

 I

 AngularJS

 i

About the Tutorial

AngularJS is a very powerful JavaScript library. It is used in Single Page Application

(SPA) projects. It extends HTML DOM with additional attributes and makes it more

responsive to user actions. AngularJS is open source, completely free, and used by

thousands of developers around the world. It is licensed under the Apache license

version 2.0.

Audience

This tutorial is designed for software professionals who want to learn the basics of

AngularJS and its programming concepts in simple and easy steps. It describes the

components of AngularJS with suitable examples.

Prerequisites

You should have a basic understanding of JavaScript and any text editor. As we are

going to develop web-based applications using AngularJS, it will be good if you have

an understanding of other web technologies such as HTML, CSS, AJAX, etc.

Disclaimer & Copyright

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness

or completeness of our website or its contents including this tutorial. If you discover

any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

 AngularJS

 ii

Table of Contents

About the Tutorial ··i

Audience ··i

Prerequisites ··i

Disclaimer & Copyright ···i

Table of Contents ·· ii

1. OVERVIEW ··· 1

General Features ···1

Core Features ··1

Concepts ···2

Advantages of AngularJS ···3

Disadvantages of AngularJS ···4

AngularJS Directives ··4

2. ENVIRONMENT ·· 5

3. MVC ARCHITECTURE ··· 9

The Model ··· 10

The View ··· 10

The Controller ··· 10

4. FIRST APPLICATION·· 11

Creating AngularJS Application ··· 11

Executing AngularJS Application ··· 11

How AngularJS Integrates with HTML ··· 13

5. DIRECTIVES ·· 14

ng-app directive ·· 14

ng-init directive ··· 14

ng-model directive ·· 15

 AngularJS

 iii

ng-repeat directive ·· 15

6. EXPRESSIONS ··· 17

7. CONTROLLERS ··· 19

8. FILTERS ·· 22

Uppercase Filter ·· 22

Lowercase Filter ·· 22

Currency Filter ··· 22

Filter·· 23

OrderBy Filter ·· 23

9. TABLES ·· 27

10. HTML DOM ·· 31

ng-disabled Directive··· 31

ng-show Directive ··· 31

ng-hide Directive ··· 31

ng-click Directive ··· 32

11. MODULES ·· 34

Application Module ··· 34

Controller Module ··· 34

Use Modules ··· 35

12. FORMS ·· 39

Events ··· 39

ng-click ·· 39

Validate Data ·· 40

13. INCLUDES ·· 44

14. AJAX ·· 48

 AngularJS

 iv

15. VIEWS ·· 52

ng-view Directive ·· 52

ng-template Directive ··· 52

$routeProvider Service ·· 53

16. SCOPES ·· 57

Scope Inheritance·· 57

17. SERVICES ··· 61

Using Factory Method ··· 61

Using Service Method ··· 61

18. DEPENDENCY INJECTION ··· 64

Value ··· 64

Factory ·· 65

Service ·· 65

Provider ·· 66

Constant ·· 67

19. DIRECTIVES ·· 70

ng-app directive ·· 70

ng-init directive ··· 70

ng-model directive ·· 71

ng-repeat directive ·· 71

20. INTERNALIZATION ··· 73

Example Using Danish Locale ·· 73

Example Using Browser Locale ·· 74

 1

AngularJS is an open-source web application framework. It was originally developed

in 2009 by Misko Hevery and Adam Abrons. It is now maintained by Google. Its

latest version is 1.2.21.

Definition of AngularJS as put by its official documentation is as follows:

AngularJS is a structural framework for dynamic web applications. It lets you

use HTML as your template language and lets you extend HTML's syntax to

express your application components clearly and succinctly. Its data binding

and dependency injection eliminate much of the code you currently have to

write. And it all happens within the browser, making it an ideal partner with

any server technology.

General Features

The general features of AngularJS are as follows:

 AngularJS is a efficient framework that can create Rich Internet Applications

(RIA).

 AngularJS provides developers an options to write client side applications

using JavaScript in a clean Model View Controller (MVC) way.

 Applications written in AngularJS are cross-browser compliant. AngularJS

automatically handles JavaScript code suitable for each browser.

 AngularJS is open source, completely free, and used by thousands of

developers around the world. It is licensed under the Apache license version

2.0.

Overall, AngularJS is a framework to build large scale, high-performance, and easy-

to-maintain web applications.

Core Features

The core features of AngularJS are as follows:

 Data-binding: It is the automatic synchronization of data between model and
view components.

 Scope: These are objects that refer to the model. They act as a glue between

controller and view.

1. OVERVIEW

 Angular JS

 2

 Controller: These are JavaScript functions bound to a particular scope.

 Services: AngularJS comes with several built-in services such as $http to

make a XMLHttpRequests. These are singleton objects which are instantiated
only once in app.

 Filters: These select a subset of items from an array and returns a new array.

 Directives: Directives are markers on DOM elements such as elements,

attributes, css, and more. These can be used to create custom HTML tags that
serve as new, custom widgets. AngularJS has built-in directives such as
ngBind, ngModel, etc.

 Templates: These are the rendered view with information from the controller

and model. These can be a single file (such as index.html) or multiple views
in one page using partials.

 Routing: It is concept of switching views.

 Model View Whatever: MVW is a design pattern for dividing an application

into different parts called Model, View, and Controller, each with distinct
responsibilities. AngularJS does not implement MVC in the traditional sense,

but rather something closer to MVVM (Model-View-ViewModel). The Angular
JS team refers it humorously as Model View Whatever.

 Deep Linking: Deep linking allows to encode the state of application in the
URL so that it can be bookmarked. The application can then be restored from

the URL to the same state.

 Dependency Injection: AngularJS has a built-in dependency injection

subsystem that helps the developer to create, understand, and test the
applications easily.

Concepts

The following diagram depicts some important parts of AngularJS which we will

discuss in detail in the subsequent chapters.

 Angular JS

 3

Advantages of AngularJS

The advantages of AngularJS are:

 It provides the capability to create Single Page Application in a very clean and

maintainable way.

 It provides data binding capability to HTML. Thus, it gives user a rich and

responsive experience.

