Symbolic Al

Andre Freitas

Acknowledgements

- Based on the great slides of:
- Yoav Artzi, Nicholas FitzGerald and Luke Zettlemoyer, Semantic Parsing with Combinatory Categorial Grammars
- Combinatory Categorial Grammar: Constraining surface realisation in OpenCCG

This Lecture

- The connection between language, sets and logic
- Semantic Parsing
- Combinatory Categorial Grammars (CCGs)
- How to query KBs using NL

Language to Meaning

at the chair, move forward three steps past the sofa $\lambda a . p r e(a, \iota x . c h a i r(x)) \wedge \operatorname{move}(a) \wedge \operatorname{len}(a, 3) \wedge$ $\operatorname{dir}(a$, forward $) \wedge \operatorname{past}(a, \iota y . \operatorname{sofa}(y))$

- Learn

$f:$ sentence \rightarrow logical form

Lambda Calculus

- Formal system to express computation
- Allows high-order functions

$$
\begin{aligned}
& \lambda a . \operatorname{move}(a) \wedge \operatorname{dir}(a, L E F T) \wedge \operatorname{to}(a, \iota y . \operatorname{chair}(y)) \wedge \\
& \quad \operatorname{pass}(a, \mathcal{A} y \cdot \operatorname{sofa}(y) \wedge \operatorname{intersect}(\mathcal{A} z . \operatorname{intersection}(z), y))
\end{aligned}
$$

Lambda Calculus Base Cases

- Logical constant
- Variable
- Literal
- Lambda term

Lambda Calculus Logical Constants

- Represent objects in the world

NYC, CA, RAINIER, LEFT,...
located_in, depart_date,...

Lambda Calculus Variables

- Abstract over objects in the world
- Exact value not pre-determined

$$
x, y, z, \ldots
$$

Lambda Calculus Literals

- Represent function application

$$
\begin{gathered}
\operatorname{city}(A U S T I N) \\
\text { located_in }(A U S T I N, T E X A S)
\end{gathered}
$$

Lambda Calculus Lambda Terms

- Bind/scope a variable
- Repeat to bind multiple variables

$$
\begin{gathered}
\lambda x . c i t y(x) \\
\lambda x . \lambda y . l o c a t e d _i n(x, y)
\end{gathered}
$$

Lambda Calculus Lambda Terms

- Bind/scope a variable
- Repeat to bind multiple variables

$$
\lambda x \cdot \operatorname{city}(x)
$$

$\lambda x . \lambda y$.located_in(x, y) Body
Lambda
Variable operator

Capturing Meaning with Lambda Calculus

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border	
State I	State2
WA	OR
WA	ID
CA	OR
CA	NV
$C A$	$A Z$

Show me mountains in states bordering Texas

[Zettlemoyer and Collins 2005]

Capturing Meaning with Lambda Calculus

SYSTEM how can I help you ?
USER i ‘d like to fly to new york
SYSTEM flying to new york. leaving what city ?
USER from boston on june seven with american airlines
SYSTEM flying to new york. what date would you like to depart boston ?
UsER june seventh
SYSTEM do you have a preferred airline ?
USER american airlines
SYSTEM
o. k . leaving boston to new york on june seventh flying with american airlines. where would you like to go to next ?

USER back to boston on june tenth
[CONVERSATION CONTINUES]

Capturing Meaning with Lambda Calculus

go to the chair and turn right

[Artzi and Zettlemoyer 2013b]

Capturing Meaning with Lambda Calculus

- Flexible representation.
- Can capture full complexity of natural language.

Constructing Lambda Calculus Expressions

at the chair, move forward three steps past the sofa

Semantic Parsing
$\lambda a . \operatorname{pre}(a, \iota x . \operatorname{chair}(x)) \wedge \operatorname{move}(a) \wedge \operatorname{len}(a, 3) \wedge$ $\operatorname{dir}(a$, forward $) \wedge \operatorname{past}(a, \iota y . \operatorname{sofa}(y))$

Combinatory Categorial

Grammars

- Categorial formalism.
- Transparent interface between syntax and semantics.
- Designed with computation in mind.

Combinatory Categorial

 Grammars
[Steedman 1996, 2000]

Formalism

- X / Y : The kind of word or phrase that combines with a following Y to form an X.

- $X \backslash Y$: kind of word or phrase that combines with a preceding Y to form an X.

Determiners

- Determiner: word that combines with a following N to give an NP, i.e., an NP/N.

