Symbolic Al

Andre Freitas

Photo by Vasilyev Alexandr

Acknowledgements

• Based on the great slides of:

Yoav Artzi, Nicholas FitzGerald and Luke
 Zettlemoyer, Semantic Parsing with Combinatory
 Categorial Grammars

 Combinatory Categorial Grammar: Constraining surface realisation in OpenCCG

This Lecture

- The connection between language, sets and logic
- Semantic Parsing
- Combinatory Categorial Grammars (CCGs)
- How to query KBs using NL

Language to Meaning

at the chair, move forward three steps past the sofa $\lambda a.pre(a, \iota x.chair(x)) \land move(a) \land len(a, 3) \land$ $dir(a, forward) \land past(a, \iota y.sofa(y))$

 $f: \text{sentence} \to \text{logical form}$

Lambda Calculus

- Formal system to express computation
- Allows high-order functions

$$\begin{split} \lambda a.move(a) \wedge dir(a, LEFT) \wedge to(a, \iota y.chair(y)) \wedge \\ pass(a, \mathcal{A}y.sofa(y) \wedge intersect(\mathcal{A}z.intersection(z), y)) \end{split}$$

Lambda Calculus Base Cases

- Logical constant
- Variable
- Literal
- Lambda term

Lambda Calculus Logical Constants

• Represent objects in the world

 $NYC, CA, RAINIER, LEFT, \dots$ located_in, depart_date, ...

Lambda Calculus Variables

- Abstract over objects in the world
- Exact value not pre-determined

 x, y, z, \ldots

Lambda Calculus Literals

• Represent function application

city(AUSTIN) $located_in(AUSTIN, TEXAS)$

Lambda Calculus Lambda Terms

- Bind/scope a variable
- Repeat to bind multiple variables

 $\lambda x.city(x)$ $\lambda x.\lambda y.located_in(x,y)$

Lambda Calculus Lambda Terms

- Bind/scope a variable
- Repeat to bind multiple variables

Capturing Meaning with Lambda Calculus

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border		
State I	State2	
WA	OR	
WA	D	
CA	OR	
CA	NV	
CA	AZ	

Show me mountains in states bordering Texas

[Zettlemoyer and Collins 2005]

Capturing Meaning with Lambda Calculus

- SYSTEM how can I help you ?
- USER i'd like to fly to new york
- SYSTEM flying to new york . leaving what city ?
- USER from boston on june seven with american airlines
- SYSTEM flying to new york . what date would you like to depart boston ?
- USER june seventh
- SYSTEM do you have a preferred airline ?
- USER american airlines
- SYSTEM o.k. leaving boston to new york on june seventh flying with american airlines . where would you like to go to next ?
- USER back to boston on june tenth

[CONVERSATION CONTINUES]

[Artzi and Zettlemoyer 2013b]

Capturing Meaning with Lambda Calculus

• Flexible representation.

• Can capture full complexity of natural language.

Combinatory Categorial Grammars

• Categorial formalism.

Transparent interface between syntax and semantics.

• Designed with computation in mind.

[Steedman 1996, 2000]

Formalism

• X/Y: The kind of word or phrase that **combines** with a **following** Y to form an X.

• X\Y: kind of word or phrase that combines with a **preceding** Y to form an X.

Determiners

• **Determiner:** word that combines with a following N to give an NP, i.e., an NP/N.

Prepositions

• **Preposition:** word that combines with a following NP to give a PP, i.e., a PP/NP.

Verbs

CCG Categories

 $ADJ: \lambda x.fun(x)$

- Basic building block.
- Capture syntactic and semantic information jointly.

CCG Categories Syntax
$$ADJ:\lambda x.fun(x)$$
 Semantics

- Basic building block.
- Capture syntactic and semantic information jointly.

CCG Categories

Syntax
$$ADJ: \lambda x.fun(x)$$

 $(S \setminus NP) / ADJ: \lambda f. \lambda x.f(x)$
 $NP: CCG$

- Primitive symbols: N, S, NP, ADJ and PP.
- Syntactic combination operator (/,\).
- Slashes specify argument order and direction.

$\begin{array}{l} {CCG\ Categories}\\ ADJ: \lambda x.fun(x) \quad \text{Semantics}\\ (S\backslash NP)/ADJ: \lambda f.\lambda x.f(x)\\ NP: CCG \end{array}$

- λ -calculus expression.
- Syntactic type maps to semantic type.