 AngularJS code is unit testable.

 AngularJS uses dependency injection and make use of separation of concerns.

 AngularJS provides reusable components.

 With AngularJS, the developers can achieve more functionality with short

code.

 In AngularJS, views are pure html pages, and controllers written in JavaScript

do the business processing.

 Angular JS

 4

On the top of everything, AngularJS applications can run on all major browsers and

smart phones, including Android and iOS based phones/tablets.

Disadvantages of AngularJS

Though AngularJS comes with a lot of merits, here are some points of concern:

 Not secure : Being JavaScript only framework, application written in

AngularJS are not safe. Server side authentication and authorization is must
to keep an application secure.

 Not degradable: If the user of your application disables JavaScript, then

nothing would be visible, except the basic page.

AngularJS Directives

The AngularJS framework can be divided into three major parts:

 ng-app : This directive defines and links an AngularJS application to HTML.

 ng-model : This directive binds the values of AngularJS application data to
HTML input controls.

 ng-bind : This directive binds the AngularJS application data to HTML tags.

 Angular JS

 5

This chapter describes how to set up AngularJS library to be used in web application

development. It also briefly describes the directory structure and its contents.

When you open the link https://angularjs.org/, you will see there are two options to

download AngularJS library:

 View on GitHub – By clicking on this button, you are diverted to GitHub and

get all the latest scripts.

 Download – By clicking on this button, a screen you get to see a dialog box
shown as:

2. ENVIRONMENT

https://angularjs.org/

 Angular JS

 6

This screen offers various options for selecting Angular JS as follows:

 Downloading and hosting files locally

o There are two different options : Legacy and Latest. The names
themselves are self-descriptive. The Legacy has version less than 1.2.x

and the Latest come with version 1.3.x.

o We can also go with the minimized, uncompressed, or zipped version.

 CDN access: You also have access to a CDN. The CDN gives you access to

regional data centers. In this case, the Google host. The CDN transfers the
responsibility of hosting files from your own servers to a series of external
ones. It also offers an advantage that if the visitor of your web page has

already downloaded a copy of AngularJS from the same CDN, there is no need
to re-download it.

We are using the CDN versions of the library throughout this tutorial.

Example

Now let us write a simple example using AngularJS library. Let us create an HTML

file myfirstexample.html shown as below:

<!doctype html>

<html>

 <head>

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.0-

 beta.17/angular.min.js"></script>

 </head>

 <body ng-app="myapp">

 <div ng-controller="HelloController" >

 <h2>Welcome {{helloTo.title}} to the world of Tutorialspoint!</h2>

 </div>

 <script>

 angular.module("myapp", [])

 .controller("HelloController", function($scope) {

 $scope.helloTo = {};

 $scope.helloTo.title = "AngularJS";

 });

 </script>

 </body>

</html>

 Angular JS

 7

Let us go through the above code in detail:

Include AngularJS

We include the AngularJS JavaScript file in the HTML page so that we can use it:

<head>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.

 min.js"></script>

</head>

You can check the latest version of AngularJS on its official website.

Point to AngularJS app

Next, it is required to tell which part of HTML contains the AngularJS app. You can

do this by adding the ng-app attribute to the root HTML element of the AngularJS

app. You can either add it to the html element or the body element as shown below:

<body ng-app="myapp">

</body>

View

The view is this part:

<div ng-controller="HelloController" >

 <h2>Welcome {{helloTo.title}} to the world of Tutorialspoint!</h2>

</div>

ng-controller tells AngularJS which controller to use with this view. helloTo.title tells

AngularJS to write the model value named helloTo.title in HTML at this location.

Controller

The controller part is:

<script>

 angular.module("myapp", [])

 .controller("HelloController", function($scope) {

 $scope.helloTo = {};

 $scope.helloTo.title = "AngularJS";

 });

 Angular JS

 8

</script>

This code registers a controller function named HelloController in the angular module

named myapp. We will study more about modules and controllers in their respective

chapters. The controller function is registered in angular via the

angular.module(...).controller(...) function call.

The $scope parameter model is passed to the controller function. The controller

function adds a helloTo JavaScript object, and in that object it adds a title field.

Execution

Save the above code as myfirstexample.html and open it in any browser. You get to

see the following output:

What happens when the page is loaded in the browser ? Let us see:

 HTML document is loaded into the browser, and evaluated by the browser.

 AngularJS JavaScript file is loaded, the angular global object is created.

 The JavaScript which registers controller functions is executed.

 Next, AngularJS scans through the HTML to search for AngularJS apps as well
as views.

 Once the view is located, it connects that view to the corresponding controller
function.

 Next, AngularJS executes the controller functions.

 It then renders the views with data from the model populated by the
controller. The page is now ready.

http://localhost/angularjs/angularjs_modules.htm
http://localhost/angularjs/angularjs_controllers.htm

 Angular JS

 9

Model View Controller or MVC as it is popularly called, is a software design pattern

for developing web applications. A Model View Controller pattern is made up of the

following three parts:

 Model - It is the lowest level of the pattern responsible for maintaining data.

 View - It is responsible for displaying all or a portion of the data to the user.

 Controller - It is a software Code that controls the interactions between the
Model and View.

MVC is popular because it isolates the application logic from the user interface layer

and supports separation of concerns. The controller receives all requests for the

application and then works with the model to prepare any data needed by the view.

The view then uses the data prepared by the controller to generate a final

presentable response. The MVC abstraction can be graphically represented as

follows.

3. MVC ARCHITECTURE

 Angular JS

 10

The Model

The model is responsible for managing application data. It responds to the request

from view and to the instructions from controller to update itself.

The View

A presentation of data in a particular format, triggered by the controller's decision

to present the data. They are script-based template systems such as JSP, ASP, PHP

and very easy to integrate with AJAX technology.

The Controller

The controller responds to user input and performs interactions on the data model

objects. The controller receives input, validates it, and then performs business

operations that modify the state of the data model.

AngularJS is a MVC based framework. In the coming chapters, we will see how

AngularJS uses MVC methodology.