Prepositions

- Preposition: word that combines with a following NP to give a PP, i.e., a PP/NP.

Derivation

Verbs

CCG Categories

$$
A D J: \lambda x . f u n(x)
$$

- Basic building block.
- Capture syntactic and semantic information jointly.

CCG Categories

symax $A D J: \lambda x . f u n(x)$ semantics

- Basic building block.
- Capture syntactic and semantic information jointly.

CCG Categories

$$
\begin{aligned}
\text { Syntax } A D J & : \lambda x . f u n(x) \\
(S \backslash N P) / A D J & : \lambda f \cdot \lambda x \cdot f(x) \\
N P & : C C G
\end{aligned}
$$

- Primitive symbols: N, S, NP, ADJ and PP.
- Syntactic combination operator (/,
).
- Slashes specify argument order and direction.

CCG Categories

$$
\begin{aligned}
A D J & : \lambda x \cdot f u n(x) \text { Semantics } \\
(S \backslash N P) / A D J & : \lambda f \cdot \lambda x \cdot f(x) \\
N P & : C C G
\end{aligned}
$$

- λ-calculus expression.
- Syntactic type maps to semantic type.

CCG Lexical Entries

$$
\text { fun } \vdash A D J: \lambda x . f u n(x)
$$

CCG Lexical Entries

CCG Lexicons

fun $\vdash A D J: \lambda x . f u n(x)$
is $\vdash(S \backslash N P) / A D J: \lambda f . \lambda x . f(x)$
$\mathrm{CCG} \vdash N P: C C G$

Parsing with CCGs

CCG Operations Application

- Equivalent to function application
- Two directions: forward and backward
- Determined by slash direction

Parsing with CCGs

$$
\begin{aligned}
& \text { CCG } \\
& \text { is } \\
& \overline{N P} \\
& \overline{S \backslash N P / A D J} \\
& \lambda f . \lambda x . f(x) \\
& \text { fun } \\
& \text { ADJ } \\
& \lambda x . f u n(x)
\end{aligned}
$$

Parsing with CCGs

Combine categories using operators

$$
A / B: f \quad B: g \Rightarrow A: f(g) \quad(>)
$$

Parsing with CCGs

Combine categories using operators

$$
B: g \quad A \backslash B: f \Rightarrow A: f(g) \quad(<)
$$

CCG Operations
 Composition

- Equivalent to function composition
- Two directions: forward and backward

$B \backslash C: g$
$A \backslash B: f \Rightarrow A \backslash C: \lambda x \cdot f(g(x))$
$(>B)$
$(<B)$

Querying Databases

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Border	
Statel	State2
WA	OR
WA	ID
CA	OR
CA	NV
CA	$A 7$

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA
Wrangel	AK
Sill	CA
Bo	

Querying Databases

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

| $\left\lvert\,$Border
 Statel State2
 WA OR
 WA ID
 CA OR
 CA NV
 \begin{tabular}{l}
\end{tabular}\right.

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?
What is the largest state?

Querying Databases

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border	
Statel State2 WA OR WA ID CA OR CA NV 	

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?

Noun Phrases

What is the largest state?

Querying Databases

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border
Statel State2 WA OR WA ID CA OR CA NV

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?

Verbs

What is the largest state?

Querying Databases

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border	
Statel State2 WA OR WA ID CA OR CA NV	

| Mountains |
| :---: | :---: |
| Name State
 Bianca CO
 Antero CO
 Rainier WA
 Shasta CA |

What is the capital of Arizona?
How many states border California?

Nouns

What is the largest state?

Querying Databases

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border

Statel	State2
WA	OR
WA	ID
CA	OR
CA	NV

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?

Prepositions

What is the largest state?

Querying Databases

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border
Statel State2 WA OR WA ID CA OR CA NV

Mountains

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?

Superlatives

What is the largest state?

Querying Databases

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

\mid Border
Statel State 2 WA OR WA ID CA OR CA NV

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?
Determiners
What is the largest state?

Querying Databases

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border

Statel	State2
WA	OR
WA	ID
CA	OR
CA	NV

Mountains

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona?
How many states border California?

Questions

What is the largest state?