CCG Lexical Entries

fun $\vdash ADJ : \lambda x.fun(x)$

CCG Lexical Entries

CCG Lexicons

fun $\vdash ADJ : \lambda x.fun(x)$ is $\vdash (S \setminus NP) / ADJ : \lambda f. \lambda x.f(x)$ CCG $\vdash NP : CCG$

Parsing with CCGs

CCG Operations Application

- Equivalent to function application
- Two directions: forward and backward
 Determined by slash direction

Parsing with CCGsCCGisfun \overline{NP} $\overline{S \setminus NP / ADJ}$ \overline{ADJ} CCG $\lambda f. \lambda x. f(x)$ $\lambda x. fun(x)$

Combine categories using operators

 $A/B: f \quad B: g \Rightarrow A: f(g) \quad (>)$

Combine categories using operators

 $B:g \quad A \backslash B: f \Rightarrow A: f(g) \quad (<)$

CCG Operations Composition

- Equivalent to function composition
- Two directions: forward and backward

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Bor	der		
tatel	State2		
WA	OR		
WA	D		
CA	OR		
CA	NV	-	-
СА	AZ	Ň	

[Zettlemoyer and Collins 2005]

State			Bor	der	Moun	tains
Abbr.	Capital	Pop.	Statel	State2	Name	State
A 1	M	2.0	WA	OR	B ianca	СО
AL	Montgomery	3.9	WA	ID	Antero	СО
AK	Juneau	0.4	CA	OR	Rainier	WA
A 7		0.7	CA	NV	Shasta	CA
AZ	Phoenix	2.7	\frown \land	A 🔫	Shasta	U.N.

What is the capital of Arizona? How many states border California? What is the largest state?

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border		
Statel	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	
	A 🗁	

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier	WA	
Shasta	CA	

What is the capital of Arizona? How many states border California? What is the largest state?

Noun Phrases

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border		
Statel	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	
	A 🚽	

Mountains

Name	State
Bianca	СО
Antero	СО
Rainier	WA
Shasta	CA

What is the capital of Arizona? How many states **border** California? What is the largest state?

Verbs

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Bor	Border		
Statel	State2		
WA	OR		
WA	D		
CA	OR		
CA	NV		
\frown \land	A 🖂		

Mountains		
Name	State	
Bianca	СО	
Antero	CO	
Rainier	WA	
Shasta	CA	

What is the capital of Arizona? How many states border California? What is the largest state?

Nouns

State			
Abbr.	Capital	Pop.	\$
AL	Montgomery	3.9	-
AK	Juneau	0.4	
AZ	Phoenix	2.7	_

Border				
Statel	State2			
WA	OR			
WA	D			
CA	OR			
CA	NV			
	A 🖵			

Mountains				
Name	State			
Bianca	СО			
Antero	CO			
Rainier	WA			
Shasta	CA			

What is the capital of Arizona? How many states border California? What is the largest state?

Prepositions

State			Bo
Abbr.	Capital	Pop.	Stat
A 1	Mandaaraa	2.0	W
AL	Montgomery	3.9	W
AK	Juneau	0.4	CA
A 7		0.7	CA
AZ	Phoenix	2.7	\sim

Border					
Statel	State2				
WA	OR				
WA	ID				
CA	OR				
CA	NV				
<u> </u>	A				

Mountains				
Name	State			
Bianca	CO			
Antero	CO			
Rainier	WA			
Shasta	CA			

What is the capital of Arizona? How many states border California? What is the largest state?

Superlatives

State			
Abbr.	Capital	Pop.	S
AL	Montgomery	3.9	┢
AK	Juneau	0.4	
AZ	Phoenix	2.7	_

Bor	Mour	
Statel	State2	Name
WA	OR	Bianca
WA	ID	Antero
CA	OR	Rainier
CA	NV	Shasta
<u> </u>	A 🔽	

Mountains			
Name	State		
Bianca	СО		
Antero CO			

What is the capital of Arizona? How many states border California? What is the largest state?

Determiners

WA

CA

State			Bor	der	Moun	tains
Abbr.	Capital	Pop.	Statel	State2	Name	State
A 1	M	2.0	WA	OR	Bianca	СО
AL	Montgomery	3.9	WA	ID	Antero	со
AK	Juneau	0.4	CA	OR	Rainier	WA
AZ	P hoenix	2.7	CA	NV	Shasta	CA
AL	FIDENIX	۷./	\frown \land	A 🗁		

What is the capital of Arizona?