 Angular JS

 11

Before creating actual Hello World ! application using AngularJS, let us see the parts

of a AngularJS application. An AngularJS application consists of following three

important parts:

 ng-app : This directive defines and links an AngularJS application to HTML.

 ng-model : This directive binds the values of AngularJS application data to
HTML input controls.

 ng-bind : This directive binds the AngularJS Application data to HTML tags.

Creating AngularJS Application

Step 1: Load framework

Being a pure JavaScript framework, it can be added using <Script> tag.

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

Step 2: Define AngularJS application using ng-app directive.

<div ng-app="">

...

</div>

Step 3: Define a model name using ng-model directive.

<p>Enter your Name: <input type="text" ng-model="name"></p>

Step 4: Bind the value of above model defined using ng-bind directive.

<p>Hello !</p>

Executing AngularJS Application

Use the above-mentioned three steps in an HTML page.

4. FIRST APPLICATION

 Angular JS

 12

testAngularJS.htm

<html>

<title>AngularJS First Application</title>

<body>

<h1>Sample Application</h1>

<div ng-app="">

 <p>Enter your Name: <input type="text" ng-model="name"></p>

 <p>Hello !</p>

</div>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. Enter your name and see the

result.

 Angular JS

 13

How AngularJS Integrates with HTML

 The ng-app directive indicates the start of AngularJS application.

 The ng-model directive creates a model variable named name, which can be

used with the HTML page and within the div having ng-app directive.

 The ng-bind then uses the name model to be displayed in the HTML

tag whenever user enters input in the text box.

 Closing </div> tag indicates the end of AngularJS application.

 Angular JS

 14

AngularJS directives are used to extend HTML. They are special attributes starting

with ng-prefix. Let us discuss the following directives:

 ng-app - This directive starts an AngularJS Application.

 ng-init - This directive initializes application data.

 ng-model - This directive defines the model that is variable to be used in

AngularJS.

 ng-repeat - This directive repeats HTML elements for each item in a

collection.

ng-app directive

The ng-app directive starts an AngularJS Application. It defines the root element. It

automatically initializes or bootstraps the application when the web page containing

AngularJS Application is loaded. It is also used to load various AngularJS modules in

AngularJS Application. In the following example, we define a default AngularJS

application using ng-app attribute of a <div> element.

<div ng-app="">

...

</div>

ng-init directive

The ng-init directive initializes an AngularJS Application data. It is used to assign

values to the variables. In the following example, we initialize an array of countries.

We use JSON syntax to define the array of countries.

<div ng-app="" ng-init="countries=[{locale:'en-US',name:'United States'},

 {locale:'en-GB',name:'United Kingdom'},

 {locale:'en-FR',name:'France'}]">

...

</div>

5. DIRECTIVES

 Angular JS

 15

ng-model directive

The ng-model directive defines the model/variable to be used in AngularJS

Application. In the following example, we define a model named name.

<div ng-app="">

...

<p>Enter your Name: <input type="text" ng-model="name"></p>

</div>

ng-repeat directive

The ng-repeat directive repeats HTML elements for each item in a collection. In the

following example, we iterate over the array of countries.

<div ng-app="">

...

 <p>List of Countries with locale:</p>

 <li ng-repeat="country in countries">

 {{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

Example

The following example shows the use of all the above-mentioned directives.

testAngularJS.htm

<html>

<title>AngularJS Directives</title>

<body>

<h1>Sample Application</h1>

<div ng-app="" ng-init="countries=[{locale:'en-US',name:'United States'},

 {locale:'en-GB',name:'United Kingdom'},

 {locale:'en-FR',name:'France'}]">

 <p>Enter your Name: <input type="text" ng-model="name"></p>

 Angular JS

 16

 <p>Hello !</p>

 <p>List of Countries with locale:</p>

 <li ng-repeat="country in countries">

 {{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. Enter your name and see the

result.

 Angular JS

 17

Expressions are used to bind application data to HTML. Expressions are written inside

double curly braces such as in {{ expression}}. Expressions behave similar to ng-

bind directives. AngularJS expressions are pure JavaScript expressions and output

the data where they are used.

Using numbers

<p>Expense on Books : {{cost * quantity}} Rs</p>

Using String

<p>Hello {{student.firstname + " " + student.lastname}}!</p>

Using Object

<p>Roll No: {{student.rollno}}</p>

Using Array

<p>Marks(Math): {{marks[3]}}</p>

Example

The following example shows the use of all the above-mentioned expressions:

testAngularJS.htm

<html>

<title>AngularJS Expressions</title>

<body>

<h1>Sample Application</h1>

<div ng-app="" ng-init="quantity=1;cost=30;

 student={firstname:'Mahesh',lastname:'Parashar',rollno:101};

 marks=[80,90,75,73,60]">

 <p>Hello {{student.firstname + " " + student.lastname}}!</p>

 <p>Expense on Books : {{cost * quantity}} Rs</p>

 <p>Roll No: {{student.rollno}}</p>

 <p>Marks(Math): {{marks[3]}}</p>

6. EXPRESSIONS

 Angular JS

 18

</div>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 19

AngularJS application mainly relies on controllers to control the flow of data in the

application. A controller is defined using ng-controller directive. A controller is a

JavaScript object that contains attributes/properties, and functions. Each controller

accepts $scope as a parameter, which refers to the application/module that the

controller needs to handle.

<div ng-app="" ng-controller="studentController">

...

</div>

Here, we declare a controller named studentController, using the ng-controller

directive. We define it as follows:

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

 The studentController is defined as a JavaScript object with $scope as an

argument.

 The $scope refers to application which uses the studentController object.

 The $scope.student is a property of studentController object.

 The firstName and the lastName are two properties of $scope.student object.

We pass the default values to them.

 The property fullName is the function of $scope.student object, which returns
the combined name.

7. CONTROLLERS

 Angular JS

 20

 In the fullName function, we get the student object and then return the
combined name.

 As a note, we can also define the controller object in a separate JS file and

refer that file in the HTML page.

Now we can use studentController's student property using ng-model or using

expressions as follows:

Enter first name: <input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

You are entering: {{student.fullName()}}

 We bound student.firstName and student.lastname to two input boxes.

