories in the n-
dimensional phase space starting from two nearby initial conditions X0 and X′

0 =
X0+δX0. They evolve with time yielding the vectors X(t) and X′(t) = X(t)+δX(t),
respectively, with the Euclidean norm
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260 A Computing Lyapunov Exponents for Time-Delay Systems

d (X0, t) = ||δX (X0, t) || ≡
√
δx2

1 + δx2
2 + ...+ δx2

n . (A.2)

Here d(X0, t) is simply a measure of the distance between the two trajectories X(t)
and X′(t). The time evolution of δX is found by linearizing (A.1) to obtain

δẊ = M(X(t)) . δX , (A.3)

where M = ∂F/∂X|X=X0 is the Jacobian matrix of F. Then the mean rate of diver-
gence of two close trajectories is given by

λ (X0, δX) = lim
t→∞

1

t
log

(
d (X0, t)

d (X0, 0)

)
. (A.4)

Furthermore, there are n-orthonormal vectors ei of δX, i = 1, 2, ..., n, such that

δėi = M (X0) ei , M = diag (λ1, λ2, ..., λn) . (A.5)

That is, there are n-Lyapunov exponents given by

λi (X0) = λi (X0, ei ) , i = 1, 2, ..., n . (A.6)

These can be ordered as λ1 ≥ λ2 ≥ ... ≥ λn . From (A.4) and (A.6) we may write

di (X0, t) ≈ di (X0, 0) eλi t , i = 1, 2, ..., n . (A.7)

To identify whether the motion is periodic or chaotic it is sufficient to consider the
largest nonzero Lyapunov exponent λm among the n Lyapunov exponents of the
n-dimensional dynamical system.

A.2.1 Computation of Lyapunov Exponents

To compute the n-Lyapunov exponents of the n-dimensional dynamical system
(A.1), a reference trajectory is created by integrating the nonlinear equations of
motion (A.1). Simultaneously the linearized equations of motion (A.3) are inte-
grated for n-different initial conditions defining an arbitrarily oriented frame of
n-orthonormal vectors (ΔX1,ΔX2, ..., ΔXn). There are two technical problems [4]
in evaluating the Lyapunov exponents directly using (A.4), namely the variational
equations have at least one exponentially diverging solution for chaotic dynamical
systems leading to a storage problem in the computer memory. Further, the orthonor-
mal vectors evolve in time and tend to fall along the local direction of most rapid
growth. Due to the finite precision of computer calculations the collapse toward a
common direction causes the tangent space orientation of all the vectors to become
indistinguishable. Both the problems can be overcome by a repeated use of what is
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known as Gram-Schmidt reorthonormalization (GSR) procedure [5] which is well
known in the theory of linear vector spaces. We apply GSR after τ time steps which
orthonormalize the evolved vectors to give a new set {u1,u2, ...,un}:

v1 = ΔX1 , (A.8)

u1 = v1/||v1|| , (A.9)

vi = ΔXi −
i−1∑
j=1

〈ΔXi ,u j 〉 u j , i = 2, 3, ..., n (A.10)

ui = vi/||vi || , (A.11)

where 〈, 〉 denotes inner product. In this way the rate of growth of evolved vectors
can be updated by the repeated use of GSR. Then, after the N -th stage, for N large
enough, the one-dimensional Lyapunov exponents are given by

λi = 1

Nτ

N∑
k=1

log ||v(k)i || . (A.12)

For a given dynamical system, τ and N are chosen appropriately so that the conver-
gence of Lyapunov exponents is assured. A fortran code algorithm implementing
the above scheme can be found in [4].

A.3 Lyapunov Exponents of a DDE

As described in the Sect. 1.2.2 of Chap. 1, a DDE of the form

Ẋ = F(t, X (t), X (t − τ)), (A.13)

can be approximated as an N -dimensional iterated map [6], X (k + 1) = G(X (k)),
(k labels the kth iteration and k + 1 to its next iteration). Now, the Lyapunov expo-
nents of the N -dimensional map can be calculated by computing simultaneously a
reference trajectory and the trajectories that are separated from the reference trajec-
tory by a small amount, corresponding to N-different initial conditions defining an
arbitrarily oriented frame of N-orthonormal vectors as described above.

Alternatively, it can also be calculated by computing the evolution of infinitesi-
mal volume element, formed by a set of infinitesimal separation vectors δx , which
evolves according to

δx(k + 1) =
N∑

i=1

∂G(x(k))

∂xi (k)
δxi (k). (A.14)
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Computational problems associated with computing adjacent trajectories can be
avoided by calculating the evolution of infinitesimal separations directly from the
above equation. The evolution equation of the infinitesimal volume element corre-
sponding to the continuous DDE (A.13) can be written as

dδx

dt
= ∂F(x, xτ )

∂x
δx + ∂F(x, xτ )

∂xτ
δxτ . (A.15)

This equation can be solved using any convenient integration scheme. The small
separations δx represents separation between two infinite-dimensional vectors.
There are N such separations for every coordinate of the N -dimensional system
corresponding to N Lyapunov exponents. Let δx̃ i (k) denote the collection of all
separations of i th coordinate during kth iteration, then its Lyapunov exponents can
be given as

λi = 1

Lτ

L∑
k=1

log
||δx̃ i (k)||

||δx̃ i (k − 1)|| . (A.16)

For computing each exponent λi , arbitrarily select an initial separation δ x̃ i (0)
and integrate for a time τ . Renormalize δx̃1(τ ) to have unit length. Using GSR
procedure, orthonormalize the second separation function relative to the first, the
third relative to the second, and so on. Repeat this procedure for L iterations. For
sufficiently large L , it is numerically shown that the values of λi converge [6].
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Appendix B
A Brief Introduction to Synchronization
in Chaotic Dynamical Systems

B.1 Introduction

Synchronization phenomenon is abundant in nature and can be realized in very many
problems of science, engineering, and social life. Systems as diverse as clocks,
singing crickets, cardiac pacemakers, firing neurons, and applauding audiences
exhibit a tendency to operate in synchrony. The underlying phenomenon is universal
and can be understood within a common framework based on modern nonlinear
dynamics.

The history of synchronization goes back to the seventeenth century when the
Dutch physicist Christiaan Huygens reported on his observation of phase synchro-
nization of two pendulum clocks [1, 2]. Huygens briefly, but extremely precisely,
described his observation of synchronization as follows.

... It is quite worth noting that when we suspended two clocks so constructed from two
hooks imbedded in the same wooden beam, the motions of each pendulum in opposite
swings were so much in agreement that they never receded the least bit from each other and
the sound of each was always heard simultaneously. Further, if this agreement was disturbed
by some interference, it reestablished itself in a short time. For a long time I was amazed
at this unexpected result, but after a careful examination finally found that the cause of this
is due to the motion of the beam, even though this is hardly perceptible. The cause is that
the oscillations of the pendula, in proportion to their weight, communicate some motion to
the clocks. This motion, impressed onto the beam, necessarily has the effect of making the
pendula come to a state of exactly contrary swings if it happened that they moved otherwise
at first, and from this finally the motion of the beam completely ceases. But this cause is
not sufficiently powerful unless the opposite motions of the clocks are exactly equal and
uniform.

Despite being the oldest scientifically studied nonlinear effects, synchroniza-
tion was understood only in the 1920s when Edward Appleton [3] and Balthasar
van der Pol [4] theoretically and experimentally studied synchronization of triode
oscillators. Considering the simplest case, they showed that the frequency of a gen-
erator can be entrained, or synchronized, by a weak external signal of a slightly
different frequency. These studies were of great practical importance because tri-
ode generators became the basic elements of radio communication systems. The
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264 B A Brief Introduction to Synchronization in Chaotic Dynamical Systems

synchronization phenomenon was used to stabilize the frequency of a powerful
generator with the help of one which was weak but very precise.

Even though the notion of synchronization was identified well before the concept
of chaos was realized, it was believed that chaotic synchronization was not feasible
because of the hallmark property of chaos which is the extreme sensitivity to initial
conditions. The latter property implies that two trajectories emerging from two dif-
ferent close by initial conditions separate exponentially in the course of time. As a
result, chaotic systems intrinsically defy synchronization because even two identical
systems starting from very slightly different initial conditions would evolve in time
in an unsynchronized manner (the differences in the system states would grow expo-
nentially). This is a relevant practical problem, insofar as experimental initial condi-
tions are never known perfectly. Nevertheless, it has been shown that it is possible to
synchronize chaotic systems, to make them evolve on the same chaotic trajectory, by
introducing appropriate coupling between them due to the works of Pecora and Car-
roll and the earlier works of Fujisaka and Yamada [5–10]. Since the identification
of synchronization in chaotic oscillators, the phenomenon has attracted considerable
research activity in different areas of science and technology and several generaliza-
tions and interesting applications have been developed. The phenomenon of chaotic
synchronization is of interest not only from a theoretical point of view but also has
potential applications in diverse subjects such as as biological, neurological, laser,
chemical, electrical and fluid mechanical systems as well as in secure communica-
tion, cryptography, system reconstruction, parameter estimation, controlling chaos,
long term prediction of chaotic systems and so on [2, 11–21].

Chaotic synchronization, in general, can be defined as a process wherein two
(or many) chaotic systems (either equivalent or nonequivalent) adjust a given prop-
erty of their motion to a common behavior, due to coupling or forcing. This ranges
from complete agreement of trajectories to locking of phases [11].

The first point we note here is that there is a great difference in the process lead-
ing to synchronized states, depending upon the particular coupling configuration,
namely one should distinguish two main cases: unidirectional coupling and bidirec-
tional coupling. When the evolution of one of the coupled systems is unaltered by
the coupling, the resulting configuration is called unidirectional coupling or drive-
response coupling. As a result, the response system is slaved to follow the dynamics
of the drive system, which, instead, purely acts as an external but chaotic forcing for
the response system. In such a case external synchronization is produced. Typical
examples are communication using chaos. On the contrary, when both the systems
are connected in such a way that they mutually influence each other’s behavior then
the corresponding configuration is called bidirectional coupling. Here both the sys-
tems are coupled with each other, and the coupling factor induces an adjustment of
the rhythms onto a common synchronized manifold, thus inducing a mutual syn-
chronization behavior. This situation typically occurs in physiology, e.g. between
cardiac and respiratory systems or between neurons. These two processes are very
different not only from a philosophical point of view; up to now no way has been
discovered to reduce one process to another, or to link formally the two cases. Inside
this classification, the appearance and robustness of synchronization states have
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been established by means of several different coupling schemes, such as the Pecora
and Carrol method [8, 10, 21], the negative feedback [14], the sporadic driving [22],
the active-passive decomposition [23, 24], the diffusive coupling and some other
hybrid methods [25]. A description and analysis of some of these coupling schemes
is given in [26] in a single mathematical framework. In the following studies we
will consider only the so called unidirectional coupling or drive-response coupling
configuration.

Chaos synchronization has been receiving a great deal of interest for more than
two decades in view of its potential applications in various fields of science and
engineering [5, 6, 8, 27–29]. Since the identification of chaotic synchronization,
different kinds of synchronization have been proposed in interacting chaotic sys-
tems, which have all been identified both theoretically and experimentally. These
include

1. complete or identical synchronization (CS) [5–8, 27],
2. phase synchronization (PS) [30–32],
3. lag synchronization (LS) [33–35],
4. anticipatory synchronization (AS) [36–38],
5. generalized synchronization (GS) [39–41],
6. intermittent lag synchronization (ILS) [33, 42–44],
7. intermittent anticipatory synchronization (IAS) [45],
8. intermittent generalized synchronization (IGS) [46],
9. imperfect or intermittent phase synchronization (IPS) [47–50],

10. almost synchronization (AS) [51],
11. time scale synchronization (TSS) [52] and
12. episodic synchronization (ES) [53].

Transition from one kind of synchronization to the other, coexistence of different
kinds of synchronization in time series and also the nature of transitions have also
been studied extensively [33–35, 54, 55] in coupled chaotic systems. There are also
attempts to find a unifying framework for defining the overall class of chaotic syn-
chronizations [56–58]. Before presenting the details of important types of aforesaid
synchronization phenomena, we will discuss about the characterization for identi-
fying the existence of synchronization in coupled chaotic systems.