How many states border California?

What is the largest state?

Questions

е

Referring to DB Entities

Noun Phrases

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	P hoenix
WA	Oly mpia
NY	Albany
IL	Springfield

Mountains				
Name	State			
Bianca	СО			
Antero	СО			
Rainier	WA			
Shasta	CA			

In this context

Noun phrases name specific entities

Washington

WA

Florida The Sunshine State FL

Noun Phrases

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Oly mpia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier	WA	
Shasta	CA	

Noun phrases name specific entities

Washington	
$NP \\ WA$	_

The Sunshine State

NP

FL

Verb Relations

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olym pia	
NY	Albany	
IL	Springfield	

Border		
Statel	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	
\frown \land	A 🔽	

Verbs express relations between entities

Nevada borders California border(NV, CA)

Verb Relations

State				
Abbr.	Capital			
AL	Montgomery	Nevada	borders	California
AK	Juneau	$NP \\ NV$	$\frac{S \backslash NP/NP}{\lambda x.\lambda y.border(y,x)}$	$NP \\ CA$
AZ	P hoenix			>
WA	Oly mpia		$S \backslash NP \\ \lambda y. border(y)$, CA)
NY	Albany		$S \\ border(NV, CA)$	<
IL	Springfield		$(\mathbf{I}\mathbf{V}\mathbf{V}, \mathbf{C}\mathbf{A})$	

Nouns

State		
Abbr.	Capital	
AL	Montgom ery	
AK	Juneau	
AZ	Phoenix	
WA	Olymp ia	
NY	Albany	
IL	Springfield	

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier	WA	
Shasta	CA	

Nouns are functions that define entity type

state

$$\lambda x.state(x)$$

mountain

 $\lambda x.mountain(x)$

Nouns

State		Moun	tains	Nouns are functions
Abbr.	Capital	Name	State	that define entity type
AL	Montgomery	Bianca	СО	state
, <u> </u>	Tionegomery	Antero	CO	
AK	Juneau	Rainier	WA	$\lambda x.state(x)$
AZ	Phoenix	Shasta	CA	$\{\mathbb{W}_{A}, \mathbb{A}_{L}, \mathbb{A}_{K}, \dots\}$
WA	Olym pia			
NY	Albany	e –		mountain
IL	Springfield	funct define		$\lambda x.mountain(x)$
		Conne	. 3003	BIANCA, ANTERO,}

Nouns

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Oly mpia
NY	Albany
IL	Springfield

Moun	tains		e functions
Name	State	that define entity type	e entity type
Bianca	CO	state	
Antero	CO	\overline{N}	
Rainier		$\lambda x.state(x)$	
Shasta	CA		

any	mountain	
	\overline{N}	
gfield	$\lambda x.mountain(x)$	

Prepositions

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olym pia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier	WA	
Shasta	CA	

Prepositional phrases are conjunctive modifiers

mountain in Colorado

Prepositions

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Pho enix
WA	Olym pia
NY	Albany
IL	Spring field

Mountains		
Name	State	
Bianca	СО	
Antero CO		
Rainier	WA	
Shasta	CA	

Prepositional phrases are conjunctive modifiers

mountain in Colorado $\lambda x.mountain(x) \land$ in(x, CO)

Prepositions

State				
Abbr.	Capital	mountain	in	Colorado
AL	Montgomery	\overline{N}	$\frac{PP/NP}{\lambda y.\lambda x.in(x,y)}$	NP
AK	Juneau	$\lambda x.mountain(x)$		>
AZ	Phoenix		$\begin{array}{c} PP\\ \lambda x.in(x, \end{array}$	
WA	Oly mpia		$N \setminus N$	V
NY	Albany		$\lambda f.\lambda x.f(x)$ \wedge	$\frac{in(x, CO)}{d}$
IL	Springfield	$\lambda x.mount$	$ain(x) \wedge in(x, C)$	CO)

Function Words

State2

OR

OR

NV

State		Bor	der
Abbr.	Capital	Statel	State
		WA	OR
AL	Montgomery	WA	ID
AK	Juneau	CA	OR
		CA	NV
AZ	Phoenix	\frown \land	∧ - 7
WA	Oly mpia		
NY	Albany		
IL	Springfield		

Certain words are used to modify syntactic roles

state that borders California $\lambda x.state(x) \wedge border(x, CA)$

Function Words

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olym pia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	СО	
Antero CO		
Rainier WA		
Shasta	CA	