 We bound student.fullName() to HTML.

 Now whenever you type anything in first name and last name input boxes,

you can see the full name getting updated automatically.

Example

The following example shows the use of controller:

testAngularJS.htm

<html>

<head>

<title>Angular JS Controller</title>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

Enter first name: <input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

You are entering: {{student.fullName()}}

</div>

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 Angular JS

 21

 lastName: "Parashar",

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

 angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 22

Filters are used to modify the data. They can be clubbed in expression or directives

using pipe (|) character. The following list shows the commonly used filters.

Name Description

uppercase converts a text to upper case text.

lowercase converts a text to lower case text.

currency formats text in a currency format.

filter filter the array to a subset of it based on provided criteria.

orderBy orders the array based on provided criteria.

Uppercase Filter

Add uppercase filter to an expression using pipe character. Here we've added

uppercase filter to print student name in all capital letters.

Enter first name:<input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

Name in Upper Case: {{student.fullName() | uppercase}}

Lowercase Filter

Add lowercase filter to an expression using pipe character. Here we've added

lowercase filter to print student name in all lowercase letters.

Enter first name:<input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

Name in Lower Case: {{student.fullName() | lowercase}}

Currency Filter

Add currency filter to an expression returning number using pipe character. Here

we've added currency filter to print fees using currency format.

Enter fees: <input type="text" ng-model="student.fees">

8. FILTERS

 Angular JS

 23

fees: {{student.fees | currency}}

Filter

To display only required subjects, we use subjectName as filter.

Enter subject: <input type="text" ng-model="subjectName">

Subject:

 <li ng-repeat="subject in student.subjects | filter: subjectName">

 {{ subject.name + ', marks:' + subject.marks }}

OrderBy Filter

To order subjects by marks, we use orderBy marks.

Subject:

 <li ng-repeat="subject in student.subjects | orderBy:'marks'">

 {{ subject.name + ', marks:' + subject.marks }}

Example

The following example shows use of all the above mentioned filters.

testAngularJS.htm

<html>

<head>

<title>Angular JS Filters</title>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

 Angular JS

 24

<table border="0">

 <tr><td>Enter first name:</td><td><input type="text"

 ng-model="student.firstName"></td></tr>

 <tr><td>Enter last name: </td><td><input type="text"

 ng-model="student.lastName"></td></tr>

 <tr><td>Enter fees: </td><td><input type="text"

 ng-model="student.fees"></td></tr>

 <tr><td>Enter subject: </td><td><input type="text"

 ng-model="subjectName"></td></tr>

</table>

<table border="0">

<tr><td>Name in Upper Case: </td><td>{{student.fullName() |

uppercase}}</td></tr>

<tr><td>Name in Lower Case: </td><td>{{student.fullName() |

lowercase}}</td></tr>

<tr><td>fees: </td><td>{{student.fees | currency}}</td></tr>

<tr><td>Subject:</td><td>

 <li ng-repeat="subject in student.subjects |

filter: subjectName |orderBy:'marks'">

 {{ subject.name + ', marks:' + subject.marks }}

</td></tr>

</table>

</div>

<script>

function studentController($scope) {

 $scope.student = {

 Angular JS

 25

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. See the result.

 Angular JS

 26

 Angular JS

 27

Table data is generally repeatable. The ng-repeat directive can be used to draw table

easily. The following example shows the use of ng-repeat directive to draw a table:

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

Table can be styled using CSS Styling.

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

</style>

9. TABLES

 Angular JS

 28

Example

The following example shows the use of all the above-mentioned directives.

testAngularJS.htm

<html>

<head>

<title>Angular JS Table</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<table border="0">

<tr><td>Enter first name:</td><td><input type="text" ng-

model="student.firstName"></td></tr>

<tr><td>Enter last name: </td><td><input type="text" ng-

model="student.lastName"></td></tr>

<tr><td>Name: </td><td>{{student.fullName()}}</td></tr>

<tr><td>Subject:</td><td>

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 Angular JS

 29

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

</td></tr>

</table>

</div>

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

 Angular JS

 30

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 31

The following directives are used to bind application data to the attributes of HTML

DOM elements:

Name Description

ng-disabled Disables a given control.

ng-show Shows a given control.

ng-hide Hides a given control.

ng-click Represents a AngularJS click event.

ng-disabled Directive

Add ng-disabled attribute to an HTML button and pass it a model. Bind the model to

a checkbox and see the variation.

<input type="checkbox" ng-model="enableDisableButton">Disable Button

<button ng-disabled="enableDisableButton">Click Me!</button>

ng-show Directive

Add ng-show attribute to an HTML button and pass it a model. Bind the model to a

checkbox and see the variation.

<input type="checkbox" ng-model="showHide1">Show Button

<button ng-show="showHide1">Click Me!</button>

ng-hide Directive

Add ng-hide attribute to an HTML button and pass it a model. Bind the model to a

checkbox and see the variation.

<input type="checkbox" ng-model="showHide2">Hide Button

<button ng-hide="showHide2">Click Me!</button>

10. HTML DOM

 Angular JS

 32

ng-click Directive

Add ng-click attribute to an HTML button and update a model. Bind the model to

HTML and see the variation.

<p>Total click: {{ clickCounter }}</p></td>

<button ng-click="clickCounter = clickCounter + 1">Click Me!</button>

Example

The following example shows use of all the above mentioned directives.

testAngularJS.htm

<html>

<head>

<title>AngularJS HTML DOM</title>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="">

<table border="0">

<tr>

 <td><input type="checkbox" ng-model="enableDisableButton">Disable

Button</td>

 <td><button ng-disabled="enableDisableButton">Click Me!</button></td>

</tr>

<tr>

 <td><input type="checkbox" ng-model="showHide1">Show Button</td>

 <td><button ng-show="showHide1">Click Me!</button></td>

</tr>

<tr>

 <td><input type="checkbox" ng-model="showHide2">Hide Button</td>

 <td><button ng-hide="showHide2">Click Me!</button></td>

</tr>

<tr>

 <td><p>Total click: {{ clickCounter }}</p></td>

 <td><button ng-click="clickCounter = clickCounter + 1">Click

 Angular JS

 33

 Me!</button></td>

</tr>

</table>

</div>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 34

AngularJS supports modular approach. Modules are used to separate logic such as

services, controllers, application etc. from the code and maintain the code clean. We

define modules in separate js files and name them as per the module.js file. In the

following example, we are going to create two modules:

 Application Module - used to initialize an application with controller(s).