B.2 Characterization of Synchronization

The existence of synchronization, in particular CS, is also characterized by quan-
titative measures in addition to qualitative pictures such as combined phase space
plots of state variables, time trajectory of error variable, etc. Such quantitative mea-
sures are usually addressed in terms of a stability problem, that is, stability of the
synchronized motion, and many criteria have been established in the literature to
cope with it. One of the most popular and widely used criteria is the use of the
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Lyapunov exponents as average measurements of expansion or shrinkage of small
displacements along the synchronized trajectory.

Let us consider a set of two unidirectionally coupled identical chaotic systems
whose temporal evolution is given by the system of coupled first order ODEs

Ẋ = F(X),
(

˙= d

dt

)
(B.1a)

Ẏ = F(Y,S(t)), (B.1b)

where X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) are n-dimensional state vectors
corresponding to the drive and response systems, respectively, with F defining a
vector field F : Rn → Rn and S(t) is some function of X(t), corresponding to the
drive signal. The stability problem of identical coupled systems can be formulated
in a very general way by addressing the question of the stability of the CS manifold
X ≡ Y, or equivalently by studying the temporal evolution of the synchronization
error e ≡ Y − X. The evolution of e is given by

ė = F(X)− F(Y,S(t)). (B.2)

A CS regime exists when the synchronization manifold is asymptotically stable for
all possible trajectories S(t) of the driving system within the chaotic attractor. This
property can be proved by carrying out a stability analysis of the linearized system
for small e,

ė = DX (S(t))e, (B.3)

where DX is the Jacobian of the vector field F evaluated onto the driving trajectory
S(t). Normally, when the driving trajectory S(t) is constant (fixed point) or periodic
(limit cycle), the stability problem can be studied by evaluating the eigenvalues of
DX or the Floquet multipliers [59, 60]. However, if the response systems is driven
by a chaotic signal, this method will not work.

A possible way out is to calculate the Lyapunov exponents of the system (B.3). In
the context of drive-response coupling schemes, these exponents are usually called
conditional Lyapunov exponents (CLEs) because they are the Lyapunov exponents
of the response system under the explicit constraint that they must be calculated
on the trajectory S(t) [10, 23]. Alternatively, they are called transverse Lyapunov
exponents (TLEs) because they correspond to directions which are transverse to the
synchronization manifold X ≡ Y [25, 61]. These exponents may be defined, for
an initial condition of the driver signal S0 and initial orientation of the infinitesimal
displacement U0 = e(0)/|e(0)|, as

h(S0,U0) ≡ lim
t→∞

1

t
ln

( |e(t)|
|e(0)|

)
= lim

t→∞
1

t
ln|Z(S0, t).U0|, (B.4)
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where Z(S0, t) is the matrix solution of the linearized equation,

dZ/dt = DX (S(t))Z, (B.5)

subject to the initial condition Z(0) = I . The synchronization error e evolves
according to e(t) = Z(S0, t)e0 and then the matrix Z determines whether this
error shrinks or grows in a particular direction. In most cases, however, the cal-
culation cannot be made analytically, and therefore numerical algorithms should be
used [62–64].

It is very important to emphasize that the negativity of the conditional Lyapunov
exponents is only a necessary condition for the stability of the synchronized state.
The conditional Lyapunov exponents are obtained from a temporal average, and
therefore they characterize the global stability over the whole chaotic attractor. Rel-
evant cases exist where these exponents are negative and nevertheless the systems
are not perfectly synchronized, thus indicating that additional conditions should be
fulfilled to warrant synchronization in a necessary and sufficient way [65].

The stability of a CS manifold can also be studied by the use of the Lyapunov
function L(e). It can be defined as a continuously differentiable real valued function
with the following properties:

(a) L(e) > 0 for all e �= 0 and L(e) = 0 for e = 0.
(b) d L/dt < 0 for all e �= 0.

If for a given coupled system one can find a Lyapunov function, then the CS man-
ifold is globally stable. For illustrative examples one may refer to [13, 23, 28, 66].
Unfortunately, whether such functions exist and how one should construct them is
known only in a very limited number of cases, whereas a general procedure to obtain
these functions is not yet available.

At this stage, let us summarize the validity of the stability criteria discussed
above. In general, only Lyapunov functions give a sufficient condition for the sta-
bility of the synchronization manifold, whereas the negativity of the conditional
Lyapunov exponents provides a necessary condition. While the Lyapunov function
criterion gives a local condition for stability, the other two (CLEs/TLEs) involve
temporal averages over chaotic trajectories of the driving signal, and therefore they
establish conditions for global stability. As a consequence, none of these latter cri-
teria prevents from local desynchronization events that could occur within the CS
manifold. This point is discussed in [61], where the synchronized behavior of two
chaotic circuits coupled in a drive-response configuration is studied. The appearance
of these local desynchronized states, despite Lyapunov exponents being negative, is
also related with a small parameter mismatch between the coupled systems and
low levels of noise, which are unavoidable effects in experimental devices and in
numerical integration.

We have pointed in the above that the characterization of synchronization in
coupled identical systems can be done using the stability of synchronized motion
by referring to the stability of the CS manifold. When we deal with nonidentical
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coupled systems, similar stability criteria can be formulated, but additional problem
will appear due to the more complicated structure of the synchronization manifold.
Also, the other kinds of synchronization have their own characterizations, which we
will discuss in the following sections.

B.2.1 Complete Synchronization

When one deals with coupled identical chaotic systems, synchronization appears as
the equality of the state variables while evolving in time. Complete synchroniza-
tion (CS) was the first discovered and simplest form of synchronization in chaotic
systems. It is characterized by a perfect locking of the chaotic trajectories of two
identical nonlinear systems which is achieved by means of a suitable coupling in
such a way that the two trajectories remain in step with each other in the course of
time, that is, X (t) ≡ Y (t), where X and Y are n-dimensional state variables whose
evolution is represented by (B.1), individually. This mechanism was first shown to
occur when two identical chaotic systems are coupled unidirectionally, provided the
conditional Lyapunov exponents of the subsystem (response) to be synchronized are
all negative [8]. Complete synchronization is also called conventional synchroniza-
tion or identical synchronization in the literature [67].

As an illustrative example for CS, we will consider a Pecora and Caroll drive-
response configuration with a drive system given by the Lorenz system [68],

ẋ1 = σ(y1 − x1), (B.6a)

ẏ1 = −x1z1 + r x1 − y1, (B.6b)

ż1 = x1 y1 − bz1, (B.6c)

and with a response system given by the subspace containing the (y, z) variables,
where x1 acts as the driving signal for the response system,

ẏ2 = −x1z2 + r x1 − y2, (B.7a)

ż2 = x1 y2 − bz2. (B.7b)
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Here the control parameters σ, r and b are fixed as σ = 16, r = 45.92 and b =
4 so that Eqs. (B.6) give rise to chaotic dynamics. With this particular choice of
the driving, CS sets in rather quickly as shown in Fig. B.1. Figure B.1a is a time
trajectory plot of z1(t) and z2(t) showing complete synchronization and diagonal
line in Fig. B.1b confirms the CS between z1(t) and z2(t). Note that the above
configuration is also called a homogeneous driving configuration.

B.2.2 Phase Synchronization

Definition of chaotic phase synchronization (CPS) in coupled chaotic systems is
derived from the classical definition of phase synchronization in periodic oscillators.
Interacting chaotic systems are said to be in phase synchronized state when there
exists entrainment between phases of the systems, nφ1 − mφ2 =const, while their
amplitudes may remain chaotic and uncorrelated (In the presence of noise, a weaker
condition for phase locking, |nφ1 − mφ2| <const, should be used instead). In other
words, CPS exists when their respective frequencies and phases are locked [2, 11,
69]. To study CPS, one has to identify a well defined phase variable in both the
coupled systems. If the flow of the chaotic oscillator has a proper rotation around
a certain reference point, the phase can be defined in a straightforward way. For
example, for the Rössler system [30] with standard parameters the projection of the
chaotic attractor onto the (x, y) plane looks like a smeared limit cycle. In this and
similar cases one can define the phase [2, 11] as

φ(t) = arctan(y(t)/x(t)). (B.8)

A more general approach to define the phase in chaotic oscillators is the analytic
signal approach [2, 11] introduced in [70]. The analytic signal χ(t) is given by

χ(t) = s(t)+ i s̃(t) = A(t) expiΦ(t), (B.9)

where s̃(t) denotes the Hilbert transform of the observed scalar time series s(t)

s̃(t) = 1

π
P.V .

∫ ∞

−∞
s(t ′)
t − t ′

dt ′, (B.10)

where P.V. stands for the Cauchy principle value of the integral and this method is
especially useful for experimental applications [2, 11] .

The phase of a chaotic attractor can also be defined based on an appropriate
Poincaré surface of section which the chaotic trajectory crosses once for each
rotation. Each crossing of the orbit with the Poincaré section corresponds to an
increment of 2π of the phase, and the phase in between two crossings is linearly
interpolated [2, 11],
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Φ(t) = 2πk + 2π
t − tk

tk+1 − tk
, (tk < t < tk+1) (B.11)

where tk is the time of kth crossing of the flow with the Poincaré section. For the
phase coherent chaotic oscillators, that is, for flows which have a proper rotation
around a certain reference point, the phases calculated by these three different ways
are in good agreement [2, 11].

As the simplest example of chaotic phase synchronization, we will consider two
coupled Rössler systems [30, 71],

ẋ1,2 = −ω1,2 y1,2 − z1,2 + C(x2,1 − x1,2), (B.12a)

ẏ1,2 = ω1,2x1,2 + ay1,2, (B.12b)

ż1,2 = 0.2 + z1,2(x1,2 − 10), (B.12c)

where the parameters ω1,2 = 1 ± Δω govern the frequency mismatch and C is
the strength of coupling. As the coupling is increased for a fixed mismatch Δω,
one can observe a transition from a regime, where the phases rotate with different
velocities φ1 − φ2 ∼ ΔΩt , to a synchronous state, where the phase difference does
not grow with time |φ1 − φ2| < const; ΔΩ = 0. This transition is illustrated in
Fig. B.2a. Moreover, the correlation between the amplitudes of x1 and x2 is quite
small (Fig. B.2b), although the phases are completely locked. In this example, it
is shown that transition of one of the zero Lyapunov exponents to negative value
as shown in Fig. B.3 corresponds to the critical point at which the phases become
locked. It is known that in the absence of coupling each oscillator has one pos-
itive, one negative and one zero Lyapunov exponents. The zero Lyapunov expo-
nents correspond to the transition along the trajectory. As the coupling strength
is increased the interaction between the oscillators increases such that the phase
difference φ1 −φ2 decreases and phases become locked eventually. Thus one of the
zero exponents becomes negative to account for the phase locking phenomenon.
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Fig. B.3 The four largest Lyapunov exponents of coupled coupled Rössler systems (B.12)
as a function of the coupling strength C

B.2.3 Lag Synchronization

It has been shown in the previous section that when nonidentical chaotic oscillators
are weakly coupled, the phases can be locked while the amplitudes remain highly
uncorrelated. On further increase of the coupling strength, a relationship between
the amplitudes may be established. Indeed, it has been demonstrated that there exists
a regime of lag synchronization [33] where the states of the two oscillators are nearly
identical, but one system lags in time with the other, that is, Y (t) = X (t −τ), τ > 0.

To characterize lag synchronization quantitatively, Rosenbulm et al. [33] have
introduced the notion of similarity function Sl(τ ) as a time averaged difference
between the variables x1 and x2 (with mean values being subtracted) taken with
the time shift τ ,

S2
l (τ ) = 〈[x2(t + τ)− x1(t)]2〉[〈

x2
1(t)

〉 〈
x2

2(t)
〉]1/2

, (B.13)

where 〈x〉 means time average over the variable x , and x1(t) and x2(t) are the state
variables of the drive and response systems, respectively. If the signals x1(t) and
x2(t) are independent, the difference between them is of the same order as the sig-
nals themselves. If x1(t) = x2(t), as in the case of complete synchronization, the
similarity function reaches a minimum so that S(τ ) = 0 for τ = 0. But for the case
of nonzero positive value of time shift τ , if Sl(τ ) = 0, then there exists a time shift τ
between the two signals x1(t) and x2(t) such that x2(t) = x1(t − τ), demonstrating
lag synchronization.