Referring to DB Entities

Noun phrases Select single DB entities

Prepositions Verbs

Nouns
Typing (i.e., column headers)
Superlatives
Ordering queries

Noun Phrases

State		Mountains	
Abbr.	Capital	Name	State
AL	Montgomery	Bianca	CO
	Mongomer	Antero	CO
AK	Juneau	Rainier	WA
AZ	Phoenix	Shasta	CA
WA	Olympia		
NY	Albany		
IL	Springfield		

In this context
Noun phrases name specific entities

Washington WA

Florida

The Sunshine State
FL

Noun Phrases

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Noun phrases name specific entities
$\frac{\text { Washington }}{N P}$

The Sunshine State
$N P$
$F L$

Verb Relations

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Border	
State I	State2
WA	OR
WA	ID
CA	OR
CA	NV

Verbs express relations between entities

Nevada borders California border (NV, CA)

Verb Relations

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Nevada	borders	California
$\begin{aligned} & N P \\ & N V \end{aligned}$	$S \backslash N P / N P$	$N P$
	$\lambda x . \lambda y$.border (y, x)	$C A$
	$\begin{gathered} S \backslash N P \\ \lambda y . \operatorname{border}(y, C A) \end{gathered}$	
	$\stackrel{S}{S} \text { border }(N V, C A)$	

Nouns

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Nouns are functions that define entity type state
$\lambda x . s t a t e(x)$

mountain

$\lambda x . m o u n t a i n(x)$

Nouns

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Nouns are functions that define entity type state
$\lambda x . s t a t e(x)$
$\{W A, A L, A K, \ldots\}$
$e \rightarrow t$
functions define sets

mountain

λ x.mountain (x)
$\{$ BIANCA, ANTERO , ... $\}$

Nouns

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountain		Nouns are functions that define entity type
Name	Stat	
Bianca	CO	state
Antero	CO	N
Rainier	WA	$\lambda x . s t a t e(x)$
Shasta	CA	
		mountain
		$\begin{gathered} N \\ \lambda x \text { mountain }(x) \end{gathered}$

Prepositions

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Prepositional phrases are conjunctive modifiers mountain in Colorado

Prepositions

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Prepositional phrases are conjunctive modifiers mountain in Colorado
λx.mountain $(x) \wedge$
in $(x, C O)$
$\{$ BIANCA, ANTERO $\}$

Prepositions

State		mountain		Colorado	
Abbr.	Capital		in		
AL	Montgomery	$\begin{gathered} \hline N \\ \lambda x . \text { mountain }(x) \end{gathered}$	$P P / N P$	$N P$	
AK	Juneau		$\underline{\lambda y \cdot \lambda x \cdot i n(x, y)}$	CO	
AZ	Phoenix		$\lambda x . i n(x$		
WA	Olympia		$\begin{gathered} N \backslash N \\ \lambda f . \lambda x . f(x) \wedge i n(x, C O) \end{gathered}$		
NY	Albany				
IL	Springfield	λx.mount	$\left.\begin{array}{c} N \\ \operatorname{ain}(x) \end{array}\right)$		

Function Words

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Border	
State State2 WA OR WA ID CA OR CA NV	

Certain words are used to modify syntactic roles
state that borders California
$\lambda x . \operatorname{state}(x) \wedge \operatorname{border}(x, C A)$
$\{O R, N V, A Z\}$

Function Words

Definite Determiners

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Definite determiner selects the single members of a set when such exists
$\iota:(e \rightarrow t) \rightarrow e$
the mountain in Washington

Definite Determiners

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Definite determiner selects the single members of a set when such exists

$$
\iota:(e \rightarrow t) \rightarrow e
$$

mountain in Washington
$\lambda x . m o u n t a i n(x) \wedge i n(x, W A)$
$\{$ RAINIER $\}$

Definite Determiners

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Definite determiner selects the single members of a set when such exists

$$
\iota:(e \rightarrow t) \rightarrow e
$$

the mountain in Washington
$\iota x . m o u n t a i n(x) \wedge \operatorname{in}(x, W A)$
$\{$ RAINIER $\}$
RAINIER

Definite Determiners

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

Definite determiner selects the single members of a set when such exists
$\iota:(e \rightarrow t) \rightarrow e$
the mountain in Colorado
ιx. mountain $(x) \wedge \operatorname{in}(x, C O)$
$\{$ BIANCA , ANTERO $\}$
No information to disambiguate

Definite Determiners

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

the	mountain in Colorado
$\begin{gathered} \hline N P / N \\ \lambda f . \iota x \cdot f(x) \end{gathered}$.
	$\begin{gathered} N \\ \lambda x \cdot \operatorname{mountain}(x) \wedge \operatorname{in}(x, C O) \end{gathered}$
	$\begin{gathered} N P \\ \operatorname{untain}(x) \wedge \operatorname{in}(x, C O) \end{gathered}$