 Controller Module - used to define the controller.

Application Module

Here is a file named mainApp.js that contains the following code:

var mainApp = angular.module("mainApp", []);

Here, we declare an application mainApp module using angular.module function

and pass an empty array to it. This array generally contains dependent modules.

Controller Module

studentController.js

mainApp.controller("studentController", function($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

],

 fullName: function() {

 var studentObject;

11. MODULES

 Angular JS

 35

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

});

Here, we declare a controller studentController module using mainApp.controller

function.

Use Modules

<div ng-app="mainApp" ng-controller="studentController">

..

<script src="mainApp.js"></script>

<script src="studentController.js"></script>

Here, we use application module using ng-app directive, and controller using ng-

controller directive. We import the mainApp.js and studentController.js in the main

HTML page.

Example

The following example shows use of all the above mentioned modules.

testAngularJS.htm

<html>

<head>

<title>Angular JS Modules</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

 Angular JS

 36

}

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="mainApp" ng-controller="studentController">

<table border="0">

<tr><td>Enter first name:</td><td><input type="text" ng-

model="student.firstName"></td></tr>

<tr><td>Enter last name: </td><td><input type="text" ng-

model="student.lastName"></td></tr>

<tr><td>Name: </td><td>{{student.fullName()}}</td></tr>

<tr><td>Subject:</td><td>

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

</td></tr>

</table>

</div>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

<script src="mainApp.js"></script>

<script src="studentController.js"></script>

</body>

</html>

 Angular JS

 37

mainApp.js

var mainApp = angular.module("mainApp", []);

studentController.js

mainApp.controller("studentController", function($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

});

Output

Open the file textAngularJS.htm in a web browser. See the result.

 Angular JS

 38

 Angular JS

 39

AngularJS enriches form filling and validation. We can use ng-click event to handle

the click button and use $dirty and $invalid flags to do the validation in a seamless

way. Use novalidate with a form declaration to disable any browser-specific

validation. The form controls make heavy use of AngularJS events. Let us have a

look at the events first.

Events

AngularJS provides multiple events associated with the HTML controls. For example,

ng-click directive is generally associated with a button. AngularJS supports the

following events:

 ng-click

 ng-dbl-click

 ng-mousedown

 ng-mouseup

 ng-mouseenter

 ng-mouseleave

 ng-mousemove

 ng-mouseover

 ng-keydown

 ng-keyup

 ng-keypress

 ng-change

ng-click

Reset data of a form using on-click directive of a button.

<input name="firstname" type="text" ng-model="firstName" required>

<input name="lastname" type="text" ng-model="lastName" required>

<input name="email" type="email" ng-model="email" required>

<button ng-click="reset()">Reset</button>

<script>

 function studentController($scope) {

12. FORMS

 Angular JS

 40

 $scope.reset = function(){

 $scope.firstName = "Mahesh";

 $scope.lastName = "Parashar";

 $scope.email = "MaheshParashar@tutorialspoint.com";

 }

 $scope.reset();

}

</script>

Validate Data

The following can be used to track error.

 $dirty - states that value has been changed.

 $invalid- states that value entered is invalid.

 $error- states the exact error.

Example

The following example will showcase all the above-mentioned directives.

testAngularJS.htm

<html>

<head>

<title>Angular JS Forms</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

 Angular JS

 41

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<form name="studentForm" novalidate>

<table border="0">

<tr><td>Enter first name:</td><td><input name="firstname" type="text"

 ng-model="firstName" required>

 <span style="color:red" ng-show="studentForm.firstname.$dirty &&

 studentForm.firstname.$invalid">

 First Name is

required.

</td></tr>

<tr><td>Enter last name: </td><td><input name="lastname" type="text" ng-

model="lastName" required>

 <span style="color:red" ng-show="studentForm.lastname.$dirty &&

 studentForm.lastname.$invalid">

 Last Name is

required.

</td></tr>

<tr><td>Email: </td><td><input name="email" type="email" ng-model="email"

length="100" required>

<span style="color:red" ng-show="studentForm.email.$dirty &&

studentForm.email.$invalid">

 Email is

required.

 Invalid email

address.

</td></tr>

<tr><td><button ng-click="reset()">Reset</button></td><td><button

 ng-disabled=

 Angular JS

 42

"studentForm.firstname.$dirty && studentForm.firstname.$invalid ||

studentForm.lastname.$dirty && studentForm.lastname.$invalid||

studentForm.email.$dirty && studentForm.email.$invalid"

 ng-click="submit()">Submit</button></td></tr>

</table>

</form>

</div>

<script>

function studentController($scope) {

 $scope.reset = function(){

 $scope.firstName = "Mahesh";

 $scope.lastName = "Parashar";

 $scope.email = "MaheshParashar@tutorialspoint.com";

 }

 $scope.reset();

}

</script>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 43

 Angular JS

 44

HTML does not support embedding HTML pages within the HTML page. To achieve

this functionality, we can use one of the following options:

 Using Ajax - Make a server call to get the corresponding HTML page and set

it in the innerHTML of HTML control.

 Using Server Side Includes - JSP, PHP and other web side server

technologies can include HTML pages within a dynamic page.

Using AngularJS, we can embed HTML pages within an HTML page using ng-include

directive.