We will consider the coupled Rössler systems (B.12) again for illustrative pur-
pose with the same parameters as in the previous section except that the frequency
mismatch now is given by ω1,2 = 0.97 ± Δω with Δω = 0.02 [33] and the value
of the parameter a is chosen as a = 0.165. It was noted in the previous section
that as the coupling is increased from zero there exists entrainment of phases of the
coupled systems in the weak coupling limit. As the coupling strength is increased
further one can expect a stronger correlation in the amplitude resulting in the onset
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Fig. B.4 (a) Time series plot of the state variables x1,2 showing the state of one of the systems
evolving with a time lag τ = 0.21 to the state of the other variable for the value of the cou-
pling strength C = 0.2 and (b) Projection of the attractor of the coupled system on the delayed-
coordinates, plot of x1(t − τ) Vs x2(t), demonstrating that the state of one of the oscillators is
delayed in time with respect to the other for the above values of the parameters

of lag synchronization for an appropriate value of the coupling strength. In fact, one
finds that for C = 0.2, the state of one of the oscillators, x2, lags in time to that of
the other, x1, with a lag time τ = 0.21 which is illustrated in Fig. B.4a. Projection
of the attractor of the coupled system (B.12) on the delayed-coordinate x1(t −τ) Vs
x2(t) is shown in Fig. B.4b.

B.2.4 Anticipatory Synchronization

It has also been shown that certain kinds of coupled chaotic systems may synchro-
nize so that the response “anticipates” the driver, Y (t) = X (t +τ), by synchronizing
with the future states. In [36] different unidirectional coupling schemes are consid-
ered such as a nonlinear time-delayed feedback either in the driver or in both the
coupled systems. The results confirm that the anticipating synchronization can be
globally stable due to the interplay between delayed feedback and dissipation, for
any relatively small value of the lag time between response and driver. In addition,
it has been shown that it is possible to achieve anticipation times larger than the
characteristic time scales of the system dynamics, thus introducing a novel way of
reducing the unpredictability of chaotic dynamics [37].

Anticipatory synchronization can also be characterized using the same similarity
function Sl(τ ) but with a negative time shift τ < 0 instead of the positive time shift
τ > 0 in Eq. (B.13). In other words, one may define the similarity function for
anticipatory synchronization as

S2
a (τ ) = 〈[x1(t − τ)− x2(t)]2〉[〈

x2
1(t)

〉 〈
x2

2(t)
〉]1/2

, τ < 0 (B.14)

Then the minimum of Sa(τ ),that is Sa(τ ) = 0, indicates that there exists a time
shift −τ between the two signals x1(t) and x2(t) such that x2(t) = x1(t −τ), τ < 0,
demonstrating anticipatory synchronization.
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Fig. B.5 (a) Time series plot of the state variables x1,2 showing that the drive x2(t) anticipates
the state of the response system x1(t) with an anticipating time |τ | = 0.4 for the value of the
coupling strength C = 1.0 and (b) Projection of the attractor of the coupled system on the delayed-
coordinates, x1(t −τ)Vs x2(t), τ < 0, demonstrating the existence of anticipating synchronization
between the drive x1(t) and response x2(t) variables

As an illustrative example, we will consider the following unidirectionally cou-
pled Rössler systems [36],

ẋ1 = −y1 − z1, (B.15a)

ẏ1 = x1 + ay1, (B.15b)

ż1 = 0.2 + z1(x1 − 10), (B.15c)

ẋ2 = −y2 − z2 + C(x1 − x2,τ ), (B.15d)

ẏ2 = x2 + ay2, (B.15e)

ż2 = 0.2 + z2(x2 − 10), (B.15f)

where the parameter a is fixed as 0.15. It can be easily checked that the above
coupled systems exhibit anticipatory synchronization for small values of delay τ
upon increasing the coupling strength. Figure B.5a illustrates that the response x2(t)
anticipates the state of the drive x1(t) with anticipating time τ = 0.4 for the value
of the coupling strength C = 1.0 and the projection of the attractor of the coupled
system (B.15) on the delayed-coordinates, x1(t) Vs x2(t −τ), is shown in Fig. B.4b.

B.2.5 Generalized Synchronization

In general, completely identical synchronization may not be expected in nonidenti-
cal systems because there does not exist an invariant manifold x = y. In such cases
where there exists an essential difference between the coupled systems, there is no
hope to have a trivial manifold in the phase space attracting the system trajectories,
and therefore it is not clear at a first glance whether nonidentical chaotic systems can
synchronize. However, many works have shown that it is possible to generalize the
concept of synchronization to include nonidenticity between the coupled systems
and this phenomenon is called generalized synchronization [7, 39–41].

In order to define generalized synchronization (GS), let us consider the following
coupled system
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Ẋ = F(X), (B.16a)

Ẏ = G(Y, Hμ(X)), (B.16b)

where X is the n-dimensional state vector of the driver and Y is the m-dimensional
state vector of the response. F and G are vector fields, F : Rn → Rn , and G :
Rm → Rm . The coupling between the response and the driver is provided by the
vector filed Hμ(X) : Rn → Rm , where the dependence of this function upon the
parameters μ is explicitly considered. When μ = 0, the response system evolves
independently of the driver, and we assume that both systems are chaotic.

Some differences in the definition of GS exists in the literature. However, we
will discuss here a more general definition given in [39, 40, 72]. When μ �= 0,
the chaotic trajectories of the two systems are said to be synchronized in a gen-
eralized sense if there exists a transformation ψ : X → Y which is able to map
asymptotically the trajectories of the driver attractor into the ones of the response
attractor Y (t) = ψ(X (t)), regardless of the initial condition in the basin of the
synchronization manifold M = (X, Y ) : Y = ψ(X).

The difference between various definitions of GS is based on the mathematical
properties required for the map ψ . Reference [67] distinguishes between two types
of GS, namely the so-called weak synchronization and strong synchronization. The
latter corresponds to the case of a map ψ which is smooth, in the sense of being dif-
ferentiable; on the other hand the former corresponds to the case of a map ψ which
is non-smooth, in the sense of being not differentiable. Even a stronger version
of strong synchronization is considered in [73], called differentiable generalized
synchronization, requiring continuous differentiability of ψ . All of these different
approaches have relevant consequences when one looks for the existence of GS in
experimental situations. The stability of the manifold M of GS can be determined as
in the case of CS, that is, by the negativity of conditional Lyapunov exponents [67]
and the use of Lyapunov functions [40].

As an example, we consider the system studied in [74] where the drive system is
described by

μẋ1 = y1, (B.17a)

μẏ1 = −x1 − δy1 + z1, (B.17b)

μż1 = γ (α1 f (x1)− z1)− σ y1, (B.17c)

which is realized in experiments with electrical chaotic circuits [75]. The response
system equations are

ẋ2 = y2, (B.18a)

ẏ2 = −x2 − δy2 + z2, (B.18b)

ż2 = γ (α2 f (x2)− z2 + gx1)− σ y2, (B.18c)

where g is the coupling strength, and γ = 0.294, σ = 1.52, δ = 0.534, and
α2 = 16.7 are fixed system parameters. The nonlinear function f (x) models the
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Fig. B.6 Projection of attractor constructed from the drive (B.17) and response attractors (B.18)
and plotted for (x1, x2). (a) For α1 = 15.94 showing desynchronized state and (b) For α1 = 15.93
showing generalized synchronized state

input-output characteristics of a nonlinear converter in the circuit [74, 75]. The
parameter μ in the drive system equations is the time scaling parameter that is used
to select the desired frequency ratio of the synchronization. For the parameter values
g = 3.0, μ = 0.498 and α1 = 15.94 the above systems are in asynchronous state
which is shown in Fig. B.6a and as the value of α is decreased to α = 15.93 the
above systems display generalized synchronization as illustrated in Fig. B.6b.

References

1. C. Huygens, Horologium Oscillatorium (Apud F. Muguet, France, 1673)
2. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization – A Unified Approach to

Nonlinear Science (Cambridge University Press, Cambridge, 2001)
3. E.V. Appleton, Proc. Cambridge Philos. Soc. (Math. Phys. Sci.) 21, 231 (1922)
4. B. van der Pol, J. van der Mark, Nature 120, 363 (1927)
5. H. Fujisaka, T. Yamada, Prog. Theor. Phys. 69, 32 (1983)
6. H. Fujisaka, T. Yamada, Prog. Theor. Phys. 70, 1240 (1983)
7. V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Izvestiya Vysshikh Uchebnykh Zavedenii

Radiofizika 29, 3050 (1986)
8. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)
9. A.S. Pikovsky, Z. Phys. B 55, 149 (1984)

10. L.M. Pecora, T.L. Carroll, Phys. Rev. A 44, 2374 (1991)
11. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)
12. S. Hayes, C. Grebogy, E. Ott, Phys. Rev. Lett. 70, 3031 (1993)
13. K.M. Cuomo, A.V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993)
14. T. Kapitaniak, Phys. Rev. E 50, 1642 (1994)
15. G. Pérez, H.A. Cerdeira, Phys. Rev. Lett. 74, 1970 (1995)
16. J.H. Peng, E.J. Ding, M. Ding, W. Yang, Phys. Rev. Lett. 76, 904 (1996)
17. K. Pyragas, Phys. Lett. A 181, 203 (1993)
18. A. Kittle, K. Pyragas, R. Richter, Phys. Rev. E 50, 262 (1994)
19. R. Brown, N.F. Rulkov, E.R. Tracy, Phys. Rev. E 49, 3784 (1994)
20. U. Parlitz, Phys. Rev. Lett. 76, 1232 (1996)
21. R. He, P.V. Vaidya, Phys. Rev. A 46, 7387 (1992)
22. R.E. Amritkar, N. Gupte, Phys. Rev. E 47, 3889 (1993)



276 B A Brief Introduction to Synchronization in Chaotic Dynamical Systems

23. L. Kocarev, U. Parlitz, Phys. Rev. Lett. 74, 5028 (1995)
24. U. Parlitz, L. Kocarev, T. Stojanovski, H. Preckel, Phys. Rev. E 53, 4351 (1996)
25. J. Guemez, M.A. Matias, Phys. Rev. E 52, R2145 (1995)
26. C.W. Wu, L.O. Chua, Int. J. Bifurcat. Chaos 4, 979 (1994)
27. E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)
28. M. Lakshmanan, K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization

(World Scientific, Singapore, 1996)
29. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns

(Springer, Berlin, 2003)
30. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)
31. T. Yalcinkaya, Y.C. Lai, Phys. Rev. Lett. 79, 3885 (1997)
32. E.R. Rosa, E. Ott, M.H. Hess, Phys. Rev. Lett. 80, 1642 (1998)
33. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)
34. S. Rim, I. Kim, P. Kang, Y.J. Park, C.M. Kim, Phys. Rev. E 66, 015205(R) (2002)
35. M. Zhan, G.W. Wei, C.H. Lai, Phys. Rev. E 65, 036202 (2002)
36. H.U. Voss, Phys. Rev. E 61, 5115 (2002)
37. H.U. Voss, Phys. Rev. Lett. 87, 014102 (2001)
38. C. Masoller, Phys. Rev. Lett. 86, 2782 (2001)
39. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Phys. Rev. E 51, 980 (1995)
40. L. Kocarev, U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996)
41. R. Brown, Phys. Rev. Lett. 81, 4835 (1998)
42. S. Boccaletti, D.L. Valladares, Phys. Rev. E 62, 7497 (2000)
43. S. Taherion, Y.C. Lai, Phys. Rev. E 59, R6247 (1999)
44. D.L. Valladares, S. Boccaletti, Int. J. Bifurcat. Chaos 11, 2699 (2001)
45. D.V. Senthilkumar, M. Lakshmanan, Chaos 17, 013112 (2007)
46. A.E. Hramov, A.A. Koronovskii, Europhys. Lett. 79, 169 (2005)
47. A. Pikovsky, G. Osipov, M. Rosenblum, M. Zaks, J. Kurths, Phys. Rev. Lett. 79, 47 (1997)
48. A. Pikovsky, M. Zaks, M. Rosenblum, G. Osipov, J. Kurths, Chaos 7, 680 (1997)
49. K.J. Lee, Y. Kwak, T.K. Lim, Phys. Rev. Lett. 81, 321 (1998)
50. M.A. Zaks, E.-H. Park, M.G. Rosenblum, J. Kurths, Phys. Rev. Lett. 82, 4228 (1999)
51. R. Femat, G. Solis-Perales, Phys. Lett. A 262, 50 (1999)
52. A.E. Hramov, A.A. Koronovskii, Physica D 206, 252 (2005)
53. I. Fischer, R. Vicente, J. M. Buldu, M. Peil, C.R. Mirasso, M.C. Torrent, J. Garcia-Ojalvo,