Indefinite Determiners

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

state with a mountain
$\lambda x . \operatorname{state}(x) \wedge \operatorname{in}($ Ay.mountain $(y), x)$
[Steedman 2011; Artzi and Zettlemoyer 2013b]

Superlatives

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Superlatives select optimal entities according to a measure the largest state $\operatorname{argmax}(\lambda x . s t a t e(x), \lambda y . p o p(y))$
Min or max ... over this ... according to set this measure

Superlatives

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Superlatives select optimal entities according to a measure the largest state
$\operatorname{argmax}(\lambda x . s t a t e(x), \lambda y . p o p(y))$
Min or max ... over this ... according to set this measure

CA

AL	3.9
AK	0.4
Seattle	2.7
San Francisco	4.1
NY	17.5
IL	11.4

Superlatives

State	
Abbr.	Cap
AL	Montgo
AK	June
AZ	Phoe
WA	Olym
NY	Alba
IL	Spring

$\frac{\text { the largest }}{N P / N}$
$\frac{\text { state }}{N f \cdot \operatorname{argmax}(\lambda x \cdot f(x), \lambda y \cdot p o p(y))}$
$\operatorname{argmax}(\lambda x \cdot \operatorname{state}(x), \lambda y \cdot p o p(y))$

Superlatives

State	
Abbr.	Capi
AL	Montgo
AK	June
AZ	Phoe
WA	Olym
NY	Alba
IL	Spring

the most	populated	state
$\begin{gathered} N P / N / N \\ \lambda g \cdot \lambda f \cdot \operatorname{argmax}(\lambda x \cdot f(x), \lambda y \cdot g(y)) \end{gathered}$	$\begin{gathered} N \\ \lambda x \cdot p o p(x) \end{gathered}$	$\begin{gathered} N \\ \text { Ax.state }(x) \end{gathered}$
$\begin{gathered} N P / N \\ \lambda f . \operatorname{argmax}(\lambda x . f(x), \lambda y \cdot p o p(y)) \end{gathered}$		
$\begin{gathered} N P \\ \operatorname{argmax}(\lambda x . \operatorname{state}(x \end{gathered}$	$\lambda y \cdot p o p(y))$	

Representing Questions

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4

Border	
Statel State2 WA OR WA ID CA OR	

Mountains

Name	State
Bianca	CO
Antero	CO
Rainier	$W \Delta$

Which mountains are in Arizona?
Represent questions as the queries that generate their answers

Representing Questions

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4

Border	
Statel State2 WA OR WA ID CA OR	

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainior	$W A$

Which mountains are in Arizona?
$\lambda x . \operatorname{mountain}(x) \wedge i n(x, A Z)$

Represent questions as the queries that generate their answers

Representing Questions

State

Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4

Border	
Statel State2 WA OR WA ID CA OR	

Mountains	
Name	State
Bianca	CO
Antero	CO
Rainier	$W \Delta$

How many states border California? $\operatorname{count}(\lambda x$.state $(x) \wedge \operatorname{border}(x, C A))$

Represent questions as the queries that generate their answers

Spatial and Instructional Language

Name objects
Noun phrases
Specific entities
Nouns
Sets of entities
Prepositional phrases
Adjectives

Constrain sets

Instructions to execute

Verbs	Davidsonian even
Imperatives	Sets of events

Neo-Davidsonian Event Semantics

- Vincent shot Marvin in the car accidentally
$\exists \operatorname{a} . \operatorname{shot}(a) \wedge \operatorname{agent}(a, V I N C E N T) \wedge$
patient $(a, M A R V I N) \wedge \operatorname{in}(a, \iota x \cdot \operatorname{car}(x)) \wedge \neg \operatorname{intentional}(a)$

Summary

- The connection between language, sets and logic
- Semantic Parsing
- Combinatory Categorial Grammars (CCGs)
- How to query KBs using NL

Recommended Reading

A Very Short Introduction to CCG*

Mark Steedman
Draft, November 1, 1996
http://cs.brown.edu/courses/csci2952d/readings/lecture5-steedman.pdf

Recommended Reading

Open-Domain Semantic Parsing with Boxer

Johan Bos
Center for Language and Cognition
University of Groningen
johan.bos@rug.nl

http://cs.brown.edu/courses/csci2952d/readings/lecture8-bos.pdf