<div ng-app="" ng-controller="studentController">

 <div ng-include="'main.htm'"></div>

 <div ng-include="'subjects.htm'"></div>

</div>

Example

tryAngularJS.htm

<html>

<head>

<title>Angular JS Includes</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

13. INCLUDES

 Angular JS

 45

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<div ng-include="'main.htm'"></div>

<div ng-include="'subjects.htm'"></div>

</div>

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

 Angular JS

 46

main.htm

<table border="0">

 <tr><td>Enter first name:</td><td><input type="text"

 ng-model="student.firstName"></td></tr>

<tr><td>Enter last name: </td><td><input type="text"

ng-model="student.lastName"></td></tr>

<tr><td>Name: </td><td>{{student.fullName()}}</td></tr>

</table>

subjects.htm

<p>Subjects:</p>

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

Output

To execute this example, you need to deploy testAngularJS.htm, main.htm,

andsubjects.htm to a web server. Open the file testAngularJS.htm using the URL of

your server in a web browser and see the result.

 Angular JS

 47

 Angular JS

 48

AngularJS provides $http control which works as a service to read data from the

server. The server makes a database call to get the desired records. AngularJS needs

data in JSON format. Once the data is ready, $http can be used to get the data from

server in the following manner:

function studentController($scope,$http) {

var url="data.txt";

 $http.get(url).success(function(response) {

 $scope.students = response;

 });

}

Here, the file data.txt contains student records. $http service makes an ajax call and

sets response to its property students. students model can be used to draw tables in

HTML.

Examples

data.txt

[

{

"Name" : "Mahesh Parashar",

"RollNo" : 101,

"Percentage" : "80%"

},

{

"Name" : "Dinkar Kad",

"RollNo" : 201,

"Percentage" : "70%"

},

{

"Name" : "Robert",

"RollNo" : 191,

"Percentage" : "75%"

14. AJAX

 Angular JS

 49

},

{

"Name" : "Julian Joe",

"RollNo" : 111,

"Percentage" : "77%"

}

]

testAngularJS.htm

<html>

<head>

<title>Angular JS Includes</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<table>

 <tr>

 <th>Name</th>

 <th>Roll No</th>

 <th>Percentage</th>

 Angular JS

 50

 </tr>

 <tr ng-repeat="student in students">

 <td>{{ student.Name }}</td>

 <td>{{ student.RollNo }}</td>

 <td>{{ student.Percentage }}</td>

 </tr>

</table>

</div>

<script>

function studentController($scope,$http) {

var url="data.txt";

 $http.get(url).success(function(response) {

 $scope.students = response;

 });

}

</script>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

To execute this example, you need to deploy testAngularJS.htm and data.txt file to

a web server. Open the file testAngularJS.htm using the URL of your server in a web

browser and see the result.

 Angular JS

 51

 Angular JS

 52

AngularJS supports Single Page Application via multiple views on a single page. To

do this, AngularJS has provided ng-view and ng-template directives, and

$routeProvider services.

ng-view Directive

The ng-view directive simply creates a place holder where a corresponding view

(HTML or ng-template view) can be placed based on the configuration.

Usage

Define a div with ng-view within the main module.

<div ng-app="mainApp">

...

 <div ng-view></div>

</div>

ng-template Directive

The ng-template directive is used to create an HTML view using script tag. It

contains id attribute which is used by $routeProvider to map a view with a controller.

Usage

Define a script block with type as ng-template within the main module.

<div ng-app="mainApp">

...

 <script type="text/ng-template" id="addStudent.htm">

 <h2> Add Student </h2>

 {{message}}

 </script>

</div>

15. VIEWS

 Angular JS

 53

$routeProvider Service

The $routeProvider is a key service which sets the configuration of URLs, maps them

with the corresponding HTML page or ng-template, and attaches a controller with

the same.

Usage 1

Define a script block with type as ng-template within the main module.

<div ng-app="mainApp">

...

 <script type="text/ng-template" id="addStudent.htm">

 <h2> Add Student </h2>

 {{message}}

 </script>

</div>

Usage 2

Define a script block with main module and set the routing configuration.

 var mainApp = angular.module("mainApp", ['ngRoute']);

 mainApp.config(['$routeProvider',

 function($routeProvider) {

 $routeProvider.

 when('/addStudent', {

 templateUrl: 'addStudent.htm',

 controller: 'AddStudentController'

 }).

 when('/viewStudents', {

 templateUrl: 'viewStudents.htm',

 controller: 'ViewStudentsController'

 }).

 otherwise({

 redirectTo: '/addStudent'

 });

 Angular JS

 54

 }]);

The following points are important to be considered in the above example:

 $routeProvider is defined as a function under config of mainApp module using
key as '$routeProvider'.

 $routeProvider.when defines a URL "/addStudent", which is mapped to

"addStudent.htm". addStudent.htm should be present in the same path as
main HTML page. If the HTML page is not defined, then ng-template needs to
be used with id="addStudent.htm". We used ng-template.

 "otherwise" is used to set the default view.

 "controller" is used to set the corresponding controller for the view.

Example

The following example shows the use of all the above-mentioned directives.

testAngularJS.htm

<html>

<head>

 <title>Angular JS Views</title>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

 angular.min.js">

 </script>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.25/

 angular-route.min.js">

 </script>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp">

 <p>Add Student</p>

 <p>View Students</p>

 <div ng-view></div>

 Angular JS

 55

 <script type="text/ng-template" id="addStudent.htm">

 <h2> Add Student </h2>

 {{message}}

 </script>

 <script type="text/ng-template" id="viewStudents.htm">

 <h2> View Students </h2>

 {{message}}

 </script>

 </div>

 <script>

 var mainApp = angular.module("mainApp", ['ngRoute']);

 mainApp.config(['$routeProvider',

 function($routeProvider) {

 $routeProvider.

 when('/addStudent', {

 templateUrl: 'addStudent.htm',

 controller: 'AddStudentController'

 }).

 when('/viewStudents', {

 templateUrl: 'viewStudents.htm',

 controller: 'ViewStudentsController'

 }).

 otherwise({

 redirectTo: '/addStudent'

 });

 }]);

 mainApp.controller('AddStudentController', function($scope) {

 $scope.message = "This page will be used to display

 add student form";

 });

 mainApp.controller('ViewStudentsController', function($scope) {

 Angular JS

 56

 $scope.message = "This page will be used to display

 all the students";

 });

 </script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 57

Scope is a special JavaScript object that connects controller with views. Scope

contains model data. In controllers, model data is accessed via $scope object.