Phys. Rev. Lett. 97, 123902 (2006)
54. M. Zhan, Y. Wang, X. Gang, G.W. Wei, C.H. Lai, Phys. Rev. E 68, 036208 (2003)
55. A. Locquet, F. Rogister, M. Sciamanna, P. Megret, M. Blandel, Phys. Rev. E 64, 045203(R)

(2001)
56. R. Brown, L. Kocarev, Chaos 10, 344 (2000)
57. S. Boccaletti, L.M. Pecora, A. Pelaez, Phys. Rev. E 63, 066219 (2001)
58. A.E. Hramov, A.A. Koronovskii, Chaos 14, 603 (2004)
59. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer, Berlin,

Heidelberg, 1990)
60. L. Yu, E. Ott, Q. Chen, Phys. Rev. Lett. 65, 2935 (1990)
61. D.J. Gauthier, J.C. Bienfang, Phys. Rev. Lett. 77, 1751 (1996)
62. G. Benettin, C. Froeschlé, H.P. Scheidecker, Phys. Rev. A 19, 454 (1976)
63. I. Shimada, T. Nagashima, Prog. Theor. Phys. 61, 1605 (1979)
64. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)
65. J.L. Willems, Stability Theory of Dynamical Systems (Wiley, New York, 1970)
66. K. Murali, M. Lakshmanan, Phys. Rev. E 49, 4882 (1994)
67. K. Pyragas, Phys. Rev. E 54, R4508 (1996)
68. C. Sparrow, The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors, (Springer,

New York, 1982)
69. G.V. Osipov, A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Phys. Rev. E 55, 2353 (1997)



References 277

70. D. Gabor, J. IEE London 93, 429 (1946)
71. O.E. Rössler, Phys. Let. A 57, 397 (1976)
72. H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Phys. Rev. E 53, 4528 (1996)
73. B.R. Hunt, E. Ott, J.A. Yorke, Phys. Rev. E 55, 4029 (1997)
74. N.F. Rulkov, C.T. Lewis, Phys. Rev. E 63, 065204(R) (2001)
75. N.F. Rulkov, Chaos 6, 262 (1996)





Appendix C
Recurrence Analysis

C.1 Introduction

The concept of recurrence dates back to Poincaré [1], who proved that after a
sufficiently long time the trajectory of a chaotic system in phase space will return
arbitrarily close to any former point of its path with probability one. However, the
concept of recurrence within the framework of chaotic systems was not considered
until the sixties, when the now famous Lorenz equation was derived by E. Lorenz
as a simplified equation of convection rolls [2, 3]. Later in 1987, Eckmann et al.
introduced the method of recurrence plots (RPs), a technique that visualizes the
recurrences of a dynamical system and gives information about the behavior of its
trajectory in phase space [4]. This technique has become popular in the last decade
because of its applicability to rather short and non-stationary time series. Further,
cross recurrence plots (CRPs) (a bivariate extension of the RP) was introduced by
Zbilut et al. [5] and Marwan and Kurths [6] to analyse the dependencies between
two different systems by comparing their states [5, 6]. As an extension of CRPs to
analyse physically different systems with different phase space dimensions, joint
recurrence plots (JRPs) were introduced. Also, in order to go beyond the visual
inspection of RPs, several measures of complexity which quantify the small scale
structures in RPs have been proposed [7–10] and are known as recurrence quan-
tification analysis (RQA). These measures are based on the recurrence point den-
sity and the diagonal and vertical line structures of the RP. Furthermore, a more
theoretical study of the relationship between RPs and the properties of dynami-
cal systems has also been addressed [10–15]. The concept of recurrence plots and
its measures have been applied in numerous fields of research including astro-
physics [16, 17], earth sciences [18–20], engineering [21, 22], biology [23, 24] and
cardiology/neuroscience [25–28]. In the following, we describe briefly the concept
of recurrence plots along with CRP and JRP. We will also discuss the various quan-
tification measures introduced to characterize synchronization transitions in coupled
chaotic systems.

279
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C.2 Recurrence Plots and Their Variants

In this section, we will describe briefly the concept of recurrence plots and their
variants such as cross recurrence plots and joint recurrence plots to analyse the
data of different physical systems of same or even different dimensions along with
suitable illustrations.

C.2.1 Recurrence Plots

As mentioned in the introduction, RPs provide a visual impression of the trajectory
of a dynamical system in phase space. Suppose that the time series {Xi }N

i=1 repre-
senting the trajectory of a system in phase space is given, with Xi ∈ R

d . The RP
efficiently visualises recurrences and can be formally expressed by the matrix

Ri, j = Θ(ε − ||Xi − X j ||), i, j = 1, · · · , N , (C.1)

where N is the number of measured points Xi , ε is a predefined threshold, Θ is
the Heaviside function (i.e. Θ(x) = 0, if x < 0, and Θ(x) = 1 otherwise) and
||.|| is the Euclidean norm. For ε-recurrent states, that is for states which are in an
ε-neighbourhood, we have the following notion:

Xi ≈ X j ⇐⇒ Ri, j ≡ 1. (C.2)

The graphical representation of the matrix Ri, j is called recurrence plot (RP). The
RP is obtained by plotting the recurrence matrix, Eq. (C.1), using different colors
for its binary entries, for example by marking a black dot at the coordinates (i, j), if
Ri, j ≡ 1, and a white dot, if Ri, j ≡ 0. Since Ri,i ≡ 1 |N

i=1 by definition, the RP has
always a black main diagonal line. Furthermore, the RP is symmetric by definition
with respect to the main diagonal, that is Ri, j ≡ R j,i .

A crucial parameter of an RP is the threshold ε. Therefore, special attention has
to be required for its choice. If ε is chosen too small, there may be almost no recur-
rence points and we cannot learn anything about the recurrence structure of the
underlying system. On the other hand, if ε is chosen too large, almost every point
is a neighbour of every other point, which leads to a lot of artefacts. A too large
ε includes also points into the neighbourhood which are simple consecutive points
on the trajectory. Hence, one has to find an appropriate value for ε. Moreover, the
influence of noise can entail choosing a larger threshold, because noise would distort
any existing structure in the RP [10].

Several methods have been advocated in the literature to estimate the value of
threshold ε with their own advantages and disadvantages which has been discussed
in [10]. Among them, we use the approach that preserves the fixed recurrence point
density. In order to find an ε which corresponds to a fixed recurrence point density
or recurrence rate (RR) defined as
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R R(ε) = 1

N 2

N∑
i, j=1

Ri, j (ε), (C.3)

the cumulative distribution of the N 2 distances between each pair of vectors can be
used. The R Rth percentile is then the required ε. An alternative is to fix the number
of neighbours for every point of the trajectory. In this case, the threshold is actually
different for each point of the trajectory. The advantage of these two methods is that
both of them preserve the recurrence point density and allow one to compare RPs of
different systems without the necessity of normalising the time series beforehand.
Nevertheless, the choice of ε depends strongly on the system under study.

For illustration, we will show the RPs of three different motions, namely (i) of a
periodic motion on a circle (Fig. C.1a), (ii) of a chaotic attractor of Rössler system
(Fig. C.1b) and (iii) of a Gaussian white noise (Fig. C.1c). In all our simulation, we
have chosen the threshold value for ε as ε = 0.03R R and the sampling interval
to be Δt = 0.1. The RP of the purely periodic oscillation shown in Fig. C.1a
consists of uninterrupted diagonal lines separated by the distance T , where T is
the period of the oscillation. This is due to the fact that the position of the system
in the phase space recurs exactly at the same point after a cycle and hence one has
identical recurrence. The RP of Gaussian white noise depicted in Fig. C.1c is rather
homogeneous, consisting of mainly single points, indicating the randomness of its
behavior. The RP of chaotic attractor of Rössler system is illustrated in Fig. C.1b,
which shows that the predominant structures are intermediate between that of peri-
odic oscillations and that of purely stochastic motions. The RP of Rössler attractor
also shows diagonal lines which are shorter (interrupted) and the vertical distance
between the diagonal lines is not constant because of the multiple time scales of the
chaotic system. The interrupted diagonal lines are due to the exponential divergence
of nearby trajectories (sensitive to slightly different initial conditions). However, on
the upper right of Fig. C.1b, there is a small rectangular patch which rather looks like
the RP of the periodic motion and this structure corresponds to an unstable periodic
orbit of the Rössler attractor [10]. It is also conjectured that shorter the diagonals in
the RP, the less the predictability of the system [29], and indeed it was suggested
that the inverse of the longest diagonal (except the main diagonal for which i = j) is
proportional to the largest Lyapunov exponent of the system by Eckmann et al. [4].

Fig. C.1 Recurrence Plots of (a) a periodic oscillation, (b) a chaotic attractor of Rössler system
and (c) a Gaussian white noise
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C.2.2 Cross Recurrence Plots (CRP)

As mentioned in the introduction, CRP is a bivariate extension of the RP and was
introduced to analyse the difference between two different systems [5, 6]. CRPs can
be regarded as a generalisation of the linear cross-correlation function [10]. The
cross recurrence matrix, analogous to RP, of two dynamical systems represented by
the trajectories X and Y in a d-dimensional phase space is defined by

C RX,Y
i, j = Θ(ε − ||Xi − Y j ||), i = 1, · · · , N , j = 1, · · · ,M, (C.4)

where N and M are the lengths of the trajectories X and Y , respectively. Note that
N may not be equal to M and hence the matrix C R is not necessarily a square
matrix. As a CRP is plotted for those times when a state of the first system recurs
to that of the other system, both the systems are represented in the same phase
space. The components of Xi and Yi are usually normalised before computing the
cross recurrence matrix, while the other possibilities are to use the fixed amount of
neighbours for each Xi in which case the components need not be normalised. It
has been shown that the latter choice of the fixed neighborhood has the additional
advantage of suitability for slowly changing trajectories [10].

As an illustration, the CRP of the coupled Rössler systems (Eq. (B.12)) for the
same value of the parameters as in Sect. B.2.2 and for the value of the coupling
strength C = 0.01 is shown in Fig. C.2. As the values of the main diagonal C Ri,i

are not necessarily unity, CRPs do not have a black main diagonal line as in RPs as
in Fig. C.2. It has been shown that measures based on the length of the diagonally
oriented lines are used to find the nonlinear interactions between two systems, which
cannot be detected by the common cross-correlation function [6, 10]. An important
property of CRPs is that they reveal the local difference of the dynamical evolution
of close trajectory segments, represented by bowed lines. A time dilation or time
compression of one of the trajectories causes a distortion of the diagonal lines. For

Fig. C.2 Cross recurrence plot of the coupled Rössler systems (Eq. (B.12)) for the same value of
the parameters as in Sect. B.2.2 and for the value of the coupling strength C = 0.01
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two identical trajectories, the CRP is the RP of a single trajectory and contains the
main black diagonal line.