Definite determiner selects the single members of a set when such exists

$$: (e \to t) \to e$$

the mountain in Washington

l

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olym pia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier WA		
Shasta	CA	

Definite determiner selects the single members of a set when such exists

$$\iota: (e \to t) \to e$$

mountain in Washington $\lambda x.mountain(x) \wedge in(x, WA)$

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Oly mpia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier	WA	
Shasta	CA	

Definite determiner selects the single members of a set when such exists

$$\omega: (e \to t) \to e$$

the mountain in Washington $\iota x.mountain(x) \wedge in(x, WA)$

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olym pia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	СО		
Antero	СО		
Rainier	WA		
Shasta	CA		

Definite determiner selects the single members of a set when such exists

$$\iota: (e \to t) \to e$$

the mountain in Colorado $\iota x.mountain(x) \land in(x, CO)$

No information to disambiguate

State				
Abbr.	Capital			
AL	Montgomery	the	mountain in Colorado	
AK	Juneau	$\frac{NP/N}{\lambda f.\iota x.f(x)}$	•	
AZ	Pho enix	$J = J \setminus J$	\overline{N}	
WA	Olym pia		$\lambda x.mountain(x) \wedge in(x, CO)$	
NY	Albany	$\frac{NP}{\iota x.mountain(x) \land in(x, CO)}$		
IL	Spring field	<i>l.l.i</i>	$\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}($	

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olym pia
NY	Albany
IL	Springfield

Mountains				
Name	State			
Bianca	СО			
Antero	СО			
Rainier	WA			
Shasta	CA			

Indefinite determiners are select any entity from a set without a preference

$$4: (e \to t) \to e$$

state with a mountain

 $\lambda x.state(x) \wedge in(\mathcal{A}y.mountain(y), x)$

[Steedman 2011; Artzi and Zettlemoyer 2013b]

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Superlatives select optimal entities according to a measure

the largest state

 $\begin{array}{c} argmax(\lambda x.state(x),\lambda y.pop(y)) \\ \text{Min or max} & \dots \text{ over this} & \dots \text{ according to} \\ & \text{set} & \text{this measure} \end{array}$

AL	3.9
AK	0.4
Seattle	2.7
San Francisco	4. I
NY	17.5
IL	11.4

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Superlatives select optimal entities according to a measure

the largest state

 $\begin{array}{ccc} argmax(\lambda x.state(x),\lambda y.pop(y)) \\ \text{Min or max} & \dots \text{ over this} & \dots \text{ according to} \\ & & \text{set} & & \text{this measure} \end{array}$

AL	3.9
AK	0.4
Seattle	2.7
San Francisco	4. I
NY	17.5
IL	11.4

Representing Questions

Which mountains are in Arizona?

Represent questions as the queries that generate their answers

Representing Questions

Which mountains are in Arizona?

 $\lambda x.mountain(x) \wedge in(x, AZ)$

Represent questions as the queries that generate their answers

Representing Questions

State			Bor	der	Moun	tains
Abbr.	Capital	Pop.	Statel	State2	Name	State
A1	Mantaamaana	2.0	WA	OR	Bianca	со
AL	Montgomery	3.9	WA	ID	Antero	СО
AK	Juneau	0.4	CA	OR	Rainier	

How many states border California? $count(\lambda x.state(x) \land border(x, CA))$

Represent questions as the queries that generate their answers

Spatial and Instructional Language

Name objects

Noun phrases	Specific entities
Nouns	Sets of entities
Prepositional phrases Adjectives	Constrain sets

Instructions to execute

Verbs	Davidsonian events
Imperatives	Sets of events

Neo-Davidsonian Event Semantics

• Vincent shot Marvin in the car accidentally

 $\exists a.shot(a) \land agent(a, VINCENT) \land \\patient(a, MARVIN) \land in(a, \iota x.car(x)) \land \neg intentional(a)$

Summary

- The connection between language, sets and logic
- Semantic Parsing
- Combinatory Categorial Grammars (CCGs)
- How to query KBs using NL

Recommended Reading

A Very Short Introduction to CCG*

Mark Steedman

Draft, November 1, 1996

http://cs.brown.edu/courses/csci2952d/readings/lecture5-steedman.pdf

Recommended Reading

Open-Domain Semantic Parsing with Boxer

Johan Bos

Center for Language and Cognition University of Groningen johan.bos@rug.nl

http://cs.brown.edu/courses/csci2952d/readings/lecture8-bos.pdf