<script>

 var mainApp = angular.module("mainApp", []);

 mainApp.controller("shapeController", function($scope) {

 $scope.message = "In shape controller";

 $scope.type = "Shape";

 });

</script>

The following important points are considered in above example:

 The $scope is passed as first argument to controller during its constructor

definition.

 The $scope.message and $scope.type are the models which are used in the

HTML page.

 We assign values to models that are reflected in the application module,
whose controller is shapeController.

 We can define functions in $scope.

Scope Inheritance

Scope is controller-specific. If we define nested controllers, then the child controller

inherits the scope of its parent controller.

<script>

 var mainApp = angular.module("mainApp", []);

 mainApp.controller("shapeController", function($scope) {

 $scope.message = "In shape controller";

 $scope.type = "Shape";

 });

 mainApp.controller("circleController", function($scope) {

16. SCOPES

 Angular JS

 58

 $scope.message = "In circle controller";

 });

</script>

The following important points are considered in above example:

 We assign values to the models in shapeController.

 We override message in child controller named circleController.
When message is used within the module of controller named circleController,
the overridden message is used.

Example

The following example shows use of all the above mentioned directives.

testAngularJS.htm

<html>

<head>

 <title>Angular JS Forms</title>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp" ng-controller="shapeController">

 <p>{{message}}
 {{type}} </p>

 <div ng-controller="circleController">

 <p>{{message}}
 {{type}} </p>

 </div>

 <div ng-controller="squareController">

 <p>{{message}}
 {{type}} </p>

 </div>

 </div>

 <script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

angular.min.js"></script>

 <script>

 var mainApp = angular.module("mainApp", []);

 mainApp.controller("shapeController", function($scope) {

 Angular JS

 59

 $scope.message = "In shape controller";

 $scope.type = "Shape";

 });

 mainApp.controller("circleController", function($scope) {

 $scope.message = "In circle controller";

 });

 mainApp.controller("squareController", function($scope) {

 $scope.message = "In square controller";

 $scope.type = "Square";

 });

 </script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 60

 Angular JS

 61

AngularJS supports the concept of Separation of Concerns using services

architecture. Services are JavaScript functions, which are responsible to perform

only specific tasks. This makes them individual entities which are maintainable and

testable. The controllers and filters can call them on requirement basis. Services are

normally injected using the dependency injection mechanism of AngularJS.

AngularJS provides many inbuilt services. For example, $http, $route, $window,

$location, etc. Each service is responsible for a specific task such as the $http is

used to make ajax call to get the server data, the $route is used to define the routing

information, and so on. The inbuilt services are always prefixed with $ symbol.

There are two ways to create a service:

 Factory

 Service

Using Factory Method

In this method, we first define a factory and then assign method to it.

 var mainApp = angular.module("mainApp", []);

 mainApp.factory('MathService', function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b

 }

 return factory;

 });

Using Service Method

In this method, we define a service and then assign method to it. We also inject an

already available service to it.

mainApp.service('CalcService', function(MathService){

 this.square = function(a) {

 return MathService.multiply(a,a);

 }

17. SERVICES

 Angular JS

 62

});

Example

The following example shows use of all the above mentioned directives:

testAngularJS.htm

<html>

<head>

 <title>Angular JS Forms</title>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp" ng-controller="CalcController">

 <p>Enter a number: <input type="number" ng-model="number" />

 <button ng-click="square()">X²</button>

 <p>Result: {{result}}</p>

 </div>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

 angular.min.js">

 </script>

 <script>

 var mainApp = angular.module("mainApp", []);

 mainApp.factory('MathService', function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b

 }

 return factory;

 });

 mainApp.service('CalcService', function(MathService){

 this.square = function(a) {

 return MathService.multiply(a,a);

 }

 Angular JS

 63

 });

 mainApp.controller('CalcController', function($scope, CalcService) {

 $scope.square = function() {

 $scope.result = CalcService.square($scope.number);

 }

 });

 </script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS

 64

Dependency Injection is a software design in which components are given their

dependencies instead of hard coding them within the component. It relieves a

component from locating the dependency and makes dependencies configurable. It

also helps in making components reusable, maintainable and testable.

AngularJS provides a supreme Dependency Injection mechanism. It provides

following core components which can be injected into each other as dependencies.

 Value

 Factory

 Service

 Provider

 Constant

Value

Value is a simple JavaScript object, which is required to pass values to the controller

during config phase (config phase is when AngularJS bootstraps itself).

//define a module

var mainApp = angular.module("mainApp", []);

//create a value object as "defaultInput" and pass it a data.

mainApp.value("defaultInput", 5);

...

//inject the value in the controller using its name "defaultInput"

mainApp.controller('CalcController', function($scope, CalcService,

defaultInput) {

 $scope.number = defaultInput;

 $scope.result = CalcService.square($scope.number);

 $scope.square = function() {

 $scope.result = CalcService.square($scope.number);

 }

});

18. DEPENDENCY INJECTION

 Angular JS

 65

Factory

Factory is a function which is used to return value. It creates a value on demand

whenever a service or a controller requires it. It generally uses a factory function to

calculate and return the value.

// define a module

var mainApp = angular.module("mainApp", []);

// create a factory "MathService" which provides a method multiply

// to return multiplication of two numbers

mainApp.factory('MathService', function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b

 }

 return factory;

});

// inject the factory "MathService" in a service to utilize

// the multiply method of factory.

mainApp.service('CalcService', function(MathService){

 this.square = function(a) {

 return MathService.multiply(a,a);

 }

});

...

Service

Service is a singleton JavaScript object containing a set of functions to perform

certain tasks. Service is defined using service() function and it is then injected into

the controllers.

//define a module

var mainApp = angular.module("mainApp", []);

...

//create a service which defines a method square to return

// square of a number.