C.2.3 Joint Recurrence Plots (JRP)

We have seen above that CRP can be used to analyse the interrelation between two
different systems. However, CRP cannot be used to analyse two physically different
systems because the two different physical units or different phase space dimensions
do not make sense in computing CRP. A different possibility to compare the states
of different systems is to consider the recurrences of their trajectories in their cor-
responding phase spaces separately and then look for the times when both of them
recur simultaneously, that is when joint recurrence occurs. The individual phase
spaces are preserved by this approach and different thresholds for each system εX

and εY are considered, in respect of the natural measure of both the systems. Joint
recurrence matrix for two systems X and Y can be defined as

JRX,Y
i, j (ε

X , εY ) = Θ(εX − ||Xi − X j ||)Θ(εY − ||Yi − Y j ||), i, j = 1, · · · , N .
(C.5)

JRP of the coupled Rössler systems (Eq. (B.12)) for the same value of the parame-
ters as in Sect. B.2.2 and for the value of the coupling strength C = 0.01 is shown
in Fig. C.3.

The bivariate joint recurrence plot can be generalized to analyse n systems
(X(1), X(2), ..., X(n)) by using multivariate joint recurrence matrix, which can be
represented using Eq. (C.1) as

JR
X(1,2,...,n)
i, j (εX(1) , ..., εX(n) ) =

n∏
k=1

R
X(k)
i, j (ε

X(k) ), i, j = 1, · · · , N . (C.6)

Fig. C.3 Joint recurrence plot of the coupled Rössler systems (Eq. (B.12)) for the same value of
the parameters as in Sect. B.2.2 and for the value of the coupling strength C = 0.01
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In addition, a delayed version of the joint recurrence matrix can also be intro-
duced as

J RX,Y
i, j (ε

X , εY , τ ) = R
X
i, j (ε

X )RY
i+τ, j+τ (εY ), i, j = 1, · · · , N − τ, (C.7)

to analyse the interacting delayed systems [10]. JRP is invariant under permutation
of the coordinates in one or more of the systems. It can also be computed using a
fixed amount of nearest neighbours. In this case, each RPs which contributes to the
JRP is computed using the same number of nearest neighbours. These RPs obtained
from CRP, JRP and their variants are exploited in quantifying several dynamical
properties and their transitions using recurrence quantification analysis as discussed
in the next section.

C.3 Recurrence Quantification Analysis (RQA)

Several measures of complexity which quantify the small scale structures in RPs
have been proposed and are known as recurrence quantification analysis. These mea-
sures are based on the recurrence point density, the diagonal and vertical line struc-
tures of the RP. Studies based on RQA measures show that they are able to identify
bifurcation points, including chaos-order and chaos-chaos transitions [10]. Several
recurrence quantification measures have been introduced for different requirements.
Some of the most important measures include Recurrence Rate (RR), Determinism
(DET ), Divergence (DIV ), Entropy (ENTR), Trend (TREND), Ratio (RATIO), Lin-
earity (L AM), Trapping Time (TT ), Maximal vertical length (Vmax ), etc. It has also
been shown that several dynamical invariants such as correlation entropy, correlation
dimension, generalized mutual information, etc can also be calculated using RQA.
Detailed discussion on all of the above RQAs can be found in [10] and, all of the
methods and procedure discribed in this appendix are available in the CRP toolbox
for Matlab (Provided by TOCSY: http://tocsy.agnld.uni-potsdam.de). However, in
the following, we will focus our discussion on some of the RQAs that have been
introduced to characterize and to identify different kinds of synchronization transi-
tions in coupled chaotic systems.

C.3.1 Generalized Autocorrelation Function, P(t)

Generalized autocorrelation function P(t) has been defined as [10, 30]

P(t) = 1

N − t

N−t∑
i=1

Θ(ε − ||Xi − Xi+t ||). (C.8)

If any two coupled oscillators are in phase synchronization (PS), then the distances
between the diagonal lines in their respective RPs coincide as their phases, and
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hence their time scales are locked to each other. As PS is characterized by entrain-
ment in the phases of the interacting systems while their amplitudes remain uncorre-
lated, their respective RPs remain non-identical. However, if the probability that the
first oscillator recurs after t time steps is high, then the probability that the second
oscillator recurs after the same time interval is also high, and vice versa. Therefore,
looking at the probability P(t) that the system recurs to the ε neighborhood of a
former point of the trajectory X after t time steps and comparing P(t) of both the
system allows to detect and quantify PS.

Generalized autocorrelation function P(t) can be considered as a statistical mea-
sure about how often the phase φ has increased by 2π or multiples of 2π within
the time t in the original space. If two systems are in a phase synchronized state,
their phases increase on the average by K .2π , where K is a natural number, within
the same time interval t . The value of K corresponds to the number of cycles when
||X (t + T )− X (t)|| ∼ 0, or equivalently when ||X (t + T )− X (t)|| < ε, where T
is the period of the system. Hence, looking at the coincidence of the positions of the
maxima of P(t) for both the systems, one can qualitatively identify CPS. It is to be
noted that the heights of the local maxima are in general different for both systems
if they are only in PS.

C.3.2 Correlation of Probability of Recurrence (CPR)

A criterion to quantify phase synchronization between two systems is the cross
correlation coefficient between P1(t) and P2(t) (P1(t) represents the probability
of recurrence of the first system and P2(t) that of the second system) which can be
defined as Correlation of Probability of Recurrence (CPR)

CPR = 〈P̄1(t)P̄2(t)〉/σ1σ2, (C.9)

where P̄1,2 means that the mean value has been subtracted and σ1,2 are the standard
deviations of P1(t) and P2(t), respectively. If both systems are in CPS, the proba-
bility of recurrence is maximal at the same time t and CPR ≈ 1. If they are not in
CPS, the maxima do not occur simultaneously and hence one can expect a drift in
both the probability of recurrences and low values of CPR.

It has also shown that this method is highly efficient even for non-phase coherent
oscillators and it is able to detect PS even in time series which are strongly corrupted
by noise. One of the most important applications of this method is that it can also
be applied to experimental time series with noise.

C.3.3 Joint Probability of Recurrence (JPR)

Joint probability of recurrence to quantify the existence of generalized synchroniza-
tion (GS) between two systems is defined as
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JPR = S − RR

1 − RR
, (C.10)

where, S = R R1,2
R R , R R1,2 is the recurrence rate of the JRP of both the systems and

R R1 = R R2 = R R is the recurrence rate of the individual systems.

C.3.4 Similarity of Probability of Recurrence (SPR)

As the recurrence matrix contains only information about the neighborhood of each
point of a time series, the RPs of systems in GS must be almost identical. Hence,
it follows that their respective probabilities of recurrence must coincide and this
suggests the similarity coefficient between P1(t) and P2(t) represented as

SPR = 1 − 〈(P̄1(t)− P̄2(t))
2〉/σ1σ2, (C.11)

is of order 1 if both systems are in GS and approximately zero or negative if they
evolve independently.

C.4 Synchronization and Recurrences

In this section, we will investigate the onset, existence and transition among different
kinds of synchronizations by using recurrence plots and recurrence quantification
analysis discussed above. It may be noted that these indices based on the recurrence
are of considerable importance in synchronization analysis of experimental systems
and, in particular, in the case of very small available data set. With these indices, one
can quantify the degree of synchronization in complex interacting systems, specif-
ically in the case of non-coherent attractors. These methods are more appropriate
for non-stationary data. In the following, we will analyse (i) phase synchroniza-
tion in mutually coupled Rössler systems [31] and (ii) transition from phase to lag
synchronization again in mutually coupled Rössler systems [32] but in slightly dif-
ferent parameter regimes using recurrence plots and recurrence indices discussed
above.

C.4.1 PS in Mutually Coupled Rössler Systems

Phase synchronization has already been discussed in detail in Sect. B.2.2 and it has
been illustrated using mutually coupled Rössler systems [31]. Now, we will discuss
about the structure of recurrence plots, the nature of generalized autocorrelation
function, P(t), and correlation of probability of recurrence, CPR, for two differ-
ent values of the coupling strength corresponding to non-synchronized and phase
synchronized state in these systems. It is well known that PS is characterized by



C.4 Synchronization and Recurrences 287

entrainment in the phase of the interacting systems while their amplitudes remain
uncorrelated. During PS, the phases get locked and so also the frequencies. There-
fore, the recurrence plots of both the systems have the same distance (vertical)
between the diagonal lines, which corresponds to the period of oscillation, while
their respective RPs remain nonidentical.

Recurrence plot of both of the mutually coupled Rössler systems (Eq. (B.12)) for
the same values of the parameters as in Sect. B.2.2 are shown in Fig. C.4a, b, respec-
tively, for the value of coupling strength C = 0.01 in the non-synchronized regime.
The generalized autocorrelation functions, P1,2(t) of both the systems are shown in
Fig. C.4c, which indicates that the positions of local maxima are not in coincidence
and there exists a drift between them indicating non-synchronized state. The value of
correlation of probability of recurrence, CPR = 0.022, is rather low confirming the
non-synchronized state. Similarly, RPs of both the systems are shown in Fig. C.5a,
b, respectively, for the value of coupling strength C = 0.035 corresponding to PS
regime. Now both P1(t) and P2(t) are in perfect coincidence in their positions of
local maxima indicating PS (Fig. C.5c). In addition, the value of the correlation
coefficient CPR = 0.91 which is rather high, indicating a high degree of PS.

The transition from non-synchronized state to PS and the onset of PS can also be
clearly revealed by the index CPR. It has been demonstrated [31] that the onset of
PS occurs at the value of coupling strength C = 0.027 and PS exists for values C >

0.027 as indicated by the Lyapunov exponents shown in Fig. C.6a in the range of
coupling strength C ∈ (0, 0.04). The onset of PS at this value is also clearly revealed

Fig. C.4 Recurrence plots of the coupled Rössler systems (Eq. (B.12)) for the same value of
the parameters as in Sect. B.2.2 but for the value of the coupling strength C = 0.01 in the
non-synchronized state. (a) First system, (b) Second system and (c) Generalized autocorrelation
functions, P1,2(t), of both the systems
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Fig. C.5 Recurrence plots of the coupled Rössler systems (Eq. (B.12)) for the same value of the
parameters as in Sect. B.2.2 but for the value of the coupling strength C = 0.035 in the PS state.
(a) First system, (b) Second system and (c) Generalized autocorrelation functions, P1,2(t), of both
the systems

by the index CPR shown in Fig. C.6b in the same range of the coupling strength C
of the mutually coupled Rössler systems (Eq. (B.12)). The value of the CPR shows a
sudden increase in its value at C = 0.027 and above this value of coupling strength
CPR fluctuates near to but less than unity characterizing the degree of PS.

C.4.2 Phase to Lag Synchronization

Lag synchronization (LS) has also been already discussed in Sect. B.2.3, along with
an illustration as demonstrated in [32]. With the same values of parameters as dis-
cussed in Sect. B.2.3 for mutually coupled Rössler systems (Eq. (B.12)), we will
characterize the transition from non-synchronized state to PS and then to an LS state
using the recurrence indices. As LS is a special case of generalized synchronization
(GS) all the discussion for LS will also hold for GS.

Since RPs and generalized autocorrelation functions for both the coupled systems
are already shown in the non synchronized and PS regimes, we concentrate here on
LS only. RPs and P1,2(t) of the mutually coupled Rössler systems (Eq. (B.12)) for
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the value of coupling strength C = 0.2 is shown in Fig. C.7, where both the systems
are in LS. It is evident that the RPs of both the systems are identical confirming
the existence of lag (generalized) synchronization between the coupled systems.
Furthermore, the generalized autocorrelation functions, P1,2(t), are also in perfect
coincidence both with their positions and with their amplitudes confirming the exis-
tence of lag (generalized) synchronization. Correspondingly, the value of the indices
CPR = 0.881 and SPR = 0.999 are rather high attributing to the degree of LS.

