AP Physics 1 - Algebra-Based: Unit 1 Kinematics Practice Test

Question 1:

An ambulance driver accelerates from rest to $14\frac{m}{s}$ in 2.5s. The magnitude of the force of friction on its tires is $9{,}500\,N$. What is the best estimate of the mass of the ambulance?

- **A.** 3,400 *N*
- **B.** 1,700 *N*
- **C.** 9,500 *N*
- **D.** 2,500 *N*

Question 2:

A $120\,kg$ box is initially at rest when a student pushes it with $450\,N$ of force for $1.5\,s$. There is negligible friction between the box and floor. What is the best estimate of the speed of the box after $1.5\,s$ time interval?

- **A.** $4.9 \frac{m}{s}$
- **B.** $7.2 \frac{m}{s}$
- **C.** $5.7 \frac{m}{s}$

D.
$$6.3\frac{m}{s}$$

Question 3:

A robot on an asteroid with no atmosphere is conducting gravity experiments. It throws a $2.0\,kg$ rock downward with an initial speed of $1.0\frac{m}{s}$. The rock falls $10.0\,m$ in $3.0\,s$. What is the best estimate of the magnitude of the gravitational force acting on the rock during the experiment?

- **A.** 2.6 *N*
- **B.** 0.65 *N*
- **C.** 3.2*N*
- **D.** 13*N*

Question 4:

A police car accelerates from rest to $16\frac{m}{s}$ over a distance of 21m. The magnitude of the force of friction on its tires is $8,700\,N$. What is the best estimate of the mass of the police car?

- **A.** 1,200 kg
- **B.** 1,800 kg
- **C.** 2,800 kg
- **D.** 1,400 kg

Question 5:

Kinematic equation can only be used when you have a constant...

- A. Position
- **B.** Velocity
- C. Acceleration
- **D.** Time

Question 6:

A boat travels $12.0 \, m$ while it reduces its velocity from $9.5 \, \frac{m}{s}$ to $5.5 \, \frac{m}{s}$. What is the magnitude of the boat's acceleration while it travels the $12.0 \, m$?

- **A.** $1.3 \frac{m}{s^2}$
- **B.** $2.5 \frac{m}{s^2}$
- **C.** $3.0 \frac{m}{s^2}$
- **D.** $7.5 \frac{m}{s^2}$

Question 7:

What happens to the velocity of a ball as it is dropped off a cliff?

- A. It decreases at a uniform rate.
- **B.** It increases at a uniform rate.
- **C.** It is constant.
- **D.** It increases at a non-uniform rate.

Question 8:

Motion sensors recorded the following data about a runner during a crosscountry race. During which segment of the race did the runner have the greatest speed?

- A. W
- **B.** X
- C. YD. Z

Question 9:

What would the d-t graph look like for an object travelling at a constant velocity?

- A. Horizontal Line
- B. Curved Line
- C. Straight Line

Question 10:

What would the v-t graph look like for an object travelling at a constant velocity?

- A. Curved Line
- **B.** Horizonal Line
- C. Straight Line

Question 11:

A train travels 6m in the first seconds of travel, 6m again during the second seconds of travel, 6m again during the third seconds. What is the train's acceleration?

$$\mathbf{A.} \quad 0 \frac{m}{s^2}$$

B.
$$6\frac{m}{s^2}$$

C.
$$12\frac{m}{s^2}$$

D.
$$18\frac{m}{s^2}$$

Question 12:

A dog runs with an initial speed of $7.5\frac{m}{s}$ to a stop in 15 seconds . What is the dog's acceleration?

A.
$$-7.5 \frac{m}{s}$$

B.
$$-7.5 \frac{m}{s^2}$$

B.
$$-7.5 \frac{m}{s^2}$$
C. $-0.5 \frac{m}{s^2}$
D. $7.5 \frac{mi}{hr}$

D.
$$7.5 \frac{mi}{hr}$$

Question 13:

A block of mass 3kg, initially at rest, is pulled along a frictionless, horizontal surface with a force shown as a function of t by the graph above. The speed of the block at t=2s is

- A. $\frac{4}{3} \frac{m}{s}$
- **B.** $4\frac{m}{s}$
- **C.** $24\frac{m}{s}$
- $\mathbf{D.} \quad \frac{8}{3} \frac{m}{s}$
- E. $8\frac{m}{s}$

Question 14:

A car from rest and after 7 seconds it is moving at $42\frac{m}{s}$. What is the car's average acceleration?

- **A.** $0.17 \frac{m}{s^2}$
- **B.** $6\frac{m}{s^2}$
- **C.** $1.67 \frac{m}{s^2}$
- **D.** $7\frac{m}{s^2}$

Question 15:

A golf ball starts with a speed of $2\frac{m}{s}$ and slows at a constant rate of $0.5\frac{m}{s^2}$, what is its velocity after 2s ?

- $\mathbf{A.} \quad 0 \frac{m}{s}$
- **B.** $1\frac{m}{s}$
- **C.** $0.5 \frac{m}{s}$
- **D.** $1.5\frac{m}{s}$

Question 16:

An object with an initial velocity of $3.50 \frac{m}{s}$ moves east along a straight and level path. The object then undergoes a constant acceleration of $1.80 \frac{m}{c^2}$ east for a period of $5.00\,s$. How far does the object move while it is accelerating?

- **A.** 6.30 *m*
- **B.** 27.2 m
- **C.** 17.5 *m*
- **D.** 40.0 m

Question 17:

A ball is thrown downward from the top of a roof with a speed of $25\frac{m}{s}$. After 2s, its velocity will be:

- **A.** $19.6 \frac{m}{s}$
- **B.** $-44.6 \frac{m}{s}$
- **C.** $-5.4\frac{m}{s}$
- **D.** $44.6 \frac{m}{s}$

Question 18:

A car is travelling to the right with a speed of $29\frac{m}{s}$ when the rider slams on the accelerator to pass another car. The car passes in $110 \, m$ with constant acceleration and reaches a speed of $34\frac{m}{s}$. We want to find the acceleration of the car as it sped up. What equation should you choose?

- **A.** $v_f = v_i + at$ **B.** $v_f^2 = v_i^2 + 2aX$ **C.** $x = v_i t + \frac{1}{2}at^2$

$$\mathbf{D.} \quad x = \frac{v_f - v_i}{2} t$$

Question 19:

Rocket-powered sleds are used to test the human response to acceleration. If a rocket-powered sled is accelerated to a speed of $444\frac{m}{s}$ in $1.83\,seconds$, then what is the distance that the sled travels? Choose the appropriate equation.

- **A.** $v_f = v_i + at$ **B.** $v_f^2 = v_i^2 + 2aX$
- **C.** $x = v_i t + \frac{1}{2} a t^2$
- $\mathbf{D.} \quad x = \frac{\mathbf{v}_f \mathbf{v}_i}{2} t$

- 1. B 2. C 4. D 5. C 6. B 7. B 8. A 9. C 10.B 11. A 12. C 13. A 14. B 15. B 16. D 17. D 18. B 19. D