 Angular JS

 66

mainApp.service('CalcService', function(MathService){

 this.square = function(a) {

 return MathService.multiply(a,a);

 }

});

//inject the service "CalcService" into the controller

mainApp.controller('CalcController', function($scope, CalcService,

defaultInput) {

 $scope.number = defaultInput;

 $scope.result = CalcService.square($scope.number);

 $scope.square = function() {

 $scope.result = CalcService.square($scope.number);

 }

});

Provider

Provider is used by AngularJS internally to create services, factory, etc. during the

config phase. The following script can be used to create MathService that we created

earlier. Provider is a special factory method with get() method which is used to

return the value/service/factory.

//define a module

var mainApp = angular.module("mainApp", []);

...

//create a service using provider which defines a method square to return

square of a number.

mainApp.config(function($provide) {

 $provide.provider('MathService', function() {

 this.$get = function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b;

 }

 return factory;

 };

 Angular JS

 67

 });

});

Constant

Constants are used to pass values at the config phase considering the fact that value

cannot be used during the config phase.

mainApp.constant("configParam", "constant value");

Example

The following example shows the use of all the above-mentioned directives:

testAngularJS.htm

<html>

<head>

 <title>AngularJS Dependency Injection</title>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp" ng-controller="CalcController">

 <p>Enter a number: <input type="number" ng-model="number" />

 <button ng-click="square()">X²</button>

 <p>Result: {{result}}</p>

 </div>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

 angular.min.js">

 </script>

 <script>

 var mainApp = angular.module("mainApp", []);

 mainApp.config(function($provide) {

 $provide.provider('MathService', function() {

 this.$get = function() {

 var factory = {};

 Angular JS

 68

 factory.multiply = function(a, b) {

 return a * b;

 }

 return factory;

 };

 });

 });

 mainApp.value("defaultInput", 5);

 mainApp.factory('MathService', function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b;

 }

 return factory;

 });

 mainApp.service('CalcService', function(MathService){

 this.square = function(a) {

 return MathService.multiply(a,a);

 }

 });

 mainApp.controller('CalcController', function($scope, CalcService,

 defaultInput) {

 $scope.number = defaultInput;

 $scope.result = CalcService.square($scope.number);

 $scope.square = function() {

 $scope.result = CalcService.square($scope.number);

 }

 });

 </script>

</body>

 Angular JS

 69

</html>

Output

Open testAngularJS.htm in a web browser and see the result.

 Angular JS

 70

AngularJS directives are used to extend HTML. They are special attributes starting

with ng-prefix. Let us discuss the following directives:

 ng-app – This directive starts an AngularJS Application.

 ng-init – This directive initializes application data.

 ng-model – This directive defines the model that is variable to be used in

AngularJS.

 ng-repeat – This directive repeats HTML elements for each item in a

collection.

ng-app directive

The ng-app directive starts an AngularJS Application. It defines the root element. It

automatically initializes or bootstraps the application when the web page containing

AngularJS Application is loaded. It is also used to load various AngularJS modules in

AngularJS Application. In the following example, we define a default AngularJS

application using ng-app attribute of a <div> element.

<div ng-app="">

...

</div>

ng-init directive

The ng-init directive initializes an AngularJS Application data. It is used to assign

values to the variables. In the following example, we initialize an array of countries.

We use JSON syntax to define the array of countries.

<div ng-app="" ng-init="countries=[{locale:'en-US',name:'United States'},

 {locale:'en-GB',name:'United Kingdom'},

 {locale:'en-FR',name:'France'}]">

...

</div>

19. DIRECTIVES

 Angular JS

 71

ng-model directive

The ng-model directive defines the model/variable to be used in AngularJS

Application. In the following example, we define a model named name.

<div ng-app="">

...

<p>Enter your Name: <input type="text" ng-model="name"></p>

</div>

ng-repeat directive

The ng-repeat directive repeats HTML elements for each item in a collection. In the

following example, we iterate over the array of countries.

<div ng-app="">

...

 <p>List of Countries with locale:</p>

 <li ng-repeat="country in countries">

 {{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

Example

The following example shows the use of all the above mentioned directives.

testAngularJS.htm

<html>

<title>AngularJS Directives</title>

<body>

<h1>Sample Application</h1>

<div ng-app="" ng-init="countries=[{locale:'en-US',name:'United States'},

 {locale:'en-GB',name:'United Kingdom'},

 {locale:'en-FR',name:'France'}]">

 <p>Enter your Name: <input type="text" ng-model="name"></p>

 <p>Hello !</p>

 Angular JS

 72

 <p>List of Countries with locale:</p>

 <li ng-repeat="country in countries">

 {{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

<script

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. Enter your name and see the

result.

 Angular JS

 73

AngularJS supports inbuilt internationalization for three types of filters : Currency,

Date, and Numbers. We only need to incorporate corresponding java script according

to locale of the country. By default, it considers the locale of the browser. For

example, for Danish locale, use the following script:

<script src="https://code.angularjs.org/1.2.5/i18n/angular-locale_da-

dk.js"></script>

Example Using Danish Locale

testAngularJS.htm

<html>

<head>

 <title>Angular JS Forms</title>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp" ng-controller="StudentController">

 {{fees | currency }}

 {{admissiondate | date }}

 {{rollno | number }}

 </div>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

 angular.min.js"></script>

 <script src="https://code.angularjs.org/1.2.5/i18n/

angular-locale_da-dk.js"></script>

 <script>

 var mainApp = angular.module("mainApp", []);

 mainApp.controller('StudentController', function($scope) {

 $scope.fees = 100;

20. INTERNALIZATION

 Angular JS

 74

 $scope.admissiondate = new Date();

 $scope.rollno = 123.45;

 });

 </script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

Example Using Browser Locale

testAngularJS.htm

<html>

<head>

 <title>Angular JS Forms</title>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp" ng-controller="StudentController">

 {{fees | currency }}

 {{admissiondate | date }}

 {{rollno | number }}

 Angular JS

 75

 </div>

 <script

 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/

 angular.min.js"></script>

 <!-- <script src="https://code.angularjs.org/1.2.5/i18n/

 angular-locale_da-dk.js"></script> -->

 <script>

 var mainApp = angular.module("mainApp", []);

 mainApp.controller('StudentController', function($scope) {

 $scope.fees = 100;

 $scope.admissiondate = new Date();

 $scope.rollno = 123.45;

 });

 </script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