Transition from the non-synchronized state to PS and then from PS to LS in
mutually coupled Rössler systems has been demonstrated in [32]. It has been shown
that the onset of PS occurs at the critical value of the coupling strength C p = 0.036
and that of LS occurs at Cl = 0.14 as indicated by the largest Lyapunov expo-
nents of the coupled Rössler systems shown in Fig. C.8a. Indices CPR, JPR, SPR
are depicted in Fig. C.8b in the range of coupling strength C ∈ (0, 0.2). Indices
CPR and SPR indicate the onset of PS at the critical value of the coupling strength
C p = 0.036 as indicated by the Lyapunov exponents, by a sudden increase in their
values. The onset of LS in the coupled Rössler systems is also indicated by the
indices JPR and SPR exactly at the same critical value of the coupling strength
Cl = 0.14 by saturation in their amplitudes at high values near to unity.
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Fig. C.8 (a) Four largest Lyapunov exponents in the range of coupling strength C ∈ (0, 0.2)
of the mutually coupled Rössler systems (Eq. (B.12)) studied in Sect. B.2.3 and (b) Indices,
CPR, JPR, SPR, in the same range of the coupling strength characterizing the onset of PS, LS
and transition among them
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Appendix D
Some More Examples of DDEs

D.1 Introduction

In addition to the examples of different kinds of DDEs presented in Chap. 1 and
other chapters, we will describe briefly some of the available DDEs of various forms
that have been used in the literature in different areas of science and technology.

D.2 DDEs with Constant Delay

DDEs with constant delays have been discussed in Sect. 1.1.1 of Chap. 1 along with
some of the instances where they appear. In the following we will present few more
of them briefly.

D.2.1 Hutchinson’s Equation/Delayed Logistic Equation

Hutchinson [1, 2] proposed a more realistic logistic delay equation for single species
dynamics by assuming egg formation to occur τ time units before hatching repre-
sented as follows,

dx

dt
= r x(t)

[
1 − x(t − τ)

K

]
, (D.1)

where x(t) denotes the population size at time t , r > 0 is the intrinsic growth rate
and K > 0 is the carrying capacity of the population. This equation is often referred
to as the Hutchinson’s equation or delayed logistic equation.

D.2.2 Gopalsamy and Ladas Population Model

Gopalsamy and Ladas [3] proposed a single species population model exhibiting the
Allee effect in which the per capita growth rate is a quadratic function of the density
and is subject to more than one identical time-delay terms represented as

293
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dx

dt
= x(t)

[
a + bx(t − τ)− cx2(t − τ)

]
, (D.2)

where a > 0, c > 0, τ > 0 and b are real constants. In this model, when the density
of the population is not small, the positive feedback effects of aggregation and coop-
eration are dominated by density-dependent stabilizing negative feedback effects
due to intraspecific competition. In other words, intraspecific mutualism dominates
at low densities and intraspecific competition dominates at higher densities [2, 3].

D.2.3 Stem-Cell Model

The dynamics of pluripotential stem-cell population is governed by the pair of cou-
pled DDEs [4, 5]

dx

dt
= −γ x(t)+ βx(t)2 − exp(−γ τ)βy2

τ , (D.3)

dy

dt
= − [

βy(t)+ δ
]

y(t)+ 2exp(−γ τ)βy2
τ , yτ = y(t − τ), (D.4)

where τ is the time required for a cell to traverse the proliferative phase and β is the
resting to proliferative phase feedback rate. Further details can be found in [4, 5].

D.2.4 Pupil Cycling Model

Pupil cycling is described by the following DDE with piecewise constant negative
feedback

dx

dt
= y(t), (D.5)

dy

dt
= f (xτ ), xτ = x(t − τ), (D.6)

where the piecewise constant negative feedback is given as

f (x) =
{

a, x > θ

b, x ≤ θ.
(D.7)

Here x(t) is the pupil area at time t , τ is the time-delay, a, b describe retinal illumi-
nation (a > b) and θ is a threshold area [6, 7].
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D.3 DDEs with Discrete Delays

Given the general form of DDEs with discrete delays as in Sect. 1.1.2 along with
suitable examples, we will describe here some other examples of discrete/multiple
delays with their explicit equations and their details.

D.3.1 Australian Blowfly Model

Braddock and van den Driessche [2, 3, 8] proposed a logistic equation with two dif-
ferent delays to mimic the population x(t) of the Australian blowfly Lucila cuprina,
which is represented as follows:

dx

dt
= r x(t) [1 + ax(t − τ1)− bx(t − τ2)] , (D.8)

where r > 0, a > 0 and b > 0 are real constants, τ1 > 0 and τ2 > 0 corresponds
to regeneration and reproductive delays, respectively.

D.3.2 Wilson and Cowan Model

Wilson and Cowan [9, 10] model describes the evolution of a network of synap-
tically interacting neural populations, typically one being excitatory and the other
inhibitory, in the presence of two different delays represented as

dx

dt
= −x(t)+ f

[
θx + ax(t − τ1)+ by(t − τ2)

]
, (D.9)

dy

dt
= α

(−y(t)+ f
[
θy + cx(t − τ2)+ dy(t − τ1)

])
, (D.10)

where x(t) and y(t) represent the synaptic activity of the two populations with a
relative time scale for the response set by α−1. The architecture of the network is
fixed by the weights a, b, c, d , while θx,y describe background drives and f is the
common firing rate function.

D.3.3 Human Respiratory Model

A simple model of the respiratory control mechanism in humans is represented
as [11]
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dx

dt
= p − αW

[
x(t − τ1), y(t − τ2)

]
(x(t)− xI ), (D.11)

dy

dt
= −σ + βW

[
x(t − τ1), y(t − τ2)

]
(y(t)− yI ), (D.12)

where x(t) and y(t) denote the arterial CO2 and O2 concentrations, respectively.
W (·, ·) is the ventilation function (the volume of gas moved by the respiratory sys-
tems), τ1,2 are transport delays, xI and yI are inspired CO2 and O2 concentrations, p
is the CO2 production rate, σ is the O2 consumption and α, β are positive constants
referring to the diffusibility of CO2 and O2, respectively.

D.4 DDEs with Distributed Delay

In the following we will present a few examples for DDEs with distributed delay in
addition to the details presented in Sect. 1.1.3.

D.4.1 Volterra’s Logistic Equation

The Hutchinson’s equation (D.1) assumed that the regulatory effect depends on the
population at a fixed earlier time t − τ . However, in a more realistic model the delay
effect should be an average over past populations and this requires an equation with a
distributed delay. Volterra [2, 12] suggested the first model of logistic equation with
distributed delay and he used a distributed delay term to examine a cumulative effect
in the death rate of a species, depending on the population at all times, represented
as

dx

dt
= r x(t)

[
1 + 1

K

∫ t

−∞
G(t − s)x(s)ds

]
, (D.13)

where G(t) is the delay kernel, corresponding to a weighting factor which indicates
how much emphasis should be given to the size of the population at earlier times to
determine the present effect on resource availability.

D.4.2 Neural Network with Distributed Delay

Hopfield neural networks with distributed delays are considered [13] to take into
account the distribution of conduction velocities along parallel pathways with a
variety of axon sizes and lengths as [13]

dx

dt
= −x(t)+ a tanh

[
x(t)− b

∫ ∞

0
x(t − s)k(s)ds − c

]
, (D.14)

where x(t) is the state of neuron, a, b and c are non-negative constants.
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D.4.3 Chemostat Model

A chemostat model of a single species feeding on a limiting nutrient supplied at
constant rate is proposed as [14]

d S

dt
=

(
S0 − S(t)

)
D − ax(t)p (S(t)) , (D.15)

dx

dt
= x(t)

[
−D1 +

∫ t

−∞
F(t − s)p(S(t))ds

]
, (D.16)

where S(t) and x(t) denote the concentration of the nutrient and the population of
microorganism at t. S0 denotes the input concentration of nutrient, D is referred to
as the dilution rate and D1 denotes the sum of the dilution rate and the death rate of
the population of microorganism. The function p(S) describes the species specific
growth rate and a−1 is referred to as the growth yield constant.

D.5 DDEs with State-Dependent Delay

We will discuss some of the DDEs with state-dependent delay that have been used
in the literature in some detail. General discussion and some other examples are
presented in Sect. 1.1.4,

D.5.1 Population Model

Considering the birth rate as population density dependent rather than age dependent
certain population dynamics is also modeled with delay equations with state depen-
dent delay. Assuming the lifespan L of individuals in the population as a function
of the current population size, x(t), and taking into account the crowding effect, a
DDE with state dependent delay for population dynamics is suggested [15, 2],

dx

dt
= bx(t)− bx(t − L [x(t)])

1 − L ′ [x(t)] bx(t − L [x(t)])
. (D.17)

D.5.2 Logistic Model with State Dependent Delay

Logistic model with a state dependent delay has also been proposed [2],

dx

dt
= r x(t)

[
1 − x(t − τ(x(t)))

K

]
. (D.18)
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D.5.3 Mechanical Model for Machine Tool Chatter

Turning process in machine tool chatter is governed by the following state dependent
DDE [16],

mẍ(t)+ cx ẋ(t)+ kx x(t) = Kxw
[
vτ(xt )+ y(t − τ(xt ))− y(t)

]q
, (D.19)

mÿ(t)+ cy ẏ(t)+ ky y(t) = Kyw
[
vτ(xt )+ y(t − τ(xt ))− y(t)

]q
, (D.20)

where m, cx , cy, kx and ky are the modal mass, the damping and the stiffness param-
eters in the x and y directions, respectively. Kx,y are the cutting coefficients, w is
the depth of cut, q is an exponent and v is the speed of feed. More details on the
system and its stability analysis can be found in [16].

D.6 DDEs with Time-Dependent Delay

In the following we will present explicit equations for two models described by
DDEs with time-dependent delays.

D.6.1 Stem-Cell Equation

The stem cell equation can be put in the form [17]

Ṡ(t) = 2M(t − τm(t))S(t − τm(t))− S(t) [M(t)+ ω] , (D.21)

where S(t) is the available stem cell population. The rate M(t)S(t) at which stem
cells enter the mitotic channel is controlled by the mitotic operator, M(t), acting on
the stem cell population and the rate at which they return after dividing is 2M(t −
τm(t))S(t − τm(t)), assuming that there are no losses. τm(t) represents the delay
between cells leaving the stem cell population to enter the mitotic cycle and the
return of two daughter cells.

D.6.2 Neural Network Model

A neural network model with time-varying delay is represented as [18]

d X

dt
= −DX (t)+ AG(X (t))+ B F(X (t − τ(t)))+ I (t), (D.22)

where X (t) = [x1(t), x2(t), · · · , xn(t)] is the state vector of the network at time
t , D = diag [d1, d2, · · · , dn] with di > 0 denotes the rate with which the cell i
resets its potential to the resting state when isolated from other cells and inputs,
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A = (akl)n×n , B = (bkl)n×n ∈ R
n×n represent the connection weight matrix and

the delayed connection weight matrix, respectively. akl , bkl denote the strengths
of connectivity between the cell k and l at time t and t − τ(t), respectively.
F(X) = [

f1(x1(t)), · · · , fn(xn(t))
]
, G(X) = [

g1(x1(t)), · · · , gn(xn(t))
]

are acti-
vation functions.

Further details on all these examples can be found in their respective references.
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Glossary

Amplitude death The phenomenon of suppression of oscillations in dynamical
systems mainly due to time-delay feedback or time-delay coupling is termed as
amplitude death.

Analog simulation circuit An electronic circuit designed to mimic the dynamics
of a system modelled by a linear/nonlinear evolution equation.

Analytic signal approach It is one of the approaches to calculate the phase of a
non-phase-coherent chaotic/hyperchaotic attractor. The complex analytical signal
χ(t) is constructed from a scalar time series s(t) via Hilbert transform (HT).

Anticipatory synchronization Anticipatory synchronization is a special kind of
generalized synchronization (see below), where one (receiver) of the coupled sys-
tems anticipates the state of the other (transmitter) with finite anticipating time.

Attractor It is a bounded region of phase space of a dynamical system towards
which nearby trajectories asymptotically approach. The attractor may be a point or
a closed curve or an unclosed but bounded orbit.

Autonomous system A system with no explicit time-dependent term in its equation
of motion.

Band merging bifurcation Merging of two or more bands of a m-band chaotic
attractor at a critical value of a control parameter.

Bifurcation A sudden/abrupt qualitative change in the dynamics of a system at a
critical value of a control parameter when it is varied smoothly.

Bifurcation diagram A plot illustrating qualitative changes in the dynamical
behavior of a system as a function of a control parameter.

Bifurcation route The nature of sudden/abrupt qualitative changes in the dynami-
cal behavior of a system as a function of a control parameter indicating the mecha-
nism responsible for the change.

Chaos A phenomenon or process of occurrence of bounded nonperiodic evolu-
tion in deterministic nonlinear systems with high sensitive dependence on initial
conditions. A consequence is that nearby chaotic orbits diverge exponentially (in a
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time average sense) in phase space. A measure of quantification of the degree of
divergence is the set of Lyapunov exponents. Chaotic motion is characterized by at
least one positive Lyapunov exponent.

Chimera state The coexistence of coherent (synchronized) and incoherent (desyn-
chronized) states in coupled identical oscillators is called a chimera state.

Chua’s circuit A simple, third-order, autonomous electronic circuit consisting of
two linear capacitors, a linear inductor, a linear resistor, and only one nonlinear
element, namely Chua’s diode, having a piecewise linear characteristic.

Chemostat model A chemostat (from Chemical environment is static) is a biore-
actor to which fresh medium is continuously added, while culture liquid is continu-
ously removed to keep the culture volume constant. By changing the rate with which
the medium is added to the bioreactor the growth rate of the microorganism can be
easily controlled.

Complete synchronization Complete synchronization (CS) refers to the identi-
cal evolution of the trajectories of two identical linear/nonlinear systems which is
achieved by means of a suitable coupling in such a way that the two trajectories
remain in step with each other in the course of time.

Complex network In the context of network theory, a complex network is a net-
work (graph) with non-trivial topological features (Examples: scale-free networks
and small-world networks) that do not occur in simple networks such as lattices
or random graphs. The study of complex networks is an active area of scien-
tific research of this decade inspired largely by the empirical study of real-world
networks such as computer networks and social networks.

Connection delay Delay caused due to the finite time required for the propagation
of signals from output to the receiver end or among the interconnected dynamical
systems.

Correlation dimension A quantitative measure used to describe geometric and
probabilistic features of attractors. It is an integer for regular attractors such as a
fixed point, a limit cycle or a quasiperiodic orbit. It is non-integer for a strange
(chaotic) attractor.

Correlation function A statistical measure used to characterize regular and chaotic
motions. For periodic motion it oscillates while for chaotic motion it decays to zero.

Correlation of probability of recurrence (CPR) A cross correlation coefficient
between the generalized autocorrelation functions of two systems, P1,2(t), is defined
as correlation of probability of recurrence (CPR).

Cross recurrence plot (CRP) A cross recurrence plot (CRP) is a bivariate exten-
sion of the recurrence plot and was introduced to analyse the difference between
two different systems. CRP can be regarded as a generalisation of the linear cross-
correlation function.
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Delay differential equation (DDE) A delay-differential equation (DDE) com-
prises of an unknown function and certain of its derivatives, evaluated at arguments
that differ by fixed numerical values. For example, ẋ(t) = F(t, x(t), x(t − τ))

is a retarded DDE for τ > 0. DDEs (also called functional differential equations
or retarded differential-difference equations) generalize the concept of differential
equations by allowing the state of the system to depend on states different from the
present one. DDEs can also be of neutral and advanced types.

Delay time modulation (DTM) Delay time modulation refers to the case of time
varying delay τ(t), where the time-delay τ evolve in time or even it can be a function
of state variable τ(x) (in which case it is referred to as state dependent delay).

El Niño-Southern oscillation The El Niño-Southern Oscillation is often abbre-
viated as ENSO and in popular usage is called simply El Niño. It is defined by
sustained differences in the Pacific ocean surface temperatures when compared
with the average value. The accepted definition is a warming or cooling of at least
0.5 ◦C(0.9 ◦F) averaged over the east-central tropical Pacific ocean. When this hap-
pens for less than 5 months, it is classified as El Niño or La Niña conditions; if
the anomaly persists for 5 months or longer, it is called an El Niño or La Niña
“episode”. Typically, this happens at irregular intervals of 27 years and lasts 9
months to 2 years.

Embedding theorem Delay embedding theorem gives the conditions under which
a chaotic dynamical system can be reconstructed from a sequence of observations
of the state of a dynamical system. The reconstruction preserves the properties of
the dynamical system that do not change under smooth coordinate changes, but it
does not preserve the geometric shape of structures in phase space.

Epidemiology It is a branch of science dealing with spreading of diseases in human
population. The model proposed to study the nature of spreading and to identify
the measures to control a specific disease is called an epidemic model. The term
“epidemics” is derived from Greek epi- upon + demos people. An epizootic is the
analogous circumstance within an animal population.

Equilibrium point An admissible solution of F(X) = 0 for a dynamical system
Ẋ = F(X), X = (x1, x2, · · · , xn)

T . It is also called fixed point or singular point of
the system.

Error feedback Error feedback refers to the feedback given as a linear/nonlinear
function of the difference of the state variables of the coupled systems.

Feedback delay Finite time taken by a signal that is fed back into the system
causes the feedback delay. For instance, in semiconductor lasers the coherent light
is converted into chaotic signal due to the feedback of the light through a cavity and
the round trip time results in the feedback delay. Feedback delay can give rise to
plethora of new behaviors in dynamical systems (see Chaps. 5 and 6).

FitzHugh-Nagumo oscillator FitzHugh-Nagumo model ẋ = x−x3/3−y+ I, ẏ =
0.08(x + 0.7 − 0.8y) is a two-dimensional simplification of the Hodgkin-Huxley
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model of spike generation in squid giant axons. It is used to isolate conceptually the
essentially mathematical properties of excitation and propagation from the electro-
chemical properties of sodium and potassium ion flow.

Generalized autocorrelation function In recurrence quantification analysis, gen-
eralized autocorrelation function, P(ε, t), can be considered as the probability that
the system recurs to the ε-neighbourhood of a former point xi of the trajectory
after t time steps. Comparing P(ε, t) of two systems, one can characterize quan-
titatively and qualitatively the existence of phase synchronization between the two
systems.

Generalized synchronization Synchronization can be achieved even in the case
of coupled non-identical systems and in this case, it is termed as generalized syn-
chronization where there exists some functional relationship between the variables
of the coupled systems.

Globally coupled chimera (GCC) state The coexistence of chimera states in a
system of identical oscillators with (sub) populations with time-delay coupling is
termed as globally coupled chimera states. It is demonstrated that coupling delay
can induce globally clustered chimera (GCC) states in systems having more than
one coupled identical oscillator (sub) populations. By GCC one refers to the state
of a system, which has more than one (sub) population, that splits into two different
groups, one synchronized and the other desynchronized, each group comprising of
oscillators from both the populations.

Hopf bifurcation It corresponds to the birth of a limit cycle from an equilibrium
point when a control parameter is varied. If the limit cycle is stable (unstable) then
the bifurcation is called supercritical (subcritical).

Hyperchaos It represents chaotic motion with more than one positive Lyapunov
exponents. It has at least two exponentially diverging directions in its orthonormal
phase space.

Ikeda system Ikeda system was introduced to describe the dynamics of an opti-
cal bistable resonator, which is specified by the state equation dx

dt = −αx(t) −
β sin x(t − τ). Physically x(t) is the phase lag of the electric field across the res-
onator and thus may clearly assume both positive and negative values, α is the
relaxation coefficient, β is the laser intensity injected into the system and τ is the
round-trip time of the light in the resonator.

Intermittency route to chaos A route to chaos where regular orbital behavior is
intermittently interrupted by short time irregular bursts. As the control parameter is
varied, the durations of the bursts increase, leading to full scale chaos.

Inverse period doubling It denotes the bifurcation sequence of a nonlinear dynam-
ical system which is inverse to the period doubling bifurcation as a control parameter
is varied.
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Invertible map A map is invertible when its inverse exists and is unique for each
point in the phase space.

Jacobian matrix Jacobian matrix is the matrix of all first-order partial derivatives
of a vector-valued function. The Jacobian determinant (often simply called the Jaco-
bian) is the determinant of the Jacobian matrix. These concepts are named after the
mathematician Carl Gustav Jacob Jacobi.

Joint recurrence plot (JRP) A joint recurrence plot is introduced to compare the
states of different systems by estimating the recurrences of their trajectories in their
corresponding phase spaces separately and then look for the times when both of
them recur simultaneously, that is when joint recurrence occurs.

Kelvin waves A Kelvin wave is a wave in the ocean or atmosphere that balances
the earth’s Coriolis force against a topographic boundary such as a coastline, or a
waveguide such as the equator. A feature of a Kelvin wave is that it is non-dispersive,
i.e., the phase speed of the wave crests is equal to the group speed of the wave energy
for all frequencies. This means that it retains its shape in the alongshore direction
over time.

Krasovskii-Lyapunov theory Krasovskii-Lyapunov theory is the direct extension
of Lyapunov second theorem on stability, which states that if a positive definite
function V (x) : Rn → R exists such that V (x) ≥ 0 with equality if and only if
x = 0 and V̇ (x) ≤ 0 with equality if and only if x = 0 (negative definite), then the
equilibrium state is Lyapunov stable.

Kuramoto oscillators It is a mathematical model used to describe synchronization.
More specifically, it is a model for the behavior of a large set of coupled oscillators.
Its formulation was motivated by the behavior of systems of chemical and biological
oscillators, and it has found widespread applications. The most popular form of the
model has the following governing equations: dθi

dt = ωi + K
N

∑N
j=1 sin(θ j − θi ),

i = 1 . . . N , where the system is composed of N limit-cycle oscillators.

Lag synchronization Lag synchronization is a special case of generalized synchro-
nization, where one of the coupled systems always evolve in lag with respect to the
other with a finite lag time.

Limit cycle An isolated closed orbit in the phase space associated with a dynamical
system.

Linear superposition principle A property associated with linear differential
equations. The property is that if u1 and u2 are two linearly independent solutions
of a linear homogeneous differential equation then u = au1 + bu2 is also a solution
of it, where a and b are arbitrary (complex) constants.

Localized set It refers to the sets obtained by observing one of the coupled systems
whenever a defined event occurs in the other system and viceversa. The concept of
localized sets has been introduced recently as a new framework to identify phase
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synchronization in chaotic/hyperchaotic attractors without explicitly calculating the
phase variable.

Logistic map A discrete map analog of the logistic equation for population growth.
The map is represented as xn+1 = axn(1 − xn), where a is a parameter with 0 ≤
a ≤ 4 and 0 < x < 1.

Lorenz equation The paradigmic nonlinear chaotic system originally introduced
by E. Lorenz in 1963 in connection with atmospheric convection, represented by a
set of three coupled ordinary differential equations dx

dt = σ(y−x), dy
dt = x(ρ−z)−

y, dz
dt = xy − βz, where σ is called the Prandtl number and ρ is called the Rayleigh

number.

Lyapunov exponent Lyapunov exponent of a dynamical system is a quantity
(a number) that characterizes the rate of separation of infinitesimally close trajec-
tories. Different types of orbits can be distinguished depending on the value of its
Lyapunov exponents. All negative exponents represent regular and periodic orbits,
while at least one positive exponent indicates the presence of chaotic motion. More
than one positive exponent indicate the presence of hyperchaotic motion.

Lyapunov function Lyapunov function is a function which can be used to prove
the stability of a certain fixed point in a dynamical system or autonomous differential
equation.

Mackey-Glass system The Mackey-Glass system, which was originally deduced
as a model for blood production in patients with leukemia, can be represented by the
first order nonlinear DDE ẋ = −bx(t)+ ax(t−τ)

(1.0+x(t−τ)c) , where a, b and c are positive
constants. Here, x(t) represents the concentration of blood at time t (density of
mature cells in bloodstreams), when it is produced, x(t − τ) is the concentration
when the “request” for more blood is made and τ is the time-delay between the
production of immature cells in the bone marrow and their maturation for release in
circulating bloodstreams.

Noise In common use, the word noise means any unwanted sound. In both ana-
log and digital electronics, noise is an unwanted perturbation to a wanted signal.
In signal processing or computing it can be considered unwanted data without
meaning.

Nonautonomous system A system with at least one explicit time-dependent term
in its equation of motion.

Non-invertible map Maps that are not invertible are non-invertible maps, that is,
one for which inverse does not exist.

Non-phase-coherent attractor If the flow of a dynamical system does not have
a proper center of rotation around a fixed reference point, then the correspond-
ing attractor is termed as a non-phase-coherent attractor. For instance, the funnel
Rössler attractor for the parameter values a = 0.25, b = 0.2, and c = 8.5 shown in
Fig. 10.1b of Chap. 10, is an example of non-phase-coherent attractor.
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Orthonormalization A form of orthogonalization in which the resulting vectors
are all unit vectors. Gram-Schmidt orthogonalization, also called the Gram-Schmidt
process, is a procedure which takes a nonorthogonal set of linearly independent
functions and constructs an orthogonal basis over an arbitrary interval with respect
to an arbitrary weighting function w(x).

Phase-coherent attractor If the flow of a dynamical system has a proper rotation
around a fixed reference point as its center, then the corresponding attractor is called
a phase-coherent attractor. For instance, Rössler attractor for the standard parameter
values a = 0.15, b = 0.2, and c = 8.5 shown in Fig. 10.1a of Chap. 10, is an
example of phase-coherent attractor.

Period doubling It denotes the bifurcation sequence of periodic motions for a non-
linear dynamical system in which the period doubles at each bifurcation as a control
parameter is varied. Beyond a critical accumulation parameter value, chaotic motion
occurs. It is also referred as subharmonic bifurcation or flip bifurcation.

Phase flip bifurcation It denotes the abrupt change in the relative phase of the
coupled oscillators from zero to π as a function of the delay time.

Phase point A point in the phase space representing the state of a system at any
instant of time.

Phase space As abstract space where each of the variables needed to specify the
dynamical state of a system represents an orthogonal coordinate.

Phase synchronization Phase synchronization can be defined as perfect locking of
the phase/frequency of the coupled systems, while their amplitudes remain uncorre-
lated and often chaotic in the case of coupled chaotic systems.

Piecewise linear system A piecewise linear system is usually referred to a non-
linear dynamical system, whose nonlinear function f (x) is composed of piecewise
linear segments.

Poincaŕe section Any suitable hyperplane of the phase space is a Poincaŕe sec-
tion (or surface of section). The relation between the successive intersections of the
phase trajectories with this section in a single direction constitutes the Poincaŕe map.

Propagation delay See connection delay.

Pseudospace Any additional phase space created by embedding technique is
referred to as pseudospace.

PSPICE simulation PSPICE, is an acronym for Personal Simulation Program with
Integrated Circuit Emphasis, is a SPICE (Simulation Program with Integrated Cir-
cuit Emphasis) analog circuit and digital logic simulation software that runs on
personal computers.

Recurrence analysis Recurrence analysis is a powerful technique that visualizes
the recurrences of a dynamical system and gives information about the behavior of
its trajectory in the phase space.
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Recurrence plot (RP) A recurrence plot (RP) is the graphical representation of a
binary symmetric square matrix which encodes the times when two states are in
close proximity (neighbours), that is the time of recurrence in the phase space.

Recurrence quantification analysis (RQA) Several measures of complexity
which quantify the small scale structures in recurrence plots have been proposed
and are known as recurrence quantification analysis (RQA).

Rossby waves Rossby waves are giant meanders in high-altitude winds that are a
major influence on weather. Their emergence is due to shear in rotating fluids so that
the Coriolis force changes along the sheared coordinate. In planetary atmospheres,
they are due to the variation in the Coriolis effect with latitude. The waves were first
identified in the Earth’s atmosphere in 1939 by Carl-Gustaf Arvid Rossby who went
on to explain their motion. Rossby waves are a subset of inertial waves.

Rössler system Otto Rössler designed the Rössler attractor in 1976, but the theo-
retical equations were later found to be useful in modeling equilibrium in chemical
reactions. The defining equations are: dx

dt = −y−z, dy
dt = x +ay, dz

dt = b+z(x −c).
Rössler studied the chaotic attractor with a = 0.2, b = 0.2, and c = 5.7, though
properties of a = 0.1, b = 0.1, and c = 14 have been more commonly used since.

Runge-Kutta method In numerical analysis, the Runge-Kutta methods are an
important family of implicit and explicit iterative methods for the approximation
of solutions of ordinary differential equations. These techniques were developed by
the German mathematicians C. Runge and M.W. Kutta.

Stochastic process A stochastic process is the counterpart to a deterministic pro-
cess (or deterministic system). Instead of dealing with only one possible “reality” of
how the process might evolve under time (as is the case, for example, for solutions of
an ordinary differential equation), in a stochastic or random process there is some
indeterminacy in its future evolution described by probability distributions. This
means that even if the initial condition (or starting point) is known, there are many
possibilities the process might go to, but some paths are more probable and others
less.

Synchronization The word synchronous is derived from Greek terminology
chronous means time and syn means common. Put together synchronous/synchroniz-
ation has its direct meaning “share the common time” or “occurring in the common
time”. Technically, it can be defined as “entrainment of a dynamical property/share
a common property of motion” or “as degree of correlation” between the interacting
dynamical systems.

Time series The measured values of a physical variable of a dynamical system at
regular intervals of time.

Transient motion An initial time evolution of a system before getting settled into
its steady state behavior.

Unstable periodic orbit An unstable period-1, or 2, · · · , or n fixed point or limit
cycle. A chaotic orbit is regarded as a pool of unstable periodic orbits.
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direct feedback, 166
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D
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scalar, 2
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Death
amplitude, 5
by delay, 85
islands, 24, 89, 92

Degree distribution, 106
Delay

connection, 2, 102, 105, 108
constant, 3, 293
continuous, 5
coupling, 142
discrete, 4, 92, 295
distributed, 5, 91, 108, 124, 296
feedback, 142
multiple, 4
propagation, 1, 5
state dependent, 6, 297
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Diagram
global bifurcation, 53
one parameter bifurcation, 51
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nonlinear Schrödinger, 254
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Volterra’s logistic, 296

Equilibrium point, 17, 18, 20
Euclidean norm, 210, 259, 280

F
Feedback

delay, 85, 105, 113, 128
optical, 12
time-delay, 119

Filling factor, 228
Fitzhugh–Nagumo, 108
Floquet multiplier, 266
Flow, 259
Frequency

locking, 209
mismatch, 270
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Generalized autocorrelation function, 210, 284
Generalized mutual information, 284
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115
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Hilbert transform, 203, 269
Hindmarsh-Rose neurons, 124
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Homogeneous, 140
Hopf bifurcation curve, 35, 49

I
Infinite dimensional, 43
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spatiotemporal, 124
supercritical, 109

Intermittency
on-off, 128, 144, 228
type III, 50
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dynamics, 52
transition, 52

J
Jacobian, 18, 266

elliptic functions, 251, 255
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Jerk circuit, 74
Joint probability
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matrix, 283
plot, 283

K
Kelvin waves, 1
Krasovskii-Lyapunov theory, 130, 135, 178

L
Laminar phase, 145, 228
Laminar phase distribution, 146, 148
LCR circuit, 89
Length of polygon line, 230
Linear cross-correlation, 282
Localized set, 214

Lorenz
attractor, 165
force, 12
system, 98, 202

Lyapunov
dimension, 69
exponent, 11, 43, 259, 266

conditional, 266
sub, 172
transverse, 172, 266

function, 130, 141, 267

M
Maps

invertible, 31
logistic, 38, 101
non-invertible, 31
nonlinear, 38

Master stability function, 117
Method of steps, 9, 10
Model

Australian blowfly, 295
business cycle, 4
car following, 251
chemostat, 4, 5, 297
human respiratory, 295
Kaldor-Kalecki, 4, 13
Newell, 252
population, 293
pupil cycling, 294
stem-cell, 294
tanh Car-following, 255
Wilson & Cowan, 295

Modulation
chaotic, 6, 227
periodic, 227
sinusoidal, 227
stochastic, 227

Multistability, 24, 29
Multistable state, 105
Multivariate, 283
Mutual information, 213

N
Navier-Stokes, 77
Network, 67, 102

cellular neural, 81
complex, 105, 118
delayed chaotic neural, 81
delayed neural, 81
Hopfield neural, 81, 296
motifs, 118
neural, 5, 6, 81
random, 107, 117
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regular, 107
Scale free, 106
scale-free, 117
Small world, 106
synchronizability of, 102
weighted, 4

Noise
broadband, 67
Gaussian white, 281

Non-stationary, 286
Nonautonomous, 11, 31
Numerical

accuracy, 37
algorithm, 37
analysis, 31, 38
error, 38
investigation, 40
methods, 36
plot, 35
simulation, 40, 69
solution, 36

O
Onestep prediction error, 231
Operational amplifier, 72
Optical resonators, 12
Orthonormalization, 11, 261
Oscillation death, 105
Oscillations

anti-phase, 91
chaotic, 101
chemical, 85
double-scroll hyperchaotic, 71
in-phase, 91, 95, 101
limit cycle, 24, 35, 77
mono-scroll hyperchaotic, 71
out-of-phase, 95, 101
periodic, 28

Oscillator
broadband chaotic, 12
electronic, 12
FitzHugh-Nagumo, 102
Hopf, 86, 122
Kuramoto, 102
Landau-Stuart, 96, 113
limit cycle, 24, 86
microwave, 12
nonlinear, 85
opto-electronic, 12
opto-thermal, 91
periodic, 203
phase, 109
triode, 263

P
Parameter mismatch, 167, 174
Phase

difference, 211
locking, 208, 270
mismatch, 208
point, 202
slips, 209
space, 17, 202, 208, 228
trajectory, 227

Poincaré
points, 208
section, 204, 208, 269

Population dynamics, 6
Power grid, 106
Power law, 52, 106, 144
Power spectrum, 67
Predictability, 213
Probability density, 230
Pseudospace, 36, 37, 228

R
Rössler

attractor, 165, 202, 281
system, 100, 202

Radius of curvature, 205
Random numbers, 12
Rate equation, 8
Reaction-diffusion, 108, 110
Rectification, 228
Recurrence

matrix, 280
plot, 210, 280
point density, 280
quantification analysis, 284
rate, 280, 286

Resonator, 67
Retarded differential-difference equations, 2
Retarded functional differential equations, 2
Rossby waves, 1
Runge-Kutta, 27, 37, 62

S
Semiconductor laser, 79
Similarity

function, 142, 147
of probability of recurrences, 211, 286

Simulation
numerical, 40
PSPICE, 44, 66, 72

Soliton, 252
Space-time chaos, 13
Stable island, 33, 46, 48
Standard deviation, 210, 285
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Steady state, 38
Stochastic

modulation, 6, 227
motion, 281
process, 6

Synchronization, 117, 127
almost, 265
anti-phase, 127
anticipatory, 127, 140, 272
approximate anticipatory, 143
approximate complete, 146
approximate lag, 147
complete, 140, 146, 268
complete/identical, 127
episodic, 265
generalized, 127, 165, 273
intermittent chaotic, 165
intermittent generalized, 165, 168
intermittent lag, 165, 168
intermittent phase, 165
inverse, 149
inverse anticipatory, 140, 152
inverse complete, 140, 152
inverse lag, 140, 153
lag, 127, 140, 271
manifold, 140, 266
of chaos, 127
of chaotic systems, 128
oscillating, 227, 235
phase, 127, 269
probability of, 171, 172, 179
time scale decomposition, 265

System
control, 5
discrete, 31
FitzHugh-Nagumo, 102
high-dimensional, 205
Ikeda, 4, 67, 133, 153
infinite-dimensional, 2, 10

low-dimensional, 205
Mackey-Glass, 60, 153
predator-prey, 4
scalar piecewise linear time-delay, 31, 36
time-delay, 128

T
Takens embedding theorem, 96
Taylor

expansion, 19
series, 18, 75

Taylor’s theorem, 3
Time

anticipating, 144, 155, 237
compression, 282
delay, 3
dependent delay, 227
dilation, 282
lag, 3, 148, 237

Time-delayed Chua’s circuit, 78
Topology, 106, 202
Traffic flow, 251
Transient effects, 11
Transients, 31, 38, 50, 122

U
Unstable periodic orbit, 120, 172, 181, 281

V
VLSI chips, 98

W
Wave

scroll, 108
shock, 251, 257
solitary, 108
spiral, 108, 110

Weighted edges, 105
Wolf algorithm, 11
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